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This paper presents an efficient numerical sensitivity-estimation method and implementation for
continuous-gravitational-wave searches, extending and generalizing an earlier analytic approach by
Wette [1]. This estimation framework applies to a broad class of F -statistic-based search methods,
namely (i) semi-coherent StackSlide F -statistic (single-stage and hierarchical multistage), (ii) Hough
number count onF -statistics, as well as (iii) Bayesian upper limits onF -statistic search results (coherent or
semi-coherent). We test this estimate against results from Monte-Carlo simulations assuming Gaussian
noise. We find the agreement to be within a few % at high detection (i.e., low false-alarm) thresholds, with
increasing deviations at decreasing detection (i.e., higher false-alarm) thresholds, which can be understood
in terms of the approximations used in the estimate. We also provide an extensive summary of sensitivity
depths achieved in past continuous-gravitational-wave searches (derived from the published upper limits).
For the F -statistic-based searches where our sensitivity estimate is applicable, we find an average relative
deviation to the published upper limits of less than 10%, which in most cases includes systematic
uncertainty about the noise-floor estimate used in the published upper limits.
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I. INTRODUCTION

The recent detections of gravitational waves from
merging binary-black-hole and double neutron-star systems
[2–4] have opened a whole new observational window for
astronomy, allowing for new tests of general relativity [5],
new constraints on neutron star physics [6] and new
measurements of the Hubble constant [7], to mention just
a few highlights.
Continuous gravitational waves (CWs) from spinning

nonaxisymmetric neutron stars represent a different class of
potentially observable signals [8,9], which have yet to be
detected [10]. These signals are expected to be long-lasting
(at least several days to years) and quasi monochromatic,
with slowly changing (intrinsic) frequency. The signal
amplitude depends on the rich (and largely not yet well-
understood) internal physics of neutron stars [11], as well
as their population characteristics [12,13]. A detection

(and even nondetection) of CWs could therefore help us
better understand these fascinating astrophysical objects,
and may allow for new tests of general relativity [14,15].

A. Overview of search categories

We can categorize CW searches in two different ways:
either based on the search method, or on the type of
explored parameter space.
The search methods fall into two broad categories:

coherent and semicoherent (sometimes also referred to
as incoherent). Roughly speaking, a coherent search is
based on signal templates with coherent phase evolution
over the whole observation time, while semicoherent
searches typically break the data into shorter coherent
segments and combine the resulting statistics from these
segments incoherently (i.e., without requiring a consistent
phase evolution across segments). However, there are many
different approaches and variations, which are beyond the
scope of this paper, see, e.g., [10] for a more detailed
overview. Here we will exclusively focus on coherent and
semicoherent methods based on the F -statistic, which will
be introduced in Sec. II.
Coherent search methods are the more sensitive in

principle, but in practice they suffer from severe comput-
ing-cost limitations: for finite search parameter spaces the
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required number of signal templates grows as a steep
power-law of the observation time, making such searches
infeasible except when the search region is sufficiently
small. For larger signal parameter spaces the observation
time needs to be kept short enough for the search to be
computationally feasible, which limits the attainable coher-
ent sensitivity. This is where semi-coherent searches yield
substantially better sensitivity at fixed computing cost
(e.g., see [16,17]).
Based on the explored parameter space, we distinguish

the following search categories (referencing a recent
example for each case):

(i) Targeted searches are looking for CW emission
from known pulsars [18]. The pulsar spin evo-
lution, the sky position and possibly the binary
orbital parameters of these systems are known
very accurately. Assuming a fixed relationship
between pulsar spin and CW frequency, these
searches therefore only need to target a single
point in parameter space for each pulsar. Hence
these searches are done with an optimal fully
coherent search [19].

(ii) Narrow-band searches for known pulsars assume a
small uncertainty in the relationship between CW
frequency and the measured pulsar spin rates. This
finite search parameter space requires a template
bank with (typically) many millions of templates,
still allowing for optimal fully coherent search
methods to be used [20].

