
 

 

A Cyclic Growth-Dissolution Process  

for the Controlled Manipulation  

of Crystal Shape Distributions 
 

 

 

 

Dissertation 

zur Erlangung des akademischen Grades 

Doktoringenieur 

(Dr.-Ing.) 

 

von Dipl.-Ing. Holger Eisenschmidt 

geb. am 26. 10. 1983 in Magdeburg 

genehmigt durch die Fakultät für Verfahrens- und Systemtechnik 

der Otto-von-Guericke-Universität Magdeburg 

 

 

Promotionskommission: Prof. Dr.-Ing. habil. Andreas Seidel-Morgenstern (Vorsitz) 

Prof. Dr.-Ing. habil. Kai Sundmacher (Gutachter) 

Prof. Dr.-Ing- habil. Heiko Briesen (Gutachter) 

Prof. Dr. Marco Mazzotti (Gutachter) 

 

 

eingereicht am:   28. 02. 2018 

Promotionskolloquium am: 25. 05. 2018  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract iii 

 
 

Abstract 
 

This work addresses the controlled shaping of crystal distributions via a cyclic growth-

dissolution process. This process concept is motivated by the fact that the final crystal shape 

distribution is an important product property of crystalline material, which can be altered 

through manipulation of the solution temperature only. As this process concept results in a 

higher complexity compared to simple batch operation, adequate models and control 

approaches are required. The development of these models and routines is addressed in the 

work, which can be subdivided into three major parts. 

 

Details on the experimental setup and procedures that are employed in this work are given in 

the first part of this manuscript. Special emphasis is laid here on the development of a 

measurement technique capable of observing the crystal size and shape distribution in real 

time. Additionally, also the model that is used to describe the dynamics of the crystallization 

process is specified. 

 

The second part of this work addresses the determination of the kinetics that are governing 

the crystallization process. The face-specific growth kinetics of potassium dihydrogen 

phosphate (KDP) are determined and parameterized as a function of supersaturation and 

temperature. It is argued that the growth kinetics of the {100}-faces of KDP are substantially 

influenced by the presence of impurities in the solution. This influence is discussed and 

modeled in more detail on the basis of the BFC-theory in conjunction with the step-pinning 

mechanism. In a further analysis of the experiments, employed for the determination of the 

growth kinetics, also growth rate dispersion and nucleation is observed. Kinetic model for 

both phenomena are identified and parameterized. Finally, also the determination of the face-

specific dissolution kinetics of KDP is addressed. The dissolution kinetics are again 

determined and parameterized as a function of undersaturation and temperature. It is argued 

that dissolution is, in contrast to growth, limited by bulk diffusion. 

 

The final part of the manuscript addresses the control of crystal shape distributions in a cyclic 

growth-dissolution process. The routines necessary for this process are described, which 

include the derivation of the time-optimal process strategy, as well as the introduction of a PI-

supersaturation feedback controller and a derivation of time-optimal switching procedures for 

switches from growth to dissolution conditions and vice versa. In order to improve the 

controllability of the crystal shape trajectory, a Kalman filter is employed to smoothen the 

measurements of the crystal size and shape distributions. All those routines are embedded in 

a controller structure that is subsequently employed to realize a feedback-controlled growth-

dissolution process on an experimental level. It is demonstrated that a tight control of the 

evolution of the crystal shape trajectory can be achieved by the developed methods. The 

concept of growth-dissolution cycles is proven to be a viable process concept for crystal 

shaping that can be achieved by pure temperature or supersaturation control. 
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Zusammenfassung 
 

In dieser Arbeit wird ein geregelter Prozess aus Zyklen von Wachstums- und Auflösungs-

phasen zur gezielten Steuerung von Kristallformverteilungen untersucht. Dieses Prozesskon-

zept wird durch die Tatsache motiviert, dass die finale Kristallformverteilung eine 

bedeutende Produkteigenschaft von kristallinem Material darstellt, welche hier durch 

alleinige Temperaturregelung beeinflusst werden kann. Da dieses Prozesskonzept erheblich 

komplexer ist als einfache Batch-Prozesse, sind adäquate Modelle und Strategien zur 

Beschreibung bzw. Regelung des Prozesses notwendig.  

 

Details zum Aufbau und zum Ablauf der Experimente werden im ersten Teil dieser Arbeit 

beschrieben. Hierbei wird insbesondere auf die Entwicklung eines Beobachters eingegangen, 

mit dem sich die Kristallformverteilung in Echtzeit bestimmen lässt. Zusätzlich werden auch 

die Modellgleichungen zur Beschreibung der Prozessdynamiken in diesem Teil spezifiziert. 

 

Der zweite Teil dieser Arbeit thematisiert die Bestimmung und Beschreibung der wichtigsten 

kinetischen Effekte des Kristallisationsprozesses. Die flächenspezifischen Wachstums-

kinetiken von Kaliumdihydrogenphosphat (KDP) werden in Abhängigkeit von Übersättigung 

und Temperatur bestimmt und parametriert. Es wird argumentiert, dass das Wachstum der 

{100}-Flächen von KDP erheblich durch das Vorhandensein von Verunreinigungen 

beeinflusst wird. Dieser Einfluss wird detaillierter betrachtet, und durch die Verbindung der 

Theorien zum Spiralwachstum und zum Einfluss von Verunreinigungsmolekülen auf das 

Kristallwachstum modelliert. In einer weiterführenden Analyse der Versuche zur 

Bestimmung der Wachstumskinetiken werden zusätzlich Wachstumsdispersion und 

Keimbildung beobachtet. Kinetische Modelle werden für beiden Phänomene identifiziert und 

parametriert. Abschließend wird die Bestimmung der flächenspezifischen Auflösungsraten 

thematisiert. Diese Auflösungskinetiken werden in Abhängigkeit von Untersättigung und 

Temperatur bestimmt und parametriert. Die vermessenen Kinetiken deuten darauf hin, dass 

die Auflösung, im Gegensatz zum Wachstum, durch Diffusion in der Lösung limitiert ist. 

 

Im letzten Teil dieser Arbeit wird die Kristallformsteuerung durch geregelte Zyklen von 

Wachstum und Auflösung betrachtet. Hierzu werden zunächst Strategien beschrieben die zur 

Prozessregelung verwendet werden. Diese umfassen die Bestimmung von Optimal-

steuerungsprofilen, die Entwicklung eines PI-Reglers zur Übersättigungsreglung sowie die 

Bestimmung von zeitoptimalen Routinen für das Umschalten zwischen Über- auf 

Untersättigung. Zur Verbesserung der Steuerbarkeit des Prozesses werden die Messwerte der 

Kristallformverteilung durch einen Kalman-Filter geglättet. Die genannten Regelungsstrate-

gien werden in einer übergeordneten Reglerstruktur implementiert, die wiederum verwendet 

wird, um einen geregelten zyklischen Wachstums-Auflösungsprozess experimentell zu 

realisieren. Es wird gezeigt, dass die Trajektorie der Kristallformverteilung zielgenau geregelt 

werden kann. Die Anwendbarkeit von Zyklen aus Wachstum und Auflösung für die 

Kristallformsteuerung durch alleinige Temperaturregelung wird experimentell belegt. 
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Notation 
 

Latin Symbols 

A Jacobian matrix  

A surface area m2 

a constant coefficients of Eqs. (2.28a) and (4.9a)  

B Jacobian matrix  

Bnuc nucleation rate 1/(m3s) 

b constant coefficients of Eqs. (2.28b) and (4.9b)  

C Jacobian matrix  

c constant coefficients of Eqs. (2.28c) and (4.9c)  

cp heat capacity J/(kgK) 

ci empirical constants of Eqs. (2.2), (3.13), (3.14) and (3.22) variable 

D vector of dissolution rates m/s 

Di dissolution rate of face i m/s 

d diameter m 

d0,i empirical pre-factor for growth rate diffusivity of face i m2/s 

di growth rate diffusivity of face i m2/s 

EA activation energy J/mol 

f (bivariate) population density m-5 

f function relating a previous state to the current  

G vector of growth rates  

Gi growth rate of face i m/s 

g function relating a state to the measurements  

KDP

~
 H  crystallization enthalpy J/mol 

h geometrical state vector m 

h̅ vector of mean geometrical state   

hi face distance of face i m 

I identity matrix  

I intensity (grayscale) level  

K Kalman gain matrix  

K temperature dependent constant   

Kp controller parameter K 

k growth - / dissolution rate constant m/s 

k heat transfer coefficient W/(m2K) 

k0 pre-exponential factor m/s 

k0,N pre-exponential factor for nucleation 1/(m3-nM s) / 1/(m3s) 

kB Boltzmann constant J/K 

L length m 

m mass kg 

 m  mass flow kg/s 
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 m~  molar mass kg/mol 

N matrix of face normals  

N number  

ni face normal vector of the face i  

nd,i empirical exponent for growth rate diffusivity of face i  

P crystal polyhedron  

PTh thermostat power W 

Pk a posteriori estimate of the error covariance matrix  

Pk
-
 a priori estimate of the error covariance matrix  

p vector of growth affecting properties  

p vector of parameters  

pi,j factor specifying the growth rate of face i of crystal j  

Q process noise covariance matrix  

R measurement error covariance matrix  

R universal gas constant J/(molK) 

R correlation coefficient  

r vector of 3d space coordinates m 

r radius m 

S supersaturation  

 S  average supersaturation  

S* critical supersaturation  

s empirical constant - / °C-1 / °C-2 

T  temperature K 

 T  average temperature  

TN controller parameter s/K 

t time s 

u vector of control inputs m 

V volume m3 

v vector of measurement noise m 

v step velocity m/s 

vi convective velocity in i-th direction m/s 

w process noise vector m 

w solute concentration kgKDP/kgH2O 

w  average solute concentration kgKDP/kgH2O 

x vector of external coordinates m 

x vector of state variables m 

kx̂  a priori state estimate m 

kx̂  a posteriori state estimate m 

z vector of measurements m 
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Greek Symbols 

α effectiveness factor  

β angle  

γ surface energy J/m2 

δ Dirac distribution  

δi additional state variable of face i m 

θ surface coverage  

λ infrared wavelength cm-1 

μ vector of moments  

μi,j mixed moment mi+j-5 

μA total crystal surface area m-1 

μV total crystal surface volume  

ν molecular volume m3 

ρ density kg/m3 

σ vector of standard deviations  

σ source / sink term 1/(m5s) 

σ1 critical supersaturation  

σi
2 variance in the direction of face i m2 

τ time constant s 

Ω integration domain  

 

Subscripts and Abbreviations 

0 initial value 

ATR attenuated total reflectance 

BCF Burton-Cabrera-Franck 

back background 

bin binary 

C crystallizer 

CCG constant crystal growth 

CG crystallizer – ground element 

CS crystallizer – side element 

CSSD crystal size and shape distribution 

crit critical radius 

cryst crystal 

D dissolution 

diff difference 

end end 

enh enhanced 

est estimated 

eq equilibrium 

F final 
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FTIR Fourier transformed infrared 

G growth 

G ground element of double jacked 

GAP growth affecting property 

GRD growth rate dispersion 

GU ground element - environment 

H2O water 

KDP potassium dihydrogen phosphate 

max maximal 

meas measured 

min minimal 

mod modeled 

nuc nucleation 

obs observed 

P product 

PBC periodic bond chain 

PBE population balance equation 

PI PI controller 

PLS partial least squares 

ref reference 

rel relative 

RF random fluctuation 

RMSE root mean squared error 

S switching point 

S side element of double jacket 

SU side element - environment 

seed seed crystal population 

set set-point 

sim simulation 

sus suspension 

symm symmetric 

Th thermostat 

tot total 

U environment 

val validation 
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1. Introduction 
 

Crystallization is an important unit operation in chemical production systems as about 60 % 

of all chemical substances that are produced by major chemical companies are formulated as 

solids and mostly as crystalline materials (Wintermantel 1999). In many cases, a 

crystallization step is not only applied to produce a solid phase, but also to serve as 

purification step within the entire chemical production system.  

There is a variety of different crystallization processes in industrial practice. In order to 

classify these different processes, a distinction can be made by the phase from which the 

product material is crystallized. Crystalline material can, for instance, be obtained from a 

gaseous phase, from the melt, from the crystallization within an amorphous phase, or from 

the crystallization from a liquid solution. The latter process is probably the most frequent 

crystallization process in the chemical industry, and also this work is focused on this process 

type. Solution crystallization processes themselves can again be subdivided into a number of 

process classes, for instance according to the mode of operation (batch, semibatch, 

continuous), the source of crystals (seeded, unseeded, autoseeded) or the way by which 

supersaturation is generated (cooling, evaporation, addition of antisolvent). It is beyond the 

scope of this work to consider the entire class of all these processes. While some results of 

this work may be applicable to other solution crystallization processes as well, the focus is 

laid on seeded batch cooling (and heating) crystallization. 

 

Regardless of the choice of the operation mode, a crystallization process is typically followed 

by further downstream processes. Such processes can, for instance, be filtration, drying or 

packaging. The performance of all of these subsequent processing steps is directly related to 

the final crystal size and shape distribution (CSSD) that results from the crystallization 

process. For instance a CSSD which is composed of a large amount of fines and/or needle or 

platelet like crystals is known to cause problems in the washing and drying steps which are 

employed to remove the remaining solvent or antisolvent from the product material in order 

to meet the purity specifications of the final product.  

Such an inadequate CSSD is furthermore known as one major cause of blockage during the 

filtration step, which can limit the productivity of the entire production process. Thus, an 

undesired CSSD can severely affect the economic performance of the entire production chain 

and might result in an end product that does not meet the required purity specifications. In 

order for the CSSD to meet the specific requirements of the proceeding downstream 

processes a variety of different crystallizer concepts and configuration have been developed. 

These include controlled batch crystallizers (Abu Bakar 2009, Nagy 2011, Jiang 2014a), 

MSMPR crystallizers (Alvarez 2011, Wong 2012, Temmel 2016a, Temmel 2016b), tubular 

crystallizer (Eder 2012, Jiang 2014b, Wiedmeyer 2017a, Wiedmeyer 2017b) or fluidized bed 

crystallizers (Shiau 1999, Moguel 2010, Binev 2015). 
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Apart from the influence of the CSSD on the performance of the downstream processes, an 

adequate crystal shape can also influence the solid state properties of the crystalline product 

directly. Differences in crystal shapes imply differences in the configuration of crystal facets 

on the outer crystal surface. Due to differences in the arrangement of the molecules that are 

exposed on the individual facets, these crystal facets can have different properties themselves. 

This can in turn be exploited to improve the solid state properties of the product by designing 

a crystallization process that will yield such favorable crystal shapes. The design of catalyst 

particles is one of the most prominent examples in this context. The catalytic activity and 

selectivity can vary between different crystal facets. Hence, the design of adequate crystal 

shapes can directly result in better catalytic performance or the reduction of the catalyst 

material that is required for a specific process. Recent examples of catalyst improvement 

through crystal shape modification can for instance be found in Yang et al. (2008), a series of 

papers by Linic and Christopher (Christopher 2010, Linic 2010) or Xu et al. (2011). Apart 

from the example of heterogeneous catalysis, crystal shape control for the improvement of 

solid state properties can, amongst others, also be found in the areas of solar cell applications 

(Law 2005), improvement of pharmaceuticals (Muster 2002, Bladgen 2007, Variankaval 

2008) or the design of particles with enhanced antimicrobial activity (Gilbertson 2016).  

 

In order to design a crystallization process that yields an adequate CSSD, detailed knowledge 

about the crystallization kinetics is required. This is particularly true, for crystal shape 

control, as the final shape of a crystal is determined by the growth (or dissolution) rates of the 

individual crystal facets that are (or might be) appearing on the outer surface of the crystal.  

In order to determine these growth kinetics, it was (and mostly still is) customary to track the 

shape evolution of single crystals under well-defined conditions in single crystal growth cells 

or hot-stage reactors, see for instance Ma et al. (2012a), Nguyen et al. (2014) or Ochsenbein 

et al. (2015) for recent examples. Such a procedure requires however a large amount of 

repeated experiments in order to obtain results that are not affected by the phenomenon of 

growth rate dispersion (Ochsenbein 2015). This makes the determination of face-specific 

growth rates through single crystal experiments quite time consuming. Furthermore, the 

applicability of the obtained kinetics to real crystallization processes remains somewhat 

questionable, as the process fluid dynamics can be only coarsely mimicked in single crystal 

cells. Additionally, crystal-crystal or crystal-wall collisions which may alter the individual 

face-specific growth rates do, of course, not occur in such setups.  

It is hence desirable to determine the growth (and dissolution) rates under real process 

conditions. This notion stipulated some recent research activities in obtaining face-specific 

growth (and dissolution) kinetics from real process data, as for instance demonstrated 

recently by Ma et al. (2012b) and Ochsenbein et al. (2014, 2015) for the β-polymorph of L-

glutamic acid and by Borchert et al. (2014) and Eisenschmidt et al. (2015a) for potassium 

dihydrogen phosphate (KDP). 

 

Despite the important impact of the crystallization kinetics on the entire crystallization 

process, detailed studies on these kinetics (and particularly studies on face-specific kinetics) 

are still rare in the open literature. This can mainly be attributed to the lack of measurement 



Chapter 1. Introduction 3 

 
 

techniques and devices with which is it possible to track the evolution of the CSSD during the 

crystallization process online. The increase in the computational power of modern desktop 

computers allowed for the application of video microscopy for measuring the CSSD, as it 

became possible to perform the required image processing steps (which are computationally 

expensive) sufficiently fast. Consequently, several algorithms have recently been presented 

that relate either the individual crystal shapes (Larsen 2006, Larsen 2007a, Li 2006, Ferreira 

2011, Schorsch 2012, Schorsch 2014, Borchert 2014, Le Borne 2016) or the state of the 

CSSD (Eggers 2008, Kempkes 2010, Zhang 2014) directly to the frames of the crystal 

suspension which are recorded by video microscopic devices.  

While these algorithms have been demonstrated to be capable of tracking the CSSD evolution 

over time, real-time implementations can up to date not be found1. This can mainly be 

attributed to the high requirements in computational performance, which are necessary to 

process the large amount of data that is necessarily provided by the video microscopes. 

Nevertheless, real-time observation can be expected to be highly beneficial for the 

application of advanced concepts for controlling the crystallization process. 

 

The goal of crystal shape control is clearly the design and realization of a crystallization 

process that yields crystalline material consisting of crystals with a desired shape distribution. 

This goal can for instance be achieved by the usage of additives, see Sangwal (2007) or 

Mullin (2001) and references therein, which alter the growth rates of individual face types 

and therefore alter the final crystal shape distribution. The downside of this concept is that, 

apart from the availability of a suitable additive, the crystal purity is decreased and that 

growth is hindered by the presence of additives which results in lower process productivities 

as well as in an increased risk of spontaneous nucleation. In an extreme case, growth can 

even stop completely, in which case the supersaturation can only be depleted through growth 

of freshly nucleated crystals, which will result in a broad CSSD. Alternatively, also solvent 

changes can affect the final crystal shape (Davey 1982, Lahav 2001, Mullin 2001). However, 

solvent changes are influencing the entire chemical production process, and are therefore 

rarely used in industrial applications.  

An alternative to crystal shape control by such chemical means is given by the concept of 

crystal shape control through supersaturation control (Ristic 2001, Boerrigter 2002, Yang 

2006, Borchert 2014, Eisenschmidt 2015a). This approach exploits differences in the 

supersaturation-dependencies of the growth rates of individual face types which are resulting 

in differences in the obtained final crystal shape. Supersaturation control can simply be 

achieved by controlling the solution temperature2, which makes this process concept 

attractive for industrial applications.  

However, the degree to which crystal shapes can be manipulated by supersaturation control 

can in practice be quite small. Hence an extension of this process concept to the application 

                                                           
1 With the exception of Zhang et al. (2014) whose algorithm estimates mean and standard deviation of 

an univariate log-normal distribution and is hence structurally quite different from the aforementioned 

approaches, and not applicable for crystal shape monitoring. 
2 Assuming that the solubility curve exhibits a temperature dependence that is sufficiently high. This 

is the case for most solute-solvent systems. 
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of a series of growth and dissolution phases has been recently proposed and investigated by 

several authors (Snyder 2007a, Snyder 2007b, Bunin 2010, Lovette 2012b, Bajcinca 2013, 

Jiang 2014a, Eisenschmidt 2015b, Eisenschmidt 2016, Simone 2017, Bötschi 2017). The 

additional dissolution phases of this concept offer additional degrees of freedom that can be 

used to enlarge the region of attainable crystal shapes compared to pure growth processes 

(Lovette 2012b, Jiang 2014a, Eisenschmidt 2016, Simone 2017, Bötschi 2017). Nevertheless, 

the complexity of the crystallization process is significantly increased by this concept which 

will naturally also result in an increased process time. Therefore, this process concept 

requires an adequate design as well as suitable controllers. This is why the present work is 

dedicated to the development of these requirements and ultimately to the experimental 

realization of crystal shape control via growth-dissolution cycles. 

 

 

 

1.1 Aims of this Work 
 

The basic scope of this work is the control of crystal shapes in a crystallization process. 

While there are several approaches to achieve this goal (which can be realized in a variety of 

different crystallizer configurations), this work is restricted purely to the control of crystal 

shapes by supersaturation control in a seeded batch crystallization process. Thus, approaches 

for crystal shape control like the usage of additives or different solvents are excluded from 

this work as well as the concept of crystal shape control by controlling the polymorphic 

content. In terms of crystal shape, this work is solely focused on convex facetted crystals. 

Hence, dendritic crystal shapes, as they appear frequently in precipitation processes as well as 

non-convex crystal shapes that result from agglomeration processes are not considered here.   

 

Special emphasis is, however, laid on the process concept of crystal shape manipulations by 

controlled growth-dissolution cycles, as this process was already demonstrated to enlarge the 

region of attainable crystal shapes compared to pure growth processes. Therefore, this 

concept can be expected to be applicable in a range of solute-solvent systems that stretches 

far beyond the example system of KDP – water that is considered here. The aim of designing, 

optimizing and controlling such a cyclic crystallization process directly imposes several 

experimental and theoretical requirements that have to be met. These requirements are 

therefore addressed in this work, in order to realize this cyclic growth-dissolution process: 

i) From an experimental point of view, the process requires an adequate experimental 

setup together with the ability of measuring the solute concentration and the state of 

the CSSD in real time, in order to provide a feedback for the process controller. 

While monitoring the concentration over time can be considered to be a standard 

task in crystallization process control, the monitoring of the CSSD (particularly in 

real time) cannot. It is hence the aim of this work, to develop and implement an 

observer with which it is possible to measure the state of the solid phase in real time 

in order to provide a feedback signal for the process control routines. 
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ii) The design, optimization and control of the cyclic crystallization process requires a 

process model that is capable of accurately describing the most important dynamics 

of the system, yet simple enough to be solved in real time to be applicable within a 

model-based feedback controller loop. 

iii) A model-based description of the dynamics of the crystalline phase requires the 

availability of accurate growth and dissolution kinetics, which necessarily have to be 

face-specific if the crystal shape dynamics are considered. Hence, the determination 

of these kinetics constitutes a key requirement for the design and optimization of the 

process. 

iv) In order to minimize the total process time, optimal control solutions (despite their 

importance not derived here, but taken and adjusted from literature (Bajcinca 2013, 

Bötschi 2017)) need to be approximated as close as possible in the experiment. 

Therefore, suitable control routines have to be developed and incorporated in the 

overall controller structure of this work. This controller structure has, of course, to 

be developed as well in order to force the CSSD evolution towards a desired final 

shape distribution. 

v) Finally, this controller has, as well as the entire concept of crystal shape control by 

growth-dissolution cycles, to be validated experimentally in order to assess the 

capabilities and limitations of the concepts developed in this work. 

 

 

 

1.2 Outline of this Work 
 

In order to structure the points just given in a comprehensive manner, the remainder of this 

work is structured as follows: 

 

Chapter 2 presents preliminary fundamentals of this work. The first part of this chapter 

specifies the experimental setup that was used (Section 2.1) as well as the model substance 

KDP (Section 2.2). The measurement of the solute concentration via ATR-FTIR 

spectroscopy is addressed in Section 2.3. Special emphasis is laid in this first part of Chapter 

2 on the description of the measurement setup that was used to monitor the evolution of the 

CSSD, as this setup forms the basis for the determination of the crystallization kinetics and 

the closed-loop control of the crystallization process which are discussed in the following 

chapters. 

Theoretical fundamentals of this work are given in the second part of Chapter 2. The 

mathematical model that is employed for the description of crystal shapes is given in Section 

2.5. This section is followed by a brief description of the mechanisms of crystal growth and 

dissolution in Section 2.6. Finally, also a mathematical model for the description of the 

dynamic behavior of the crystallization process is derived in Section 2.7. This model includes 

equations for describing the dynamics of the CSSD, the solute concentration and the solution 

temperature.  
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Chapter 3 provides a detailed analysis of the dominant kinetic phenomena that were 

observable during the crystallization experiments. The face-specific growth kinetics are 

presented in Section 3.1. These kinetics were determined for constant supersaturation and 

constant temperature. It is argued that the growth of KDP was influenced by the presence of 

impurities at low supersaturations. Therefore, Section 3.2 discusses this influence on a more 

detailed level. The observed growth behavior is explained and parameterized by a 

combination of the classical BCF-theory for growing crystals and the step pinning 

mechanism. In a further analysis of the experiments that were conducted for the growth rate 

estimation, the phenomenon of growth rate dispersion is addressed in Section 3.3. It is shown, 

that the random fluctuation model is well suited to describe the experimental observations, 

and the kinetics of growth rate dispersion are determined on a face-specific level. Section 3.4 

discusses the kinetics of nucleation. It is argued that the observable increase in the number of 

crystals is due to secondary nucleation, and an empirical power law approach is employed to 

parameterize the nucleation kinetics. The final section of this chapter is dedicated to the 

determination of the face-specific dissolution kinetics. Similarly to growth, the individual 

dissolution rates were determined for constant levels of undersaturation and temperature. 

Using the face-specific kinetics for growth and dissolution that were determined in this 

chapter, also some conclusions about the region of crystal shapes which are attainable by 

growth-dissolution cycles are drawn in the final part of this section. 

 

Chapter 4 addresses the crystal shape manipulation through controlled growth-dissolution 

cycles. At first, the optimal control solutions for this process are summarized and adjusted to 

the kinetics that were determined in the previous chapter. These optimal control solutions 

require the application of growth and dissolution phases at constant levels of supersaturation 

and undersaturation, respectively. To meet this requirement, a supersaturation controller is 

developed and presented in Section 4.2 of this manuscript. A cyclic growth-dissolution 

process naturally requires changes from supersaturated to undersaturated conditions and vice 

versa. Therefore, Section 4.3 presents the time-optimal switching procedures between those 

levels, in order to minimize the total process time and to minimize the (somewhat uncertain) 

CSSD-evolution during the individual switching phases. Apart from the control of 

supersaturation (and switches between different supersaturations) also the crystal shape 

trajectory needs to be controlled in order to realize a process in which the desired final crystal 

shape can be reached in a reliable and precise manner. For this purpose, a Kalman filter is 

designed in Section 4.4, which serves to reduce the measurement error of the CSSD-

observations that are obtained from the methods presented in Section 2.4. By reducing this 

error, the controllability of the CSSD trajectory is improved, which is employed in Section 

4.5 of this chapter, where the experimental realization of controlled growth-dissolution cycles 

is presented.  

 

The final chapter 5 aims at providing conclusion in light of the most important aspects of this 

work. These aspects include the ability to observe the CSSD in real time, the availability of 

precise face-specific crystallization kinetics, the possibility of closed-loop control of 

crystallization processes and the overall concept of growth-dissolution cycles. Alongside with 
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these conclusions, also an outlook on further research and development directions is given in 

this chapter. 
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2. Preliminaries 
 

The development of a novel control concept for crystal shape distributions via growth-

dissolution cycles is the main objective of the thesis. It requires both, an adequate 

experimental setup as well as a precise model description of the process dynamics. Therefore, 

this chapter is dedicated to the description of the experimental devices and procedures 

employed for this work. It will also introduce the modeling approaches used to describe the 

dynamics of the crystallization processes. 

