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Abstract. In the present work we report recent radial electric field measurements

carried out with the Doppler reflectometry system in the TJ-II stellarator. The study

focuses on the fact that, under some conditions, the radial electric field measured

at different points over the same flux surface shows significantly different values. A

numerical analysis is carried out considering the contribution arising from the radial

dependence of Φ1 as a possible correction term to the total radial electric field. Here

Φ1 is the neoclassical electrostatic potential variation over the surface. The comparison

shows good agreement in some aspects, like the conditions under which this correction

is large (electron-root conditions) or negligible (ion-root conditions). But it disagrees

in others like the sign of the correction. The results are discussed together with the

underlying reasons of this partial disagreement.

In addition, motivated by the recent installation of the dual Doppler reflectometry

system in Wendelstein 7-X (W7-X), Φ1 estimations for W7-X are revisited considering

Core-Electron-Root-Plasma (CERC) plasmas from its first experimental campaign.

The simulations show larger values of Φ1 under electron-root conditions than under

ion root. The contribution from the kinetic electron response is shown to become

important at some radii. All this results in a potential variation size in W7-X noticeably

larger than estimated in our previous [1] for other plasma parameters and another

configuration.

1. Introduction

The radial electric field is one of the physical quantities with significant prominence

in stellarator transport physics problems. In particular, for the radial transport of

impurities and their accumulation, its role becomes more important as the charge state of

the impurity increases. In stellarators, the explanation for this is framed by the standard

neoclassical formalism. There, one can express the flux-surfaced-averaged fluxes as a
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linear combination of thermodynamic forces and the so-called thermal transport matrix

coefficients La
ij:

〈Γa · ∇r〉
na

= −La
11

(

n′
a

na

−ZaeEr

Ta

+
La
12

La
11

T ′
a

Ta

)

, (1)

with a the species index, na the density, Ta the temperature, Za the charge state, e is the

proton charge, Γa the particle flux density and 〈...〉 the flux surface average operator.

In the present work r is a flux surface label with the character of an effective radial

coordinate such that the volume enclosed by a flux surface is V = 2π2R0r
2, and R0 is the

major radius of the stellarator. The prime ′ denotes differentiation with respect to r. The

radial electric field vector is Er = Er∇r with Er = −Φ′
0 and Φ0 = Φ0(r) the part of the

electrostatic potential constant on the flux surface. An important well-known difference

between particle transport in stellarators respect to that in (axi-symmetric) tokamaks

is that the particle transport of the different species does not obey ambipolarity at any

Er. In other words, the total radial flux-surface-averaged current does not vanish and

quasi-neutrality is not preserved along the radial direction. Then, the radial electric

field in stellarators is determined by imposing this ambipolarity condition, that reads,

see e.g. [2],

∑

a

Zae 〈Γa · ∇r〉 = 0. (2)

Despite the apparently explicit linear dependence of the fluxes on Er, see eq. (1), the

role that the radial electric field plays on the confinement of the trapped particle orbits

in the long-mean-free-path regimes, makes the matrix transport coefficients depend also

on Er. This leads the ambipolarity condition to become a non-linear equation with

multiple roots [3, 4]. However, only two of them are usually identified in laboratory

plasmas. For simplicity, assuming the presence of only bulk ions and electrons, when

the collisionality of both species is such that the radial particle flux of the ions needs

to be reduced in order to satisfy ambipolarity, the ambipolar electric field typically

points radially inward and Er < 0. If, on the contrary, the electron radial particle flux

needs to be retarded to fulfill ambipolarity the radial electric field points radially out-

wards, Er > 0. These two situations are referred to as ion and electron root regimes

respectively. In general, standard neoclassical theory predicts ion root conditions for

all collisionalities when the ion and electron temperatures are comparable, Ti ∼ Te,

and fairly large and positive (electron root) Er values at low collisionality with strongly

localized electron heating that leads to Te ≫ Ti, see e.g. [5, 6]. The concern for the

intrinsic character of the impurity accumulation in stellarators and ion root conditions

has been traditionally tight together, since the inward convection related to Er can, for

sufficiently high Za, exceed in most situations the outward counterparts driven by the

temperature and density gradients. This has also been observed in numerous stellarator

experiments, see e.g. [7] and references therein.
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However, this simple explanation concerning impurity accumulation has been

broadened in recent years motivated by a few experiments that question it, like the hol-

low impurity density profiles observed in LHD [8] or the exceptionally low impurity con-

finement time of the HDH mode in W7-AS plasmas [9]. For decades it has been known

that a variation of the electrostatic potential over the flux surface Φ1 = Φ1(r, θ, φ) can be

relatively large for low collisionality plasmas in non-omnigeneous stellarators [3, 10, 11].