(iii) Directed (isolated) searches aim at isolated neutron
stars with known sky-position and unknown spin
frequency. The search parameter space covers the
unknown frequency and spindowns of the neutron
star signal within an astrophysically motivated
range [21,22].

(iv) (Directed) binary searches aim at binary systems
with known sky-position and parameter-space un-
certainties in the frequency and binary-orbital
parameters. Typically these sources would be in
low-mass x-ray binaries, with the most prominent
example being Scorpius X-1 (Sco X-1) [23,24].

(v) All-sky (isolated) searches search the whole sky over
a large frequency (and spindown) band for unknown
isolated neutron stars [25,26].

(vi) All-sky binary searches are the most extreme case,
covering the whole sky for unknown neutron stars in
binary systems [27,28].

B. Sensitivity estimation

In this work we use the term sensitivity to refer to the
upper limit on signal amplitude h0 (or equivalently sensi-
tivity depth D≡ ffiffiffiffiffi

Sn
p

=h0, see Sec. II E). This can be either
the frequentist upper limit for a given detection probability
at a fixed false-alarm level (p-value), or the Bayesian upper
limit at a given credible level for the given data.

Sensitivity therefore only captures one aspect of a
search, namely how “deep” into the noise-floor it can
detect signals, without accounting for how “wide” a
region in parameter space is covered, how much prior
weight this region contains, or how robust the search is to
deviations from the signal model. Comparing sensitivity
depth therefore only makes sense for searches over very
similar parameter spaces. A more complete measure
characterizing searches would be their respective detec-
tion probability, which folds in sensitivity depth, breadth
in parameter space, as well as the prior weight contained
in that space [29,30].
However, it is often useful to be able to reliably and

cheaply estimate the sensitivity of a search setup without
needing expensive Monte-Carlo simulations:

(i) In order to determine optimal search parameters for a
semicoherent search (i.e., the number and semi-
coherent segments and template-bank mismatch
parameters), it is important to be able to quickly
assess the projected sensitivity for any given search-
parameter combination (e.g., see [17,29–31]).

(ii) For setting upper limits for a given search, one
typically has to repeatedly add software-generated
CW signals to the data and perform a search, in order
to measure how often these signals are recovered
above a given threshold. By iterating this procedure
one tries to find the weakest signal amplitude that
can be recovered at the desired detection probability
(or “confidence”). This can be very computationally
expensive, and a quick and reasonably-reliable
estimate for the expected upper-limit amplitude
can therefore substantially cut down on the cost
of this iterative process, which can also improve the
accuracy of the upper limit.

(iii) The estimate can also serve as a sanity check for
determining upper limits.1

A number of theoretical sensitivity estimates have been
developed over the past decades. One of the first estimates
was obtained for a coherentF -statistic search [32], yielding

h0 ¼ 11.4

ffiffiffiffiffiffiffiffiffi
Sn
Tdata

s
; ð1Þ

for a 90% confidence upper limit at 1% false-alarm (per
template). Sn denotes the (single-sided) noise power spec-
tral density, and Tdata is the total duration of data from all
detectors, e.g., for a search spanning one day (i.e.,
Tspan ¼ 24 h), one detector could have yielded 18 h of
(possibly non-contiguous) usable data and another detector
16 h, giving a total of Tdata ¼ 34 h.

1In fact, in the course of this work we have identified a bug in
the upper-limit script of a published result, while trying to
understand the discrepancy between the estimate and the pub-
lished value, see Sec. VI C.
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This first estimate was later generalized to the semi-
coherent Hough [33] and StackSlide method [34,35],
yielding an expression of the form

h0 ¼ κN1=4
seg

ffiffiffiffiffiffiffiffiffi
Sn
Tdata

s
; with κ ∼ 7–9; ð2Þ

for the same confidence and false-alarm level as Eq. (1),
and where Nseg denotes the number of semicoherent
segments.
These latter results suggested the inaccurate idea that the