 

The experimental setup used throughout this work is specified in Section 2.1, where also the 

procedures employed for the determination of crystallization kinetics (discussed in Chapter 3) 

and for the experimental realization of growth-dissolution cycles (see Chapter 4) are 

described. The model substance of this work – potassium dihydrogen phosphate (KDP) – is 

introduced in Section 2.2. The crystallization processes are monitored with respect to 

temperature, solute concentration and the state of the solid phase. While the measurement of 

the solution temperature is a standard technique, the measurement of the solute concentration 

and the CSSD are not. But both quantities are of particular importance for the process 

controllers described in Chapter 4 of this work. Hence, the techniques for measuring the 

solute concentration and the CSSD are presented in Section 2.3 and 2.4. In order to describe 

the dynamics of the crystal shape evolution on a quantitative basis, an adequate crystal shape 

model is required: the model used in this work will thus be introduced in Section 2.5. 

Furthermore, as the dynamics of the crystal shape evolution is determined by the growth and 

dissolution rates of the individual crystal facets, the mechanisms of faceted growth and 

dissolution are shortly summarized in Section 2.6. In the final section of this chapter, the 

process model is introduced. The transient evolution of the CSSD is modeled by a population 

balance equation (PBE). The PBE is coupled to the state of the liquid phase through the 

crystallization kinetics, which depend on supersaturation and temperature. Hence, Section 2.7 

also contains a set of model equations describing the dynamics of the solution concentration 

and temperature. 

 

 

 

2.1 Experimental Setup 
 

The experimental setup used in this work is shown in Figure 2.1. The crystallization 

experiments were performed in a flat-bottomed 3L crystallization vessel (d = 15 cm) that was 

not equipped with any further vortex breakers. The solution was agitated by a four-bladed 

pitch blade impeller (d = 4.5 cm) which was operated at a speed of 400 rpm. This agitation 

rate was chosen to be high enough to avoid any segregation of larger crystals on the bottom 

of the crystallizer, while ensuring that no air bubbles, that would impair the performance of 

the shape estimation routines (see Section 2.4), were entering the solution. The solution 
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P 001
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Figure 2.1: Schematic representation of the experimental setup used in this work, including the flow- 

through microscope (QicPic) together with an example frame collected with this microscope 

 

temperature was monitored by a PT 100 thermocouple, and the solute concentration was 

measured with an ATR-FTIR probe (Nicolet iS10, Thermo Fisher), as described in more 

detail in Section 2.3. To control the solution temperature, the double jacked of the crystallizer 

was connected to two different thermostats (F 32, Julabo), W101 and W201, via two three-

way valves. These valves could be simultaneously switched (switching times were below one 

second) to connect either the thermostats W101 or W201 to the double jacked. This setup was 

chosen to realize fast changes in the temperature of the cooling jacked, and hence, to allow 

for fast temperature – and thus supersaturation – changes in the crystallization vessel (see 

Section 4.3 for more details). 

 

The state of the dispersed phase was monitored with a flow-through microscope (QicPic, 

Sympatec), which was continuously fed by an external sampling loop. Images of the 

bypassing solution were collected with this microscope having a resolution of 1024 x 1024 

pixels at a frequency of 20 frames per second. The field of view had a size of 5 x 5 mm2 and 

a depth of 2 mm. Within the sampling loop of this setup, the suspension was continuously 

withdrawn from the vessel and pumped through the cuvette of the microscope back to the 

crystallization vessel. The pump (PD 5206, Heidolph Instruments, P 001) was operated at a 

speed of 150 rpm with a flow rate of 0.52 L/min to ensure that the suspension stream was 

high enough to prevent both, clogging of the sampling loop and a selective sampling from the 

crystallization vessel. To avoid that temperature losses in the sampling loop affect the 

crystallization behavior, the temperature of all tubing of this loop was controlled by an 

additional thermostat (W301), whose set-point value was fixed to the current temperature in 

the crystallization vessel.  

 

To allow for control of the crystallization process, all devices were connected to a process 

control system (Simantic WinCC, Siemens). Interfaces between the process control system 
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and Matlab® were implemented to collect all measurements necessary for process control 

and to pass set-point values to the thermostats and valve positions.  

 

All experiments were prepared by dissolving KDP in 1.8 kg in deionized water (conductivity 

of 0.055 μS/cm). The amount of dissolved KDP corresponded to the desired level of 

supersaturation at the starting temperature of the individual experiment. The solution was 

heated above the equilibrium temperature until all crystalline material had dissolved 

completely. Afterwards, the solution was cooled down to the starting temperature. As soon as 

this temperature was reached, 1.0 g of the seed crystal material (see Section 2.2) was added to 

the solution for the growth experiments (Section 3.1) and 0.8 g seed material was added for 

the dissolution (Section 3.5) and cyclic experiments (Section 4.5). After the seed addition, the 

automated video acquisition was started together with the automated temperature control 

programs. 

 

 

 

2.2 Potassium Dihydrogen Phosphate (KDP) 
 

Potassium dihydrogen phosphate (KDP) was chosen as a model substance in this work. KDP 

crystallizes in the tetragonal space group dI 24  with a = 7.460 Å and c = 6.982 Å (Botez 

2010), and exposes prismatic {100}-faces and pyramidal {101}-faces on the outer crystal 

surface. With these face types, and the symmetry relations of the dI 24 space group, the 

shapes of KDP crystals that are geometrically possible range from elongated crystals with a 

high prominence of the {100}-faces on the outer crystal surface to compact crystals, and in 

the extreme case to octahedral crystals exposing only the {101}-faces on the outer crystal 

surface, see Figure 2.2 and Section 2.5 for more details.  

 

In recent research related to the growth of KDP crystals, two different main research areas 

can be identified. Due to their optical properties, KDP crystals are frequently used for optical 

switching and frequency conversion to the second or third harmonic frequency in high power 

lasers (Zaitseva 2001). Particularly the application of high power lasers in the process of 

inertial confinement fusion requires crystals with a size of 400 x 400 x 10 mm3 (Maunier 

2007). The demand for high-purity crystals with such extreme sizes consequently stipulated 

the development and enhancement of processes for the rapid growth of large single crystals 

with dimensions of at least 550 x 550 x 500 mm3 (Maunier 2007) while aiming at reducing 

the process times and operation costs (Sasaki 1990, Zaitseva 2001, Maunier 2007, Leroudier 

2011).  

The second main research area, to which this work contributes as well, is related to the 

control of crystal shapes during a crystallization process. The qualitatively different crystal 

shapes shown in Figure 2.2 are not only geometrically possible, but have to be expected to 

occur during a crystallization process depending on the level of supersaturation (Yang 2006). 

Hence, univariate population balance models with their inherent assumption of constant 

shape factors offer a rather poor means to describe the dynamics of the crystallization 
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Figure 2.2: Different geometrically possible crystal shapes of KDP that are composed of prismatic {100}-

faces (red) and pyramidal {101}-faces (green) on the outer crystal surface. 

 

 

Figure 2.3: Solubility of KDP in water. Solubility data determined in this work are shown as yellow 

crosses, whereas solubility data given by Mullin (2001) are shown as blue points. The empirical solubility 

correlation of Eq. (2.2) is indicated by the black solid line. 

 

process. Instead, these dynamics constitute a formidable example for the application of 

bivariate population balance models. These models require the knowledge of the face-specific 

growth – and dissolution rates. For KDP, their determination has been addressed by several 

different authors (Gunawan 2002, Borchert, 2014, Eisenschmidt 2015a, Borsos 2016). On the 

basis of the kinetics that were determined in these articles, process concepts for controlling 

the crystal size and shape distributions were developed and realized (Majumder 2013, 

Eisenschmidt 2015b, Eisenschmidt 2016, Borsos 2016). 

 

The raw material of KDP used for the experiments in this work was purchased from Carl 

Roth GmbH + Co. KG with a purity of 98 % and a pH value of 4.12 at a saturation 

temperature of 35 °C. This material was used in all experiments for the preparation of the 

solution without any further purification.  

In order to define and measure the solubility of KDP in water, the concentration w was 

defined as the ratio between the mass of dissolved solute and the mass of water according to: 

OH

KDP

2
m

m
w  . (2.1) 

The solubility curve of KDP was determined gravimetrically for temperatures in a range from 

30 °C to 50 °C. The obtained measurements are shown in Figure 2.3, together with the 

solubility data given by Mullin (2001) and the empirical solubility correlation 
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2
eq,1eq   TTcTcTcw , (2.2) 

that was fitted to the measured solubility data. In this equation weq denotes the saturation 

concentration, given in kgKDP/kgH2O, and the temperature T is given in Kelvin. As can be seen 

from Figure 2.3, the solubility measurements agree well with the data given by Mullin (2001) 

in the temperature range that was considered. Deviations occur only at higher temperatures, 

which could be addressed by taking a higher order polynomial approach in Eq. (2.2). As all 

experiments of this work were performed at temperatures below 50 °C this was, however, not 

necessary and the approach given in Eq. (2.2) was used. Using the solubility correlation of 

Eq. (2.2), the supersaturation S is defined as the ratio of the actual solute concentration w and 

the equilibrium concentration weq: 

)(eq Tw

w
S  . (2.3) 

This definition of the supersaturation was used throughout the remainder of this work as a 

measure for quantifying the driving force of the crystallization process. All crystallization 

kinetics determined in Chapter 3 are expressed as a function of S as defined through Eq. 

(2.3). Clearly, values of S > 1 indicate supersaturated conditions causing existing crystals to 

grow. In contrast, values of S < 1 indicate undersaturated conditions which result in the 

dissolution of crystals present in the solution.  

 

As this thesis is dealing with seeded batch crystallization processes, adequate seed material 

had to be provided and specified. Preliminary experiments revealed that the raw material 

provided by the company Roth exhibited a rather high degree of agglomeration and was 

therefore deemed not suitable as seed crystal material. Instead, seed crystals were purchased 

from Grüssing GmbH Analytica (purity 99.5 %). This material was dry sieved, and a sieve 

fraction of 212 μm - 300 μm was used as seed material. The size and shape distribution of the 

seed material was described by a bivariate Gaussian distribution with mean values of h̅seed,0 = 

[128 μm, 146 μm]T, standard deviations of σseed,0 = [25 μm, 25 μm]T and covariances equal to 

zero. 

 

 

 

2.3 Concentration Measurement 
 

Monitoring the solute concentration during a crystallization process is essential for 

understanding the process dynamics, since the supersaturation as the driving force of a 

crystallization process is directly related to the solute concentration. In this work, the 

concentration was measured with an ATR-FTIR probe (Nicolet iS10, Thermo Fisher). Each 

collected spectrum consisted of 16 independent scans in a range of 700 cm-1 to 1800 cm-1 

with a resolution of 0.482 cm-1. With these settings, absorption spectra and hence estimates 

for the solute concentration could be obtained approximately every 20 seconds. Typical 
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Figure 2.4: FTIR-absorption spectra that were used for calibrating the spectrometer; left: Absorption 

spectra collected for several concentrations and temperatures (indicated by different colors) for the main 

absorption peaks of KDP dissolved in water; right: detailed depiction of the absorption peak at λ = 935 

cm-1. 

 

absorption spectra that were obtained are shown in Figure 2.4. Distinct absorption bands at λ 

= 935 cm-1, λ = 1074 cm-1 and λ = 1150 cm-1 can be identified from this figure, which can be 

attributed to the vibration modes of the P-O and P-OH bonds in the dissociated H2PO4
- ions 

(Sun 2014). As can be seen, the absorption intensity is dependent on the solute concentration, 

which in turn can be used to determine the concentration from the collected spectra. Apart 

from this concentration dependence, also a slight temperature dependence of the absorption 

spectra is visible, particularly in the right panel of Figure 2.4. Due to this temperature 

dependence, also the solution temperature had to be estimated from the spectra in order to 

obtain estimates for the solute concentration3. 

 

Various spectra in a concentration range from 240 g/kg to 380 g/kg and a temperature range 

from 18 °C to 52 °C were collected in order to calibrate the FTIR spectrometer. With these 

standards, a partial least squares (PLS) regression was performed, using the software IC 

Quant provided by Thermo Fisher, in a spectral range from 900 cm-1 to 1220 cm-1. In this 

regression approach, seven components were considered for the determination of the 

concentration and six components were considered for estimating the solution temperature.. 

The results of this calibration are shown in Figures 2.5 and 2.6. As can be seen, the 

concentrations that were used for the calibration could be precisely re-estimated, with an 

error of only 0.1487 g/kg (indicated by the root mean squared error RMSE). Also the 

estimation error for the validation spectra is extremely low with an RMSE of 0.2268 g/kg. 

This estimation error corresponds roughly to an error of 0.075 percent in terms of 

                                                           
3 Note that it would be possible to estimate the solution concentration directly from the measured 

absorption spectra and the temperature measurements of the PT100 thermocouple with the employed 

PLS-regression approach. However, this option was not available in the commercial software tool that 

was used for the concentration estimation. Hence, both, the solution concentration as well as the 

solution temperature had to be estimated from the measured absorption spectra simultaneously. 

900 1000 1100 1200 1300
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 [cm-1]

A
b
s
o
rp

ti
o
n
 [
-]

 

 

w = 380 g/kg
w = 360 g/kg
w = 340 g/kg
w = 320 g/kg
w = 300 g/kg
w = 280 g/kg
w = 260 g/kg
w = 240 g/kg

T [°C]

20

25

30

35

40

45

50

900 920 940 960 980
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

 [cm-1]

A
b
s
o
rp

ti
o
n
 [
-]

 

 

w = 380 g/kg
w = 360 g/kg
w = 340 g/kg
w = 320 g/kg
w = 300 g/kg
w = 280 g/kg
w = 260 g/kg
w = 240 g/kg

T [°C]

20

25

30

35

40

45

50



Chapter 2. Preliminaries 15 

 
 

Figure 2.5: Calibration of the FTIR spectrometer for the determination of the solute concentration; left: 

comparison between true and estimated concentrations; right: estimation errors for the calibration 

spectra (red) and the validation spectra (green). 

 

Figure 2.6: Calibration of the FTIR spectrometer for the determination of the solution temperature; left: 

comparison between measured and estimated temperatures; right: estimation errors for the calibration 

spectra (blue) and the validation spectra (orange). 

 

supersaturation, which can be considered as sufficiently accurate for process monitoring 

purposes. Also the solution temperature could be re-estimated quite well with an average 

error of RMSE = 0.135 °C. However, since the measurement error of the PT100 that was 

used in this work for measuring the solution temperature was significantly lower 

(approximately 0.025 °C), the FTIR-based temperature estimates were not further used in the 

remainder of this work. 

 

 

 

2.4 CSSD Observation 
 

Observing the evolution of the CSSD over time is a key technique for the control of a batch 

crystallization process. For this purpose, and due to the increasing computational power, 
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video microscopy has recently become a popular measurement technique. While an 

immediate impression of the state of the dispersed phase can be gained with this technique, 

the applicability of video microscopy is typically limited to low suspension densities to avoid 

massive particle overlapping. This issue can be overcome by flow-through microscopes for 

which the crystal suspension can be diluted with a stream of clear solution as for instance 

demonstrated by Schorsch et al. (2012). However, an additional external sampling loop is 

required, which induces the danger of clogging of the tubing or of the microscope cuvette. 

This is, however, compensated by the improvements of the image quality, particularly in 

terms of particle sharpness and low particle overlap that can be obtained. 

In order to estimate the shape of a crystal that was photographed with a video microscope, it 

is generally necessary to reconstruct the ‘true’ three-dimensional crystal geometry from the 

observed two-dimensional crystal projection. To this end, several algorithms have been 

presented in the literature. These algorithms include the application of wire frame models 

(Larsen 2007a), the use of Fourier descriptors (Li 2006), analytical considerations (Le Borne 

2016), the CSSD reconstruction from axis lengths distributions measured either with a single 

or a stereoscopic camera setup (Eggers 2008, Kempkes 2010) and the application of generic 

crystal shapes (Schorsch 2012, 2014). In this work, the algorithms developed by Borchert et 

al. (2014) were used. These algorithms are based on the comparison of the measured crystal 

boundary curves to a pre-computed database, and are briefly summarized here together with 

the image segmentation procedure developed by Borchert and Sundmacher (2011).  

 

In the first step of the analysis of a recorded video frame, a procedure to distinguish the 

objects of interest (namely the crystal projections) from the image background has to be 

established. Such a procedure is a standard task in digital image processing (Gonzalez 2002), 

commonly referred to as image segmentation, and is illustrated in Figure 2.7. As can be seen 

from Figure 2.7a, dark and partially transparent crystals were photographed on a comparably 

dark and non-uniform background. Thus, a simple global thresholding procedure was not 

applicable for the image segmentation. Instead, an estimate of the static background image 

was obtained by averaging over 30 video frames. Afterwards, the recorded video frames I 

were subtracted from the background image 

),(),(),( backdiff yxIyxIyxI  , (2.4) 

which led to images as depicted in Figure 2.7b. In such an image, background pixels were 

essentially black, whereas pixels belonging to a crystal had approximately the intensity of the 

background. This image was further enhanced by the operation 

 



 


otherwise),(

),( if,1
),(

diff

1min,diff
enh

yxI

IyxIyxI
yxI , (2.5) 

with a threshold value of Imin,1 = 514. Such an enhanced image is exemplarily shown in 

                                                           
4 All images were encoded as 8-bit grayscale images. Hence, the thresholds Imin,1 and Imin,2 are as well 

given in this format. In case other image formats are used (e.g. double precision, uint16), the threshold 

values need to be adjusted accordingly. 
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Figure 2.7: Illustration of the  image segmentation procedure: a) original grayscale image; b) difference 

to the background; c) enhanced image; d) binary image; e) closed image; f) filled binary image. 

 

Figure 2.7c. As can be seen, the enhanced image shows an excellent contrast between crystal 

– and background pixels, and hence, a global thresholding procedure could be easily and 

reliably applied to this image according to: 



 


otherwise0

),( if1 2min,enh
bin

IyxI
I , (2.6) 

with a threshold of Imin,2 = 100. To close smaller gaps between the object pixels, which were 

occurring particularly for transparent crystals, a closing operation was performed on the 

binary image. For this operation a square-shaped structuring element with length of two 

pixels was used. Finally, a flood-filling operation was performed on the closed image, which 

led to binary images in which crystal pixels had an intensity value of one (white) while all 

background pixels had an intensity value of zero (black), as shown in Figure 2.7f.  

 

The estimation of the crystal shapes was done on the basis of the obtained binary images, 

which contained the (binary) projections of the crystal shapes on the image plain. These 

projections are dependent on the crystal shapes itself as well as on the orientations from 

which these crystal were photographed. Hence, both, crystal shape and orientation had to be 

estimated on the basis of the recorded video frames. This was done by extracting the 

boundary curves from the crystal projections and by parameterizing these boundary curves 

through Fourier descriptors. This set of descriptors was subsequently compared to a pre-

computed database, which contained in total 45,000 pre-computed sets of Fourier descriptors 

as well as information about the shape and orientation with which every database entry was 
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Figure 2.8: Estimated shapes of KDP crystals (color) together with the original grayscale image from 

which the crystal shapes were estimated. 

 

generated. By finding the closest match of the measured boundary curve to the database 

entries, estimates of the crystal shape and orientation could be obtained.  

The shape estimates resulting from the procedure described above are exemplarily shown in 

Figure 2.8 together the original grayscale image from which the crystal shapes were 

estimated. It can be seen that the extracted boundary curves could be approximated extremely 

well with this procedure. Also edges and vertices in the interior of the projection could be 

well reproduced with some larger deviations occurring only for the upper left crystal. This is 

particularly noteworthy since this information was not explicitly used within the estimation 

procedure. Therefore, matches or mismatches between observed and estimated features in the 

interior of the crystal projection can be seen as an independent benchmark to assess the 

quality of the crystal shape estimates. By comparing those interior features, it can be 

concluded that good estimates for both, the crystal shape as well as the crystal orientation 

were obtained with the estimation procedure.  

It is also interesting to note (particularly in the light of the estimation results for dissolving 

crystals as discussed in Section 3.5) that the results shown in Figure 2.8 suggest a preferential 

orientation of the crystals parallel to the image plain. This observation can be attributed to the 

fluid dynamics within the microscope cuvette, which forced the crystals to have a 

preferentially parallel orientation to the image plane. This behavior could be well elucidated 

due to the simultaneous estimation of crystal shape and orientation. 

 

Apart from the necessity for algorithms to reconstruct the three-dimensional crystal geometry 

from the recorded video frames, the real-time observation of a crystallization process by 

video microscopy also suffers from the high computational costs. The video microscope that 

was used in this work collected video frames with a rate of 20 frames per second at a 

resolution of 1024 x 1024 pixels. Hereby, every pixel was encoded by a set of three 8-bit 
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Figure 2.9: Experimentally observed crystal size and shape distributions; left: original output from the 

shape estimation routines showing two distinct subpopulations of seed –and nucleated crystals; right: 

classification of seed – (red) and nucleated crystals (light red) by two rectangular regions (light and dark 

green) and observed mean evolution of the seed crystal population. 

 

unsigned integer values specifying the red, green and blue channels of the pixel5. Thus, raw 

data with a size of 60 MB had to be read (and unpacked) every second. As the intensity 

information in the individual color channels was redundant, only the information contained in 

the red-channel was extracted and further processed through Eqs. (2.4) to (2.6). Once the 

image processing was completed, the boundary curve of every detected single crystal was 

compared to the pre-computed database. This database contained the boundary curves of 300 

random crystal shapes that were photographed from 150 random orientations. Every 

boundary curve was sampled at 128 points, which were uniformly distributed on the crystal 

contour and described by the same number of Fourier descriptors. With this configuration, 

the boundary curve of every detected crystal was compared to a database with a size of 

approximately 21.7 MB. As can be seen from this rough compilation of the required 

computation steps and their computational cost, a real time realization of those steps poses a 

major challenge even for modern desktop computers. For this reason, the main focus of this 

work was laid on an implementation of the routines described above that allow for a real-time 

observation of the CSSD during the crystallization process. 

 

The application of the shape estimation routines to all observed single crystals in a collected 

video part leads to estimates for the CSSD as exemplarily shown in Figure 2.9. As this work 

is focused on monitoring and controlling the evolution of the seed crystal population, a 

classification between seed crystals and nucleated crystals was established. To this end, a 

rectangular region was defined in the state space with a size of 200 × 200 μm2, depicted by 

the dark green area in Figure 2.9 (right). Only crystals which were found to lie within this 

region were considered to belong to the seed crystal population. This region was initially 

                                                           
5 Encoding of a grayscale image does in principle not require the specification of separate red, green 

and blue channels. Nevertheless, an option for the direct storage of a time series of grayscale video 

frames was not available for the commercial software that was used for this purpose. Therefore, the 

video frames had to be stored in an rgb format. 
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Process raw video frames: (1215 s)

Read frames:

Extract red-channels:

Extract single frames:

Image segmentation: (1844 s)

Calculate average background:

Subtract background:

Image enhancement:

Binarization:

Image closing:

Image filling:

Object quantification / classification: (434 s)

Label binary images:

Get projection areas:

Get boundary curves:

Calculate convex hulls:

Save object properties:

Shape estimation: (1741 s)

Calculate Fourier descriptors:

Get difference to database:

Calculate estimation errors:

1079 s

61 s

75 s

51 s

127 s

248 s

81 s

464 s

873 s

164 s

40 s

46 s

21 s

65 s

52 s

887 s

705

(0.3595 s/s)

(0.3192 s/s)

(0.0180 s/s)

(0.0222 s/s)

(0.5456 s/s)

(0.0151 s/s)

(0.0376 s/s)

(0.0734 s/s)

(0.0240 s/s)

(0.1373 s/s)

(0.2585 s/s)

(0.1284 s/s)

(0.0485 s/s)

(0.0118 s/s)

(0.0135 s/s)

(0.0062 s/s)

(0.0192 s/s)

(0.5151 s/s)

(0.0154 s/s)

(0.2624 s/s)

(0.2222 s/s)

Figure 2.10: Detailed listing of the computation times of the most important processing steps that were 

spent for the analysis of a crystallization experiment having a total time of 3380 s and requiring a total 

computational time of 5234 s. Colorbars represent the fraction of the individual computational times on 

total computation time. The timings in the rightmost column represent the computational times that were 

in average necessary to process one video second. 

 

centered at the mean seed crystal size of h̅seed,0 and subsequently moved through the state 

space according to the mean seed crystal evolution. As can be seen from Figure 2.9, the 

evolution of the seed crystal population could be tracked reliably by this approach. However, 

it is also apparent that a large number of nuclei were observable, especially after prolonged 

growth times. As the shape estimation of such a high number of nucleated crystals (see 

Section 3.4) would dominate the entire computation time, a second rectangular region, 

centered at the mean seed crystal state was introduced with a width of 350 × 350 μm2 (Figure 

2.9, right, light green region). This region served to obtain a minimal and maximal projection 

area which is possible for seed crystals. By using these thresholds, the majority of nucleated 

crystals could be classified as nuclei (light red circles in Figure 2.9). Since the projection area 

could be efficiently measured (through the measured number of crystal pixels) during the 

basic image processing routines, this classification could be achieved prior to the shape 

estimation procedures. This led to a significant reduction of the computational costs that were 

required for obtaining estimates of the seed CSSD.  

 

The total computation times that were necessary to monitor an entire crystallization process 

are summarized in Figure 2.10. For a better visibility of the results, the computation steps 

were clustered into four main groups. These clusters include the processing of the raw video 

frames, the image segmentation, the quantification of the identified objects and the shape 

estimation. It can be seen that already the reading (and unpacking) of the recorded video 

frames requires a substantial amount of computation time as 0.36 seconds were spent on the 

routines of this cluster for one video second. The image segmentation step is even 
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more demanding, mainly due to the closing and filling routines, as 0.54 seconds of 

computation time is spent per video second on this cluster. In comparison, computation time 

for the assignment of scalar measurements to the identified objects is almost negligible. The 

computation times required for the shape estimation were similar to those of the image 

segmentation routines. While the first three clusters are only dependent on the image 

resolution and (to a smaller extend) on the number of observed objects, the shape estimation 

routines are strongly dependent on the size of the database used for the estimation. This 

database-size correlates to the geometrical complexity of the crystal shapes which have to be 

estimated. It has therefore to be assumed, that the total computation times are dominated by 

this processing step, if more complex crystal shapes (i.e. for methionine or paracetamol 

exposing three or four different face types respectively) have to be estimated.  

 

The timings given in Figure 2.10 and discussed above were obtained for the analysis of one 

preliminary experiment with a total duration of 3380 seconds on a standard desktop computer 

(3.00 GHz Intel dual core, 4.00 GB RAM, Matlab 2010b version 7.11, Image Processing 

Toobox version 7.1). In total, 1.55 seconds of computation time were (in average) required 

for processing one video second. Although a real time observation could not be fully 

achieved, the computational performance was sufficient to provide a feedback with respect to 

the state of the solid phase to the process control routines presented in Chapter 4. In total, a 

delay of 20 – 35 seconds between the observation and the availability of the CSSD estimates 

could be realized. As the typical time scales for the individual growth and dissolution phases 

were in the order of 10 – 30 minutes (see Chapters 3 and 4), this time delay was rather 

negligible, and CSSD estimates could be obtained with a sufficient frequency. 

 

 

 

2.5 Crystal Shape 
 

In order to understand and ultimately to control the evolution of a population of faceted 

crystals, an adequate description of the crystal shape is required. In simple cases, this can be 

achieved by using characteristic lengths of the crystal (Ma 2001, Bajcinca 2013), or by 

approximating the actual crystal shape by generic crystal shape models (Schorsch 2012, 

Ochsenbein 2014). In case of crystal shapes with a larger number of face types (which may or 

may not be present on the outer crystal surface) the definition of adequate characteristic 

lengths is in general not straightforward. These complex crystal shapes may however be 

approximated by generic crystal shapes, yet a distinction between different face types on the 

basis of generic crystal shapes might not be possible. More general frameworks for the 

description of crystal shapes are given by the V-representation (Ziegler 1995), the H-

representation (Zhang 2006, Borchert 2012a, Borchert 2012b) or the Minkowski addition of 

structuring elements (Reinhold 2011). In this work, the crystal shape description through the 

H-representation was employed. Within this H-representation, the convex polyhedron P of a 

faceted crystal is described by the following set of linear inequalities: 
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Figure 2.11: Representation of the typical  geometry of a KDP crystal through the geometrical state 

vector h.  