Here θ and φ are some angular poloidal and toroidal coordinates, respectively. This piece

of the electrostatic potential is necessary in order to restore quasi-neutrality over the

flux surfaces, which the cumulative effect of the non-vanishing bounce-averaged radial

displacement of the particle drift orbits violates. Although it can be in most situations

negligible for main ion and electron transport, the importance of Φ1 for impurities re-

sides in the fact that the radial component of the E × B drift, vE1 = −∇Φ1 × B/B2,

can become of the same order as the radial component of the magnetic drift vm, basi-

cally because the latter scales as Z−1
a while the former does not. Consequently, its role

as source of radial transport can become as important as the inhomogeneous confining

magnetic field for sufficiently high charge state. Since the first numerical calculations of

Φ1 [12] performed with the code EUTERPE [13, 14] and the experimental measurement

in a stellarator [15], other works have followed this line: the estimation of its effect on

the radial flux of impurities for some selected ion-root plasmas for different stellarator

configurations in ref. [1]; the analytical development of the formalism [16] and the code

(KNOSOS) [17] that integrates the drift kinetic equation and transport quantities of

interest, including Φ1, for optimized stellarators; new LHD impurity plasmas analyzed

under the effect of Φ1 with the SFINCS code [18, 19], including the self-consistent mod-

ification of Er by Φ1 and including non-trace impurities [20]. Apart from these works,

others have looked into the screening of impurities in stellarators, like ref. [21] where

high Ti plasmas with negative but small |Er| are shown to coexist with outward impu-

rity flow. Finally, ref. [22] has analytically addressed the radial particle flux of highly

collisional impurities in low collisional bulk plasmas, concluding that in the case without

Φ1, the radial transport of impurities may only weakly depend on Er and temperature

screening can arise; and ref. [23] where the previous derivation is generalized including

Φ1, which makes the impurity radial particle flux to depend strongly on Er.

The conclusions from the works dealing with Φ1 [1, 17, 20] coincide on their pre-

diction about its magnitude, that reaches for LHD values of up to e∆Φ1/Ti ∼ 0.1, with

∆Φ1 = (Φmax
1 − Φmin

1 ) and Φmax
1 and Φmin

1 the maximum and minimum values, respec-

tively, of the potential over a given flux surface. The direction and magnitude of the

impact of Φ1 on the impurity radial transport is not trivial. It depends on the charge

state of the impurities, the collisional regime where the impurity is, how its distribution

function couples to Φ1, etc. However, based on the available numerical simulations it

can be stated without too much lack of generality that variations of that magnitude

undeniably introduces a strong correction to the standard neoclassical prediction in

LHD, even considering low-Z impurities like carbon. For TJ-II similar values of the
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normalized potential variation are also predicted [1], despite the higher collisionality

of its plasmas. Moreover, the estimations in TJ-II qualitatively agree with the exper-

imental measurements of the plasma floating potential difference at the plasma edge

[15]. Regarding W7-X, the variations are typically shown one order of magnitude lower

than those for LHD plasmas at comparable collisionality. However, as noted below only

few simulations are available, in particular, for the magnetic configurations and plasma

parameters from the experimental campaigns.

The present work aims at broadening the scanned parameter space with a compar-

ative view between ion root and electron root conditions in TJ-II and W7-X, with the

focus mainly on the second of these regimes. There are several reasons for this: first, all

the numerical effort has looked so far into ion root plasmas, with the underlying hope

that Φ1 could, at least, cancel the predicted Er-driven inward pinch. A similar analysis

for electron-root plasmas is missing despite the fact that Φ1 can indeed be larger than

in ion-root for the same absolute value of Er, as pointed out in [15]; second, although

its impact is predicted to be large for impurities, the value of Φ1 is still small compared

to the lower order part of the potential Φ0, and its direct detection is instrumentally

difficult. In the present work, under the light of recent Doppler reflectometry (DR) mea-

surements of the radial electric field in TJ-II, where strong differences over the same

flux surfaces have been found under electron root conditions, we investigate whether

the radial dependence of the calculated Φ1 can explain those differences; and finally,

since the configuration and parameter space of W7-X is rather large [24], the results

obtained for the few configurations and parameters considered in [1, 20] should not be

generalized. In the present work, we have based our calculations in typical parameters

of OP1.1 [25] Core-Electron-Root-Confinement (CERC) plasmas considering a configu-

ration with large effective ripple. We show numerically that Φ1 can then be as large as

in the reported LHD cases. This exercise has also been performed considering adiabatic

and kinetic electrons, in order to provide explicitly a validity check for the adiabatic

electron approximation, that for codes like EUTERPE can result in considerably less

computation time.

After this section, a brief overview of the equations and tools employed are described

in section 2. The TJ-II results, both numerical and experimental, are presented and

discussed in section 3. The numerical analysis for W7-X CERC conditions is shown in

section 4. Finally, the conclusions are summarized in section 5.

2. Equations and numerical methods

In this section we give an overview of the numerical method, the relevant equations

of the problem and the numerical code used, EUTERPE [13, 14]. The content of this

section concerns the neoclassical version of the code. For a more complete description

of how the present problem is approached we refer the reader to section 2 of ref. [1].
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Other aspects dealing with the neoclassical version can be found in refs. [26, 12, 27],

and those closer to the numerical implementation in refs. [28, 29, 30].

EUTERPE is a δf particle-in-cell (PIC) Monte Carlo code. For a given kinetic

species, it considers a splitting of the distribution f = f0 + f1, with f0 an analytically

known expression with the role of a control variate, which does not have to be necessarily

linked to any approximation. The code solves for each of the kinetic species of the

problem the equation for the f1 part: df1/dt = −df0/dt + C(f), with C(f) a collision

operator. The choice of phase space coordinates is the following: in real space, in

order to characterize the guiding center position R of the Monte Carlo markers, the

magnetic PEST [31] poloidal and toroidal angles θ and φ, and a flux surface label

r are employed. In velocity space the parallel component of the velocity v‖ and

normalized magnetic moment µ = v2⊥/2B are considered. Here f0 = fM exp(−ZeΦ1/T ),

with fM =
[

n0/(2π)
3/2v3th

]

exp
[

−
(

v2‖ + v2⊥

)

/v2th

]

the Maxwellian distribution, v⊥ the

perpendicular component of the velocity, n0 = n0(r) the constant part of the density of

the flux surface, T the temperature, vth =
√

2T/m the thermal speed, m the mass and

B the magnetic field strength. With these definitions, the kinetic equation takes the

form:

∂f1
∂t

+Ṙ·∇f1+v̇‖
∂f1
∂v‖

= −fM (vm + vE1)·∇r

[

n′

n
+

Ze

T
Φ′

0 +

(

mv2

2T
− 3

2
+

Ze

T
Φ1

)

T ′

T

]

+C(f).