sensitivity of semi-coherent searches follows an exact N1=4
seg

scaling. However, this was later shown [1,17] to not be
generally a good approximation except asymptotically in
the limit of a large number of segments (Nseg ≳ 100–1000).
Furthermore, these past sensitivity estimates relied on the

assumption of a “constant signal-to-noise ratio (SNR)”
population of signals. While this approximation substan-
tially simplifies the problem, it introduces a noticeable
bias into the estimate, as discussed in more detail in [1].
For example, the constant-SNR bias combined with the
incorrect N1=4

seg scaling in Eq. (2) would result in an
overestimate by a factor of two of the sensitivity of the
first Einstein@Home search on LIGO S5 data [36].
These limitations of previous sensitivity estimates were

eventually overcome by the analytic sensitivity-estimation
method developed by Wette [1] for semicoherent
StackSlide F -statistic searches. In this work we simplify
and extend this framework by employing a simpler direct
numerical implementation. This further improves the esti-
mation accuracy by requiring fewer approximations. It also
allows us to generalize the framework to multistage
hierarchical StackSlide-F searches, Hough-F searches
(such as [36]), as well as to Bayesian upper limits based
on F -statistic searches.

C. Plan of this paper

Section II provides a description of the CW signal model
and introduces different F -statistic-based search methods.
In Sec. III we present the sensitivity-estimation framework
and its implementation, for both frequentist and Bayesian
upper limits. Section IV discusses how (frequentist) upper
limits are typically measured using Monte-Carlo injection-
recovery simulations. Section V provides comparisons of
our sensitivity estimates to simulated upper limits in
Gaussian noise, while in Sec. VI we provide a compre-
hensive summary of published sensitivities of past CW
searches (translated into sensitivity depth), and a compari-
son to our sensitivity estimates where applicable. We
summarize and discuss the results in Sec. VII. Further
details on the referenced searches and upper limits are
given in Appendix A. More technical details on the signal
model can be found in Appendix B. Finally, Appendix D

contains a discussion of the distribution of the maximum
F -statistic over correlated templates.

II. F -STATISTIC-BASED SEARCH METHODS

This section provides an overview of the F -statistic-
based search methods for which sensitivity estimates are
derived in Sec. III. Further technical details about the signal
model and the F -statistic are given in Appendix B. For a
broader review of the CW signal model, assumptions and
search methods, see e.g., [8–10].

A. Signal model

For the purpose of sensitivity estimation we assume the
data time series xXðtÞ from each detector X to be described
by Gaussian noise, i.e., nXðtÞ ∼ Gaussð0; SXn Þ with zero
mean and (single-sided) power-spectral density (PSD) SXn .
A gravitational-wave signal creates an additional strain
hXðtÞ in the detector, resulting in a time series

xXðtÞ ¼ nXðtÞ þ hXðtÞ: ð3Þ
For continuous gravitational waves the two polarization
components can be written as

hþðτÞ ¼ Aþ cos ðϕðτÞ þ ϕ0Þ;
h×ðτÞ ¼ A× sin ðϕðτÞ þ ϕ0Þ; ð4Þ

where ϕðτÞ describes the phase evolution of the signal in
the source frame. For the quasiperiodic signals expected
from rotating neutron stars, this can be expressed as a
Taylor series expansion around a chosen reference time
(here τref ¼ 0 for simplicity) as

ϕðτÞ ¼ 2π

�
fτ þ 1

2
_fτ2 þ � � �

�
; ð5Þ

in terms of derivatives of the slowly-varying intrinsic CW
frequency fðτÞ. For a triaxial neutron star spinning about a
principal axis, the two polarization amplitudes are given by