 

  : 3
hNrr P .  (2.7) 

In this equation, r denotes a point in the three-dimensional physical space. The matrix N 

consists of the unit face normals ni of all n faces of the crystal 
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(2.8) 

Note, that the unit face normals ni are given in Cartesian coordinates and are therefore not 

identical to the normalized Miller indices of the crystal faces (with the exception of crystals 

from a cubic space group), which are frequently used to specify crystal facets and are given 

in crystallographic coordinates. However, a transformation between the face normals in both 

coordinates systems is possible, and can for example be found in Dowty (1980) or Zhang et 

al. (2006). The vector h in Eq. (2.7) contains the perpendicular distances of every crystal face 

to a reference point in the physical space. In this work this reference point is set to be the 

center of mass of the crystal (without loss of generality). The number of elements in h is 

equal to the number of faces that can exist on the outer crystal surface (for example 12 for a 

KDP crystal with only {100}- and {101}-faces). 

Crystals typically exhibit a certain degree of symmetry, which allows for a reduction of the 

dimensionality of the h-vector. Due to the symmetry of the unit cell, certain faces will grow 

with the same velocity, and hence, the face distances of these faces will be identical if the 

center of mass is defined as a reference point for the face distances h. In case of KDP 

crystals, typically two different face groups exist on the outer crystal surface, namely the 

prismatic {100}-faces and the pyramidal {101}-faces. It is therefore sufficient to describe the 

shape of a KDP crystal with only two face distances hsymm = [h1, h2]
T. In this notation, which 

is used throughout the remainder of this work, the first element of hsymm - h1 describes the 

distance of the prismatic {100}-faces to the crystal center, whereas the second element of 

hsymm - h2 denotes the distances of the {101}-faces to the crystal center (see Figure 2.11 for 

an illustration). In the remainder of this work, symmetric KDP crystals will be assumed, and 

hence, the subscript ‘symm’ is skipped for the sake of brevity. Instead, the symmetric crystal 

shape is denoted only by h = [h1, h2]
T.  
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Figure 2.12: Shape changes of an exemplary 2d-crystal due to growth and dissolution; left: slow growing 

faces dominate the final crystal shape; right: fast dissolving faces dominate the final crystal shape.  

 

With h being defined as a state vector describing the actual crystal shape, it is straightforward 

to define the face-specific growth and dissolution rates Gi or Di as the derivatives of hi with 

respect to time: 










1 if

1 if

SD

SG

dt

dh

i

ii . (2.9) 

As hi denotes the perpendicular distance of the i-th face to the crystal center, the growth or 

dissolution rate Gi or Di is equivalent to the displacement velocity of the i-th face from the 

crystal center. The ratio between the individual displacement velocities will ultimately 

determine the shape towards which a growing (or dissolving) crystal will evolve. This is 

depicted in Figure 2.12 for an exemplary 2d crystal with two different face types for both, 

growth and dissolution. In both cases, the displacement velocity of the {10}-faces (red, index 

1) is half the displacement velocity of the {11}-faces (green, index 2). The initial shape of the 

growing crystal is dominated by the {11}-faces in this example. Due the lower growth rates 

of the {10}-faces compared to the {11}-faces, the {10}-faces are becoming more dominant 

on the crystal surface as growth proceeds, until ultimately, the {11}-faces disappear 

completely from the crystal surface. As those faces may however reappear at the newly 

formed vertices (or edges in the 3d case) during the crystallization process in case the 

crystallization conditions change, their displacement velocity is further dictated by the 

displacement velocity of the {10}-faces. In such cases, the {11}-faces are referred to as 

virtual faces and their growth rates as virtual growth rates (Zhang 2006).  

In case of dissolution, a reverse scenario arises. The {11}-faces reappear immediately on the 

crystal surface due to their higher dissolution rates, until ultimately, only the {11}-faces are 

present on the crystal surface. In this case, the {10}-faces and their dissolution rates become 

virtual.  

Three conclusions can be drawn from this simple 2d example: 
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Figure 2.13: Crystal shapes of KDP in h-space; left: different shapes of KDP crystals and their position in 

h-space; right: crystal shapes with h1 > 1.4649 h2 are geometrically infeasible as the {100}-faces would 

detach from the crystal surface. Instead, the {100}-face become virtual, and the crystal shapes are 

projected on the subspace h1 = 1.4649 h2. 

 

(i) During growth, the slowest growing faces will dominate the outer crystal surface, 

while the faster growing faces might disappear completely from the surface and 

become virtual faces. 

(ii) During dissolution, the fastest dissolving faces will be dominant on the crystal 

surface while the slower dissolving faces might disappear and become virtual faces. 

(iii) Faces that become virtual are located on newly formed edges or vertices as they 

may reappear during the crystallization process. Since the displacement of such 

faces is further dictated by the displacement of the neighboring faces, the h-space is 

confined to a region of geometrically possible crystals shape 

 

The last conclusion is illustrated for the example of KDP in Figure 2.13 together with 

different crystal shapes and their location in the state space. As can be seen, the variety of 

different crystal shapes range from elongated crystals with low h1/h2 ratios and a high 

prominence of prismatic {100}-faces on the outer crystal surface to compact crystals. At a 

ratio of h1/h2 = 1.4649 (Borchert 2012c), KDP crystals assume an octahedral shape, at which 

the prismatic {100}-faces are not present on the outer crystal surface. At even higher h1/h2 

ratios the prismatic faces would detach from the crystal surface as shown in the right panel of 

Figure 2.13. Such a scenario is however not possible, as the {100}-face become virtual faces 

as soon as they disappear from the crystal surface. Therefore, their growth rates become: 

 211 1.4649 ,min GGG  , (2.10) 

ensuring that the {100}-faces cannot detach from the outer crystal surface. A more detailed 

discussion of the structure of the h-space for different crystal shapes beyond KDP is not in 

the scope of this work. For such an overview, the reader is referred to Reinhold and Briesen 

(2011), Borchert and Sundmacher (2012b) or Sing and Ramkrishna (2013). 
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The distinction between virtual and real faces, and the resulting structure of the h-space is (to 

some extent) depending on the choice of face-types considered for the shape description in 

Eq. (2.7). Consider a KDP crystal exhibiting additional {001}-faces on the outer crystal 

surface as an illustrative example. The additional {001}-faces would allow for crystal shapes 

not exhibiting any {101}-faces on the outer crystal surface (which is not possible if only 

{100} and {101}-faces are considered). Hence the structure of feasible crystal shapes will 

show a higher degree of complexity than discussed above. However, {001}-faces of KDP 

cannot be observed experimentally as they are always virtual. In fact, even growth of 

artificially generated {001}-faces immediately results in the formation of {101}-faces on the 

macroscopic {001}-faces (Zaitseva 2001, Li 2008). Thus, the question arises which face 

types have to be considered for a complete description of the crystal shape dynamics that can 

be expected and/or observed experimentally. This question is addressed and discussed in the 

light of the Hartman-Perdok theory (1955) in the next section of this work. 

 

 

 

2.6 Mechanisms for Growth and Dissolution of Faceted Crystals 
 

Single crystals that were grown from solution under moderate supersaturations appear 

typically as convex objects, exposing well defined {hkl}-faces on the outer crystal surface. 

However, despite the vast number of {hkl}-faces that are possible from a combinatorial point 

of view, typically only a small number of low indexed faces can be observed experimentally. 

This observation was related to the molecular structure of the crystal lattice by Gibbs, who 

postulated that the equilibrium crystal shape should minimize the total Gibbs energy (Lovette 

2008). This concept was further developed by Wulff, who derived an equivalent criterion, 

which is referred to as Wulff construction, and can be expressed as: 

n
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hhh
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1 . (2.11) 

Here, γi denotes the surface free energy of the i-th face. Hence, faces with high surface 

energies will have high face distances hi, and are therefore likely to be absent from the 

resulting crystal surface. Following this argumentation, only faces with the lowest free 

energies will finally be present on the outer surface of a grown crystal.  

It is, however, typically observed that crystals do not attain their equilibrium shape, since the 

final crystal shape is determined by the growth kinetics rather than by the thermodynamic 

equilibrium. Similarly to the Wulff construction, the Frank-Chernov condition (Dandekar 

2013) relates the final crystal shape to the individual growth rates Gi by: 
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According to this equation, the crystal shape, which is also referred to as steady state crystal 

shape, is governed by the slowest growing faces. A widely accepted approach to relate the 

face-specific growth rates to the molecular structure of the crystal lattice is given by the 
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Figure 2.14: Illustration of flat (F), stepped (S) and kinked (K) faces for a crystal with three periodic 

bond chains (PBC), whose directions are indicated by colored double-arrows in the lower right corner. 

Face colors indicate the contributions of the PBCs to the attachment energy that is released when one 

building unit is attached to the crystal face. 

 

Hartman-Perdok theory (Hartman 1955), which is shortly summarized here. This theory is 

based on the assumption that the time necessary for incorporating a molecule in the crystal 

lattice is inversely proportional to the attachment energy of the incorporation site. This 

energy is defined as the bond energy that is released by the molecular attachment. Hence, 

growth is accelerated (small incorporation times) at sites with high attachment energies, and 

thus, at sites offering high bond energies to the incorporated molecule. Conversely, growth is 

decelerated (high incorporation times) at sites with lower attachment energies. This model led 

to the concept of periodic bond chains (PBCs), which are defined as a set of the strongest 

bonds between the molecules (or ions) that form a regular and uninterrupted pattern in the 

crystal lattice. 

With the concept of PBCs, the crystal faces can be classified as kinked (K) faces, stepped (S) 

faces and flat (F) faces, as illustrated in Figure 2.14 for the example of a Kossel crystal. 

Kinked faces are, by definition, not parallel to any PBC, and hence, they offer already kinked 

sites on their surface on which the incorporation of molecules can take place directly. 

Therefore, growth of K faces is assumed to be solely limited by bulk diffusion processes and 

consequently exhibit the fastest growth rates possible. Stepped faces are parallel to exactly 

one PBC, and expose steps on the surface which need to be kinked in order to facilitate 

growth of this face. Flat faces are defined as faces being parallel to at least two PBCs. In 

order for a flat face to grow, an additional mechanism (described below) is required that 

creates steps on the F-face which can be kinked and consequently facilitate growth of this 

face (Vekilov 2007, Kim 2014). Regardless of the mechanism for layer formation, it can be 

assumed that the average spacing of steps on F-faces will be much higher compared to S-

faces (see Figure 2.14 and Figure 2.15 for an illustration) and hence, growth of F-faces will 

be much slower than growth of S-faces if the kinetics for kink site formations are 

approximately equal for both face types. It is therefore typically assumed, that the steady state 

shape of grown crystals expose only F-faces on the outer surface (if geometrically possible). 
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Figure 2.15: Mechanism of crystal growth via screw dislocations; a) original screw dislocation; b)-f) 

creation and growth of new surface layers by the srew dislocation mechanism. Arrows indicate the 

directions in which the created steps are growing. 

 

One possible mechanism for the creation of growth layers is the aggregation of molecular 

clusters on the surface, which is typically referred to as 2d-nucleation. In order for the 

molecular cluster to be stable and consequently to be able to grow, the cluster size has to 

reach a critical size, which is a nonlinear function of the supersaturation and temperature. 

According to classical nucleation theory, this critical size of a two-dimensional nucleus is 

given by (Mullin 2001): 

STk
r

lnB

crit,2d


 , (2.13) 

where γ denotes the surface free energy, ν denotes the molecular volume and kB is the 

Boltzmann constant. As can be seen, the critical radius is increasing with decreasing 

supersaturation at which transport of molecules to the crystal surface by bulk diffusion is 

additionally hindered. Therefore, the probability of the formation of a stable two-dimensional 

nucleus is extremely low at low supersaturations, and hence, growth via this mechanism will 

be slow as well.  

Due to these low nucleation rates, growth at low supersaturations is typically dominated by 

the growth from screw dislocations, which act as continuous sources of new steps on the 

surface of an F-face (Lovette 2008). This growth – and layer formation mechanism is 

illustrated in Figure 2.15. As can be seen in subfigure a), the initial screw dislocation 

provides one edge on the crystal surface that can directly be kinked and therefore grow. 

Growth takes place in a direction perpendicular to this edge, and results in the formation of a 

new edge (in subfigure b) perpendicular to the initial edge. As soon as this newly formed 

edge exceeds a critical length, growth can also take place on this edge (Lovette 2012a), 

whose subsequent growth will again create a new (third) edge, see subfigure c). This 

mechanism continues (subfigures d)-f)) and thereby new steps are permanently created on the 

crystal surface. Hence, crystal growth can proceed, until the supersaturation is completely 

depleted. Due to this mechanism, a spiral-like structure emerges on the crystal surface and 

therefore, this growth mechanism is also referred to as spiral growth. 
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Screw dislocations have also an important role in the dissolution of F-faces, since the 

dislocations still act as sources of edges, and thus kink sites. In case of dissolution, the 

presence of these dislocations results in the formation of etch pits, opposed to spirals in the 

case of growth, which was already predicted by Cabrera and Levine (1956) and which was 

observed also experimentally (Lasaga 2001, Clark 2015). This indicates that kink sites also 

have a pivotal role during dissolution. Apart from screw dislocations, and in contrast to 

growth, macroscopic crystal edges and vertices can also serve as sources for kink sites during 

the dissolution process. The disincorporation of molecules from these edges and vertices 

leads to the appearance of S- and K-faces on the outer crystal surface, see Figure 2.14. 

Following the same argumentation of the Hartman Perdock theory, these faces will in average 

expose more kink sites, and hence, dissolution of these faces will be faster than the 

dissolution of the F-faces (Snyder 2007a). Therefore, these faces will dominate the outer 

crystal surface after a sufficiently long dissolution time (compare to Figure 3.20). If the 

dissolution of K-faces is limited by bulk diffusion, which is a typical assumption, these face 

types will have the highest dissolution rates. This, and the vast number of geometrically 

possible kinked {hkl}-faces will therefore lead to an ellipsoidal crystal shape without the 

presence of any significant edges and vertices (compare also to the results and discussion of 

Section 3.5). 

 

 

 

2.7 Process Model 
 

In order to design the experiments for the determination of the crystallization kinetics 

(discussed in Chapter 3) as well as for the control of the cyclic growth-dissolution process 

(presented in Chapter 4), adequate model equation are required that describe the governing 

process dynamics. Therefore, this section is dedicated to the description of these model 

equations. The dynamic evolution of the crystal size and shape distribution (CSSD) is 

modeled in the first part of this section by means of a multivariate population balance 

equation (PBE) which is solved by the method of moments. The resulting solution of the PBE 

is dependent on the kinetics of crystallization, which in turn are functions of the solution 

concentration and temperature. Thus, the dynamic process model is equipped with additional 

model equations in the final parts of this section to describe the dynamic behavior of both 

quantities as well.  

 

 

2.7.1 Population Balance Equation 

 

Modeling a batch crystallization process requires the description of the dynamics of a crystal 

ensemble rather than of an individual crystal. Furthermore, the properties that are 

characterizing the crystalline state, i.e. the h-vector, will generally differ among individual 

crystals and hence, the crystal population is distributed in the property space. An adequate 

model that accounts for the dynamics of a crystal population that is distributed in the property 
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space is given by the population balance equation (PBE). A general formulation of the PBE is 

given by (Ramkrishna 2000): 

 



ff

t

f
  hx hx
 . (2.14) 

Here, f = f(t,x,h) denotes the volume specific crystal number density which is distributed 

w.r.t. the external coordinates x, representing the three dimensional physical space, and w.r.t. 

the internal coordinates h, representing the n dimensional geometrical property space of the 

crystals. While the first term on the left hand side describes the accumulation of the crystal 

number density, the other terms on the left hand side describe the convective transport of the 

crystal size distribution in the external – as well as in the internal coordinates. In 

crystallization processes, the corresponding transport velocities can be interpreted as the 

particle velocities vi in the physical space and as the growth – or dissolution velocities Gi / Di 

of the individual crystal faces: 
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(2.15a) 

(2.15b) 

The terms σ+ and σ- on the right hand side of Eq. (2.14) represent birth and death terms, 

which are frequently used to model nucleation, agglomeration and breakage phenomena in 

crystallization processes. In this work, a crystallization process within a closed and ideally 

mixed system was considered and hence, the external coordinates were not considered. 

Furthermore, neither crystal growth nor dissolution was size dependent, see Section 3.1 and 

Section 3.5, and agglomeration and breakage were assumed to be negligible. Hence, the PBE 

could be simplified to: 
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with f = f(t,h) and the following initial and regularity conditions:  
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(2.17a) 

(2.17b) 

(2.17c) 

The birth term σ+ in Eq. (2.16) can be used to model the appearance of new crystals due to 

nucleation. Assuming, that the size and shape of nucleated crystals can be described by the 

state vector hnuc, the birth term σ+ can be expressed as:  




 
n

i

ii hhB
1

nuc,nuc )( , (2.18) 

with Bnuc denoting the nucleation rate and δ being the Dirac distribution.  It has to be noted at 

this point, that the formulation of the PBE given in Eq. (2.16) constitutes a rather simple case 
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in the modeling of crystal shape dynamics, as Eq. (2.16) assumes that no faces disappear 

from – or reappear on the surface of any crystal of the population during growth or 

dissolution. As this assumption was fulfilled in the remainder of this work, further details on 

the modeling of the appearance or disappearance of crystal faces are not given here, but can 

for instance be found in Borchert and Sundmacher (2012b), Borchert (2012c) or Singh and 

Ramkrishna (2013).  

 

In order to solve the PBE of Eq. (2.16), the method of moments (Hulburt 1964) was adopted 

in this work. In the bivariate case of KDP, a mixed moment μi,j of the CSSD is defined as: 

21

0 0

21, dhfdhhh ji
ji  



 . (2.19) 

With this definition, the population balance can be transformed into a set of ordinary 

differential equations describing the dynamic evolution of the moments of the distribution. 

As the remainder of this work is mainly concerned with controlling the evolution of the seed 

crystal population, nucleation is (with the exception of Section 3.4) neglected. With this 

simplification and assuming that no crystals disappear due to complete dissolution, the 

dynamics of the mixed moments can be described by: 
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(2.20a) 

(2.20b) 

As can be seen from the equations given above, only the evolution of some integral values 

(namely the moments) of the CSSD can be described by the method of moments. While this 

approach is computationally efficient, a precise reconstruction of the CSSD from a given set 

of moments is in general not possible. Due to the simplicity of the chosen model, the solution 

of Eq. (2.16) requires that the seed crystal distribution is translated through the internal 

coordinates (or rather through the geometrical state space) in an unaltered way. Hence, the 

evolution of the mean seed crystal shape, which can indeed be tracked with the moment 

model of Eq. (2.20), can be used to fully characterize the seed crystal distribution at any time 

during the crystallization process. 

 

As can be seen from Eq. (2.20b), the derivative of μi,j is (apart from the growth rates G) only 

dependent on lower order moments, and hence, a closed set of ordinary differential equations 

can be obtained6. Thus, a finite set of moments can be used to describe the evolution of the 

CSSD without the necessity of any closure condition. In order to describe the dynamics of the 

crystallization process, the following set of moments, collected in the vector μ, was used:  

                                                           
6 Note that the derivatives dμi,j/dt of a moment model derived from the population balance approach of 

Eq. (3.17) accounting  also for growth rate dispersion, will be dependent on μi,j as well. Nevertheless, 

the moment model still constitutes a closed set of differential equations (see Zumstein and Rousseau 

(1987a, 1987b)). 
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 T1,20,31,10,21,00,10,0 ,,,,,, μ . (2.21) 

While the total number of crystals per suspension volume can be readily obtained from the 0th 

moment μ0,0, the mean crystal shape h  can be obtained from the first order moments 

according to: 

 

0,0

T

1,00,1 ,




h . (2.22) 

The total crystal surface area and the total crystal volume are of particular importance for the 

model of the solute concentration and the suspension temperature. Both quantities can be 

derived from the second and third order moments μ2,0 and μ1,1 or μ3,0 and μ2,1 respectively. 

This is discussed in the following sections, where the models of the concentration and 

temperature of the solution is presented. 

 

 

2.7.2 Solute Concentration 

 

The solution of the PBE is, apart from the initial conditions, dependent on the kinetics of 

growth and dissolution, which are generally a function of the concentration and temperature 

of the liquid phase (see Chapter 3). Thus, Eq. (2.16) and Eqs. (2.20) are coupled to the 

dynamics of the solution temperature and the solute concentration. Hence, dynamic models 

for both quantities are required in order to fully predict the transient evolution of the CSSD.  

 

Changes in the solution concentration during batch crystallization processes are generally the 

result of crystal growth or dissolution. As solute molecules are incorporated in (or dissolved 

from) the crystal lattice, mass transfer between the liquid and solid phase must take place. In 

order to model the mass transfer rate, and to derive an equation for the concentration profile 

over time, the volume of a single KDP crystal is considered first. This volume can be 

calculated from the geometrical state h according to Borchert (2012c) by: 

3

12

2

1cryst   983.4948.10 hhhV  . (2.23) 

Integrating this equation over the suspension volume Vsus and the entire CSSD, the total 

crystal volume can be obtained by 
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which can be expressed through the definition of the moments of the distribution Eq. (2.19) 

as: 

 0,31,2sustotcryst, 983.4948.10  VV . (2.25) 

By balancing the mass of crystalline and dissolved KDP, and using the crystal density ρKDP = 

2338 kg/m3 (Ma 2002), the concentration can be expressed through the moments of the 

CSSD as: 
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The derivative of the concentration w with respect to time can be formulated on the basis of 

Eq. (2.26) and Eq. (2.20b) according to: 
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(2.27a) 

(2.27b) 

Thus, the dynamic concentration changes can be expressed through an ordinary differential 

equation, which is dependent on the moments of the crystal distribution and can be integrated 

alongside with Eqs. (2.20). 

 

 

2.7.3 Solution Temperature 

 

The temperature of the solution influences the crystallization process in two different ways. 

As the growth and dissolution kinetics are generally temperature-dependent, the dynamics of 

the crystallization process is directly affected by the solution temperature (see also the results 

presented in the next chapter of this manuscript). In addition to this dependence, the 

supersaturation, and thus the driving force of the crystallization process, is a function of 

temperature through the solubility correlation of Eq. (2.2). Since the face-specific growth 

rates of a crystal typically depends in a nonlinear manner on supersaturation, control over the 

crystallization temperature, and thus over the supersaturation, offers a way for controlling the 

crystallization kinetics. Furthermore, the control of supersaturation through temperature 

control may open a direct pathway to control the final crystal shape of the crystallization 

process. This is the case if the dependencies of the face-specific growth rates on 

supersaturation differ among the individual face types (see for example Sections 3.1 and 3.2). 

 

Changes of the solution temperature are mainly induces by (and in this work controlled 

through) the temperature of the thermostat which is connected to the double jacket of the 

crystallizer. Differences between the temperature of the double jacked, which is directly 

influenced by the thermostat temperature, and the crystallizer temperature trigger a heat flow 

which will consequently lead to temperature changes in the crystallizer as well as in the 

double jacked. To describe these dynamics, the crystallizer was modeled as an ideally mixed 

vessel. The double jacked was instead modeled as a cascade of two ideally mixed vessels, 

describing the temperatures of the ground element – (index G) and the side element of the 

jacked (index S), through which the mass flow of the thermostat Thm was flowing (see Figure 

2.16). The model of the double jacked was chosen to reproduce the residence time 

distribution within the jacked, which is of particular importance for the modeling of the 
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Figure 2.16: Schematic representation of the balance domains used to model the temperature dynamics 

in the crystallization vessel and its double jacked.  

 

Table 2.1: Parameter values of Eqs. (2.28a), (2.28b) and (2.28c). 

Symbol Value Unit Symbol Value Unit 

CGA  0.0201 m² CGk  205.2 W/(m²K) 

CSA  0.0423 m² CSk  205.2 W/(m²K) 

GUA  0.0482 m² Uk  29.3 W/(m²K) 

SUA  0.1409 m² 
Cp,c  3.960* kJ/(kgK) 

Cm  variable kg 
OHp, 2

c  4.180 kJ/(kgK) 

Gm  0.8959 kg KDP

~
H  - 19.0 kJ/mol 

Sm  2.2445 kg 
KDP

~m  0.1361 kg/mol 

Thm  0.0508 kg/s UT  24 °C 

* The heat capacity cp,C was determined for a saturated solution at a temperature of 40 °C. 

 

supersaturation switches discussed in Section 4.3. Although this approach constitutes a rather 

coarse approximation of the real fluid dynamics in the double jacked, it was found to provide 

a good compromise between the model accuracy (see Figures 4.7 and 4.8 in Section 4.3 for 

examples) and computational efficiency. The dynamics of all three temperatures can be 

described by the following set of coupled differential equations: 
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(2.28a) 

(2.28b) 

(2.28c) 

The parameter values that are appearing in these differential equations were determined in 

preliminary experiments and are given in Table 2.1. Note that the coefficients of the heat 

transfers between the jacked ground and the crystallizer kCG and between the jacked side and 

the crystallizer kCS were assumed to be identical for the sake of identifiability. 
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An assessment of the accuracy of this temperature model is, for the sake of brevity, not given 

in this section, but can be found in Chapter 4 of this manuscript (particularly in Sections 4.2, 

4.3 and 4.5). In general, a good agreement between modeled and measured temperature 

profiles was found throughout this work, which indicates the adequacy of the temperature 

model of Eq. (2.28). 

Equation (2.28) constitutes, in conjunction with Eq. (2.27) and Eq. (2.20), a closed set of 

differential equations that can be used to describe the dynamics of the process variables that 

are governing the entire crystallization process, namely the solution temperature, the solute 

concentration and the state of the crystalline phase. However, these equations cannot be 

solved without the knowledge of the kinetics of crystallization, as these kinetics are appearing 

either explicitly (as in case of Eq. (2.20)) or implicitly (through the change of the dissolved 

solute mass dmKDP/dt) in these equations. Therefore, the next chapter of this work is 

concerned with the determination and parameterization of the growth and dissolution 

kinetics, in order complete the model equations as well as to gain some insight into the 

mechanisms through which the kinetic phenomena of growth, nucleation and dissolution are 

controlled. 
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3. Crystallization Kinetics 
 

A crystallization process is governed by solid liquid equilibria and crystallization kinetics. 

Through the solubility curve, thermodynamics define a maximal crystal yield at given start- 

and end-temperatures for a batch process, and possibly also the stable polymorph of the final 

crystal product. To design a seeded batch crystallization process based purely on 

thermodynamics, and thus without using any knowledge of the underlying crystallization 

kinetics, a simple approach can be derived from McCabes ΔL law (Mullin 2001). This 

approach relates the product crystal mass and size to the properties of the seed crystals via: 

3
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Since the total crystal mass mP can be controlled by the selection of the initial and final 

crystallization temperature, a desired product crystal size LP can be realized by an appropriate 

choice of the seed crystal mass mseed,0 and the seed crystal size Lseed,0. However, Eq. (3.1) 

requires the absence of (primary or secondary) nucleation to be applicable. This is an 

assumption that can be quite restrictive, and may require low supersaturations during the 

crystallization process potentially resulting in rather low productivities. Furthermore, the 

applicability of Eq. (3.1) is limited to crystals whose shape can be completely described by 

one size coordinate alone and is thus not suited to design a crystallization process for 

achieving a desired shape distribution. 

 

In order to predict the final CSSD of a crystallization process for faceted crystals, a detailed 

knowledge of the underlying crystallization kinetics is essential. The face-specific growth 

(and dissolution) rates determine both, the transient crystal shape evolution as well as the 

steady state crystal shape towards which the CSSD will evolve during a growth process. In 

conjunction with the nucleation kinetics, also the dynamics of the supersaturation depletion 

can be predicted. This in turn allows for the design and optimization of advanced process 

concepts. Therefore, this chapter is dedicated to the determination of these crystallization 

kinetics, exemplified on the system KDP-water.  

 

In Section 3.1, the determination of the face-specific growth rates is presented. These growth 

rates were determined at constant levels of supersaturation and temperature, which allowed 

for a detailed analysis and description of the dependencies of the growth rates on both 

process variables. In particular the experimentally observed growth behavior of the prismatic 

{100}-faces G1(S) indicated, that growth was affected by the presence of impurities. Some 

further evidence for this phenomenon is given in Section 3.2, where the influence of 

impurities on the growth behavior is discussed in more detail. Furthermore, the growth rates 

are qualitatively described by the step pinning mechanism of Kubota and Mullin (1995) as a 

function of supersaturation in this section. In the final part of this section, the resulting 

growth kinetics G1(S) and G2(S) are used to obtain the region of crystal shapes that are 

attainable by pure growth processes. An analysis of this region with respect to the sensitivity 
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of attainable crystal shapes regarding variations in supersaturation and impurity 

concentrations is presented and used to derive a range of applicable supersaturation levels for 

the concept of growth-dissolution cycles.  