(3)

The overdot ˙ denotes differentiation with respect to time t. Finally, the following

equations of motion enter the left-hand-side of eq. (3):

Ṙ = v‖b+
b×∇Φ0

B
, (4)

v̇‖ = − µ

m
b · ∇B − v‖

B2
(b×∇B) · ∇Φ0 −

Ze

m
b · ∇Φ1, , (5)

µ̇ = 0, (6)

with b = B/B. In order to obtain Φ1, quasi-neutrality among all the species is imposed

up to first order:
∑

a Zaena = 0, with na = n0a(r) exp(−ZaeΦ1/Ta) + n1a the density

of the different species. Considering singly charged bulk ions (i) and electrons (e) and

assuming eΦ1/T ≪ 1, quasi-neutrality yields:

Φ1 =
Te

e

(

n0e + n0i
Te

Ti

)−1

(n1i − n1e) . (7)

Note that in ref. [1] the assumption of adiabatic electrons, i.e. ne ≈ n0e(r) exp(eΦ1/Te),

implies that on the right-hand-side of expression (7) only n1i appears. In the present

work, in section 4, this approximation is relaxed and the results with adiabatic and

kinetic electrons are compared with each other.
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Another difference between ref. [1] and the present work is the treatment of the

collision operator C(f). While in ref. [1] pitch angle scattering collisions without

momentum conservation were applied, in the present work, a momentum-restoring

field particle term similar to that implemented in other codes [32, 33] is added to

the self-collisions. The detailed description of the conservation scheme implemented

in EUTERPE can be found in ref. [34] but we reproduce it here for convenience. The

collision operator that describes the self-collision of any species can be expressed as

C(f) = Ctp(f) + Cfp(f), (8)

where Ctp(f) = C(f1, fM) is the usually referred to as test-particle term, that

describes the collisions of the perturbed part of the distribution function against the

background part, and Cfp(f) ≡ C(fM , f1) is the field particle term, which captures the

background reaction. In the simulations presented in next sections, both for the bulk ion

and electron self-collisions, the test-particle term used has been the pitch angle collision

operator:

Ctp(f1) =
ν

2

∂

∂ξ
(1− ξ2)

∂

∂ξ
f1, (9)

with ξ = v‖/v the pitch-angle variable, v the particle velocity and ν the deflection

collision frequency of the colliding species

ν = ν0
erf(x)−G(x)

x3
, (10)

and ν0 = ne4 ln Λ/4πǫ20m
2v3th for bulk ions with Z = 1 and electrons, x = v/vth,

ln Λ the Coulomb logarithm, erf the error function and G the Chandrasekhar function.

On the other hand, the field particle term has the following form in order to fulfill

self-adjointness of the collision operator [35],

Cfp = [N(v)N + P (v)P + E(v)E ] fM , (11)

with

N(v) = ν − 3

√

π

8
νEx

2, (12)

P (v) = νs
v‖
v2th

, (13)

E(v) = νEx
2, (14)

and νs = 4ν0G(x)/x the slowing down frequency and νE = [−2ν + (2 + 1/2x2) νs]

the energy-diffusion collision frequency. Evaluating at each spatial bin of the simulation

the non-conserved number density ∆N , parallel momentum ∆P and energy ∆E after

performing the test-particle collisional step, the coefficients N , P and E are obtained
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by imposing conservation of the respective moments of the collision operator (8), which

results in

−







∆N

∆P

∆E






=

∫

d3vfM







N(v) P (v) E(v)

v‖N(v) v‖P (v) v‖E(v)

v2N(v) v2P (v) v2E(v)













N
P
E






. (15)

Finally, in section 4, where kinetic electrons have also been considered, the collision

operator employed for the electrons colliding against the background ions, assumed to

be at rest respect to the former, has been

Cei(f1e) =
νei
2

∂

∂ξ
(1− ξ2)

∂

∂ξ
f1e, (16)

with νei = nie
4 ln Λ/4πǫ20m

2
i v

3
e , ni the bulk ion density, ve velocity of the electrons

and me their mass.

3. Potential variations in TJ-II: comparison between ion- and electron-root

plasmas

3.1. TJ-II Doppler reflectometry system

TJ-II is a heliac-type stellarator where, for the standard configuration considered for

this work, the average magnetic field is 0.95 T on axis, the rotational transform is ι ≈ 1.5

at the center of the plasma and 1.6 approximately at the edge and the effective minor

radius and major radius are a = 0.2 m and R0 = 1.5 m, respectively. The available

heating power consists of two gyrotrons delivering 300 kW each (operated both in X-

mode at the second harmonic of the electron cyclotron frequency) and two NBI heating

systems, one co- and another counter-injecting each a port-through power of up to 700

kW. For the results presented below, only ECH on-axis was used. With this heating

scheme the central electron density typically reaches values of ne ≈ 0.5− 1× 1019 m−3,

the electron temperature is Te ≈ 1− 2 keV and the ion temperature Ti ≈ 80− 100 eV.