Aþ ¼ 1

2
h0ð1þ cos2ιÞ; A× ¼ h0 cos ι; ð6Þ

in terms of the angle ι between the line of sight and the
neutron star rotation axis and the overall signal amplitude
h0. This definition uses the gauge condition of Aþ ≥ jA×j.
After translating the source-frame signal into the detector
frame (see Appendix B for details), the strain signal hXðtÞ
at each detector X can be expressed in the factored form

hXðt;A; λÞ ¼
X4
μ¼1

AμhXμ ðt; λÞ; ð7Þ

which was first shown in [37], and where the four
amplitudes Aμ depend on the amplitude parameters
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fh0; cos ι;ψ ;ϕ0g as given in Eq. (B5). The four basis
functions hXμ ðt; λÞ, which are given explicitly in Eq. (B6),

depend on the phase-evolution parameters λ¼fn̂;f; _f;…g,
namely sky position n̂, frequency f and its derivatives
fðkÞ ¼ dkf=dτkjτref , and binary-orbital parameters in the
case of a neutron star in a binary.

B. Coherent F -statistic

For pure Gaussian-noise time series fnXðtÞg in all
detectors X, the likelihood can be written as (e.g., see
[38–40]):

Pðx ¼ njSnÞ ¼ κe−
1
2
ðn;nÞ; ð8Þ

in terms of the multidetector scalar product

ðx; yÞ≡ 4Re
X
X

Z
∞

0

x̃XðfÞỹX�ðfÞ
SXn ðfÞ

df; ð9Þ

where x̃ðfÞ denotes the Fourier transform of xðtÞ, and x�
denotes complex conjugation of x. Using the additivity of
noise and signals [cf. Eq. (3)], we can express the like-
lihood for data x, assuming Gaussian noise plus a signal
hðA; λÞ as

PðxjSn;A; λÞ ¼ Pðx − hðA; λÞjSnÞ
¼ κe−

1
2
ððx−hÞ;ðx−hÞÞ: ð10Þ

From this we obtain the log-likelihood ratio between the
signal and noise hypotheses as

lnΛðx;A; λÞ≡ ln
PðxjSn;A; λÞ

PðxjSnÞ
¼ ðx; hÞ − 1

2
ðh; hÞ: ð11Þ

Analytically maximizing the log-likelihood ratio over A
(cf. Appendix B) yields the F -statistic [37]:

F ðx; λÞ≡max
A

lnΛðx;A; λÞ: ð12Þ

The statistic 2F follows a χ2-distribution with four degrees
of freedom (d.o.f.) and non-centrality ρ2,

Pð2F jρ2Þ ¼ χ24ð2F ; ρ2Þ; ð13Þ

with expectation and variance

E½2F � ¼ 4þ ρ2; var½2F � ¼ 8þ 4ρ2; ð14Þ

where ρ corresponds to the signal-to-noise ratio (SNR) of
coherent matched filtering.

In the perfect-match case, where the template phase-
evolution parameters λ coincide with the parameters λs of a
signal in the data x, the SNR can be explicitly expressed as

ρ20 ≡ ðh; hÞ ¼ 4

25

h20
Sn

TdataR2ðθÞ; ð15Þ

where Tdata is the total duration of data from all detectors,2

Sn denotes the multidetector noise floor [defined in
Eqs. (19) and (20)], and RðθÞ is a geometric factor
quantifying the detector response.
The response function RðθÞ (following the definition in

[1]) depends on the subset of signal parameters

θ≡ fn̂; cos ι;ψg; ð16Þ

and is defined with the normalization:

hR2iθ ¼ 1: ð17Þ

The explicit expression of R2 can be found in Appendix C.
Using this normalization with Eq. (15) we can recover the
well-known sky- and polarization-averaged squared-SNR
expression (e.g., see [37]):

hρ20iθ ¼
4

25

h20
Sn

Tdata: ð18Þ

The multidetector noise-floor Sn is defined as the
harmonic mean over the per-detector PSDs SXn , namely

1

Sn
≡ 1

N

X
X

1

SXn
: ð19Þ

Note that in practice CW searches do not assume stationary
noise over the whole observation time Tspan, but only over
short durations of order ∼30 mins. This corresponds to the
length of the short Fourier transforms (SFTs) that are
typically used as input data. The present formalism can
straightforwardly be extended to allow for this type of
nonstationarity [41]. In this case the definition Eq. (19) of
the multidetector noise-PSD Sn generalizes to the harmonic
mean over all SFTs,

1

Sn
≡ 1

NSFT

X
α

1

Sαn
; ð20Þ

where α is an index enumerating all SFTs (over all
detectors), and Sαn is the corresponding noise PSD esti-
mated for SFT α.