In the experiments used for the determination of the growth kinetics, not only growth, but 

also a widening of the seed crystal shape distribution and significant secondary nucleation 

was observable. The widening of the seed crystal shape distribution is analyzed in Section 

3.3, and is, in the absence of size dependent growth, explained by growth rate dispersion. It is 

shown, that the observations can be well explained by including dispersive second order 

terms in the morphological population balance. The growth rate diffusivities describing the 

dynamic CSSD widening are determined in this section, and a clear dependence of the 

growth rate diffusivities on the face specific growth rates is identified. The phenomenon of 

nucleation is discussed in Section 3.4 of this work. By analyzing the evolution of the 0th 

moment of the entire crystal population over time, it is shown that the source of newly born 

crystals is secondary nucleation. The observations are parameterized by an empirical power 

law approach, which accounts for the dependence of the nucleation rate on temperature, 

supersaturation and suspension density.  

The face-specific dissolution kinetics of KDP are discussed in Section 3.5. As in the 

previously discussed case of growth, the kinetics were again determined at constant 

temperature and constant undersaturation. It was found, that both face types dissolve with 

essentially identical dissolution rates. The implications of this observation on the region of 

crystal shapes attainable by growth-dissolution cycles (presented in Chapter 4) are discussed. 

The final section 3.6 provides a brief summary of the key results of this chapter. 

 

 

 

3.1 Growth Kinetics 
 

As already pointed out in Sections 2.6 and 2.7, the knowledge of the face specific kinetics, 

especially growth kinetics, is crucial for the understanding of the dynamics of crystallization 

processes and for the design of processes towards a desired crystal shape distribution. The 

growth kinetics of faceted crystals have been extensively studied in single crystal cells 

(Davey 1982, Shekunov 1997, Ristic 2001, Nguyen 2014) or hot stage reactors (Ma 2012a, 

Ochsenbein 2015) for various crystal shapes. Although the evolution of complex crystal 

shapes can be tracked reliably with such measurement devices, the application of the obtained 

growth kinetics to batch crystallization processes is not straightforward. This is particularly 

due to the differences in fluid dynamics which can lead to differences in transport phenomena 

such as bulk diffusion and furthermore to crystal-crystal or crystal-wall collisions that may 

induce surface defects (Burton 1951) and/or lattice strain (Zacher 1995, Ristic 1997, Jones 

1999), potentially altering the crystal growth rates. It is therefore more desirable to obtain the 

crystallization kinetics under real process conditions.  

While methods for the determination of one-dimensional growth kinetics under real process 

conditions, such as video microscopy (Temmel 2016b), sieve analysis of samples (Temmel 

2016b), desupersaturation experiments (Schöll 2007) or analysis of steady state MSMPR
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Figure 3.1: Estimation of face-specific growth rates of KDP at constant levels of supersaturation and 

approximately constant temperature; left: set point temperature profile (dashed yellow) and measured 

temperature profile (solid blue); middle: measured supersaturations; right: measured (marker) and 

regressed (solid lines) evolutions of the mean seed crystal shapes. Prismatic {100}-faces are indicated by 

red squares while pyramidal {101}-faces are indicated by green diamonds. 

 

distributions (Randolph 1988) can be considered quite established, approaches for the 

determination of multidimensional growth rates are rare. Gunawan et al. (2002) and Borchert 

et al. (2014) used batch cooling crystallization experiments for the system KDP-water, to 

determine the face-specific growth rates which were parameterized by temperature-

independent power law approaches. The growth kinetics of β L-glutamic acid crystals grown 

in water were determined by Ma et al. (2012b), again by cooling crystallization experiments, 

and by Ochsenbein et al. (2014), who applied desupersaturation experiments at different 

temperatures to describe the growth kinetics in crystal length and width as a function of 

supersaturation and temperature. 

 

The face specific-growth kinetics of KDP were determined in this work for constant 

supersaturation. Once the seed crystal population had been added to the solution, a 

temperature control program was started that allowed for a growth process at constant 

supersaturation7. Due to the rather low seed loading that was used in all experiments (1.0 g of 

seed material), the resulting temperature gradients were small and the maximal temperature 

difference between start and end time did not exceed 0.5 °C. Hence, also temperature was 

considered to be approximately constant during the growth experiments.  

Typical temperature and supersaturation profiles of one growth experiment are depicted in 

Figure 3.1. As can be seen, the set-point temperature (yellow dashed line, left) exhibited a 

concave shape (due to the increase in the crystals surface area over time) and could be 

realized extremely well (solid blue). This resulted in an almost constant supersaturation 

profile (middle) over time. The evolution of the mean seed crystal shape over time, which 

was measured with the observation techniques presented in Section 2.4, is depicted in the 

                                                           
7 The temperature control program for a constant supersaturation level was based on Eqs. (4.8) and 

(4.15) of Section 4.2 of this work. Note that in order to apply Eq. (4.15), the growth kinetics need 

already to be known. Since these kinetics are to be determined through the experiments that are 

described in this section, they could naturally not be used for Eq. (4.15). Instead, kinetics which were 

obtained in preliminary experiments were used for the computation of the temperature profiles. 
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Figure 3.2: Supersaturation dependence of the growth rates of the {100}-faces (red squares) and the 

{101}-faces (green diamonds) determined for a set-point temperature of T = 35 °C; left: measurements 

with interpolations; right: measurements with fitted linear kinetics (solid), extrapolated linear kinetics 

(dotted) and fitted BCF kinetics (dark, dashed). 

 

right part of Figure 3.1. Due to the almost constant supersaturation and temperature profiles, 

the slopes of the evolutions h1(t) and h2(t) were essentially constant. This behavior, which 

was also confirmed by the other growth experiments, indicates that growth rates are not size 

dependent for both face types considered. Hence, the growth velocities Gi for the individual 

crystal faces could be obtained by linear regressions over the observed mean seed crystal 

shape evolutions, using the growth rate definition of Eq. (2.9). The procedure described 

above was repeated for different supersaturation levels between 0.03 and 1.13 as well as for 

different temperatures between 25 °C and 45 °C. 

The dependencies of the obtained growth rates on supersaturation are exemplarily shown in 

Figure 3.2 for a set-point temperature of 35 °C. Generally, three different regions can be 

identified here. At low supersaturation levels, both face types show growth rates which were 

essentially zero with respect to the measurement precision (approximately 1 nm/s, see also 

Table 3.1) of the video microscope. Such a behavior is well known for KDP crystals in the 

presence of impurities that are affecting the growth behavior and is typically referred to as 

death zone (Sangwal 2007). Particularly the growth of the prismatic {100}-faces is known to 

be strongly affected by the presence of trivalent metal ions like Fe3+, Al3+ or Cr3+ 

(Rashkovich 1997, Thomas 2004). A detailed discussion on the influence of impurities on the 

growth behavior of KDP is given in Section 3.2 of this work. A second growth region can be 

identified at intermediate supersaturations, where the growth rates are strongly increasing 

with supersaturation. At higher supersaturation levels, a linear dependence of the growth rates 

on supersaturation is visible. The latter behavior is qualitatively in accordance with the 

classical BCF theory (Burton 1951), which predicts a dependence of the growth rates on 

supersaturation according to: 
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Figure 3.3: Temperature dependence of the face-specific growth kinetics of KDP: left: Arrhenius plot of 

the pre-exponential factors kG,i over the temperature; right; temperature dependence of the threshold 

supersaturations S*
G,i defined by Eq. (3.4). {100}-faces are indicated by red squares and {101}-faces are 

indicated by green diamonds.  

 

with a temperature dependent constant kBCF , and a critical supersaturation σ1. According to 

this equation, the growth rate increases quadratically at low supersaturations and linearly at 

higher supersaturations, (S-1) > σ1 with: 

const.BCF 
dS

dG
. (3.3) 

The BCF approach, Eq. (3.2), was fitted to the linear part of the growth kinetics, and the 

results are shown as dashed lines in the right part of Figure 3.2. As can be seen, good 

agreement between measurements and model prediction were obtained in the considered 

supersaturation range. Despite this good agreement, the growth kinetics were, for the sake of 

simplicity, parameterized in this work by a linear approach: 

 *

,G,G iii SSkG  , (3.4) 

with a temperature dependent growth rate constant kG,i and a threshold supersaturation S*
G,i. 

As can be seen from Figure 3.2, the growth laws of Eq. (3.2) and Eq (3.4) lead to almost 

identical results in the considered supersaturation ranges, and can thus be considered as 

equivalent in these supersaturation regions. 

The procedure for determining the supersaturation dependence of the growth kinetics was 

repeated for all set-point temperatures in a range from 25 °C to 45 °C.  A similar behavior as 

depicted in Figure 3.2 was observed for all temperatures, and hence, estimates for the 

parameters kG,i and S*
G,i could be obtained by fitting Eq. (3.4) to the measured growth rates of 

the linear part of the kinetics. The resulting values for the growth rate constants kG,i are 

shown in Figure 3.3 in an Arrhenius plot. As can be seen, the growth rate constants for both 

face types have similar values for all investigated temperatures, indicating similar slopes for 

both growth rates G1(S) and G2(S), and are decreasing linearly in the Arrhenius plot. Hence, 

the temperature dependence of the growth rate constant was parameterized by the approach: 
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Figure 3.4: Face-specific growth rates of KDP as a function of supersaturation and temperature; left: 

prismatic {100}-faces; right: pyramidal {101}-faces. Measured growth rates for different temperatures 

are indicated by the markers in the upper left corners. Dashed lines indicate the kinetics determined with 

Eqs. (3.4) to (3.6), while solid lines indicate the supersaturation regions in which the kinetics are valid. 

 

























ref

,G,A
,G,0,G

11
exp

TTR

E
kk

i
ii

. (3.5) 

The pre-exponential factors k0,G,i and the activation energies EA,G,i of this approach were 

determined by linear regression and are given in Table 3.2 together with their confidence 

intervals. Apart from the growth rate constants, also the threshold supersaturations S*
G,i 

showed a temperature dependent behavior, as depicted in Figure 3.3. A clear decrease of the 

obtained values for S*
G,i can be observed with increasing temperatures which is qualitatively 

in accordance to literature on crystal growth in the presence of impurities (Kubota 2001). The 

dependence of S*
G,i on temperature is quantified in this work by an empirical second-order 

polynomial:  

2
,G,3,G,2,G,1

*
,G TsTssS iiii  , (3.6) 

with the empirical parameters sj,G,i, given in Table 3.2 together with their confidence 

intervals. By inserting Eqs. (3.5) and (3.6) into Eq. (3.4), the face-specific growth rates Gi can 

be expressed as a function of supersaturation and temperature: 
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The comparison of the growth rates obtained with Eq. 3.7 (equipped with the parameters 

from Table 3.2) to all measured growth rates is shown in Figure 3.4. As can be seen, the 

overall growth behavior of both face types could be fitted well by Eq. (3.7) in cases where the 

supersaturation was high enough to overcome the influences of impurities on the growth 

rates. Only the growth rate of the {101}-faces at a supersaturation of S = 1.11 and a 

temperature of T = 45 °C deviates significantly from the determined kinetics. However, as 

this growth rate was even lower than for S = 1.10 at the same temperature, this measurement 

should be rather considered an outlier. 
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Table 3.1: Growth rates and growth rate diffusivities (see Section 3.3) as well as their confidence intervals 

(Ci, given for a significance level of 95%) that were determined in individual experiments. 

  {100}-faces {101}-faces 

 T  

[°C] 

S  

[-] 

G1  

[μm/s] 

Ci – G1  

[μm/s] 

d1 

[μm2/s] 

Ci – d1  

[μm2/s] 

G2 

[μm/s] 

Ci – G2  

[μm/s] 

d2 

[μm2/s] 

Ci – d2  

[μm2/s] 

24.94 1.045 0.000 ± 0.001 0.013 ± 0.013 0.000 ± 0.001 0.005 ± 0.011 

25.02 1.053 0.000 ± 0.001 0.012 ± 0.014 0.000 ± 0.001 0.001 ± 0.012 

24.99 1.061 0.007 ± 0.001 0.011 ± 0.015 0.024 ± 0.001 0.101 ± 0.017 

24.99 1.072 0.004 ± 0.001 0.048 ± 0.020 0.052 ± 0.001 0.158 ± 0.028 

24.98 1.080 0.029 ± 0.002 0.237 ± 0.043 0.076 ± 0.002 0.277 ± 0.039 

24.88 1.091 0.060 ± 0.002 0.330 ± 0.034 0.090 ± 0.001 0.295 ± 0.050 

24.81 1.101 0.083 ± 0.002 0.426 ± 0.050 0.113 ± 0.001 0.255 ± 0.047 

24.76 1.113 0.101 ± 0.003 0.520 ± 0.071 0.131 ± 0.003 0.283 ± 0.061 

24.78 1.122 0.121 ± 0.003 0.607 ± 0.083 0.151 ± 0.003 0.350 ± 0.079 

29.98 1.046 0.0004 ± 0.001 0.022 ± 0.020 0.001 ± 0.001 -0.008 ± 0.015 

30.00 1.055 0.0002 ± 0.001 -0.002 ± 0.013 0.001 ± 0.001 -0.016 ± 0.015 

29.99 1.062 0.0008 ± 0.001 0.039 ± 0.023 0.051 ± 0.001 0.109 ± 0.024 

29.93 1.072 0.0071 ± 0.002 0.094 ± 0.040 0.079 ± 0.002 0.162 ± 0.043 

29.86 1.081 0.0520 ± 0.002 0.379 ± 0.043 0.107 ± 0.001 0.239 ± 0.048 

29.87 1.092 0.0888 ± 0.003 0.451 ± 0.081 0.133 ± 0.003 0.339 ± 0.078 

29.81 1.103 0.1150 ± 0.006 0.544 ± 0.148 0.159 ± 0.004 0.313 ± 0.128 

29.48 1.114 0.1472 ± 0.003 0.704 ± 0.074 0.190 ± 0.002 0.395 ± 0.072 

29.66 1.123 0.1667 ± 0.004 0.723 ± 0.124 0.204 ± 0.004 0.348 ± 0.092 

34.93 1.046 0.0000 ± 0.001 -0.001 ± 0.012 0.001 ± 0.000 0.000 ± 0.011 

34.90 1.051 0.0159 ± 0.002 0.043 ± 0.057 0.031 ± 0.004 0.190 ± 0.070 

34.87 1.061 0.0026 ± 0.002 0.064 ± 0.038 0.086 ± 0.002 0.178 ± 0.038 

34.84 1.074 0.0358 ± 0.002 0.267 ± 0.050 0.118 ± 0.003 0.296 ± 0.063 

34.92 1.081 0.0899 ± 0.004 0.509 ± 0.118 0.141 ± 0.003 0.422 ± 0.111 

34.87 1.091 0.1213 ± 0.003 0.638 ± 0.100 0.175 ± 0.003 0.411 ± 0.075 

34.72 1.102 0.1511 ± 0.004 0.858 ± 0.144 0.211 ± 0.004 0.427 ± 0.100 

34.69 1.112 0.1841 ± 0.004 0.860 ± 0.128 0.239 ± 0.004 0.518 ± 0.089 

34.67 1.125 0.2208 ± 0.005 1.166 ± 0.178 0.276 ± 0.003 0.576 ± 0.187 

39.80 1.047 0.0003 ± 0.001 -0.006 ± 0.019 0.001 ± 0.001 0.005 ± 0.014 

39.90 1.054 0.0008 ± 0.002 0.112 ± 0.047 0.074 ± 0.002 0.157 ± 0.047 

39.82 1.064 0.0028 ± 0.001 0.001 ± 0.052 0.114 ± 0.002 0.227 ± 0.053 

39.70 1.072 0.0768 ± 0.002 0.580 ± 0.082 0.163 ± 0.003 0.446 ± 0.078 

39.66 1.082 0.1375 ± 0.004 0.803 ± 0.118 0.213 ± 0.004 0.523 ± 0.101 

39.78 1.090 0.1798 ± 0.004 0.826 ± 0.121 0.245 ± 0.004 0.588 ± 0.113 

39.63 1.105 0.2299 ± 0.009 1.049 ± 0.172 0.290 ± 0.007 0.474 ± 0.165 
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Table 3.1: Continued 

  {100}-faces {101}-faces 

 T  

[°C] 

S  

[-] 

G1  

[μm/s] 

Ci – G1  

[μm/s] 

d1 

[μm2/s] 

Ci – d1  

[μm2/s] 

G2 

[μm/s] 

Ci – G2  

[μm/s] 

d2 

[μm2/s] 

Ci – d2  

[μm2/s] 

39.74 1.111 0.2556 ± 0.009 1.109 ± 0.283 0.320 ± 0.008 0.268 ± 0.218 

39.80 1.121 0.2967 ± 0.012 1.203 ± 0.347 0.358 ± 0.006 0.427 ± 0.297 

44.93 1.035 0.000 ± 0.001 -0.012 ± 0.018 0.001 ± 0.001 -0.020 ± 0.015 

-* -* - - - - - -  - 

44.88 1.054 0.001 ± 0.002 0.061 ± 0.053 0.122 ± 0.003 0.212 ± 0.053 

44.82 1.063 0.053 ± 0.003 0.391 ± 0.076 0.171 ± 0.003 0.415 ± 0.063 

44.71 1.074 0.110 ± 0.003 0.789 ± 0.114 0.219 ± 0.003 0.593 ± 0.092 

44.71 1.082 0.172 ± 0.004 0.899 ± 0.124 0.273 ± 0.003 0.619 ± 0.089 

44.71 1.091 0.225 ± 0.005 1.222 ± 0.177 0.324 ± 0.006 0.645 ± 0.160 

44.69 1.103 0.269 ± 0.007 1.589 ± 0.177 0.372 ± 0.008 0.758 ± 0.160 

44.78 1.112 0.305 ± 0.012 1.182 ± 0.259 0.362 ± 0.007 0.445 ± 0.227 

44.77 1.122 0.373 ± 0.011 1.695 ± 0.391 0.462 ± 0.008 0.742 ± 0.354 

* The results of the experiment are depicted in Figure 3.9 and discussed in more detail in Section 3.2. As the 

crystal shape evolution exhibited a significant time-dependence, no values for the growth rates and growth rate 

diffusivities were determined for this experiment. 

 

Table 3.2: Parameter values of Eq. (3.5) and Eq. (3.6) for a reference temperature Tref of 35 °C. 

Confidence intervals are given for a significance level of 95%. 

 {100}-faces {101}-faces 

Symbol Value Confidence interval Value Confidence interval 

ln (k0,G,i) [-] -12.667 ± 0.049 -12.657 ± 0.042 

k0,G,i  [m/s] 3.155 x 10-6 [3.004,  3.314] x 10-6 3.184 x 10-6 [3.052,  3.322] x 10-6 

EA,G,i  [kJ/mol] 37.048 ± 5.491 39.136 ± 4.741 

s1,G,i  [-] 1.0513 ± 0.0075 1.0353 ± 0.0044 

s2,G,i  [°C-1] -7.187 x 10-4 ± 6.915 x 10-4 -6.658 x 10-4 ± 4.031 x 10-4 

s3,G,i  [°C-2] 1.706 x 10-5 ± 11.735 x 10-5 5.906 x 10-6 ± 68.40 x 10-6 

 

Furthermore, Figures 3.2 and 3.4 show that the pyramidal {101}-faces are growing faster 

than the prismatic {100}-faces for all considered supersaturation and temperature levels. 

Hence, the relative growth rate 

is always below 1. At lower supersaturation values, it is possible that only the pyramidal 

{101}-faces exhibit a significant growth rate, while the growth rate of the prismatic {100}-

faces is essentially zero, see for example S = 1.06 in Figure 3.2. Hence, crystal growth under 

these conditions leads to elongated crystal shapes, as depicted in Figure 3.5, as the pyramidal 

2

1
rel

G

G
G   (3.8) 
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Figure 3.5: Different crystal shapes of KDP obtained from growth: left: seed crystals; middle; elongated 

crystal shapes resulting from growth at intermediate supersaturations (S = 1.074, T = 35 °C); right: 

compact crystal shapes obtained from growth at high supersaturations (S = 1.125, T = 35 °C). Scale bars 

in the lower left corners correspond to 200 μm. 

 

{101}-faces can be grown almost exclusively. Conversely, at high supersaturation levels, 

both face types are growing with similar velocities, which results in Grel approaching the 

value of one. If the seed crystals have a compact shape, or the growth time is sufficiently 

long, these similar growth rates result in similar face distances h1 and h2 and therefore in 

rather compact crystal shapes as shown in Figure 3.5. Hence, the crystal shapes that can be 

obtained from growth range from elongated shapes at low supersaturation to compact crystal 

shapes at high supersaturation. Such a behavior was already reported by Yang et al. (2006) 

and Borchert et al. (2014), and was clearly confirmed in this work. The kinetics determined in 

this work indicate however, that it is not possible, to obtain octahedral crystal shapes 

exposing only the pyramidal {101}-faces on the outer crystal surface. In order to grow such 

shapes, a relative growth rate of Grel > 1.465 would be required, see Borchert (2012c) for 

details. In the investigated supersaturation and temperature range however the relative growth 

rate was always below one. Also extrapolating the kinetics of this work towards higher 

supersaturation values and higher or lower temperatures does not predict the existence of 

growth conditions that would lead to a fulfillment of Grel > 1.465. 

 

The face specific growth kinetics of KDP have also been investigated by Borchert et al. 

(2014) and Gunawan et al. (2002), and the results of both publications are used here for 

comparison. Both authors used temperature independent power law approaches to quantify 

the supersaturation dependence of the growth rates: 
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(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

where all growth rates are given in the unit μm/s. Note, that the original kinetics of Gunawan 

et al. were published by considering the total width and height of the KDP crystals to 

characterize the crystal shape. For details about the transformation of these internal 

coordinates to the framework of the h-representation see Borchert (2012c). To compare the 

kinetics obtained in this work with the kinetics of Borchert et al. (2014), a temperature of 35 

°C was used, as this represents the mean temperature of the growth experiments described by 

Borchert et al. The comparison to the growth kinetics of Gunawan et al. (2002) was 
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Figure 3.6: Comparison of the growth kinetics determined in this work (dashed lines) with literature data 

(solid lines); left: kinetics published by Borchert et al. (2014); right: kinetics published by Gunawan et al. 

(2002). 

 

performed for a temperature of 30 °C. While the kinetics that were determined in this thesis 

are somewhat faster than the ones published Borchert et al. (2014), see Figure 3.6, they are 

slower than the kinetics published by Gunawan et al. (2002). This is particularly true for the 

growth kinetics of the pyramidal {101}-faces of Gunawan et al., which are almost one order 

of magnitude faster than the kinetics that were determined in this work. This underlines the 

importance of determining the crystallization kinetics under the actual process conditions to 

account for the fluid dynamics as well as impurity concentrations in the solution. Particularly 

the latter aspect is expected to have significant influence on the crystal growth rate and is 

therefore discussed in more detail in the next section of this work. 

 

 

 

3.2 Influence of Impurities on the Growth Kinetics of KDP 
 

Impurities in a crystallization process are often considered to be an undesired phenomenon, 

as the impurity molecules can adsorb on kink sites of the crystal surface, and thereby hinder 

the incorporation of new solute molecules into the crystal lattice. In this manner, the crystal 

growth rates can be decreased by the presence of impurities and in the extreme case, growth 

can be completely stopped. This effect would naturally result in prolonged growth times, and 

furthermore potentially increase the risk of spontaneous nucleation, as supersaturation may 

not be depleted fast enough to maintain the crystallization process within the metastable zone.  

However, as the adsorption of impurity molecules is strongly related to the properties of the 

surface on which the molecules are adsorbed, specifically tailored impurities – in this context 

typically referred to as additives – offer a way for crystal shape control. As the slowest 

growing crystal faces are the most prominent faces on the outer crystal surface, slowing down 

the growth rate of a specific crystal face gives direct control over the final crystal shape.  

If such additives are known for a specific crystalline substance, their usage represents a 

popular technique for crystal shape control, provided that constraints on crystal purity and 
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Figure 3.7: Tapered growth of KDP; left: KDP shape exhibiting {201}-faces in addition to the typical 

{100} and {101}-faces; middle: KDP shape with additional {301}-faces; right: micrographs of 

experimentally observed crystals that were undergoing tapered growth. 

 

surface – or solid state properties can be met. For example, urea is known to crystallize from 

water in crystals with a needle-like shape, exhibiting extremely high aspect ratios. The 

addition of traces of biuret however, reduces growth in the [001]-direction significantly, 

resulting in crystals with a much smaller aspect ratio (Davey 1986). It is beyond the scope of 

this work to review the entire field of crystal shape control via additives. For more details, the 

reader is referred to the compilation of Nývlt and Ulrich (1995) and references therein as well 

as to the textbook of Sangwal (2007). 

 

The growth kinetics of KDP are known to be influenced by numerous different additives. For 

example Nývlt and Ulrich (1995) compiled a list of about 30 different ions affecting the 

growth of KDP crystals. Interestingly, the majority of the investigated additives are adsorbing 

on the prismatic {100}-faces, among them trivalent metal ions like Fe3+, Al3+ or Cr3+ as well 

as bivalent metal ions like Ba2+, Ca2+ or Cu2+ (Nyvlt 1995, Rashkovich 1997, Zaitseva 1999, 

Thomas 2004, Sangwal 2007). Additionally, Fu et al. (1999) were investigating additives that 

were primarily influencing the growth rates of the pyramidal {101}-faces. They found, that 

by the addition of 100 ppm sodium metaphosphate, closed octahedral crystal shapes 

exhibiting only pyramidal {101}-faces on the outer crystal surface can be obtained.  

Another interesting phenomenon related to the shape control of KDP via additives was 

observed by Mullin et al. (1970), and is referred to as tapered growth. Here, steps of the 

{100}-faces are accumulating on the edge between {100} and {101}-faces in a regular 

pattern, resulting in the formation of macroscopic {h01}-faces on the outer crystal surface. 

The resulting crystal shape is illustrated schematically in Figure 3.7 with either {201} or 

{301}-faces, together with experimentally observed crystal shapes, which were subject to 

tapered growth. 

To verify whether the growth of KDP was indeed influenced by impurities in the experiments 

described in the previous section, the growth experiments for a set point temperature of T = 

35 °C were repeated with KDP raw material purchased from Grüssing instead of the material 

purchased from Roth. The resulting growth kinetics are shown in Figure 3.8. As can be seen, 

the influence of the raw material on the growth behavior of the pyramidal {101}-faces is 
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Figure 3.8: Growth kinetics obtained from different raw materials; solid, filled markers: KDP purchased 

from Grüssing (purity ≥ 99.5 %); dashed, empty markers: KDP purchased from Roth (purity ≥ 98 %). 

 

rather small, but noticeable at low supersaturation levels, e.g., at S ≤ 1.05. Growth of the 

prismatic {100}-faces is, however, strongly affected by the raw material used. The dead zone 

in which no significant growth occurs is even more enlarged for the material purchased from 

Grüssing, and also the intermediate supersaturation region, in which the growth rate increases 

strongly, is significantly broader. Only at high supersaturation values of S ≥ 1.10, the effect of 

the raw material is diminishing. This suggests that the growth process in this supersaturation 

region is not influenced by the chemical composition of the solution, which in turn supports 

the application of the linear approximation of the growth kinetics by Eq. (3.4) to characterize 

the growth kinetics of KDP independently of the impurity concentration. 

 

To describe the effects of impurities on the growth behavior of KDP that was observed in this 

work on a quantitative basis, the model for the step-pinning mechanism, proposed by Kubota 

and Mullin (Kubota 1995, Kubota 2001) was employed, and is briefly summarized here. For a 

more detailed description of the model, the reader is referred to the review of Kubota (2001). 

The model assumes that the displacement of a step on the crystal surfaces is hindered – or 

pinned – by the adsorption of impurity molecules on the kink sites of this step. In this case, 

the step is forced to curve around these blocked adsorption sites, and the average displacement 

velocity of the step v decreases according to: 

 1
0v

v
. (3.10) 

In this equation, v0 denotes the step velocity in a pure solution, θ represents the coverage of 

active kink sites by impurity molecules and α represents an effectiveness factor of the 

impurity molecule. If the term αθ is equal to zero, growth will be unaffected by the presence 

of impurities. If however, αθ > 0, the step velocity decreases compared to v0, and if αθ ≥ 1, 

growth is completely inhibited. If the adsorption of impurity molecules is fast compared to the 

frequency with which new kink sites are created on the step, the surface coverage θ can be 

replaced by the equilibrium coverage θeq, which can be obtained from an appropriate 

adsorption isotherm. In this case, the average step velocity will be constant with respect to
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Figure 3.9: Time dependent growth of KDP crystals at a set-point temperature of T = 45 °C, and a 

supersaturation of S = 1.045 (left) and S = 1.039 (right). Measured mean seed crystal shapes are indicated 

by markers, and solid lines represent the fitted time dependent growth rates obtained from Eq. (3.12). 