For the experimental results discussed in this section the technique used has been

Doppler reflectometry (DR). It allows the measurement of density fluctuations and their

perpendicular rotation velocity at different turbulence scales, with good spatial and

temporal resolution. From the perpendicular rotation velocity the radial electric field,

the central quantity in this section, can be obtained. The DR in operation at TJ-II

[36] works in a frequency hopping mode in the Q-band: 33-50 GHz, covering typically

the radial region from r/a = 0.6 to r/a = 0.9. Its front-end consists of a compact

corrugated antenna and an ellipsoidal mirror. The mirror can be tilted to probe different

perpendicular wave-numbers of the turbulence in the range k⊥ ≈ 1−14 cm−1, at different

plasma regions poloidally separated, as both positive and negative probing beam angles

with respect to normal incidence can be selected, see fig. 1. Assuming that the electron

density is constant on each flux surface, this characteristics makes possible to access
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Figure 1. Schematic representation of the TJ-II vacuum vessel with DR antenna-

mirror arrangement showing the two plasma regions that can be probed by the system.

Here R⊥ = R − R0, with R the cylindrical radial coordinate used below and R0 the

major radius of the device.

different points of measurement over the same flux surface. Apart from its interest for

studying the spatial localization of instabilities predicted in stellarators by gyro-kinetic

simulations [13, 37, 38], for the results presented in this work this feature has been

exploited to characterize the radial electric field measured on the left and right regions

with respect to the incidence angle where the launched beam is normal to the last closed

flux surface. Throughout the present section these regions are referred to as “left” and

“right” regions, see fig. 1.

3.2. Experimental and numerical results

Two pairs of TJ-II discharges are considered. The main difference between them is the

sign of the radial electric field. The first couple of discharges (#43387 and #43388)

are representative for ion root regime while the second couple of discharges (#43391

and #43392) are in electron root. The plasma parameters for each of these pairs are

represented in figs. 2 (left) and 2 (right) respectively. The difference in the density

profiles determines what regime is accessed. TJ-II plasmas exhibit this ion-to-electron

root change when the line-averaged density, obtained with a microwave interferometer

[39], is close to the critical value of n̄cr
e ∼ 0.6 × 1019 m−3 (for the standard magnetic

configuration and the used heating power), which standard neoclassical calculations

capture without difficulty, see e.g. [40, 41]. The characteristic of the DR analysis that

has motivated the numerical simulations is the difference that the radial electric field

value for each set of profiles, shows when the measurement is taken on the left probing

region and on the right. Or in other words, the different values of the radial electric

field measured at different points over the same flux surface.

The radial electric field was obtained for the first discharge of each pair (this is for

the shots #43387 and #43391) on the left side of the DR measurement plane. For the
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Figure 2. Left: radial profiles of electron density (ne, solid black line), electron

temperature (Te, dashed red line) and ion temperature multiplied by 10 (Ti, dotted

blue line) considered for the EUTERPE simulations based on the TJ-II discharges

#43387 and #43388 and the data from the Thomson Scattering diagnostic (ne and

Te) and the NPA system (Ti) systems. Right: same quantities as on the left but

considering the TJ-II discharges #43391 and #43392.
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Exp.  TJ-II #43392 (Right)

Figure 3. Left: radial electric field Er as a function of the normalized effective radius

for the TJ-II ion root plasmas, discharges #43387 and #43388. Right: the same but

for the electron root plasmas from discharges #43391 and #43392. In both cases the

measurements performed on the left and right sides of the DR measurement plane are

represented with red squares and blue circles, respectively. The solid lines correspond

to the input radial electric field profiles used for the Φ1 EUTERPE simulations.
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Figure 4. For the ion root conditions TJ-II plasmas: (a) potential variation

normalized to the ion temperature eΦ1/Ti at the Doppler reflectometry probing plane

in the range of simulated radii; (b) Over the same plane, radial electric field component

−dΦ1/dr, together with the specific positions of measurement on the left and right DR

probing regions, estimated with ray tracing; (c) Value of −dΦ1/dr at those positions

where, as before, red squares and right blue circles correspond to the estimations along

the left and right measurement positions respectively.

second of the discharges of each pair (this is for shots #43388 and #43392) the DR

beam was launched to measure the radial electric field on the right side. It is worth

recalling that the radial electric field provided by the Doppler reflectometer, EDR
r , is

obtained from the measured plasma background perpendicular flow u⊥ and relates to it

as EDR
r = u⊥B (B the modulus of the local magnetic field at the point where the beam

is reflected). Assuming the phase velocity of density fluctuations much smaller than the

E × B flow velocity, vE0 = Er∇r × B/B2, u⊥ is assumed to be equal to the latter.