2Not to be confused with the observation time Tspan, denoting
the total time between the first sample of the data and the last.
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C. Semicoherent F -statistic methods

Semicoherent methods [16] divide the data into Nseg
segments each spanning a duration Tseg < Tspan. The
segments are analyzed coherently, and the per-segment
detection statistics are combined incoherently. Generally
this yields lower sensitivity for the same amount of data
analyzed than a fully-coherent search. However, the com-
putational cost for a fully-coherent search over the same
amount of data is often impossibly large, while the semi-
coherent cost can be tuned to be affordable and hence ends
up being more sensitive at fixed computing cost [16,17,42].
There are a number of different semicoherent methods

currently in use, such as PowerFlux, FrequencyHough,
SkyHough, TwoSpect, CrossCorr, Viterbi, Sideband,
loosely-coherent statistics and others (e.g., see [10] and
references therein). Many of these methods work on short
segments, typically of length Tseg ∼ 30 min, and directly
use the power in the frequency bins of short Fourier
transforms (SFTs) as the coherent base statistic.
In this work we focus exclusively on sensitivity estima-

tion of F -statistic-based methods, namely StackSlide-F
(e.g., see [17]) and Hough-F introduced in [33]. Here the
length of segments is only constrained by the available
computing cost, and segments will typically span
many hours to days, which yields better sensitivity, but
also requires higher computational cost. Therefore, many of
the computationally expensive semicoherent F -statistic
searches are run on the distributed Einstein@Home com-
puting platform [43].
Note that these methods, which use multiple SFTs for

every segment, are not to be confused with the (albeit
closely related) “classical” StackSlide and Hough methods,
which use single SFTs directly as coherent segments, as
described e.g., in [35].

1. StackSlide-F : Summing F -statistics

The StackSlide-F method uses the sum of the coherent
per-segment F̃ -statistic values in a given parameter-space
point λ as the detection statistic, namely

2F̂ ≡XNseg

l¼1

2F̃ l; ð21Þ

where F̃ l is the coherent F -statistic of Eq. (12) in segment
l. This statistic follows a χ2-distribution with 4Nseg d.o.f.
and noncentrality ρ2, i.e.,

Pð2F̂ jρ2Þ ¼ χ24Nseg
ð2F̂ ; ρ2Þ; ð22Þ

where the noncentrality ρ2 is identical to the expression for
the coherent squared SNR of Eq. (15), with Tdata referring
to the whole data set used, and Sn is the corresponding
noise floor. However, the noncentrality in the semicoherent

case cannot be considered a “signal to noise ratio,” due to
the larger Nseg-dependent d.o.f. of the χ2 distribution
compared to Eq. (13), which increases the false-alarm
level at fixed threshold and reduces the “effective” semi-
coherent dSNR to dSNR2 ¼ ρ2=

ffiffiffiffiffiffiffiffiffi
Nseg

p
(e.g., see [Eq. (14)]

in [44]).
The expectation and variance for 2F̂ are

E½2F � ¼ 4Nseg þ ρ2; var½2F � ¼ 8Nseg þ 4ρ2: ð23Þ

We note that StackSlide-F searches often quote the average
F over segments instead of the sum F̂ , i.e.,

F ≡ 1

Nseg
F̂ : ð24Þ

2. Hough-F : Summing threshold crossings

The Hough-F method [33] sets a threshold F̃ th on the
per-segment coherent F̃ -statistics and uses the number of
threshold-crossings over segments as the detection statistic,
the so-called Hough number count nc, i.e.,

nc ≡
XNseg

l¼1

ΘðF̃ l − F̃ thÞ; ð25Þ

where ΘðxÞ is the Heaviside step function.