 

time. If, however, adsorption proceeds slowly compared to the formation of new kink sites, 

the surface coverage can be expressed as a function of time using the Langmuir adsorption 

mechanism. At non-equilibrium conditions, this leads to the following dynamics of the site 

coverage (Kubota 2001): 
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Consequently, also the step velocity – and thus the growth rate of the face – is time dependent 

according to: 
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Hence, the step velocity will asymptotically approach v0(1-αθeq), if αθeq ≤ 1, while growth 

stops completely at a critical time tc, if αθeq > 1. The latter phenomenon was clearly observed 

in a growth experiment at T = 45 °C and S = 1.045, as well as in one repetition experiment 

under similar conditions. The experimentally obtained mean crystal shape evolutions for both 

experiments are depicted in Figure 3.9. As can be seen, both crystal face types grew at the 

initial phase of the experiments, but the growth rates decreased over time until growth 

essentially stopped after 1400 seconds and 1000 seconds, respectively. For a quantitative 

description of these observations, Eq. (3.12) was regressed to the experimental data by 

assuming that the face growth rates are linearly dependent on the step velocities. The 

resulting model fits are shown as solid lines in Figure 3.9. As depicted, the step pinning 

mechanism with a slow impurity adsorption process is capable of reproducing the 

experimentally observed crystal shape evolutions very well. Hence, the interpretation that 

growth of KDP was indeed influenced by impurities in this work is supported by the 

experimental observations shown in Figure 3.9 together with Eq. (3.12). 

In a further extension of the model for the step-pinning mechanism, Kubota et al. (2000) 

considered the effect of supersaturation on the growth kinetics in the presence of impurities.
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Figure 3.10: Supersaturation dependence of the face-specific growth rates of KDP in the presence of 

impurities assuming the non-equilibrium adsorption model of Eq. (3.12) (solid lines); left: growth rates of 

the prismatic {100}-faces; right: growth rates of the pyramidal {101}-faces. Dashed lines correspond to 

the BCF growth kinetics of Eq. (3.2), and markers represent the measured growth rates for a set-point 

temperature of T = 35 °C. 

  

The authors assumed the factor αθeq to be inversely proportional to supersaturation according 

to: 

1

1
eq




S

c
 , (3.13) 

with the constant c1 being dependent on temperature as well as on the impurity concentration. 

Furthermore, also the time constant τ was considered to be a function of supersaturation. This 

dependency was expressed by the empirical correlation 

))(exp( 32 cSc  , (3.14) 

where c2 and c3 are constants. Inserting Eqs. (3.13) and (3.14) into (3.12) yields the step 

velocity v as a function of both, time and supersaturation in the presence of impurities.  

The resulting equation was used to reproduce the growth kinetics obtained in this work and 

discussed in Section 3.1. To this end, only the growth rates that were determined for a set-

point temperature of 35 °C are discussed here, as the growth phases in the cyclic growth-

dissolution experiments (presented in Chapter 4) were conducted at this temperature. Eq. 

(3.12) was evaluated at the time point t = 2000 s to ensure that the simulated growth rates 

achieved their equilibrium value (compare to Figure 3.9). It was furthermore assumed that the 

growth rates Gi are linearly dependent on the step velocities vi and that the supersaturation 

dependencies of the growth rates G0,i of the pure solution can be expressed by the BCF 

kinetics of Eq. (3.2). Due to the limited amount of measured growth rates in the intermediate 

supersaturation region, it was, however, not possible to determine the parameters c, A and S0 

individually. Instead, these parameters were set manually to c1,1 = 0.064, c2,1 = 250 and c3,1 = 

1.044 for the prismatic {100}-faces and to c1,2 = 0.048, c2,2 = 500 and c3,2 = 1.035 for the 

pyramidal {101}-faces. The resulting growth rates (solid lines) are shown in Figure 3.10 as a 

function of supersaturation together with the measured growth rates (markers) and the BCF 

kinetics (dashed lines) of Eq. (3.2). As can be seen, the measured growth rates can 
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Figure 3.11: Final crystal shapes attainable via growth at T = 35 °C; left: relative growth rate Grel as a 

function of supersaturation; right: supersaturation required to obtain a specific final crystal shape. 

 

qualitatively be well reproduced by employing the model for the step-pinning mechanism. 

The observed dead zone of the growth rates could be reproduced as well as the growth 

behavior at higher supersaturation levels which was essentially unaffected by the presence of 

impurities. Particularly the latter observation provides a qualitative explanation for the 

observation that the growth rate of the prismatic {100}-faces of KDP is not dependent on the 

raw material used at higher supersaturations while this was clearly the case at lower 

supersaturations (see Figure 3.8). 

 

Using the growth kinetics depicted in Figure 3.10, the crystal shapes attainable from an initial 

shape h0 can be determined together with the supersaturation which is required for the 

individual shapes. As already pointed out in Section 3.1, the relative growth rate Grel can be 

used to quantify the crystal shape towards which the growing crystals evolve. Low values of 

Grel indicate that growth of the {101}-faces is significantly higher than the growth of the 

{100}-faces. Hence, crystals grow towards elongated crystal shapes. Values of Grel ≈ 1 imply 

that both face types grow with similar velocities which ultimately result in the growth of 

compact crystals. The dependence of the relative growth rate on supersaturation resulting 

from the kinetics shown in Figure 3.10 is depicted in the left panel of Figure 3.11. It can be 

seen that the relative growth rate is zero for supersaturation below 1.06. A sharp increase in 

the relative growth rate is observable in a supersaturation range between 1.06 and 1.08, which 

is caused by the sharp increase in the growth rate of the {100}-faces (see Figure 3.10, left). 

At higher supersaturations, the relative growth rate increases only mildly, and reaches a 

maximum value of 0.8 at a supersaturation of S = 1.12. The region of crystal shapes 

attainable by these relative growth rates is shown in the right panel of Figure 3.11 together 

with the supersaturation necessary to obtain the individual shapes. Although the attainable 

region is quite large, it can be seen that the majority of the attainable crystal shapes require a 

supersaturation in the range of 1.06 < S < 1.08, and therefore growth conditions at which the 

impurities have a strong influence on the growth kinetics and thus on the final crystal shape. 
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Figure 3.12: Sensitivities of the final crystal shape with respect to uncertainties during a single growth 

process; left: sensitivity of the final crystal shape with respect to supersaturation; right: sensitivity of the 

final crystal shape with respect to uncertainties of the parameters c1, c2 and c3 of Eq. (3.13) and Eq. (3.14). 

 

To quantify the influences of the supersaturation and the impurity concentration on the final 

crystal shape, the angle β is introduced. It is defined as the angle between the crystal shape 

trajectory and the abscissa: 
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Note, that β does not describe the final crystal shape directly, but rather parameterizes the 

steady state crystal shape towards which the crystals are evolving during growth under 

constant conditions. Obviously, β is an implicit function of supersaturation (and temperature, 

which is, however, neglected in the following discussion), and the function β(S) results 

directly from the growth kinetics G1(S) and G2(S), or the relative growth rate Grel(S). Due to 

the strong increase in Grel at supersaturation levels between 1.06 and 1.08, the resulting 

crystal shapes show a high sensitivity w.r.t. the choice of supersaturation. Therefore, a precise 

control of the driving force is required if such a crystal shape is to be realized with a single 

growth step. The sensitivity of the final crystal shape to variations of supersaturation is 

quantified by the derivative dβ/dS, which was calculated using Eq. (3.12) and is depicted in 

the left panel of Figure 3.12 for all crystal shapes attainable by growth.  

Qualitatively, three different regions can be identified in this contour plot. At low 

supersaturation, growth of the {100}-faces is essentially inhibited, and hence crystals evolve 

towards elongated shapes regardless of smaller variations in supersaturation. Conversely, at 

high supersaturations, both face types grow with similar rates which again results in a low 

sensitivity dβ/dS. At intermediate supersaturations however, the sensitivity exhibits a distinct 

maximum and hence, tight supersaturation control as well as precise knowledge of the growth 

kinetics G1(S) and G2(S) are required to obtain such crystal shapes with a single growth step. 

Especially the latter criterion must be considered crucial, since particularly in this 

supersaturation region the growth kinetics of the {100}-faces are strongly influenced by the 

impurities present in the solution. This in turn yields a high sensitivity of the resulting crystal 

shapes w.r.t. the impurity concentration. 
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In this work, the dependencies of the growth kinetics on these impurity concentrations were 

parameterized by the parameters ci in Eq. (3.13) and Eq. (3.14) for a specific face. It is 

therefore straightforward to assemble these parameters in a vector p = [c1,1, c1,2, c3,1, c1,2, c2,2, 

c3,2]
T and to define the sensitivity dβ/dp by: 



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
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
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1i pi
ij

pd

d 

p
. (3.16) 

The resulting sensitivities dβ/dp were again calculated using Eq. (3.12) and are shown in the 

right panel of Figure 3.12 for all crystal shapes attainable by growth. The sensitivities are 

qualitatively very similar to the sensitivities dβ/dS discussed above. While elongated and 

compact crystals can be reliably obtained, even under varying impurity concentrations, the 

attainability of intermediate crystal shapes is strongly sensitive to the impurity concentrations 

in the solution. It can hence be concluded that the control of such crystal shapes requires not 

only tight supersaturation control and accurate knowledge of the crystallization kinetics, but 

also tight control of the impurity concentrations in the solution. The latter is, however, 

challenging to realize in industrial practice. At this point it has to be stressed once more, that 

the growth kinetics used for the sensitivity analysis were subject to large uncertainties in the 

supersaturation range of 1.06 ≤ SG ≤ 1.08 due to the limited amount of measured growth 

rates. Therefore, this discussion is rather of a qualitative nature than of a quantitative one. 

The general behavior of the sensitivities dβ/dS and dβ/dp will, however, be as discussed, 

regardless of the specific ‘true’ growth kinetics of the {100}-faces at this intermediate 

supersaturation range. 

 

A further interesting phenomenon related to growth affected by impurities has been reported 

by Guzman et al. (2001). The authors found that the growth rate of potassium sulfate crystals 

was larger when supersaturation was decreased compared to the growth rates that were 

obtained by increasing the supersaturation. The presence of impurity molecules was shown to 

be the reason for this phenomenon which is called growth hysteresis. In subsequent research, 

also the growth of the prismatic {100}-faces of KDP was shown to be affected by growth 

hysteresis in the presence of impurities (Guzman 2005). Although this effect was 

demonstrated experimentally only for Cr3+ impurities in case of KDP, the mathematical 

framework used to model this behavior suggests, that growth hysteresis is a generally 

observable phenomenon if growth is affected by the presence of impurities (Kubota 2003, 

Guzman 2005). This finding is particularly important for the concept of growth-dissolution 

cycles, as will be discussed in Chapter 4, where both a decrease and an increase in 

supersaturation are inevitable due to the necessary supersaturation switches. The occurrence 

of growth rate hysteresis in such a process may lead to a significant decrease of the growth 

rates after the first growth phase and, in the worst case, to no significant growth during the 

second growth phase. Since Guzman et al. (2001, 2005) were able to show that the effect of 

growth hysteresis is diminishing at high supersaturations, it can be concluded that growth in a 

cyclic growth-dissolution process for KDP should preferably be conducted at high 

supersaturations at which growth is not affected by the presence of impurities. 
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3.3 Growth Rate Dispersion 
 

The evolution of the mean seed crystal shape was used in the previous sections to determine 

the face-specific growth kinetics of KDP. Next to this information, the experiments also hold 

information about the evolution of the entire CSSD. The experimental data revealed not only 

crystal growth, but also a significant widening of the CSSD was apparent. This is illustrated 

in Figure 3.13, where the final CSSD of one growth experiment is compared to the initial 

CSSD. Such a widening of the CSSD cannot be explained by the PBE approach of Eq. (2.16), 

which predicts that the width of the seed distribution remains constant over time. Instead, two 

different modeling approaches are typically used to describe the widening of the CSSD 

during growth, namely i) size dependent growth and ii) growth rate dispersion. Since size 

dependent growth – a model frequently used to describe such a CSSD-widening (Majumder 

2010, Nagy 2011, Bajcinca 2012, Ochsenbein 2014) – was not observed in any experiment, 

the CSSD-widening can clearly be attributed to the phenomenon of growth rate dispersion 

(GRD). According to the BCF theory (Burton 1951), the growth rate of a crystal face is 

related to the activities of the screw dislocations on this face. These activities are dependent 

on the structure of the dislocation network on the crystal surface, which can be assumed to be 

randomly distributed. Hence, the growth rate of two crystal faces that are crystallographically 

equivalent might differ even at identical growth conditions (i.e. supersaturation and 

temperature). Furthermore, due to crystal-crystal – and crystal-wall collisions, new 

dislocations might be formed, or active dislocations might be deactivated. Hence, crystal 

growth rates might also fluctuate over time. Apart from the dislocation network on the crystal 

surface, also other effects like lattice strain (Zacher 1995, Ristic 1997, Jones 1999), surface 

roughening (Pantaraks 2007, Flood 2010) or the absorption of impurity molecules (which is 

stochastic by nature) are known to influence the growth rates of crystal faces 

 

For the quantitative description of growth rate dispersion, two main approaches can be 

identified. The first approach assumes that crystal growth rates fluctuate randomly around a 

Figure 3.13: Observed crystal shape distributions during one growth experiment at the initial - (left) and 

the final experimental time (right). 
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constant time averaged value in case growth conditions are constant. This random fluctuation 

(RF) model results in one additional second order dispersive term per internal coordinate in 

the population balance equation, to give: 
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In this equation, di denotes the so-called growth rate diffusivity of the i-th face, which is 

assumed to be size independent in this work. As discussed by Zumstein and Rousseau 

(1987a, 1987b), the solution of Eq. (3.17) implies that, at constant growth conditions, the 

variances σi
2 of the marginal distributions fh,i 






jh

ijfdhf jih

,

     , , , (3.18) 

are linearly increasing with time according to: 

i
i d

dt

d
2

2




. (3.19) 

This linear increase has been employed by several authors (White 1971, Randolph 1977) to 

identify the random fluctuation model as a suitable approach to describe the phenomenon of 

growth rate dispersion. 

 

An alternative to the RF model for growth rate dispersion is the constant crystal growth 

(CCG) model. This model assumes that every crystal face has an individual growth rate, 

which can, in the simplest case, be calculated by: 

ijiji GpG ,,  . (3.20) 

Here, Gi is the mean growth rate of the crystal population, as for example determined by the 

methods presented in Section 3.1, and pi,j is a pre-factor that specifies the growth rate of the i-

th face type of the individual crystal j. Hence, the crystal population is not only distributed in 

the n-dimensional h-space, but also in n additional coordinates p, referred to as growth 

affecting properties (GAP) (Ochsenbein 2015), characterizing the growth rate distribution of 

the individual crystals. However, it is assumed, that no transport phenomena take place in the 

additional property coordinates, and hence, the PBE for this model reads: 
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In contrast to the random fluctuation model, the CCG model predicts that the variances σi
2 are 

increasing quadratically with time (Zumstein 1987a, Zumstein 1987b) according to: 

21
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ctc
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

, (3.22) 
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Figure 3.14: Evolution of the variances over time exemplified by one growth experiment; left prismatic 

{100}-faces; right: pyramidal {101}-faces. Confidence intervals were determined on a significance level of 

95 %, and are indicated by dashed lines. 

 

with constants c1 and c2. With the help of this criterion, the CCG model can be differentiated 

from the RF model, which was for instance done by Berglund and Larson (1984), Larson et 

al. (1985) or Ramanarayanan et al. (1985). 

With increasing computational power, the assumption of no convective transport in the GAP 

coordinates was dropped in an extension of the CCG model by Gerstlauer et al. (2001), to 

model crystal growth under the consideration of a decrease in lattice strain, as well as by 

Ochsenbein et al. (2015) to model the growth behavior of β L-glutamic acid. Under these 

assumptions, the PBE reads (Ramkrishna 2000): 
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However, since the distribution of the crystal population in the GAP coordinates is generally 

hard to determine, and little information about the velocities ∂pi/∂t is available, this approach 

was not further pursued in this work. Instead, only the adequacy of the RF and CCG model 

was investigated.  

 

As can be seen from Eqs. (3.19) and (3.22), the RF and CCG models can be distinguished by 

plotting the measured variances σi
2 over time. While the RF model results in a linear increase 

of σi
2 over time, the CCG model predicts a quadratic dependence. The results of such an 

analysis are shown exemplarily in Figure 3.14. Clearly, the variances σi
2 are increasing 

linearly with time, which was the case for all growth experiments and both face types, 

provided that a significant growth rate was observable. Hence, the experimental results 

clearly support the validity of the RF model under the experimental conditions investigated in 

this work. 

Similarly to the procedure for determining the face-specific growth kinetics in Section 3.1, 

the face specific growth rate diffusivities di were obtained by linear regression for all 

temperatures and supersaturations. The resulting values of di are shown in Figure 3.15 versus
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Figure 3.15: Dependencies of the growth rate diffusivities di on the face-specific crystal growth rates; left: 

prismatic {100}-faces; right: pyramidal {101}-faces. Different temperatures are indicated by the marker 

in the upper right corners. Thick solid lines represent the regressed power law approaches of Eq. (3.24). 

 

Table 3.3: Parameter values of Eq. (3.24) for Gref = 5 x 10-7 m/s. Confidence intervals are given for a 

significance level of 95%. 

 {100}-faces {101}-faces 

Symbol Value Confidence interval Value Confidence interval 

d0,i [m
2/s] 2.052 x 10-12 ± 0.176 x 10-12 7.419 x 10-13 ± 1.376 x 10-13 

nd,i  [-] 0.802 ± 0.086 0.638 ± 0.138 

 

the determined growth rates. As can be seen, the growth rate diffusivities exhibit a positive 

correlation with the determined growth rates, whereas no significant dependence of di on 

temperature, indicated by different markers, can be identified. The dependencies of the 

growth rate diffusivities on the face-specific growth rates that are apparent from Figure 3.15 

were parameterized in this work by an empirical power law approach: 
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The parameters of these approaches were determined with a nonlinear least squares fitting 

procedure and are given in Table 3.3. The resulting correlations are shown in Figure 3.15 as 

thick solid lines. With this set of parameters and the RF approach of Eq. (3.17), the CSSD 

evolution can be simulated by accounting for the observed distribution widening. Assuming 

that the initial distribution is described by a bivariate normal distribution as well as constant 

growth conditions, an analytical solution to Eq. (3.17) can be found (Crank 1975). The 

population density remains normally distributed, with mean values and variances according 

to: 
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Figure 3.16: Comparison between observed (yellow) and simulated (blue) final CSSDs of one growth 

experiment; left: simulation results obtained without growth rate dispersion; right: simulation results 

using Eq.s (3.17), (3.24) and (3.25). 

 

The simulation results obtained are exemplarily depicted in Figure 3.16 (right) together with 

the measured CSSD at the final experimental time and simulation results which would be 

expected in the absence of growth rate dispersion (Figure 3.16 left). As can be seen, the 

widening of the CSSD is quite substantial for the experiment considered, but can be captured 

well with the approaches and parameters of the RF model identified in this work. 

 

At this point it is important to note, that the kinetics of growth rate dispersion were 

determined only on the basis of the seed crystal evolution and are strictly only valid for the 

seed crystal population. The application of these kinetics to the growth of nucleated crystals 

does therefore constitute an extrapolation of these kinetics which should be considered with 

some skepticism. Several authors report that the growth rate of small (secondary) nuclei 

differs significantly from the growth rate of larger crystals (like crystals of the seed crystal 

population) (Zacher 1995, Gahn 1997, Jones 1999, Temmel 2016b) which was attributed to 

higher lattice strain that arises from the process of secondary nucleation. Also the results of 

this work indicate that the growth of nucleated crystals is significantly slower than the growth 

of seed crystals. However, as evolution of the population of nucleated crystals is of minor 

importance within the concept of growth-dissolution cycles, this phenomenon was not further 

investigated in this work. 

 

 

 

3.4 Nucleation Kinetics 
 

During the experiments performed for the determination of the growth kinetics, not only an 

increase in crystal size and distribution width was detected (described in Sections 3.1 and 3.3, 

respectively), but also significant nucleation was observable. Nucleation leads to an increase 

in the total number of crystals, or the 0th moment of the CSSD respectively, according to:  
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Figure 3.17: Observed increase in the total number of crystals over time; left: example frame showing a 

large number of nucleated crystals; middle: measured increase in the total number of observed crystals; 

right: measured increase in the total crystalline mass. Measurements are shown as solid blue lines 

whereas smoothed measurements are shown as dashed yellow lines.  

 

nuc
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dt

d
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, (3.26) 

with Bnuc denoting the nucleation rate. By measuring the total amount of objects observed 

with the video microscope during a fixed time period, an estimate for the 0th moment could 

be obtained in this work8. Hence, the evolution of the 0th moment could be tracked over time. 

Such an evolution (observed during the growth experiment at S = 1.12 and T = 45 °C) is 

exemplarily shown in Figure 3.17 together with a representative video frame collected during 

the final state of the experiment. Not only is a significant increase in the observed crystal 

number visible in this figure, but also the convex curvature of the evolution μ0,0(t) is apparent. 

This convex curvature is a clear indication for the presence of secondary nucleation. In 

contrast to primary nucleation, which would result in a linear evolution of μ0,0(t) at constant 

crystallization conditions, the rate of secondary nucleation is dependent on the suspension 

density of the solution. This suspension density increases in a convex manner, due to growth 

and nucleation resulting in the creation of additional surface areas (as shown in the right 

panel of Figure 3.17), and hence, the secondary nucleation rate increases monotonically over 

time. 

To parameterize the kinetics of nucleation, an Arrhenius approach was chosen to describe the 

temperature dependence of the nucleation kinetics, and power law approaches were employed 

for the quantification of the influences of supersaturation and suspension densities on the 

nucleation rates. In this work, the suspension densities were expressed through the total 

crystal surface area per volume μA, as well as through the total crystalline mass μV per 

volume. For the seed crystal population, these moments were calculated according to: 

                                                           
8 By measuring the number of observed objects, overlapping crystals or crystal aggregates are 

considered as single objects, although in both cases the measured objects consists of several primary 

crystals. Therefore, the number of newly born crystals is underestimated by this approach, and the 

resulting nucleation kinetics constitute lower bound estimates of the ‘true’ nucleation kinetics. 
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(3.27b) 

For nucleated crystals, Eq. (3.27) was not applicable, since the shape estimation on the basis 

of the rather small crystal projections that were observable for nuclei was deemed unreliable. 

Instead, the surface area and volume of those crystals was approximated by the surface area 

and volume of a sphere with a projection area equivalent diameter9. With the help of the 

moments μA and μV, the nucleation rate Bnuc was expressed through: 
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(3.28a) 

(3.28b) 

The parameters k0,nuc, EA,N, nS and nM of these approaches were collected in the vector p, and 

determined by a nonlinear least squares approach 
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In this equation, the 0th moment of the i-th experiment which was simulated for the j-th time 

instant is denoted by  μ0,0,i,j,. The simulated values μ0,0,i,j,sim of the this equation were obtained 

by integrating the nucleation rate over time according to: 

   dTSBt
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i

t

t

iiiijiji 

0,

 )(),(),()( ,A/Vnuc0,meas,,,0,0sim,,,0,0 . (3.30) 

The parameter estimation was performed for both approaches given in Eq. (3.28). 

Additionally, the moments μA and μV were calculated either with or without the observed 

nucleated crystals, and hence, four different sets of parameter estimates were obtained. 

As can be seen from Figures 3.17 and 3.18, the measurements of the 0th moments as well as 

the measurements of μA and μV exhibit a significant measurements noise. In order to reduce 

this noise, and thereby to achieve a better convergence behavior of the optimization routines 

used to solve Eq. (3.29), both, the 0th moment as well as μA and μV were smoothed prior to 

the optimization (see Figures 3.17 and 3.18). 

The parameter estimates that resulted from solving Eq. (3.29) and the optimal objective 

function values are given in Table 3.4 for all four approaches. It can be seen from this table 

                                                           
9 The treatment of the nucleated crystal as spherical particles constitutes a rather course approximation 

of the ‘true’ shape of these crystals. This approximation was, however, necessary as a reliable shape-

estimation was not possible with the procedures given in Section 2.4 due to the finite resolution of the 

microscope camera. As (significant) nucleation occurred at supersaturations above S = 1.08 (compare 

Figure 3.18), the nuclei, that were formed, assumed a rather compact shape, and hence, the 

approximation error that is induces by the assumption of spherical shapes can be expected to be rather 

small. 
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Figure 3.18: Comparison between measured and simulated evolution of the 0th moment over time; thin 

black lines: measurements; thick blue lines: smoothed measurements; dashed yellow lines: simulation 

results obtained using Eq. (3.28a) and considering only the second order moments of the seed crystal 

population. 

 

that the approaches only considering the surface area or the crystal volume of the seed crystal 

population lead to better model fits (in terms of the residual) compared to the results that 

were obtained by considering also the second or third order moments of the nuclei. This 

might be explained by differences in the slip velocities of the crystals compared to the local 

solution velocities. Due to the small size and comparably large surface-to-volume ratio of the  

nucleated crystals, it can be assumed that nucleated crystals were able to follow the stream 

lines of the solution better that the larger crystals of the seed population. Hence, collisions 

between nucleated crystals might be quite rare compared to collisions between two seed 

crystals. Furthermore, the impact of collisions between nucleated crystals and other crystals 

or crystallizer walls might be significantly lower than for seed crystals, which in turn can be 

expected to result in lower secondary nucleation rates. 

Comparing the results of the approaches given by Eq. (3.28a) and (3.28b) for the seed crystal 

population only, no significant difference was found. This might be attributed to a rather 

strong correlation between μA and μV. A designed variation of the seed crystal loading (in 

terms of initial mass and size distribution) might be suitable to differentiate between the 

different nucleation approaches given in Eq. (3.28a) and (3.28b). This was, however, not 

done in this work, as the experiments were primarily designed for the determination of the 
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Table 3.4: Parameter values of Eq. (3.28a) and Eq. (3.28b) considering the surface area/volume of either 

all crystals or of the seed crystal population only. The reference temperature Tref was set to 35 °C, and 

confidence intervals are given for a significance level of 95%. 

 All crystals Seed crystals 

 Symbol Value Confidence interval Value Confidence interval 

S
u
rface area 

ln (k0,nuc) [-] 22.688 ± 0.032 24.194 ± 0.058 

k0,nuc [1/(m3-nM s)] 7.14 x 109 [6.91  7.37] x 109 3.22 x 1010 [3.04 3.41] x 1010 

EA,nuc  [kJ/mol] 52.730 ± 0.200 62.069 ± 0.262 

nS   [-] 5.536 ± 0.0128 7.172 ± 0.024 

nM  [-] 1.556 ± 0.005 2.586 ± 0.014 

residual  4.44 x 1020 - 3.36 x 1020 - 

V
o
lu

m
e 

ln (k0,nuc) [-] 39.140 ± 0.075 42.145 ± 0.087 

k0,nuc [1/(m3s)] 9.96 x 1016 [9.24  10.74] x 1016 2.01 x 1018 [1.84  2.19] x 1018 

EA,nuc  [kJ/mol] 50.224 ± 0.314 60.425 ± 0.259 

nS   [-] 6.395 ± 0.027 7.023 ± 0.024 

nM  [-] 1.513 ± 0.009 1.683 ± 0.009 

residual  4.36 x 1020 - 3.42 x 1020 - 

 

growth kinetics (see Section 3.1). Since the approach of Eq. (3.28a) was found to be slightly 

better compared to Eq. (3.28b), only the simulation results of this approach are shown in 

Figure 3.18 in comparison to the measurements. Despite some notable deviations between 

simulations and measurements, the overall trends could be reproduced well. The observable 

deviations can be attributed to the stochastic nature of the nucleation process, as well as to the 

empirical nature of the chosen regression approach. 

 

 

 

3.5 Dissolution Kinetics 
 

Dissolution is often seen as the reverse process of growth. While this is obviously true in the 

light of the question whether solute molecules are incorporated in – or removed from the 

crystal lattice, some fundamental differences in the mechanisms of kink site formation (as 

already discussed in Section 2.6) can be expected. Thus, the kinetics of growth and 

dissolution have to be expected to be different, and a detailed analysis of the dissolution 

kinetics is certainly required in the context of growth-dissolution cycles.  