Typically the value provided EDR
r , is that of the local radial electric field, which carries

with the local dependence of the flux expansion term ∇r. This term is comparable in

the two plasma regions the system can access, and cannot lead to large differences in

the local radial electric field. But, since the present work focuses on the different value

of the radial electric field at points located over the same flux surface, the modulus of

the flux expansion term has been divided out from the experimental EDR
r in order to

work with, strictly speaking, the supposedly flux function quantity Er. This is indeed

the quantity neoclassical codes require as input. The radial electric field is represented

as a function of the normalized effective radius r/a in fig. 3 (left) for the ion root dis-

charges and 3 (right) for the electron root discharges. The points with errorbars show

the experimental data, and the solid lines correspond to different fitted curves used in

the EUTERPE simulations presented in next subsection. The values obtained at the

left side of the plane of measurement are represented with red open squares while those

taken at the right side are represented by blue open circles. Note that the DR system

can measure over different flux surfaces by scanning the frequency of the launched mi-

crowaves. Due to their X-mode polarization and the dependence of the X-mode cutoff

not only on the electron density but also on the magnetic field strength, the accessible

radial range when the beam is oriented toward the left and right regions of the plane of

measurement is not exactly the same. This fact is reflected in the measurements shown

in fig. 3 and when the numerical analysis is addressed considering the estimated mea-
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Figure 5. For the electron root conditions TJ-II plasmas: (1-3.a) potential variation

normalized to the ion temperature eΦ1/Ti at the Doppler reflectometry probing plane

in the range of simulated radii, from left to right for the input Er denoted as fit 1 to 3 in

fig. 3(b); (1-3.b) over the same plane, first order radial electric field −dΦ1/dr, together

with the specific positions of measurement on the left and right DR probing regions,

estimated with ray tracing for the three Er fits considered; (1-3.c) value of −dΦ1/dr

at those positions where, as before, red squares and right blue circles correspond to

the estimations along the left and right regions, respectively.

surement positions with ray tracing techniques. As it is observed in fig. 3 (left), for the

ion-root plasmas (shots #43387/8) the difference between the radial electric field mea-

sured at each side is small, in all the accessible radial domain. Only around r/a = 0.6

a slight separation between them can be appreciated. On the contrary, under electron

root conditions (shots #43391/2), see fig. 3 (right), the measured radial electric field

is appreciably larger on the right side than on the left side on a wide portion of the

accessed radial range. In the interval r/a = 0.6− 0.8 discrepancies of up to 1 kV/m can

be observed. In the numerical analysis that follows we try to quantify to what extent

the radial dependency of the potential Φ1 can introduce corrections in the total radial

electric field through the term −Φ′
1 = −dΦ1/dr.
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For the numerical simulations different fitting curves for the input ambipolar elec-

tric field have been considered. They are depicted with solid lines in fig. 3. For the

ion root scenario only one case has been used while for electron root three have been

considered, due to the ambiguity in the choice of Er given the disparate values measured

at each measurement region. One of the curves considers the data measured on the left

side of the probing plane (“fit 1”), another the data measured on the right side of the

plane (“fit 2”) and a third one the mean value of the previous two (“fit 3”).

The numerical results for the ion root case are shown in figs. 4(a) to (c), where the

following quantities are represented: (a) the potential variation Φ1 in a corona of the

measurement plane that covers approximately the same radial range as the experimen-

tal data; (b) the radial electric field term −Φ′
1 resulting from the potential represented

in the previous figure. The Doppler reflectometry measurement positions on the right

and left regions are indicated with red and blue points (these positions have been ob-

tained with the ray tracing code TRUBA [42]); (c) −Φ′
1 at the positions indicated in

the previous plot. The results estimated on the left regions are indicated in red color,

while those concerning the right side are indicated in blue. In fig. 4(a) it is observed

that the normalized potential eΦ1/Ti takes at different poloidal positions near the out-

ermost radii of the simulated region minimum and maximum values of around −0.3 to

0.15, respectively. This leads the modulus of Φ′
1 to reach up to 400 V/m approximately,

comparable to the input Er at that position, see fig. 3(a). In such situation, neglecting

the radial drift b×∇Φ1/B at the time that the tangential drift b×∇Φ0/B is retained

in eq. 4 is not justified. Then, apart from the fact that the radial region with r/a & 0.7

has exceptionally large values of Φ′
1, further quantitative conclusions can difficultly be

drawn from these results. On the other hand at more internal r/a regions, where Φ1

and Φ′
1 have more moderate values, one can observe in fig.4 (c) that there is barely no

difference between the value of −Φ′
1 on the left measurement positions and those on the

and right region. Only at around r/a = 0.6 the curves in fig. (c) separate from each

other a few tens of V/m – like in the experimental measurements, see fig. 2(a) – which

is well below the value of the ambipolar electric field at that position Er ≈ −600 V/m.

In that sense the numerical results agree relatively well with the experiment.

For the electron-root plasmas the same (a) to (c) plots are represented from top

to bottom in the set of figs. 5, for each of the input Er considered for EUTERPE

in a different column. Looking at the figs. (1-3.c), in contrast to the ion-root case,

a more appreciable difference than for the ion root plasmas is observed between the

results for the left and right regions. In the three cases the correction term −Φ′
1 would

make the total radial electric field larger on the left side than on the right side, as

the curve of Φ′
1 indicating the left side values is situated almost at all radii above the

curve indicating the values on the right region. The difference between the results with

different input Er are given only on the location where the maximum differences on −Φ′
1
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are found. Considering the fit 1, the difference reaches up to values of around 200 V/m,

and these take place in the interval r/a = 0.6 − 0.7 and the outermost radial region.

For the fit 2 differences of up to around 250 V/m, larger on the left than on the right

side, are observed at around r/a ∼ 0.75; and finally fit 3 leads to differences that only

show up at the outermost represented radii, reaching values of around 200 V/m. The

numerical difference for the three cases considered are neither as large as those found

in the DR measurements shown in fig. 3 (right) nor the sign coincides numerically and

experimentally. In the simulations the radial electric field becomes larger on the left than

on the right probing regions, while in the experiments the opposite happens. However,

out of the measurement positions, along any flux surface contour over the probing plane

much larger values of −Φ′
1 are achieved. See for instance the reddish areas at the

bottom right part of the DR section and the top blue areas the contour r/a = 0.5 passes

through in fig. 5 (1-3.b) plots. As it has been already discussed regarding the outermost

flux surfaces of the ion-root case, these large deviations cast strong doubts about the

applicability of the trajectories, eq. (4)-(6) assumed in our simulations, since all terms

related to Φ′
1 have been neglected. The correction to the total radial electric field

arising from −Φ′
1 represents in these electron root TJ-II plasmas a significant fraction

compared to the input ambipolar electric field. In contrast to the ion-root case, where

this happened near the outermost radial boundary only, in this electron-root example

the problem shows up at almost any of the represented flux surfaces regardless of the

considered profile of Er. This limits our conclusion substantially, and reduces it to

the statement that in TJ-II electron root plasmas the magnitude of Φ1 and related

contribution to the total radial electric field −Φ′
1 can become locally a non-negligible

fraction of Φ0 and Er, respectively.

4. Potential variations in W7-X: CERC plasmas and effect of kinetic

electrons

Potential variations have so far been estimated small in W7-X plasmas and its impact

on impurity transport negligible. However, these conclusions, drawn from the results

presented in refs. [1, 20], cover still a very narrow parameter and configuration window

of W7-X. In particular all plasmas studied in those references are ion root plasmas

foreseen during the future W7-X operation phase OP2. The calculations in ref. [1]

were performed for one of the W7-X configurations with lowest neoclassical transport,

whose low effective ripple, the target figure of merit for the neoclassical optimization and

design of W7-X, is lower than in the configurations for which most of the experiments

have been performed so far. The case studied in this work widens the parameter window

considering CERC plasma parameters from the operation phase OP1.1 [43], in particular

the physics programme 20160309.010 at the time t = 0.320. The radial profiles based on

that programme and instant, used for the simulations discussed below are represented

in fig. 6 (left). The represented profiles are fitted to the Thomson Scattering system

[44] data for the electron density ne and temperature Te, while the bulk ion density Ti



Φ1 in electron root stellarator plasmas 14

0.0 0.2 0.4 0.6 0.8 1.0
r/a

0.0

0.4

0.8

1.2

1.6

n
e
 (
1
0
1
9
 m

−3
)

W7-X prog. 20160309.010 t=0.32 s.

ne

−1

0

1

2

3

4

5

6

T
e
,T

i 
(k

e
V

)

Ti

Te

0.0 0.2 0.4 0.6 0.8 1.0
r/a

−15

−10

−5

0

5

10

15

E
r
 [

kV
/m

]

W7-X prog. 20160309.010 t=0.32 s. (SFINCS)

SFINCS

Figure 6. (a) Electron density (ne, solid black line), electron temperature (Te, dashed

red line) and ion temperature (Ti, dotted blue line) considered for the EUTERPE

simulations based on those of W7-X programme 20160309.010 at t = 0.32 ms measured

with the Thomson Scattering (ne and Te) and the XICS (Ti) systems. (b) ambipolar

radial electric field obtained with the SFINCS code (dots) considering the profiles on

the left, and the curve used as input for EUTERPE.

Figure 7. Left: normalized collision frequency as a function of the normalized effective

radius for the electrons (red shadowed area) and main ions (blue shadowed area) with

velocities in the range of one and two thermal velocities considering the profiles of fig.

6(a). Right: normalized Er × B velocity for electrons (red shadowed area) and main

ions (blue shadowed area) with velocities in the range of one and two thermal velocities

considering the profiles of fig. 6(a) and (b).
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considers the XICS [45] experimental data. The radial profile of Er used as EUTERPE

input has been provided by the SFINCS code and is represented in fig. 6 (right).

The reasons for choosing this plasma are the following. On the one hand, it is an

example of CERC plasma [46] where a root transition takes place. Er is positive (elec-

tron root) at the inner core and negative (ion root) at the outer part of the core and

edge. This feature is interesting since, as pointed out in [15], under ion root conditions

the thermodynamic force related to the ambipolar radial electric field opposes to the

density and temperature gradients, while in electron root all thermodynamic forces have

in general for the ions (except deeply hollow profiles, which is not the case here) the

same sign. This leads to a larger source term in the drift kinetic equation that forces

the perturbed part of the distribution function f1i to be larger. Since the lack of quasi-

neutrality among the charge density related to this piece of the distribution function

is what gives rise to the potential Φ1, this reasoning should lead to expect larger Φ1

too. In addition, the change in the direction of the E × B precession from electron to

ion root should introduce appreciable changes on the phase of the potential. These two

statements can be checked by comparing how Φ1 looks on each side of the radial electric

field root transition.