Apart from this process concept, dissolution rates are a key aspect particularly in the field of 

pharmaceuticals. It is well known that (opposed to growing crystals) dissolving crystals 

evolve away from a steady state morphology10 (Snyder 2007a). Therefore, the accuracy of 

any one-dimensional model to describe the dynamics of dissolution and the accompanied 

                                                           
10 Apart from rather idealized special cases (Singh 2014). 
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Figure 3.19: Estimation of the face-specific dissolution rates of KDP at constant levels of undersaturation 

and approximately constant temperature; left: set-point temperature profile (dashed yellow) and 

measured temperature profile (solid blue); middle: measured super- and undersaturations; right: 

measured (marker) and regressed (solid lines) evolutions of the mean seed crystal shapes. Prismatic 

{100}-faces are indicated by red squares while pyramidal {101}-faces are indicated by green diamonds. 

 

increase in solute concentration can only be of limited precision. Any more detailed and 

accurate model does (in conjunction with the initial CSSD) necessarily require the 

consideration of face-specific dissolution kinetics. Hence, this chapter aims developing a 

methodology for determining such face-specific dissolution rates as well as at analyzing the 

obtained kinetics with special emphasis on the concept of growth-dissolution cycles. 

 

The experimental procedure employed for the determination of the face-specific dissolution 

rates of KDP is exemplarily depicted in Figure 3.19. As indicated, this procedure can be 

divided into four different phases. Initially, seed crystals were grown in a supersaturated 

solution to a size large enough to allow for sufficiently long dissolution times in the 

subsequent phases. After this phase, the three-way valves (see Figure 2.1) were switched to 

connect the second thermostat to the crystallizer jacked in order to create an undersaturated 

solution11. Once the desired level of undersaturation was reached, the crystallizer temperature 

profile was controlled12 to maintain the level of undersaturation constant. The seed crystals 

were allowed to dissolve until they reached a minimal size to ensure that no seed crystals 

disappear during the dissolution process. In the final phase, the three-way valves were 

switched back, connecting the crystallizer jacked to the initial thermostat in order to generate 

a supersaturated solution. This way, a final growth phase was induced. As can be seen in 

Figure 3.19, the level of undersaturation could be controlled well during the dissolution 

phases, with the solution temperature increasing only slightly. Due to these constant 

dissolution conditions, the mean seed crystal shapes decreased linearly with time, indicating 

                                                           
11 The necessary temperature profiles of the thermostats were calculated by Eq. (4.21) of Section 4.3 

of this work. 
12 The temperature control program for a constant level of undersaturation was based on Eqs. (4.8) 

and (4.15) of Section 4.2 of this work. Note that in order to apply Eq. (4.15), the growth kinetics need 

already to be known. Since these kinetics are to be determined through the experiments that are 

described in this section, they could naturally not be used for Eq. (4.15). Instead, kinetics which were 

obtained in preliminary experiments were used for the computation of the temperature profiles. 
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Figure 3.20: Shape estimation of dissolving KDP crystals; left: example frame of dissolving crystals; 

middle: crystal shapes estimated from the example frame; right: approximation of an ellipsoid (gray) by 

the typical shape of a grown KDP crystal (color) on the basis of the observed ellipsoid projection (black). 

 

that the dissolution rates were neither size – nor shape dependent. Hence, the dissolution rates 

could be obtained by linear regression, as indicated by the solid lines in the right panel of 

Figure 3.19.  

 

As soon as the solution was undersaturated, a fast disappearance of the crystal edges and 

vertices was apparent from the recorded suspension videos. Instead of the bi-pyramidal 

prismatic crystal shape, typical for grown KDP crystals, the crystals assumed an ellipsoidal 

shape, as depicted in Figure 3.20. This phenomenon can be explained by the appearance of 

higher indexed faces on the outer crystal surface which exhibited faster dissolution rates 

compared to the initial {100} and {101} faces, and were hence dominating the resulting 

crystal shape (Snyder 2007a).  

Despite the presence of these higher indexed crystal faces, the same shape estimation routines 

already used to estimate the shapes of growing crystals were also applied to dissolving 

crystals. As stated in Section 2.4, the routines are based on the assumption that the outer 

crystal surfaces are solely composed of prismatic {100}-faces and pyramidal {101}-faces. As 

these assumptions are clearly not met by the dissolving crystals, the application of the shape 

estimation routines has to be evaluated critically in these cases.  

The left and middle panels of Figure 3.20 depict typical shape estimates obtained during the 

dissolution experiments. As can be seen, the observed crystal projections could be 

approximated well by the crystal shape model, and the crystal shape estimates were 

preferentially oriented parallel to the image plane. While the first observation has to be 

expected as the mismatch between measured and simulated projection is minimized in the 

shape estimation routines, the latter observation coincides with the preferential orientation 

that was already observable for grown KDP crystal with a higher aspect ratio (see Figure 2.8 

in Section 2.4 for comparison).  

To further test the estimation routines the computed projection obtained from a perfect 

ellipsoid was used as an input for the shape estimation routines. The resulting crystal shape 

estimate is shown in the right panel of Figure 3.20 together with the original ellipsoid and its 

projection. Clearly both, the projection and the original ellipsoid orientation could be 

estimated well, thus supporting the applicability of the shape estimation routines also for 

dissolving KDP crystals. 

A further supportive argument for the suitability of the shape estimation routines to 

approximate the shape of dissolving crystals is given by the measured mean shape evolution 
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Figure 3.21: Temperature dependence of the face-specific dissolution rates of KDP; left: Arrhenius plot 

of the pre-exponential factors kD,i over the temperature; right; temperature dependence of the threshold 

undersaturations S*
D,i defined by Eq. (3.34). {100}-faces are indicated by red squares and {101}-faces are 

indicated by green diamonds. 

 

(depicted in the right panel of Figure 3.19). The experimental procedure described above 

allowed for growth of the crystals during the final experimental phase, resulting in the 

reappearance of the typical {100}- and {101}-faces on the crystal surfaces. The application 

of an inappropriate shape model during the dissolution phase would result in shape estimates 

exhibiting a systematic error. This error would disappear quickly during the final growth 

phase, and hence, an almost instantaneous jump in the shape estimates would be expected 

during this experimental phase, in case the crystal shape model was not suitable. Such a jump 

in the shape estimate was however not observed and it can hence be concluded that the shape 

model of grown KDP crystals is also applicable for the shape estimation of dissolving KDP 

crystals13. 

 

The dissolution experiments described above and depicted in Figure 3.19 were repeated for 

different levels of undersaturation and different temperatures in the range of 0.93 ≤ S ≤ 0.99 

and 30 °C ≤ T ≤ 45 °C. A linear dependence of the dissolution rates of both face types on the 

level of undersaturation was observed at all investigated temperatures, see Figure 3.22. 

Hence, this dependence was parameterized by the following approach:  

 *
,D,D iii SSkD  , (3.32) 

with temperature dependent parameters kD,i and S*
D,i, that were determined by linear 

regression. The temperature dependence of the obtained dissolution rate constants kD,i is 

shown in Figure 3.21, left. In the Arrhenius plot, a linear decrease of the growth rate 

constants is observable, and hence, the temperature dependence of the dissolution rate 

                                                           
13 Note that this conclusion can only be drawn for dissolving KDP crystals. The applicability of the 

shape estimation routines to other dissolving crystals need to be investigated separately. In fact, it can 

be expected that crystal shapes exist (for example crystals from a cubic space group with several 

different face-types) for which the application of the shape estimation routines will fail.  
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Figure 3.22: Obtained face-specific dissolution rates of KDP as a function of undersaturation and 

temperature; left: prismatic {100}-faces; right: pyramidal {101}-faces. Measured dissolution rates for 

different temperatures are indicated by the markers in the upper left corners. 

 

Table 3.5: Parameter values of Eq. (3.33) and Eq. (3.34) for a reference temperature Tref of 35 °C. 

Confidence intervals are given for a significance level of 95%.  

 {100}-faces {101}-faces 

Symbol Value Confidence interval Value Confidence interval 

ln (k0,D,i) [-] -11.816 ± 0.099 -11.798 ± 0.088 

k0,D,i  [m/s] 7.383 x 10-6 [6.684,  8.155] x 10-6 7.519 x 10-6 [6.887,  8.209] x 10-6 

EA,D,i  [kJ/mol] 29.376 ± 13.096 26.502 ± 11.566 

s1,D,i  [-] 0.9965 ± 0.0035 0.9937 ± 0.0034 

s2,D,i  [°C-1] -6.902 x 10-4 ± 5.637 x 10-4 -5.637 x 10-4 ± 5.541 x 10-4 

 

constants was parameterized by: 
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The pre-exponential factors and the activation energies of this law were again determined by 

linear regression and are given in Table 3.5 together with their confidence intervals. The 

threshold undersaturation values S*
D,i, calculated from regressing Eq. (3.32) for different 

temperatures, are shown in the right panel of Figure 3.21. As can be seen, the values were in 

the range of 1 % undersaturation, and thus approximately correspond to the accuracy of the 

solubility data. Therefore, and due to the limited amount of data points at low 

undersaturations, it was not possible to fully clarify whether the true values for S*
D,i did 

deviate significantly from zero. However, the determined values were used for fitting the 

dissolution kinetics. Their temperature dependence was parameterized by: 

)( ref,D,2,D,1

*

,D TTssS iii  . (3.34) 
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The empirical constants calculated for this approach are again given in Table 3.5 together 

with their confidence intervals. 

The dissolution kinetics resulting from Eqs. (3.32) to (3.34) are shown in Figure 3.22, as a 

function of undersaturation and temperature. Generally, two trends can be identified from 

this figure. The dissolution rates are significantly faster that the growth rates at similar 

driving forces (see Figure (3.4) for comparison). This observation can be explained by the 

occurrence of higher indexed faces during the dissolution processes, resulting in ellipsoidal 

crystal shapes as described earlier. These ellipsoidal shapes suggest that the dissolution rates 

were in fact virtual dissolution rates dictated by the dissolution rates of the fastest dissolving 

crystal faces. Hence, the dissolution rates can be expected to be faster compared to the 

dissolution rates which would have been obtained from (infinitely) large single faces. This is 

particularly true, since the appearance of kinked faces have to be expected during the 

dissolution process, whose dissolution rates will be solely limited by bulk diffusion 

processes. A diffusion-limited dissolution process predicts that all face types dissolve with 

the same dissolution rates (Singh 2014), which is the second observation that is apparent 

from Figure 3.22. This in turn implies that variations in crystal shape during the dissolution 

process are solely a result of the choice of the initial crystal shape, and not the result of an 

appropriate choice of temperature or level of undersaturation.  

 

The observation of identical dissolution rates of both face types for all temperatures and 

levels of undersaturation has strong implications on the applicability of the concept of 

growth-dissolution cycles for crystal shape control. Such a dissolution behavior requires the 

existence of growth conditions resulting in a relative growth rate Grel ≠ 1 as the crystal shape 

trajectory evolves on a straight line only otherwise. This straight line can be parameterized 

by 

  
T

0 1 ,1)(  hh , (3.35) 

with: 

   2,01,0 ,min hh . (3.36) 

Obviously, crystal shapes on this line could already be obtained by a single growth (or 

dissolution) phase, which would make the application of growth-dissolution cycles obsolete. 

If, however, growth conditions exist for which Grel ≠ 1 holds, the application of dissolution 

phases in addition to growth phases does indeed widen the rage of attainable crystal shapes. 

In case of the growth and dissolution kinetics determined in this work, the application of 

growth-dissolution cycles can thus serve as a process strategy to enlarge the region of crystal 

shapes attainable by pure growth processes towards more elongated crystal shapes. This is 

illustrated in the right panel of Figure 3.23, where the region of crystal shapes attainable by 

growth was obtained for supersaturations in the rage of 1.09 ≤ SG ≤ 1.12 at T = 35 °C. 

However, a crystal shape evolution towards octahedral crystal shapes cannot be realized with 

this cyclic process strategy. To obtain such a crystal shape, relative growth rates of Grel > 1 

would be required (again assuming identical dissolution rates). This requirement is somewhat 
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Figure 3.23: Regions of crystal shapes attainable by growth-dissolution cycles; left: attainable shapes, if 

Grel = Drel = 1; right: crystal shapes attainable with the kinetics of this work. Shapes that are attainable by 

pure growth with 1.09 ≤ SG ≤ 1.12 are indicated by a dark cone originating at h0, while shapes attainable 

by additional dissolution phases are indicated by the light grey area.  

 

relaxed compared to the condition of Grel > 1.465 which need to be fulfilled in order to obtain 

octahedral crystal shapes from pure growth processes (see the discussion of Section 3.1). Yet, 

growth conditions leading to relative growth rates above one were not found in this work and 

the kinetics that were determined do not indicate the existence of such conditions. 

 

 

 

3.6 Summary – Crystallization Kinetics 
 

The kinetic phenomena of growth, nucleation and dissolution were investigated in this 

chapter for the KDP-water system during seeded batch crystallization processes. The face-

specific growth kinetics of KDP were determined at constant levels of supersaturation and 

temperature in a range of 1.04 ≤ S ≤ 1.12 and 25 °C ≤ T ≤ 45 °C. The results of this study 

indicate that growth, in particular the growth of the prismatic {100}-faces, is influenced by 

the presence of impurities in the solution. This influence was, however, decreasing at higher 

levels of supersaturation. Hence, the growth kinetics were parameterized in this 

supersaturation region, where a linear dependence of the growth rates on the driving force 

was apparent.  

Further evidence that impurities were indeed influencing the growth kinetics was collected in 

a separate analysis of the growth experiments. The observed supersaturation-dependencies of 

the growth rates were explained by a combination of the classical BCF theory (Burton 1951) 

for spiral growth and the step pinning mechanism developed by Kubota and Mullin (Kubota 

1995, Kubota 2001). The resulting growth laws were used to derive a range of applicable 

supersaturation levels supersaturation for the concept of shape manipulation via growth-

dissolution cycles.  
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The phenomenon of growth rate dispersion was visible throughout the growth experiments 

by a widening of the CSSD. It was shown that the random fluctuation model for growth rate 

dispersion is suitable to describe the observed evolution of the seed crystal population. The 

kinetics of the CSSD widening were again determined on a face-specific level, and a clear 

dependence of the growth rate diffusivities on the growth rates was found and parameterized 

by an empirical power law approach. 

At higher supersaturation, also secondary nucleation was occurring. The kinetics of 

nucleation were parameterized by an empirical power law approach in conjunction with an 

Arrhenius approach to describe the temperature dependence. The analysis of the results 

indicate that mostly the seed crystal population contribute to the formation of 

thermodynamically stable molecular clusters, which indicate the importance of the fluid 

dynamics and crystal inertia on the phenomenon of secondary nucleation. 

The final part of this chapter was dedicated to obtaining the face-specific dissolution kinetics 

of KDP. These kinetics were, as in the case of growth, determined for constant levels of 

undersaturation and temperature. In contrast growth, both face type dissolve with essentially 

identical rates under all investigated conditions, and no influence of impurities on the 

dissolution kinetics was visible. The dissolution rates were linearly dependent on 

undersaturation, and significantly faster than the growth rates at comparable driving forces. 

Both findings suggest, together with the observed ellipsoidal shape of the dissolving crystals, 

that dissolution is limited by bulk diffusion, and that the measured dissolution rates are in 

fact virtual dissolution rates. Finally, the obtained growth and dissolution kinetics were 

employed to derive the region of crystal shapes that are attainable by growth-dissolution 

cycles. The kinetics indicate that a cyclic crystallization process towards elongated crystal 

shapes is possible with this concept, whereas it is not possible to crystallize octahedral crystal 

shapes by growth-dissolution cycles. 
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4. Growth-Dissolution Cycles 
 

The application of growth-dissolution cycles is a strategy frequently used during a batch 

crystallization process to increase the final crystal size and to decrease the amount of 

nucleated crystal at the same time, see for example Abu Bakar et al. (2009), Nagy et al. 

(2011), Griffin et al. (2015), or the recent review article of Wu et al. (2016). Due to the 

dissolution phases, nucleated crystal dissolve and the released solute is mainly depleted by 

growth of the seed crystal population during the next growth phase. In a further application, 

growth-dissolution cycles were also used for the purification of conglomerate forming 

enantiomeric systems with a fast racemization reaction (Suwannasang 2013, Suwannasang 

2016). For this process, slight asymmetries in the growth behavior of both enantiomers were 

exploited to successively increase the enantiomeric excess of one of the enantiomers.  

 

Next to the control of the crystal size distribution, growth-dissolution cycles were also 

proposed for the control of crystal shape (Snyder 2007b, Bunin 2010, Bajcinca 2013). Using 

growth-dissolution cycles for this purpose will also be the main topic of the discussion of this 

chapter. As shown by Lovette et al. (2012b), the region of crystal shapes attainable via 

growth-dissolution cycles can be enlarged compared to pure growth processes, rendering the 

application of growth-dissolution cycles a promising process concept for crystal shape 

control. Experimental realizations of this concept were demonstrated for single crystals by 

Lovette et al. (2012b). In batch crystallizations, growth-dissolution cycles were successfully 

applied for shape modifications of therephthalic acid (McElroy Brown 1989), monosodium 

glutamate (Jiang 2014a), succinic acid (Simone 2017) and KDP (Eisenschmidt 2015b). A 

further example was given by Kim et al. (2003), who realized a cyclic process consisting of 

growth, breakage and dissolution phases to control the size and shape of an active 

pharmaceutical ingredient originally crystallizing in a needle-like shape.  

 

While the aforementioned authors used predefined temperature profiles to realize 

supersaturated and undersaturated conditions, it is the goal of this work to embed a cyclic 

growth-dissolution strategy in a process that is controlled in a closed loop manner. To this 

end, the feedback obtained from the measurements of the solution concentration and 

temperature as well as from measurements of the CSSD evolution is used to control the 

evolution of the mean seed crystal shape towards a desired target crystal shape. The required 

routines for this controller are described in this chapter.  

In Section 4.1, the optimal control solution derived by Bajcinca (2013) and Bötschi (2017) 

are summarized and adjusted to the growth and dissolution kinetics presented in the previous 

chapter. As both optimal control solutions contain growth and dissolution phases at constant 

levels of supersaturation and undersaturation, Section 4.2 is dedicated to the control of 

supersaturation. A temperature profile of the thermostat is derived in this section on the basis 

of the process model described in Section 2.7. To compensate for any process disturbances, 

as for example nucleation, and uncertainties in the kinetics of the process model, the 

thermostat temperature profile was used as an input for a PI controller, which was found to 
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show a good performance in controlling the level of supersaturation. The supersaturation 

switches necessary for a cyclic growth-dissolution process are addressed in Section 4.3. The 

switching procedures are calculated to minimize the required switching times and to ensure 

that: i) a cyclic crystallization process between a minimal and maximal crystal volume and 

that ii) the desired target crystal shape can be attained with high precision. To improve the 

controllability of the entire cyclic crystallization process, the measurement noise of the 

observed mean crystal shape evolution is reduced in Section 4.4 by means of a Kalman filter. 

The experimental realization of controlled growth dissolution cycles is discussed in Section 

4.5. The entire process could be well controlled with the strategies developed in the previous 

sections, and the desired target crystal shape could be reliably reached with high accuracy. 

Finally, Section 4.6 summarizes this chapter. 

 

 

 

4.1 Optimal Control of Growth-Dissolution Cycles 
 

The application of growth-dissolution cycles for the shape manipulation of crystal 

populations will naturally result in prolonged process times, as this strategy necessitates 

additional dissolution and growth phases as well temperature switches to change from 

supersaturated to undersaturated conditions and vice versa. It is therefore straightforward to 

optimize this cyclic process for a minimal required total process time. Thus, an optimal 

control problem has to be solved yielding the time optimal trajectory of the crystal population 

from an initial state h0 to a desired final state hF. This problem has been addressed by 

Bajcinca (2013) and the presented solution was used in this work as a basis for the control of 

crystal shapes by growth-dissolution cycles. Therefore, the approach of Bajcinca (2013) is 

briefly presented here and adapted to the crystallization kinetics determined earlier in this 

work.  

Starting from the problem of finding an optimal supersaturation profile, constrained by upper 

and lower bounds, which allows for a time minimal trajectory from an initial point h0 to a 

final point hF, growth with a constant supersaturation level was found optimal by employing 

Pontryagin’s minimum principle. Hence, no growth-dissolution cycles are required, provided 

that the final crystal shape can be reached from h0 by a pure growth process under the given 

constraints for supersaturation. If, however, the final crystal shape lies outside of the region 

which is attainable by growth, the application of growth-dissolution cycles was suggested. It 

was argued that the time optimal process, consisting of only one growth and one dissolution 

phase, requires a growth phase with constant supersaturation from h0 to a switching point hS 

and a dissolution phase with a constant undersaturation from hS to hF. Hence, the optimal 

control problem for a cyclic growth-dissolution process was reduced to a parameter 

optimization problem with just two decision parameters, which can be formulated in two 

equivalent ways. In the first formulation, the supersaturation levels are optimized with respect 

to the upper and lower bounds, whereas in the second formulation, the position of the 

switching point hS is optimized, provided that hS can be attained by a growth process from h0 

and that hF can be reached from hS during dissolution, see Figure 4.1. 
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Figure 4.1: Time optimal trajectories for a cyclic growth-dissolution process according to Bajcinca 

(2013); left: Solution for a single switch scenario, attainability regions for growth and dissolution are 

indicated by light gray and dark gray cones originating from h0 and hS respectively; right: Solution for a 

multiple switch scenario resulting from constraints on minimal and maximal crystal volume. 

 

As can be seen from the left panel of Figure 4.1, a growth-dissolution process can, in an ideal  

case, be realized with a single switch from growth to dissolution. Such a scenario would 

require that the crystals could be grown until hS is reached. However, it is possible that the 

single switch strategy results in rather high values for hS (as for instance in the case of Figure 

4.1). Hence, the realization of such a trajectory might not be feasible. In practice, the 

maximal mean crystal shape is limited, e.g. by the solubility, the limited cooling power of the 

thermostat or the danger of blockage of the microscope. Hence, crystals can only be grown to 

a maximal size Vmax and thus several growth and dissolution phases might be required. Of 

course, also the minimal crystal volume is limited, as at some point the smallest crystals of 

the seed population would dissolve completely. To avoid any of these disturbances, the 

volume constraints were in this work set to Vmin = 0.072 mm3 and Vmax = 0.352 mm3 

respectively.  

The optimization approach of Bajcinca (2013) is based on the assumptions, that temperature 

– and thus supersaturation switches can be performed instantaneously, and that the growth 

and dissolution kinetics are independent on temperature. With these assumptions, the solution 

of the single switch scenario described above also solves the optimal control problem in case 

of a multiple switching scenario. In this case, the single growth and dissolution phases are 

split into several growth and dissolution phases such that the evolution of the CSSD remains 

within a certain region of the h-space. In this work, the crystal volume was confined by a 

maximal and minimal crystal volume (Vmax, Vmin), leading to optimal crystal shape 

trajectories as depicted in the right panel of Figure 4.1. The optimal control profiles for this 

case are depicted in Figure 4.2, for a target crystal shape of hF = [200 μm, 440 μm]T, where 

the constraints for supersaturation were set to: 1.10 ≤ SG ≤ 1.12 and 0.99 ≤ SD ≤ 0.975. The 

initial temperature was set to 35 °C and the initial CSSD had a Gaussian distribution with h0̅ 

= [128 μm, 146 μm]T, σ0 = [25 μm, 25 μm]T and an initial mass of m0 = 0.8 g. As can be seen, 

the constraints on minimal and maximal crystal volume are resulting in a process that is 
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Figure 4.2: Optimal control profiles for a cyclic growth-dissolution process according to Bajcinca (2013); 

left: Optimal supersaturation profile; middle: Temperature profile required to realize the 

supersaturation profile; right: Resulting concentration profile. 

 

cycling between a minimal and maximal solute concentration. Furthermore, the temperature 

profiles during growth and dissolution are bounded by upper and lower values.  

 

The optimization approach presented by Bajcinca (2013) assumes temperature independent 

kinetics, or negligible temperature gradients during growth and dissolution, but does not rely 

on any specific formulation of the growth or dissolution kinetics. Here, the approach is 

illustrated on the example of power law formulations for both kinetics. Therefore, the 

expressions derived therein are adjusted to account for the linear and temperature dependent 

growth and dissolution kinetics determined in Chapter 3 of this work. With these kinetics, the 

optimal control problem can be formulated as follows: 
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(4.1c) 

To evaluate the objective function and to check whether the inequality conditions are 

fulfilled, the times for growth and dissolution tG and tD as well as supersaturation levels SG 

and SD have to be calculated in dependence of the switching point hS. This can be done via 

the following equations: 
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Here, the constants KG and KD can be calculated from:
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(4.3b) 

In order to evaluate Eqs. (4.2) and (4.3) on the basis of the growth and dissolution kinetics 

determined in Sections 3.1 and 3.5, some information about the growth and dissolution 

temperature has to be available. These temperatures can be estimated prior to optimization on 

the basis of the minimal and maximal crystal volume as well as on the basis of the upper and 

lower bounds on the applicable levels of supersaturation and undersaturation, respectively. 

An average growth and dissolution concentration can be obtained from the minimal and 

maximal crystal volumes by: 
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With this average concentration, the maximal and minimal (average) temperatures for growth 

and dissolution can be calculated by solving: 
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(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

The average growth and dissolution temperatures can then be estimated on the basis of the 

maximal and minimal temperatures by: 
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(4.6b) 

Clearly, neglecting the temperature profiles during growth and dissolution constitutes in 

general a coarse approximation of the process dynamics. However, as the seed loadings and 

hence suspensions densities used in this work were chosen to be rather small, the temperature 

gradients during growth and dissolution are expected to be small as well. Therefore, the 

approximation of the temperature profiles by constants may be considered reasonable. This 

way, by assuming constant temperatures or equivalently temperature independent 

crystallization kinetics, the evolution of the crystal population is decoupled from the state of 

the liquid phase. Therefore, the optimization problem Eq. (4.1) can be solved efficiently 

without the necessity for solving the coupled population balance model of Section 2.7. 
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The time-optimal control of a cyclic growth-dissolution process assuming non-constant 

temperature profile has recently been considered by Bötschi et al. (2017). This work uses the 

same kinetics as presented here, by explicitly accounting for the temperature dependencies of 

the growth and dissolution kinetics. The authors again assume that supersaturation switches 

can be performed instantaneously. The results of this study indicate that: 

(i) Constant levels of supersaturation and undersaturation are optimal for the 

individual growth and dissolution phases.  

(ii) Both, growth and dissolution processes should be conducted at the highest 

temperatures possible, to maximize the growth and dissolution rate constants. This 

result implies, for the case of an unconstrained number of switches, that a cyclic 

process at the minimal valid crystal volume is optimal. In the extreme case this 

yields growth and dissolution phases with infinitesimal lengths, until a final growth 

phase is performed, to reach the target crystal shape hF.  

(iii) The levels of supersaturation and undersaturation identified by Bajcinca (2013) are 

as well optimal for the case studied by Bötschi et al. (2017). This appears to be also 

the case if the solute mass is decreased, which leads to an increase of the 

suspension density and thereby also to more pronounced temperature profiles 

during the growth and dissolution phases. 

 

The assumption of instantaneous temperature or supersaturation switches can, of course, not 

be met in real crystallization processes. Instead, the switching times are quite significant 

(approximately 500 to 700 seconds, see Sections 4.3 and 4.5). Hence, the potential gain in 

process time that results from a higher number of supersaturation switches is most likely 

overcompensated by the additional switching times that are required in this case. For this 

reason, the approach of Bajcinca (2013) that minimizes the total number of temperature 

switches for an optimal set of supersaturation and undersaturation levels was further pursued 

in this work. 

 

 

 

4.2 Supersaturation Control 
 

Control of supersaturation is a strategy frequently used to control crystallization processes 

(see for example Ward et al. (2006) and references therein) to balance the tradeoff between 

high crystal growth rates and thus high productivities and the occurrence of unwanted 

primary and/or secondary nucleation. Note that the latter are phenomena typically correlating 

in a nonlinear manner with supersaturation (see also Section 3.4). In this work, the realization 

of constant supersatuation profiles is of particular importance for the realization of a time-

optimal cyclic crystallization process; see the discussion in the previous section. The 

realization of constant supersaturation profiles are of similar importance for the determination 

of the growth and dissolution kinetics of KDP (see Chapter 3). To obtain a constant level of 

supersaturation during a seeded batch crystallization process, Mullin and Nývlt (1971) 
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derived an equation for the crystallizer temperature profile over time which has to be 

realized. The derivations were based on the method of moments, and were adapted by 

Eisenschmidt et al. (2015a) to account for faceted crystals. The resulting differential equation 

was used in this work as a basis for the closed-loop control of supersaturation. For this 

purpose the model equations for the crystallizer and jacket temperatures (Eq. (2.28)) have 

been inverted to yield a set-point temperature profile for the thermostat which has to be 

applied to obtain a constant supersaturation profile over time. This set-point temperature 

profile was finally used to construct a PI supersaturation controller which has been tested for 

some model uncertainties that can be expected during the crystallization experiments. 