Furthermore the fact that the temperature of the electrons is significantly higher

than that of the ions leads to a situation where the electron contribution ECH to Φ1

eventually may become important. Note that in ref. [1] the electrons are considered

adiabiatic, based on the condition Ti ∼ Te and the higher density of the plasmas there,

and thus the electron contribution to Φ1 is neglected. In order to know whether the

electrons may contribute to Φ1, let us recall first that for a given magnetic configuration

and for one single kinetic energy or velocity v, the parameters to find in which collisional

regime each species is, are the normalized Er × B drift velocity v∗E = Er/vB0 and the

normalized collision frequency ν∗ = R0ν/(ιv). See for instance ref. [47], where several

configurations are considered and the main thermal transport matrix coefficients are

represented as a function of ν∗ for different values of v∗E. In particular, in the scalings

depicted for the normalized transport matrix coefficient D∗
11, helpful visual references

of the collisionality interval at which the 1/ν scaling begins and when transits to the√
ν regime are found. This so-called mono-energetic view is somewhat limited since the

Maxwellian velocity distribution function covers a range of velocities and not just one.

In fig. 7 the range of ν∗ and v∗E values as a function of r/a are represented for electrons

and ions (H+) with velocity between v = vth and v = 2vth, considering the plasma

parameters of fig. 6. Looking at the values of ν∗ and v∗E for the ion parameters and

comparing with the scanned ranges in ref. [47] for W7-X, one can conclude that the ions

should mostly be in the
√
ν regime at the innermost radial positions and in the plateau

regime at the edge, passing through a practically inexistent 1/ν regime. Regarding the

electrons, their much lower normalized collisionality compared to that of the ions at the

core make them mainly reside in the
√
ν regime in that region as well. They also exhibit

ν∗ values at the edge characteristic of the plateau regime but, contrarily to the ions,
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Figure 8. For the simulations with adiabatic electrons (left column) and kinetic

electrons (right column), from top to bottom: calculated potential for the W7-X (KJM

configuration) at the toroidal planes ζ = 0, 15, 36 and 54◦. Note the different color

scales on the left and right plots, employed to appreciate the changes in the shape of

Φ1 when considering adiabatic instead of kinetic electrons.
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the simulated flux surfaces normalized to the ion temperature Ti as a function of the

normalized effective radius r/a for the calculations with adiabatic electrons (circles

connected with blue segments) and kinetic electrons (squares connected with red

segments). The dashed vertical line indicates the radial position where Er = 0. On

the left and right of this line the input radial electric field is positive and negative,

respectively.

the much lower v∗E places them a more robust and wider (in collisionality) 1/ν regime

in between. This consequently should make the electrons to necessarily be in a deep

1/ν regime on a radially wide region of the core. Finally, since the perturbed part of

the distribution function (and consequently the perturbed part of the density entering

in the equation for the potential variation) scales in the 1/ν regime with ρ∗/ν∗ while in

the
√
ν regime is independent of ρ∗ and ν∗ (with ρ∗ the normalized Larmor radius to

the stellarator size) [16, 48], the core of these plasmas are particularly favorable to show

differences between considering kinetic or adiabatic electrons in the calculations of Φ1.

This is the numerical comparison presented and discussed in the following paragraph.

The calculations of Φ1 have been performed for nine radial positions, ap-

proximately separated between each other ∆r/a = 0.1. These radii are r/a =

{0.12, 0.22, 0.33, 0.41, 0.51, 0.60, 0.72, 0.80, 0.90}. As in section 3.2, the simulations are

local and each considers a different value of the ambipolar radial electric field. In

particular the following values are given for each of the flux surfaces just mentioned:

Er = {0.59, 3.89, 8.16, 10.95, 11.14, 9.98,−1.38,−8.52,−10.0} kV/m. As it is well known

any local code that keeps the tangential Er × B drift but neglects the tangential com-

ponent of magnetic drift, as it is our case, has problems when approaching the value of

Er = 0, where an unphysically large magnitude of f1 is experienced [16, 17]. For this

reason we have avoided the exact root transition flux surface where Er = 0. However,

the figures of the potential on the toroidal planes have been obtained by interpolation

using the value over the simulated flux surfaces , which passes through the entire transi-
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tion region. For this reason the results represented in the vicinity of that radius must be

taken indicatively. In fig. 8 the potential variation is represented, from top to bottom,

for the toroidal planes φ = 0◦, 15◦, 36◦ and 54◦. The first of these toroidal planes has

the practical interest that a Doppler and a correlation reflectometer probe that plane

in order to characterize the experimental radial electric field. At φ = 15◦ a second

Doppler reflectometer is also installed. The other two planes have been considered since

the distance between them in φ is one fourth of a the machine period. The first of

them corresponds to the frequently represented triangular plane where other essential

diagnostics for impurity transport are installed, like the soft-X rays Multi-Camera To-

mography System (XMCTS) [49] or the bolometry cameras [50]. The difference between

the figures on the left, with labels (a)-(d), and on the right, with labels (e)-(h), is that

while the former show the results assuming adiabatic electrons, the latter do it for the

cases considering kinetic electrons. First of all, note that the range in the color scale

changes from plot to plot, in order to make appreciable the changes in the shape of the

potential, that keeping the same scale for all cross sections would not allow to appreci-

ate. Looking at those color scales and their ranges, it can be seen that the largest Φ1

values are very localized on the triangular plane, where they become much larger than

on the other planes. Second, the size of the potential for the case with kinetic electrons

is roughly up to twice as large as the results with adiabatic electrons. This is evident

on the triangular plane while on the other the difference is not remarkable. Looking

at the potential at the triangular plane, it is also observed that the shape experiences

appreciable changes when the electrons are considered as a kinetic species compared to

the case with adiabatic electrons. In particular, the negative values of Φ1, that in the

case with adiabatic electrons 8(c) are located on the low field side (LFS) and below the

equatorial plane, are displaced towards the high field side (HFS) when electrons are ki-

netic 8(g). This is also compatible with what is known about the symmetry properties

of Φ1 [51]. When only the contribution from the ions is considered, since they must

be mostly in the
√
ν regime, Φ1 must necessarily have cosine components dominating

its spectrum, leading to the clear in-out asymmetry that fig. 8(c) illustrates. When

kinetic electrons are considered, since they must, as we have hypothesized, add their

contribution from the 1/ν regime, the consequent introduction of sine component leads

that in-out asymmetry to blur as 8(g) shows. Other changes in the shape are observed

in other planes, although not as clear as on the triangular plane.

Other features can more clearly be observed in fig. 9, where the maximum

normalized potential difference (∆Φ1 = (Φmax
1 − Φmin

1 )/2Ti) is represented. The results

are shown for both calculations, with adiabatic electrons and with kinetic electrons.

Roughly speaking the potential variation size is shown to be considerably larger in the

portion of the plasma in electron root than in that under ion root. In addition, a

much larger contribution of the kinetic electron response is observed in the first of these

regions than in the second. However, the point located in ion root immediately after

the root transition at r/a = 0.6 exhibits a large value as well. A vertical line represents
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Figure 10. Radial electric field term Φ′

1
= −dΦ1/dr obtained at the toroidal plane

φ = 36◦, considering the corresponding potential Φ1 for the case with kinetic electrons

represented in fig. 8(g).

the exact position where the root changes. At that point the ambipolar electric field

is rather low Er = −1.38 kV/m, compared to the value at the other positions in ion

root where |Er| > 7 kV/m. This low value of Er can be the cause of adding a large

contribution to Φ1 from ions in the 1/ν regime. Another interesting feature results

from the large variations at each side of the root transition together with the abrupt

change of its phase. To appreciate this one can look at the triangular plane represented

in fig. 8(g) for the calculation including kinetic electrons. This change is present at

almost any poloidal position in the vicinity of that radius and is given in a relatively

narrow region (the two radii simulated immediately before and after the root change are

separated by ∆r/a = 0.09). It is then natural to ask whether this can introduce some

important contribution to the radial electric field. This correction, −Φ′
1, is represented

at the triangular plane, considering kinetic electrons, in fig. 10. Moderate values of a

few hundreds of V/m are present on that cross section but near to the root change the

value is considerably larger, reaching around 1 kV/m, both positive and negative. In our

characteristic trajectories, see eqs. (4)-(6), the E × B drift related to this component

of the radial electric field is not kept to lowest order. This is applicable since, as it

happens at almost all positions, Er is substantially larger than the represented −Φ′
1.

However, it becomes of the same order at the innermost simulated radius under ion root

conditions (where as above-mentioned Er was −1.38 kV/m). Then, to this respect the

calculations on that specific position should be taken, as well as the conclusions drawn

from it, cautiously.
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5. Conclusions

The present work has addressed the calculation of the neoclassical potential variation,

with the emphasis on electron-root plasmas. The standard configuration for TJ-II and

a high mirror configuration of W7-X have been used, considering plasma parameters of

discharges from their recent experimental campaigns.

In TJ-II, the Doppler Reflectometry radial electric field measurements and, in

particular, the strong difference of its value at different points over the same flux surface,

has motivated looking into the radial dependence of Φ1 and investigating to what extent

the term −Φ′
1 can contribute to the total radial electric field. What has been found by

numerical simulations agrees qualitatively with the experimental results. The difference

in the total electric field that the potential variations can make is large in the electron

root cases, although still a non-negligible factor smaller than the experimental one. On

the other hand this correction is practically not present in the ion root plasmas, both

numerically and experimentally. These conclusions are drawn from the comparison made

at the specific measurement positions of the Doppler reflectometry system over the same

flux surface. Out of these locations −Φ′
1 is found large both under ion and electron

root conditions. This fact questions the applicability of the characteristic trajectories

of the simulated particles, since terms containing −Φ′
1 are neglected based on its size

compared to −Φ′
0, although a posteriori the former is not found that small compared

to the latter. This and the possibility that the kinetic electrons could introduce a

non-negligible contribution to the potential, as proven in the section by the numerical

simulations results for W7-X, are possible reasons than may have frustrated a better

agreement.

Regarding W7-X we have considered a configuration with significantly larger

effective ripple than the standard configuration analyzed in past works [1]. The plasma

parameters correspond to a standard CERC plasma from OP1.1. The analysis has

demonstrated that W7-X can access regimes with potential variations significantly larger

than what has already been reported. In this occasion the simulations have been

performed with adiabatic and kinetic electrons. The comparison between them have

shown that the contribution from the kinetic electron response, when the parameters

are such that they are likely to be deeply in the 1/ν regime, can be significant in the size

and shape of the potential. This occurred mostly in a broad portion of the plasma in

electron root, where in addition, the resulting size of Φ1 was considerably larger than in

ion root. Other features have been found, like the localization of these large variations on

the triangular plane of W7-X, and the smaller values near the boundaries of the machine

period. Interestingly, on that triangular plane, at each side of the root transition and

at the closest radii the potential reaches its maximum values. This, together with the

fact that the phase is the opposite on one side and the other of the root change, gives

rise to a large radial electric field term −Φ′
1.
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