 

To maintain a constant level of supersaturation, the concentration changes over time that are 

caused by crystal growth or dissolution, have to be compensated by changes in the 

equilibrium concentration, and thus by a change in the crystallizer temperature. To derive an 

equation for the required changes of the crystallizer temperature, the total derivative of the 

supersaturation with respect to time can be used:  
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Clearly, the left hand side of Eq. (4.7) has to be zero, to maintain a constant level of 

supersaturation. Rearranging and using the empirical solubility correlation of Eq. (2.2) then 

yields: 
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Thus the differential equation (4.8) for the crystallizer temperature has to be fulfilled to 

achieve a constant supersaturation level during the growth or dissolution phases. In order to 

realize this, an appropriate temperature profile has to be applied to the thermostat connected 

to the double jacket of the crystallizer. This thermostat temperature profile is derived from 

the model equations for the temperatures of the crystallization vessel given in Eqs. (2.28) of 

Section (2.7). Assuming constant heat capacities and solution densities, these differential 

equations can be formulated as: 
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(4.9a) 

(4.9b) 

(4.9c) 

with constant coefficients ai, bi and ci. As can be seen, the thermostat temperature TTh is 

appearing explicitly on the right hand side of Eq. (4.9c). However, to solve this equation for 

TTh, the temperature change in bottom element of the double jacket dTG/dt has to be known. 
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This information is obtained by forming the second order derivative of the crystallizer 

temperature with respect to time d2TC/dt2 using Eq. (4.8) and Eq. (4.9a) respectively: 
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(4.10b) 

In order to evaluate Eqs. (4.10a) and (4.10b), the derivatives dw/dt, d2w/dt2 and d2mKDP/dt2 

need to be known. While dw/dt can be readily obtained from Eq. (2.27), both second order 

derivatives, d2w/dt2 and d2mKDP/dt2, can be calculated by:  
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(4.11b) 

Using the assumption of a constant supersaturation, the second order derivatives of the 

moments μ2,1 and μ3,0, appearing in Eq. (4.11a) can be determined as follows: 
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and 
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(4.13) 

Note, that while both equations (4.12) and (4.13) are defined for growing crystals, they are 

applicable for dissolving crystals in the same way. However, the distinction between growth 

and dissolution is skipped in this section for the sake of brevity. With the set of differential 

equations given above, Eq. (4.10a) can be evaluated and inserted into Eq. (4.10b), which in 

turn can be rearranged such that the derivative dTG/dt reads: 

2

KDP
2

1

4C

1

3S

1

2

2

C
2

1

G 1

dt

md

a

a

dt

dT

a

a

dt

dT

a

a

dt

Td

adt

dT
 . 

 

(4.14) 

Finally, this equation can be used, to solve Eq. (4.9c) for the thermostat temperature TTh:
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Figure 4.3: Open loop supersaturation control using Eq. (4.15), left: Temperature profiles of the 

crystallizer and thermostat (green dashed and yellow dashed) calculated by Eqs. (4.8) and (4.15) 

respectively, and measured crystallizer and thermostat temperature profiles (green solid and yellow 

solid), right: Measured supersaturation profile (solid line) and set-point supersaturation level (dashed 

line). 
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(4.15) 

This equation provides the required thermostat temperature profile guaranteeing a constant 

level of supersaturation. Given a complete set of dynamical variables (moments of the crystal 

shape distribution, solution concentration and crystallizer temperatures), the equation can be 

evaluated during or after every time integration step to yield a profile of the thermostat 

temperature to be applied in order to maintain the level of supersaturation constant during the 

crystallization process. 

 

An application of supersaturation control via Eq. (4.15) is depicted in Figure 4.3, with the 

dashed green and dashed yellow lines being the solutions of Eqs. (4.8) and (4.15) 

respectively. The realized crystallizer and thermostat temperature profiles are shown as solid 

green and yellow lines. It can be seen, that the required thermostat temperature profile can be 

realized with high precision. The resulting profile of the crystallizer temperature matches the 

solution of Eq. (4.8) accurately as well. Consequently, the supersaturation level could be 

controlled reasonably well. However, after about 600 seconds, the supersaturation level starts 

to decrease, which can be attributed to uncertainties in the crystallization kinetics and heat 

transfer coefficients. As some nucleation was observed during this experiment, the 

consumption of supersaturation by growth of those nuclei can be another explanation for the 

decrease in supersaturation, as this effect is not covered by the population balance model 

used for solving Eq. (4.15).  

 

To further improve the performance of the supersaturation controller, Eq. (4.15) is used as a 

basis to design a PI supersaturation controller. This controller corrects the thermostat 

temperature according to: 
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Figure 4.4: Closed loop supersaturation control using Eq. (4.16), left: realized crystallizer temperature 

profile (green) together with the set-point (dark yellow) and realized thermostat temperature profile 

(yellow), right: measured supersaturation profile  (solid line) and set-point supersaturation level (dashed 

line). 
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(4.16) 

where TTh,PI denotes the corrected set-point value for the thermostat temperature and TTh,mod  

denotes the thermostat temperature calculated by Eq. (4.15). To obtain a satisfactory 

controller performance, the values of the controller parameters were set to: Kp = 300 K and 

TN = 1.33 s/K and used throughout this work. An application of this controller on a crystal 

growth process is exemplarily shown in Figure 4.4. As can be seen, the supersaturation level 

could be tightly controlled with small oscillations, having an amplitude that is only slightly 

higher than the observed measurement noise of the supersaturation around the set-point 

value. The described oscillations were compensated by the controller within a time range of 

200 seconds. Compared to the open loop supersaturation control depicted in Figure 4.3, the 

PI supersaturation control shows a significantly better performance. This is even more 

evident, when the crystallization conditions are considered as well, which were set to a higher 

supersaturation as well as to a higher temperature. Therefore, the uncertainties in growth 

kinetics as well as occurring nucleation are expected to have an even stronger influence on 

the supersaturation profile. However, they are compensated by the controller defined by Eq. 

(4.16).  

 

Although the results of Figure 4.4 were showing a good performance of the controller in the 

experimental practice, further tests of the controller were necessary in order to ensure that 

any unexpected perturbations of the crystallization process could be well compensated. To 

provide such test scenarios, a series of simulated experiments were performed, where 

different kinds of disturbances, which can be expected during the cyclic crystallization 

experiments, were considered. To test the behavior of the controller in those scenarios, a 

random white noise with a standard deviation of 0.1% (in terms of supersaturation) was 

added to the simulated supersaturation measurements (represented as thin lines in the right 
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Figure 4.5: Supersaturation control in case of an initial temperature offset. Left: Temperature profiles of 

the crystallizer (blue) and thermostat (yellow) using the open loop control of Eq. (4.15) (dashed) and the 

closed loop control (solid) of Eq. (4.16). Right: resulting supersaturation profiles of the open loop control 

(yellow) and the closed loop control (blue), together with the simulated supersaturation measurements 

(thin lines) and the set-point supersaturation level (dashed line). 

 

panels of Figures 4.5 and 4.6). Thus, the simulated measurement noise was slightly higher 

compared to the experimentally observed noise (see Figure 4.4, right). The rate with which 

the supersaturation measurements are available was simulated to be 30 s, and therefore also 

slightly above the experimentally realized measurement rate (about 20 s per measurement), to 

test the controller performance in a ‘worst-case’ scenario with respect to the quality of the 

supersaturation measurements. 

In a first case study, an initial temperature offset of 0.5 °C is considered, mimicking an 

imperfect temperature switch from dissolution to growth conditions in the cyclic 

crystallization process. This temperature offset translates to a supersaturation which is 

approximately 1 % below the set-point value of 1.10. As can be seen in Figure 4.5, the 

application of the open loop control of Eq. (4.15) does not correct the initial supersaturation 

offset. The PI-supersaturation controller is however able to reach – and further to maintain 

the desired level of supersaturation. Some mild overshooting in supersaturation (in the range 

of 0.25%) can be observed after 300 seconds until the supersaturation reaches the desired set-

point level after 900 seconds.  

In a second case study, the pre-exponential factors k0,G,i of the growth kinetics were increased 

by 10% of their original value. Hence, the solute consumption by growth was higher than 

predicted by the model used to calculate the thermostat temperatures. The resulting 

temperature and supersaturation profiles are depicted in Figure 4.6. During the first 200 

seconds, no substantial deviation of both supersaturation profiles from the set-point value can 

be observed. This is due to the relatively small crystal sizes at this time. The small crystal 

sizes were accompanied by small surface area that were available for growth, and hence, 

solute consumption. As the crystals grew larger in size after, also the crystals surface areas 

were increased which resulted in a decrease of both supersaturation profiles due to the 

perturbed growth rates. While the supersaturation profile of the open loop control is 

decreasing monotonically to a value of S = 1.087 at the end of the simulation time, the 
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Figure 4.6: Supersaturation control in case of perturbed growth kinetics. Left: Temperature profiles of 

the crystallizer (blue) and thermostat (yellow) using the open loop control of Eq. (4.15) (dashed) and the 

closed loop control (solid) of Eq. (4.16). Right: resulting supersaturation profiles of the open loop control 

(yellow) and the closed loop control (blue), together with the simulated supersaturation measurements 

(thin lines) and the set-point supersaturation level (dashed line). 

 

supersaturation profile of the closed loop control levels off at a value of about 1.098. As the 

difference of this level to the set-point value is only slightly higher than the measurement 

noise considered in this simulation, the controller performance was considered to be 

sufficient in this simulation experiment. 

 

The simulation results described above, as well as the experimental results shown in Figure 

4.4, demonstrate the effectiveness of the developed controller in maintaining a level of 

supersaturation or undersaturation constant. However, the area of optimal crystallization 

control by temperature and thus supersaturation control stretches far beyond the pure control 

of a constant supersaturation. For example, Ward and coworkers (Ward 2006, Tseng 2017) 

investigated the dependence of the optimal supersaturation profile on the objective function 

chosen for optimization. Next to constant supersaturation profiles as discussed here, the 

authors classified the optimal profiles as early growth strategies (Ma 2003, Ward 2006, Tseng 

2017), minimizing the number of nuclei formed in a fixed crystallization time, or as late 

growth strategies (Feng 2002, Ward 2006, Hofmann 2010, Tseng 2017) minimizing the total 

mass of nuclei formed during a crystallization process. 

Although the presented approach for supersaturation control is solely focused on constant 

supersaturation profiles, it has to be emphasized that this approach can be easily adapted to 

control any differentiable supersaturation profile. For this purpose the non-zero (and possibly 

time dependent) left hand side of Eq. (4.7) has to be taken into account, which would yield 

different formulations of Eqs. (4.8) and (4.10a). Furthermore, Eqs. (4.12) and (4.13) would 

have to be adjusted, as the derivatives of the growth rates Gi with respect to time have to be 

calculated by: 
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with a non-negligible second term on the right hand side. Accounting for these adjustments, 

the framework given by Eq. (4.15) and Eq. (4.16) is also applicable for the control of non-

constant supersaturation profiles, e.g., for the supersaturation switches discussed in the next 

section. However, as the constraints on the maximal heating or cooling power of the 

thermostats would lead to prolonged switching times, a different approach based on the use 

of two thermostats was used in this work. 

 

 

 

4.3 Supersaturation Switches 
 

Besides the control of supersaturation, described in the previous section, a cyclic growth-

dissolution process naturally involves switching phases from growth to dissolution conditions 

and vice versa. While these supersaturation switches can be achieved by different means, 

such as, the addition of clear supersaturated or undersaturated solution from separate 

feedstocks, or the addition of antisolvent, this work is solely focused on changing the solution 

temperature, and thereby changing the equilibrium concentration. Hence, in this work 

supersaturation control was achieved by controlling the solution temperature solely. 

 

Since this work focuses on controlling the evolution of the CSSD during a cyclic growth-

dissolution process in a time-optimal manner, it is straightforward to require the necessary 

supersaturation switches to be time-minimal as well. In order to optimize these switching 

phases, the process model was equipped with one additional differential equation for each 

thermostat, describing the temperature-dynamics of this thermostat: 
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(4.18) 

The first term on the right hand side of this equation describes the temperature change due to 

the incoming and outgoing mass flow, whereas the second term represents the heating or 

cooling of the thermostat bath with the power PTh,i. The maximal heating power and cooling 

power of the thermostats PTh,max and PTh,min are, of course, of strong importance for the 

optimization of the supersaturation switches, and were thus determined in preliminary 

experiments. In these experiments, the maximal cooling power PTh,min exhibited a slight 

temperature dependence:  
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(4.19a) 

(4.19b) 

where TTh is the thermostat temperature in °C. These powers correspond to a maximal heating 

rate of approximately 4 °C/min and a maximal cooling rate of roughly -0.8 °C/min for a 

typical mass of the thermostat bath of mTH = 6.5 kg. It is obvious that the maximal heating 

rate is significantly higher than the maximal cooling rate, an observation of particular 

importance for the optimization of the switching phases.  
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Clearly, a time-optimal supersaturation or temperature switch requires the application of 

maximal driving forces over time. However, it needs to be ensured that the supersaturation 

level remains constant during the preceding growth or dissolution phase. This was realized by 

requiring the derivative dS/dt to be zero at the final switching time, which necessitated a final 

cooling or heating phase for switches from growth to dissolution or from dissolution to 

growth respectively. Additionally, the crystal shape trajectory was confined by the minimal 

and maximal volume of the mean seed crystal size Vmin and Vmax. In order not to violate these 

constraints, the time at which the switching procedure was initiated was chosen such that the 

minimal or maximal volume of the mean seed crystal during the supersaturation switch was 

equal to Vmin or Vmax respectively. For the first switches from growth to dissolution and from 

dissolution to growth, this was achieved by simulating the CSSD evolution during the 

switching time with the kinetic expressions of Eq. (3.7) and Eq. (3.33). Due to the 

uncertainties in the growth kinetics at low supersaturations however (see Section 3.1 and 3.2), 

this approach was not further pursued at later switches. Instead, the measured CSSD 

evolution of the previous supersaturation switch was used for the determination of the next 

switching time. Accounting for all these constraints, the optimal switching procedure from 

dissolution to growth could be obtained by solving the optimization problem:  
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(4.20a) 

(4.20b) 

(4.20c) 

(4.20d) 

(4.20e) 

(4.20f) 

As can be seen from these equations, the thermostat was cooled from an initial temperature 

with maximal power. This indicates that a further decrease in the initial thermostat 

temperature would have been beneficial to further decrease the total switching time. 

Therefore, the thermostat temperature was decreased in the previous dissolution phase to a 

minimal value. After the time tS that solve the optimization problem of Eq. (4.20), the 

thermostat was heated with maximal power to ensure that the constraint (4.20f) could be 

fulfilled at the final switching time tF.  

The experimentally realized temperature and supersaturation profiles for a switch from 

dissolution to growth are exemplarily shown in Figure 4.7. As can be seen from the 

temperature profiles, shown in the left panel of this figure, a strong increase in the thermostat 

temperature was initially observable, which was due to the mass flow from the double jacked, 

with a temperature of about 42 °C, to the thermostat. The measured temperature profile of the 

cooling thermostat exhibited slight deviations to the model predictions in this initial phase, 

which can be attributed to a flow profile in the cooling jacked whose complexity was not 

fully captured by the model equations. However, the mismatch between measurements and 

model predictions was quickly decreasing, and the predicted temperature profile of the 
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Figure 4.7: Experimentally realized supersaturation switch from growth to dissolution conditions; left: 

Profiles of the heating thermostat temperature (red), the suspension temperature (green) and the cooling 

thermostat temperature (blue); right: Supersaturation profile over time. The switching period is 

indicated by light gray areas, and measured profiles are marked with thick solid lines while computed 

profiles of set-point values are represented by dark dashed lines. 

 

crystallizer could be well reproduced. At t = 2750 s, the final heating phase was initiated 

which led to an inflection point in the supersaturation and crystallizer temperature profiles. 

Finally, the set-point supersaturation of S = 1.10 could be realized quite accurately with only 

a slight overshoot.  

 

In case of supersaturation switches from growth to dissolution conditions, the optimal 

switching policy was slightly different to Eq. (4.20). Due to the comparably high heating 

power, the initial thermostat temperature could be raised to values which were sufficiently 

high to omit an initial heating phase during the switching procedure. Hence, the initial 

thermostat temperature was determined alongside with the starting time by solving: 
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(4.21a) 

(4.21b) 

(4.21c) 

(4.21d) 

(4.21e) 

Note, that the process model equations Eq. (2.20), Eq. (2.27) and Eq. (2.28) had to be 

fulfilled as well in both optimization problems. For the sake of brevity, these equations are 

not explicitly given here.  

The experimentally realized temperature and supersaturation profiles for a switch from 

growth to dissolution (depicted in Figure 4.8) showed trends as for the previously discussed 

switched from dissolution to growth. Again, the predicted temperature profile of the 

crystallizer could be well realized apart from slight initial deviations. A small overshoot in 

the temperature of the heating thermostat is visible at t = 1800 s. This overshoot was due to 
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Figure 4.8: Experimentally realized supersaturation switch from dissolution to growth conditions; left: 

Profiles of the heating thermostat temperature (red), the suspension temperature (green) and the cooling 

thermostat temperature (blue); right: Supersaturation profile over time. The switching period is 

indicated by light gray areas, and measured profiles are marked with thick solid lines while computed 

profiles of set-point values are represented by dark dashed lines. 

 

the PI controller of the thermostat, controlling the thermostat temperature from this time 

instance onwards. However, the final set-point supersaturation level of S = 0.975 could be 

realized almost exactly.  

 

The switching procedures were automatically calculated and optimized during the growth and 

dissolution phases after each new CSSD observation, and hence, a cyclic crystallization 

process between the volume constraints of Vmin and Vmax could be realized in a reliable 

manner, see Figure 4.9. However, the target crystal shape has to be expected to be not exactly 

attainable, except for special cases, by a growth-dissolution process that is solely cycling 

between the volume constraints of Vmin and Vmax. Instead, such a process typically results in 

an overshoot of the CSSD-evolution, which in turn results in the target crystal shape lying 

outside of the region attainable by growth-dissolution cycles, as depicted in the left panel of 

Figure 4.9. Furthermore, it would result in unnecessarily prolonged process times. To avoid 

such a scenario and to reach the target crystal shape exactly, an automated check whether the 

current growth or dissolution phase had to be ended prematurely was performed. For this 

purpose, hS,end was defined as the predicted mean seed crystal shape after a switching phase. 

With this definition, either the condition 
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was evaluated during a dissolution phase, or the condition 
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was evaluated during a growth phase. If violated, the respective growth or dissolution phase 

had to be ended prematurely, as exemplarily depicted in the right panel of Figure 4.9. In this 
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Figure 4.9: Adjustment of the last switching instance; left: Target crystal shape is missed by a full last 

growth period; right: Adjustment of the duration of the last growth period by Vmax
*. Measurements are 

depicted by full markers, whereas model predictions are indicated by empty markers. 

 

case, the constraint on the minimal or maximal crystal volume was replaced by either Vmin
* or 

Vmax
*, see Figure 4.9 right, such that the left hand sides of Eq. (4.22) or Eq. (4.23) was exactly 

zero after re-simulating the switching procedure. By this procedure the target crystal shape 

could be achieved with high precision, as demonstrated in Section 4.5 of this work where the 

experimental realization of controlled growth-dissolution cycles is addressed. 

 

 

 

4.4 Kalman Filter 
 

As discussed in the previous section, the accuracy with which the target crystal shape can be 

attained depends on an accurate determination of the last switching point. This accuracy is in 

turn dependent on the precision with which the mean crystal shape evolution can be 

observed. A crystal shape evolution observed during one cyclic growth-dissolution 

experiment is exemplarily depicted in Figure 4.10. As can be seen, the overall evolution 

could be tracked well with the observation techniques presented in Section 2.4. However, due 

to the rather low seed loading used in this experiment, the individual mean shape 

observations were subject to noticeable measurement noise. This noise was increasing with 

time and achieved maximal values at the end of each growth phase. Determining the last 

switching point on the basis of the measurement noise that was encountered at the end of this 

experiment would clearly lead to similar uncertainties in the final crystal shape. To reduce 

these uncertainties, and to thereby improve the controllability of the entire process, the 

measured mean crystal shape evolutions were smoothed by means of a Kalman filter. This 

Kalman filter is briefly described here and adjusted to the dynamics of the crystallization 

process. For a more detailed description of a Kalman filter, the reader is referred to Brown 

and Hwang (1995) or Welch and Bishop (2006).  
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Figure 4.10: Unfiltered observations of the mean seed crystal shape evolution over time. The face 

distances h1 of the prismatic {100}-faces are indicated by red squares and the face distances h2 of the 

pyramidal {101}-faces are depicted by green diamonds 

 

The Kalman filter estimates the state (x = h̅) of the crystallization process. The dynamics of 

the crystal shape evolution during the time interval tk-1 and tk can generally be described by: 

 111 ,,  kkkk f wuxx , (4.24) 

with xk and xk-1 being the states at tk and tk-1 respectively, with uk-1 denoting the vector of 

control inputs, and with the random variables wk-1 representing the process noise. The 

measurements zk are related to the state xk by: 

 kkk g vxz , , (4.25) 

with the random measurement noise vk. By using the definition of the face-specific growth 

rates Gi, the control inputs uk-1 can be defined as: 
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Naturally, similar control inputs can be defined for dissolution as well, which is, however, 

omitted in this section for the sake of brevity. The definition of uk-1 allows formulating the 

process dynamics of Eq. (4.24) as the following linear stochastic difference equation: 
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In this formulation, the Jacobian matrices  
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are each equal to the identity matrix I2 and constant over time. Given an a posteriori state 

estimate 1ˆ kx  from the previous observation time tk-1 together with a control input uk-1, an a 
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priori state estimate

kx̂  (denoted by the superscript –) can be obtained through Eq. (4.27a) by 

neglecting the process noise wk-1:  

11ˆˆ 
  kkk BuxAx . (4.29) 

An a priori estimate of the error covariance matrix 

kP can be calculated by using the process 

noise covariance matrix Qk via: 

1
T

1 
  kkk QAAPP  (4.30) 

In order to obtain an a posteriori estimate kx̂  on the basis of the a priori estimate 

kx̂  and the 

measurements zk, the Kalman gain Kk is introduced. This Kalman gain weights the 

differences between the measurements zk, and the predicted measurements 

kxCˆ , and is 

calculated by: 

  1T   kk
T

kk RCCPCPK  (4.31) 

with the measurement error covariance matrix Rk. Using the Kalman gain Kk, a posteriori 

estimates for the state vector kx̂  and the error covariance matrix Pk can be calculated as soon 

as a new set of measurements zk is available by: 

   kkkkk xCzKxx ˆˆˆ , (4.32) 

and: 

   kkk PCKIP . (4.33) 

As can be seen, only the error covariance matrices Rk and Qk need to be known in order to 

evaluate the filter equations, Eq. (4.29) to Eq (4.33), once 0x̂ , K0 and P0 were initialized. In 

this work, the measurement covariance matrix Rk was determined by analyzing all crystal 

shape estimates obtained during the first growth phase of a preliminary cyclic experiment. 

Through the regression of the mean crystal shape evolution with the kinetics presented in 

Section 3.1 of this work, estimates for the mean crystal shape trajectory were obtained at any 

time instance. Since all observations of crystals from the seed crystal population of the entire 

growth time were used for the estimation, it can be assumed that the accuracy of the 

regressed crystal shape trajectory was significantly higher than the accuracy of a CSSD 

observation at a single time instance. Therefore, the obtained mean crystal shape evolution, 

shown as thick and dashed black line in Figure 4.11, was treated as the ‘true’ mean shape 

evolution for the estimation of Rk. By this approach, the deviations of the estimated crystal 

shape of every single observed seed crystal could be calculated, as illustrated in Figure 4.11, 

and hence the measurement error covariance matrix for a single crystal shape measurement 

could be obtained. By taking into account that an estimate for h̅ was obtained by averaging 

over nobs,k crystals, the measurement error covariance matrix Rk could be determined as:  
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Figure 4.11: Estimation of the measurement error covariance matrix Rk. The regressed mean crystal 

shape trajectory is shown as black dashed line, and three CSSDs, measured at different times, are shown 

with different colors. The ‘true’ mean crystal shapes of these CSSDs are indicated by black points. 
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Despite existing approaches (Solonen 2014), determining the process noise covariance matrix 

Qk is generally more difficult than estimating the measurement error covariance matrix Rk. 

Instead, the parameters of Qk are often used as tuning parameters, to improve the 

performance of the Kalman filter. This was also done in this work, where the model error was 

set to be ten percent of the predicted advancement of the crystal population:  
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(4.35) 

 

The performance of the filter with the error matrices described above is depicted in Figure 

4.12. As can be seen, the application of the filter led to a significant smoothing of the 

measured crystal shape evolution and the measurement noise at the end of each growth phase 

was completely compensated. However, a slight bias of the filtered mean shape evolution of 

10 μm to 20 μm is apparent during the dissolution phases, as visible in the right panel of 

Figure 4.12. This bias can be attributed to uncertainties in the dissolution kinetics. To account 

for these uncertainties, the growth and dissolution kinetics were updated on the basis of the 

measured CSSD evolution during the first growth or dissolution phase respectively, as was 

already suggested by Jiang et al. (2014a).  

 

To further improve the performance of the Kalman filter, the state vector x was extended 

according to:  
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Figure 4.12: Application of the Kalman filter using the states hx  ; left: measured (marker) and filtered 

(solid) mean shape evolution; right: detailed depiction of the filter performance during the first 

dissolution phase. 
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from which the mean crystal shape can be obtained by: 

iii hh 
~

. (4.37) 

With this state vector, the Jacobians A, B and C defined by Eq. (4.28) change according to: 
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(4.38a) 

(4.38b) 

(4.38c) 

As can be seen from Eq. (4.38b), the model predictions for the a priory state estimates cover 

the mean crystal shape evolution due to growth or dissolution with the states ih
~

, while no 

change in the states δi is predicted. Since more states are to be estimated with this approach 

than measurements are available, deviations between model predictions and measurements 

can be assigned to the states ih
~

, to the states δi, or to both state types in a similar scale 

depending on the choice of the process noise covariance matrix Qk. In this work, the 

parameters of this matrix were set to: 
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Figure 4.13: Application of the Kalman filter using the states x = [ 1h
~

 
2h

~
 δ1 δ2]T; left: measured 

(marker) and filtered (solid) mean shape evolution; middle: detailed depiction of the filter performance 

during the first dissolution phase; right: evolution of the additional states δi over time. 

 

Since the evaluation of the integrals in Eq. (4.39) yielded values of about 3 μm to 6 μm while 

the time differences Δtk were in the order of 10 s to 20 s, any mismatch between 

measurements and model predictions was essentially attributed to the states δi, while the 

states ih
~

evolved according to the model predictions. Due to this additional flexibility in the 

estimated states, the bias between filtered and measured mean shape evolution during the 

dissolution phases, as observable in Figure 4.12, could be reduced significantly while the 

overall performance of the filter still showed good results in terms of smoothness and 

convergence, as depicted in Figure 4.13. 

With the help of this Kalman filter, the controllability of the cyclic crystallization process can 

be expected to be increased. Therefore the filtering methods presented in this section were 

directly applied to the experiments for the shape manipulation by controlled growth-

dissolution cycles that are presented in the next section. 

 

 

 

4.5 Experimental Realization of Growth-Dissolution Cycles 
 

In this section, the experimental realization of crystal shape control through growth-

dissolution cycles is discussed. To realize the process in a time-optimal manner and to ensure 

that the target crystal shape can be obtained with high precision, the process was embedded in 

a hierarchical controller structure based on the control routines of the previous sections. On 

the highest hierarchy level of the controller, the optimal levels of supersaturation SG
* and 

undersaturation SD
* were determined by solving the optimization problem of Eq. (4.1). 

Within the solution of Eq. (4.1), the initial crystal shape h0 (occurring in Eqs. (4.2) and (4.3)) 

was replaced by the latest filtered observation of the mean seed crystals shape. Through this 

repeated optimization, a robustness of the time optimal crystal shape trajectory with respect 

to uncertainties in the model prediction could be achieved. Once SG
* and SD

* were 

determined, a trajectory planning was performed, in which the next switching point was 

determined through either Eq. (4.20) or (4.21) together with the corresponding temperature 

profiles of the thermostats. Additionally, Eqs. (4.22) or (4.23) were evaluated to check 
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Figure 4.14: Observed CSSD evolution during a cyclic growth-dissolution process with 1.10 ≤ SG ≤ 1.12; 

left: Filtered mean crystal shape evolution during the growth and dissolution phases (dark blue) and 

during the switching phases (light blue) and example crystal shapes during the switching phases; right: 

example crystal photographs corresponding to the example crystals depicted in the left panel. Scale bars 

in the lower right corners of the micrographs correspond to 400 μm. 

 

Figure 4.15: Experimentally realized temperature profiles during a cyclic growth-dissolution process with 

1.10 ≤ SG ≤ 1.12; left: Measured temperature profiles for the heating thermostat (red), the crystallizer 

(green) and the cooling thermostat (blue) with set-point values indicated by dark dashed lines; right: 

detailed depiction of the measured crystallizer temperature profile.  

 

whether a premature supersaturation switch was necessary in order to attain the target crystal 

shape. On the lowest hierarchy level of the controller, the optimal levels of supersaturation 

SG
* and undersaturation SD

* were realized through the supersaturation controller presented in 

Section 4.2.  

 

An experimental realization of crystal shape control by growth-dissolution cycles is depicted 

in Figures 4.14 to 4.16. In this experiment, the supersaturation ranges were set to 1.10 ≤ SG ≤ 

1.12 and 0.975 ≤ SD ≤ 0.995, respectively. The target crystal shape was set to of h̅F = [200 

μm, 400 μm]T, and thus to rather elongated crystals shapes, see Figure 4.14. After the 

preparation of the solution with a supersaturation level of 1.10 at 35 °C, the seed material was 

added to the solution. Afterwards, the routines for controlling the supersaturation and for 
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Figure 4.16: Concentration profiles measured during a cyclic growth-dissolution process with 1.10 ≤ SG ≤ 

1.12; left: Measured concentration profile; right: Supersaturation profile resulting from the measured 

concentration and temperature profiles. Set-point values are indicated by dark dashed lines and the 

regions of applicable supersaturation and undersaturation levels are marked by light blue areas. 

 

controlling the crystal shape trajectory described in Sections 4.2 and 4.3 were started together 

with the video collection and the automated image processing programs. 

The resulting observed mean crystal shape evolution is depicted in the left panel of Figure 

4.14, together with representative shapes of the mean seed crystals with maximal or minimal 

volumes during the switching phases. For comparison, also exemplary micrographs of the 

observed crystals are included in the right panel of Figure 4.14. As can be seen, the seed 

crystal population was gradually evolving towards the target crystal shape, and the region 

attainable by a growth phase under these supersaturation constraints - indicated by a gray 

shaded region originating at the initial mean seed shape - could be left by subsequent 

dissolution and growth phases. Due to the availability of real time observations of the CSSD, 

the developed algorithms for controlling the mean seed crystal trajectory were successful in 

realizing a cyclic growth dissolution process between the volume constraints Vmin and Vmax as 

well as in attaining the target crystal shape with high precision. Interestingly, the slopes of 

the mean shape evolution during different growth and dissolution phases were essentially 

parallel, indicating that the underlying growth and dissolution kinetics were indeed not 

dependent on crystal size or shape.  

The measured temperature profiles for both thermostats and the crystallizer are shown in 

Figure 4.15. Due to the use of two thermostats, the temperature changes which were 

necessary to realize the supersaturation switches could be realized reasonably fast with 

durations of approximately 11 minutes for switches from growth to dissolution and 

approximately 8 minutes for switches from dissolution to growth. However, the total time 

that was required for all supersaturation switches in this experiment was 4068 s yielding a 

total process time of 7942 s. In contrast to this experimentally realized process time, the 

solution of the optimal control problem, which assumes negligible switching times as 

discussed in Section 4.1 yields a total process time of 5450 s (see Figures 4.1 and 4.2, which 

were simulated with the same parameters that were also used in this experiment). Hence, an 
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Figure 4.17: Observed CSSD evolution during a cyclic growth-dissolution process with 1.09 ≤ SG ≤ 1.12; 

left: Filtered mean crystal shape evolution during the growth and dissolution phases (dark blue) and 

during the switching phases (light blue) and example crystal shapes during the switching phases; right: 

example crystal photographs corresponding to the example crystals depicted in the left panel. Scale bars 

in the lower right corners of the micrographs correspond to 400 μm. 

 

increase of almost 46% of the total process time due to the supersaturation switches was 

observable in this experiment. 

The set-point profiles of the thermostat and the crystallizer temperature, indicated by dark 

dashed lines in the left panel of Figure 4.15, could be realized well and led to good 

controllability of the concentration and supersaturation profiles during the experiment, as 

shown in Figure 4.16. As can be seen from the left panel of this figure, the concentration 

level is reliably cycling between a maximal and minimal value. This indicates that a cyclic 

crystallization process bounded by the maximal and minimal crystal volume Vmin and Vmax, 

can indeed be controlled using the concentration measurements as proposed by Bajcinca 

(2013), provided that the solute consumption due to the growth of nucleated crystals can be 

neglected. The measured supersaturation profile of this experiment is depicted in the right 

panel of Figure 4.16. The supersaturation level could be controlled extremely well during the 

first growth period, and only slight deviations from the set-point level occurred, which were, 

however, reliably corrected by the PI supersaturation controller presented in Section 4.2. Also 

the supersaturation switches performed based on the methods presented in Section 4.3 could 

be realized accurately. Only switches from dissolution to growth resulted in slight overshoots 

in the supersaturation level, which were, however, compensated reasonably fast by the 

supersatruation controller to maintain the set-point supersaturation level afterwards. The 

dashed lines in Figure 4.16 indicate the optimized supersaturation levels over time. As can be 

seen, the lower bounds for SG and SD were active throughout the entire crystallization time. 

For undersaturated conditions this lower bound corresponds to the maximal dissolution 

velocities, while for supersaturated conditions, the application of the minimal growth 

velocities were found to be optimal. This can be explained by the growth kinetics in the 

chosen supersaturation interval. At lower supersaturation levels, KDP crystals grow towards 

more elongated crystals, and thus more towards the final crystal shape as compared to higher 

supersaturation values. Therefore, an even further decrease in the total crystallization time 

can be expected if the value for the minimal applicable supersaturation is decreased.  
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Figure 4.18: Experimentally realized temperature profiles during a cyclic growth-dissolution process with 

1.09 ≤ SG ≤ 1.12; left: Measured temperature profiles for the heating thermostat (red), the crystallizer 

(green) and the cooling thermostat (blue) with set-point values indicated by dark dashed lines; right: 

detailed depiction of the measured crystallizer temperature profile. 

 

Such an experiment was conducted in which the constraints for the applicable supersaturation 

for growth were relaxed to 1.09 ≤ SG ≤ 1.12 while the undersaturation ranges for dissolution 

were identical to the previous experiment. The results of this experiment are depicted in 

Figures 4.17 to 4.19, and discussed below. 

The filtered mean crystal shape evolution that was measured during the second experiment is 

shown in Figure 4.17. As in the previous experiment, this evolution could be tightly 

controlled with the controller routines that were developed in this work. A slight overshoot of 

the measured trajectory is only visible during the first switch from dissolution to growth, 

where the constraint for the minimal crystal volume was slightly violated. The subsequent 

supersaturation switches were, however, accurately controlled, and hence the target crystal 

shape could be obtained almost exactly. Notably, the number of supersaturation switches 

necessary to reach the target shape could be reduced by two.  

This can be attributed to the growth phases which were, as already expected, performed at a 

supersaturation of S = 1.09 (see also Figure 4.19). While the application of this 

supersaturation led to longer individual growth phases (approximately 1700 s compared to 

1300 s for the first growth phases of both experiments) the crystal shape trajectory was 

evolving more toward the target crystal shape than at S = 1.10. This resulted in the observed 

reduction of the number of necessary supersaturation switches which in turn resulted in a 

decrease of the total process time to only 6799 s, compared to 7942 s for the previously 

discussed experiment. The constraint for the minimal supersaturation was again active 

throughout the entire growth phases of this experiment (see Figure 4.19), which still indicated 

that a further relaxation of this constraint would result in an even further decrease in the total 

process time. As this decrease is, however, accompanied with an increase in the uncertainties 

of the growth kinetics (see the according discussion in Section 3.2) a further decrease of 

SG,min was not considered in an additional experiment.  

The supersaturation levels themselves could again be tightly controlled with the methods 

developed in this work. The overshooting behavior resulting from the supersaturation 
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Figure 4.19: Concentration profiles measured during a cyclic growth-dissolution process with 1.10 ≤ SG ≤ 

1.12; left: Measured concentration profile; right: Supersaturation profile resulting from the measured 

concentration – and temperature profile. Set-point values are indicated by dark dashed lines and the 

regions of applicable supersaturation and undersaturation levels are marked by light blue areas. 

 

switches were again compensated reasonably fast by the PI controller, which was successful 

in maintaining the level of supersaturation or undersaturation constant afterwards. 

 

The experimental results described above clearly demonstrate the effectiveness of the 

controller routines that were developed in this work. The crystal shape trajectory could be 

tightly controlled with respect to the constraints within the state-space that were considered, 

and the target crystal shape could ultimately be attained reliable and with high precision. It 

can thus be safely assumed that the availability of online measurements of the CSSD offers 

(in conjunction with adequate controller strategies) the possibility to control crystal shape 

distributions in a variety of different concepts for crystallization processes. While this work is 

the first demonstration in which such feedback on crystal size and shape was employed for 

the control of a cyclic batch crystallization processes, it can be expected that the closed-loop 

control of the crystal size and shape distributions will have an important role in the future 

design of crystallization processes. 

Both experiments described above were consistent in enlarging the region of crystal shapes 

attainable by pure growth processes under the given constraints on supersaturation. Hence, it 

can be concluded that the application of growth-dissolution cycles does indeed constitute a 

viable process concept to control crystal shape distributions through pure temperature control. 

 

 

 

4.6 Summary – Growth-Dissolution Cycles 
 

This chapter was focused investigating the process concept of growth-dissolution cycles for 

the manipulation of crystal shapes. Initially, the optimal control solutions of Bajcinca (2013) 

and Bötschi et al. (2017) for a time-minimal process were summarized and adjusted to the 

growth and dissolution kinetics of this work. One key result of both approaches is the 
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optimality of constant levels of supersaturation and undersaturation during the individual 

growth and dissolution phases. Therefore, a supersaturation controller was developed in this 

chapter. To derive the controller equations, the process model was inverted in such a way, 

that a temperature profile for the thermostat was obtained, which is necessary to maintain the 

level of supersaturation or undersaturation constant during grow or dissolution. The resulting 

equation was used as input in a PI feedback controller structure, whose application led to 

satisfactory results during simulations and experimental realizations. 

Furthermore, the time-optimal procedures for the switches between growth and dissolution or 

dissolution and growth were derived, and realized experimentally. Due to the accuracy of the 

crystallization kinetics and the model equations for the crystallizer temperature, a reliable and 

precise switching between different supersaturation and undersaturation levels could be 

achieved, and the CSSD could be forced to evolve within the given constraint on maximal 

and minimal crystal volume. Also the time instance for the final switching procedure could 

be identified, ensuring that the target crystal shape could be reached with high precision.  

To improve the controllability of the crystallization process, a Kalman filter was applied to 

the CSSD measurements. With this filter, a reduction in measurement noise was obtained, 

and therefore, the precision to which the switching procedures could be initiated and to which 

the target crystal shape could be attained was significantly increased. 

The final section of this chapter was concerned with the experimental realization of 

controlled growth-dissolution cycles for the shape manipulation of KDP crystals. The 

controller routines of the previous sections were implemented in a hierarchical structure, to 

control the overall process. In order to achieve a desired target crystal shape with time 

minimal effort, the optimal supersaturation and undersaturation levels were continuously 

calculated and realized through the supersaturation controller. The CSSD was forced to cycle 

between the constraints for the minimal and maximal mean seed crystal volume to ensure that 

a minimal number of supersaturation switches was required. Due to the precise measurements 

of the CSSD evolution, the crystallization process could be controlled well, and the target 

crystal shape could be obtained with high precision, as demonstrated in two separate 

experiments. Both experiments demonstrate that the region of crystal shapes can be enlarged 

compared to pure growth processes, thus proving the applicability of growth-dissolution 

cycles for crystal shape control. 
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5. Conclusions and Outlook 
 

This chapter aims at summarizing and concluding the results that were presented in the 

previous sections. Furthermore, some open questions are addressed, and fields that require 

further research and development are identified in this chapter. In order to structure this 

discussion, four main research fields are identified to which this work contributes. These 

fields cover the acquisition of real-time observations of the state of the solid phase (addressed 

in Section 5.1), the determination of face-specific crystallization kinetics (Section 5.2), the 

closed-loop control of crystallization processes (Section 5.3) and finally the application of 

growth-dissolution cycles for crystal shape control (discussed in Section 5.4). 

 

 

 

5.1 Crystal Shape Observer 
 

The observation of a crystallization process with respect to the state of the solid phase is a 

key technology for understanding and ultimately for controlling the dynamics that are 

governing the crystallization process. Despite the existence of alternative measurement 

principles, like FBRM, Coulter Counter or laser diffraction, the use of video microscopy has 

been shown to be a promising and successful technology for this purpose by several 

publications in the past decade and as well by this work. In fact, it was recently demonstrated 

for the example of needle-like crystal shapes that only the application of video microscopy 

(and in particular stereo microscopy) allows for a precise estimation of growth kinetics 

(Albuquerque 2016).  

 

The images recorded by video microscopy offer an immediate impression of the state of the 

crystalline phase to a human operator. An automated observation requires however reliable 

routines for object identification and quantification. Particularly the later criterion poses a 

major challenge, if crystals with non-spherical shapes are to be measured. In such cases, 

simple scalar measurements, like equivalent diameters or Ferret lengths, are not suited to 

describe the actual crystal shape. Instead, advanced algorithms to reconstruct the crystal 

shape from the measured crystal projections are necessary. The application of such 

algorithms in combination with the necessity of processing the collected video frames 

requires an efficient implementation in order to reduce the required computation time and 

ultimately to obtain measurement information about the state of the crystalline phase in real 

time. This is particularly challenging due to the large amount of data (in the order of several 

hundred megabytes per second) that has to be processed. Therefore, the successful 

implementation of algorithms that are capable of observing the size and shape distribution of 

a crystal population was the main focus of this work in the field of crystal shape observations. 

A real-time observation could be demonstrated for the first time, and has to be regarded as 

the most important contribution of this thesis to this research area. 
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This work was exclusively focused on the estimation of KDP crystal shapes from images that 

were obtained from a single camera. In fact, the geometry of KDP crystals constitutes a rather 

simple example in this context as the crystal shape can be described by a simple geometrical 

model and varies essentially only in crystal length and width. In case of more complex crystal 

geometries, as they can be expected for example for Paracetamol14 or L-Methionine15, a 

successful shape estimation using only a single camera remains to be demonstrated. As an 

alternative to measurements with a single camera, the use of a stereoscopic camera setup was 

suggested and convincingly demonstrated by several authors (Schorsch 2014, Ochsenbein 

2015 or Albuquerque 2016). Such a setup does not only provide additional measurement 

information that can be used for shape estimation, but it also allows the application of generic 

crystal shapes with the help of which the true crystal geometry can be approximated. Hence, 

a (possibly simplified) description of complex crystal shapes can be facilitated by such a 

measurement setup. 

 

Although the potential of observing a crystallization process by use of video microscopy 

could be clearly demonstrated in this work, the automated application of such a measurement 

setup in industrial crystallization processes is still limited. This is in particular due to the low 

suspension densities that are required for this technology, that are uneconomical in industrial 

practice. In case of the application of microscope probes at high suspension densities, the 

observability of the process suffers from crystal overlapping as well from crystals that are not 

located in the focal plane of the camera leading to blurred crystal images. Although both 

issues have been addressed in the context of estimating bubble size distributions in 

multiphase systems (Honkanen 2005, Honkanen 2010, Zhang 2012), similar algorithms are 

rare in the field of crystallization, with the notable exception of the pioneering work of 

Larsen and coworkers (Larsen 2006, Larsen 2007a, Larsen 2007b, Larsen 2008).  

 

The problems associated with overlapping and out-of-focus crystals that are arising for 

microscope probes can be (partially) resolved by the application of flow-through microscopes 

if the geometry of the flow-through cell is properly designed. However, the improvement in 

image quality that is typically obtained by such devices comes at the price of an additional 

external sampling loop. This sampling loop induces an imminent danger of clogging, in 

particular at high suspension densities. Avoiding such a scenario does therefore require an 

artificial dilution of the suspension that is circulated in the sampling loop. This can be 

achieved by providing an additional stream of clear solution, either by filtering the solution 

                                                           
14 The shape of monoclinic Paracetamol (under ambient conditions the stable polymorph of 

Paracetamol) is typically characterized by four different face-types (Ristic 2001, Kuvadia 2011). This 

high number of possible face types results, in conjunction with the symmetry operations of the space 

group P21/a (Boerrigter 2002), in a large number of qualitatively different crystal shapes that are 

geometrically possible (Borchert 2012b, Singh 2013). 

15 L-Methionine crystals grown from water are known to have a distinct plate-like crystal shape due to 

the slow growth rates of the {001}-faces (Shim 2016). Since the {001}-faces have to be expected to 

be oriented preferably parallel to the image plain in the flow through cell, an accurate estimation of 

the crystal thickness cannot be guaranteed in a single camera setup. 

http://dict.leo.org/german-english/observability
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from the crystallization vessel, as for instance proposed by Schorsch et al. (2012), or by 

providing an additional stream of saturated solution. Technical realizations of such setups are 

however currently not commercially available, which has to be considered as one of the 

major bottlenecks for the application of flow-through microscopes in industrial processes. 

It is clear from the discussion above, that further research and development is required to 

establish video microscopy as a standard observation tool in industrial crystallization 

processes which are featuring high suspension densities. In turn, future developments in this 

area can be expected to lead to developments that allow for the full exploitation of the 

advantages of video microscopy in industrial practice and can therefore be expected to be 

highly relevant in technical applications. 

 

 

 

5.2 Crystallization Kinetics 
 

The ability to observe a crystallization process with respect to the state of the liquid as well as 

to the state of the solid phase, offers the ability to determine the crystallization kinetics under 

realistic process conditions. Therefore, the precision, with which the kinetics can be obtained, 

can be expected to be significantly increased compared to experiments on a single crystal 

level. Single crystal experiments are often time consuming, and require repetition 

experiments in order to be robust against growth rate dispersion. However, even if the 

distribution of grow rates can be accurately determined by those experiments, the 

applicability of the kinetics to batch crystallization processes remains questionable. This is 

particularly due to differences in the fluid dynamics of batch processes and of the single 

crystal experiments. In fact, the comparison of the growth kinetics of KDP that were 

determined in this work to literature data given in Figure 3.6 reveals that, even under batch 

conditions but different fluid dynamics, the crystallization kinetics show significant 

differences. This signifies the importance of determining the crystallization kinetics under 

real process conditions.  

 

This importance is increased even further, if the impurities that are present in the solution are 

affecting the growth kinetics, and are therefore a major source of batch-to-batch variations. 

This was clearly the case in the experiments described in Chapter 3. Due to the accurate 

measurements of the face-specific growth rates at different levels of supersaturation and 

temperature, the effect of impurities on the growth kinetics could not only be identified, but 

as well described by the combination of the step-pinning mechanism and the classical BCF-

theory of spiral growth. By analyzing the growth kinetics that were obtained, it was evident 

that the majority of crystal shapes that can be obtained through crystal growth require 

supersaturations at which the growth of the prismatic {100}-faces of KDP is strongly 

influenced by the presence of impurities in the solution. As these impurity concentrations 

have to be considered to fluctuate between different batches and raw material charges, a pure 

growth process under such supersaturation levels was deemed unreliable. Instead, it was
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concluded, that growth should be performed under higher driving forces, at which growth is 

no longer influenced by the impurities.  

 

Due to the accurate observation of the CSSD over time, also the phenomena of growth rate 

dispersion and secondary nucleation were observed and parameterized. The CSSD-widening, 

which is accompanied by growth rate dispersion, could be modeled with the random 

fluctuation model, whose face-specific growth rate diffusivities were determined, and a 

positive correlation of these values with the face-specific growth rates was found. 

 

A second series of experiments was conducted to determine the face-specific dissolution rates 

of KDP. It was found, that both face-types dissolve at similar rates, and the obtained kinetics 

indicate that dissolution is diffusion limited. The appearance of high-indexed faces on the 

outer crystal surfaces was clearly visible, which, together with the diffusion limitation, is in 

accordance with the classical Hartman-Perdock theory. The appearance of higher indexed 

faces, however, changes the crystal shape from faceted objects to elliptical crystals, as shown 

for example in Figure 3.20. Hence, the crystal shape model which was employed for the 

shape estimation was not strictly adequate. While it could be shown for the case of KDP that 

accurate shape estimation was possible, it has to be emphasized, that this will in general not 

be the case for more complex crystal shapes. In such cases, the application of a shape model 

for faceted crystals might lead to poor and biased estimates for the face distances and 

consequently for the dissolution rates. This situation can be resolved by performing 

experiments at constant undersaturation, controlled for example by a model-free controller, 

and switching to supersaturated conditions at the final state of the experiments. As soon, as 

the expected face-types re-appear on the crystal surface, the shape model that is used for the 

estimation is adequate again. With this procedure, the dissolution rates can be obtained by 

measuring the displacement of crystal population between the beginning of the dissolution 

process and the instance at which the crystals re-assume their faceted geometry. 

 

 

 

5.3 Closed-Loop Control of Crystallization Processes 
 

Control of crystallization processes generally serves to improve the process with respect to 

the final properties of the crystal shape distribution as well as to improve the process 

robustness. While the first aspect can be resolved by means of optimal control, the process 

robustness can be improved through closed-loop control, which exploits the observations of 

the process that are available. Such a closed-loop control of a batch crystallization process 

was realized with respect to two different objectives. 

 

The first objective of the present work was the control of supersaturation profiles over time. 

While this objective was pursued as a prerequisite for time-optimal cyclic processes, the 

applicability of the developed methods stretches far beyond this scope. In fact, control of 

supersaturation profiles offers direct control over the crystallization kinetics and is hence a 
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key aspect in realizing crystallization processes that are optimal with respect to various 

different objectives. Such objectives include for example the minimization of the mass or 

amount of nucleated crystals or the maximization of the total crystal yield (see for example 

Ward et al. (2006) and references therein) and lead to supersaturation profiles that result in 

either early- or late-growth strategies.  

Although the methods for supersaturation control were developed for the rather simple task 

of controlling a constant level of supersaturation, the governing equations can be easily 

adjusted to control any (differentiable) supersaturation profile as they result from the 

objectives given above. Therefore, the methods developed in this work for supersaturation 

control can be expected to be applicable in a variety of different crystallization processes that 

require the realization of specific supersaturation profiles over time. 

 

The second objective of this work was to control the crystallization process with respect to 

the CSSD in a closed-loop manner. While already the control of crystal size distributions that 

are characterized by a single size coordinate alone poses a major challenge for the current 

technologies that are available, the closed-loop control of crystal shape distributions 

(characterized by two size coordinates here) was realized for the first time in this work. Due 

to the accurate real-time observations of the CSSD, the trajectory of the mean seed crystal 

shape could be tightly controlled in this work, as demonstrated for the application of growth-

dissolution cycles.  

As in the case of supersaturation control, the applicability of the routines for controlling 

crystal shape distributions is not limited to the example that was studied is this work. Instead, 

it can be expected that the availability of CSSD measurements can be exploited to control 

either the crystal size or shape distribution for different process concepts in a similar fashion. 

 

 

 

5.4 Growth-Dissolution Cycles 
 

The control of crystal shapes by growth-dissolution cycles constitutes a promising process 

concept for crystal shape control, as the process is solely influenced through the 

supersaturation which in turn is controlled via pure temperature control. Therefore, the use of 

special additives or solvent changes, which are frequently used techniques to alter crystal 

shapes, can be omitted by this approach. Furthermore, the concept of a cyclic crystallization 

process inherently exploits the advantages of direct nucleation control strategies (Nagy 2011, 

Griffin 2015, Wu 2016) due to the required dissolution phases. Hence, and in addition to the 

possibility for crystal shape control, also the amount of nucleated crystals can be reliably 

confined16 by this concept. 

 

Such a cyclic crystallization process was realized for the first time in a fully closed-loop 

manner in this work. Due to the availability of and accurate kinetic data, the time optimal 

                                                           
16 or even completely avoided given that the last phase is a sufficiently long dissolution phase 
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temperature and supersaturation profiles of this process could be well approximated in the 

experimental realizations. Furthermore, the availability of real-time measurements of the state 

of the crystalline phase enabled a tight control of the crystal shape trajectory. A reliable 

cycling between minimal and maximal mean seed crystal volumes was accurately realized, 

and the final target crystal shape could be attained with high precision. Both aspects 

demonstrate the efficiency and robustness of the control scheme that was developed and 

implemented in this work. 

 

It was demonstrated that the region of crystal shapes which are attainable from pure growth 

process can be enlarged by additional dissolution phases. Therefore, the application of 

growth-dissolution cycles can open the way for the design of robust crystallization processes 

a towards more desirable crystals size and shape distributions.  

However, it has to be emphasized, that the region of crystal shapes which is attainable by the 

application of growth-dissolution cycles does typically not cover the entire geometrical state 

space. Instead, the attainable region is constrained by the face-specific growth and dissolution 

kinetics (see Lovette et al. (2012b) for a detailed analysis). Due to these limitations, a cyclic 

crystallization process might in practice not always lead to improvements in the final crystal 

shape distribution. Consider, as a simple example, crystals whose geometry is described by 

two different face types and whose growth results in the formation of needle- or plate-like 

crystal shapes regardless of the supersaturation level that is applied, e.g. Urea (Davey 1986) 

or L-Methionine (Shim 2016) crystallized from water. Such crystal shapes appear, if one face 

type (index one for the illustrative example that follows) is growing significantly slower than 

the second face, which is, however, not disappearing from the crystal surface. If a cyclic 

growth-dissolution process is to decrease the average aspect ratio of the crystal population, a 

combination of supersaturation and undersaturation levels has to be found, which leads to the 

fulfillment of the following inequality condition: 
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Such a scenario might, however, be quite unlikely as it imposes very restrictive constraints on 

the acceptable ratio D1(SD)/D2(SD) considering the low values of the ratio G1(SG)/G2(SG) that 

lead to the growth of needle- or plate-like crystals in the first place.  

 

In such cases, the concept of growth-dissolution cycles might be extended to a cyclic process 

consisting of subsequent growth, breakage and dissolution phases, as for example 

demonstrated by Kim et al. (2003). Due to the low thickness of needle- or plate-like crystals, 

the breakage planes will be preferably oriented perpendicular to the slow growing faces. 

Hence, the breakage process in this concept serves to decrease the average crystal aspect 

ratio. The dissolution phases of this process concept are not (primarily) applied to alter the 

crystal shape but are used to dissolve smaller fragments originating from the breakage 

process and hence, serve to maintain the total number of crystals at an acceptable level. In 

order to increase the crystalline mass, a new growth phase is initiated after the dissolution
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phase. This again leads to an increase in the average crystal aspect ratios, which is 

compensated by the subsequent breakage process.  

In a more recent publication, this process concept was investigated by Salvatori and Mazzotti 

(2017) in a simulation study using face-specific growth and dissolution rates together with a 

model-based description of the breakage process that directly depends on the shape of the 

crystals. The simulation results presented by the authors indicate that the region of attainable 

crystal shapes can indeed be enlarged towards more compact crystal shapes compared to a 

‘pure’ growth-dissolution process. Both publications (Kim 2003, Salvatori 2017) demonstrate 

the effectiveness of the concept of a cyclic growth-breakage-dissolution process for crystal 

shape manipulation. Considering the possible advantages of such a process clearly justifies 

further research in this field in terms of experimental realization and parameterization, 

process control and optimization, to fully exploit the potential of cyclic crystallization 

processes for the control of crystal shape distributions. 
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