D. Mismatch and template banks

In wide-parameter-space searches the unknown signal
parameters λ ∈ P are assumed to fall somewhere within a
given search space P. In this case one needs to compute a
statistic (such as those defined in the previous sections)
over a whole “bank” of templates T ≡ fλigNi¼1. This
template bank has to be chosen in such a way that any
putative signal λs ∈ Pwould suffer only an acceptable level
of loss of SNR. This can be quantified in terms of the so-
calledmismatch μ, defined as the relative loss of ρ2ðλs; λÞ in
a template λ with respect to the perfect-match ρ2ðλs; λsÞ ¼
ρ20 [of Eq. (15)], namely

μðλs; λÞ≡ ρ2ðλs; λsÞ − ρ2ðλs; λÞ
ρ2ðλs; λsÞ

: ð26Þ

We can therefore express the “effective” noncentrality
parameter ρ2eff in a template point λ in the F -statistic
χ2-distribution of Eqs. (13), (22) as

ρ2eff ≡ ρ2ðλs; λÞ ¼ ð1 − μÞρ20: ð27Þ

E. Sensitivity depth

The F -statistic noncentrality parameter ρ2 depends on
signal amplitude h0 and overall noise floor Sn [cf. Eq. (20)]
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only through the combination h0=
ffiffiffiffiffi
Sn

p
, as seen in Eq. (15).

The sensitivity of a search is therefore most naturally
characterized in terms of the so-called sensitivity depth
[45], defined as

D≡
ffiffiffiffiffi
Sn

p
h0

; ð28Þ

in terms of the overall noise PSD Sn defined as the
harmonic mean over all SFTs used in the search, see
Eq. (20).
A particular choice of search parameters (Nseg, Tdata,

template bank) in general yields a frequency-dependent
upper limit h0ðfÞ, due to the frequency-dependent noise
floor SnðfÞ. However, for fixed search parameters this
will correspond to a constant sensitivity depth D, which is
therefore often a more practical and natural way to
characterize the performance of a search, independently
of the noise floor.

III. SENSITIVITY ESTIMATE

As discussed in more detail in the Introduction, by
sensitivity we mean the (measured or expected) upper limit
on h0 for a given search (or equivalently, the sensitivity
depthD ¼ ffiffiffiffiffi

Sn
p

=h0), which can either refer to the frequent-
ist or Bayesian upper limit.

A. Frequentist upper limits

The frequentist upper limit is defined as the weakest
signal amplitude h0 that can be detected at a given detection
probability pdet

3 (typically chosen as 90% or 95%) above a
threshold dth on a statistic dðxÞ. The threshold can be
chosen as the loudest candidate obtained in the search, or it
can be set corresponding to a desired false-alarm level pfa
(or p-value), defined as

pfaðdthÞ≡ Pðd > dthjh0 ¼ 0Þ; ð29Þ

which can be inverted to yield dth ¼ dthðpfaÞ. The detection
probability for signals of amplitude h0 is

pdetðdth; h0Þ≡ Pðd > dthjh0Þ; ð30Þ

which can be inverted to yield the upper limit h0ðdth; pdetÞ.
We can write pfaðdthÞ ¼ pdetðdth; h0 ¼ 0Þ, and so we can

express both in terms of the general threshold-crossing
probability as

Pðd > dthjh0Þ ¼
Z

∞

dth

Pðdjh0Þdd: ð31Þ

B. Approximating wide-parameter-space statistics

As discussed in Sec. II D, a wide parameter-space search
for unknown signals λ ∈ P normally proceeds by comput-
ing a (single-template) statistic over a bank of templates
T ≡ fλigNi¼1 covering the parameter space P. This results in
a corresponding set of (single-template) statistic values
fd1ðx; λiÞg, which need to be combined to form the overall
wide-parameter-space statistic dðxÞ. This would naturally
be obtained via marginalization (i.e., integrating the like-
lihood over P), but in practice is mostly done by maxi-
mizing the single-template statistic over T, i.e.,

dðxÞ≡ d�ðxÞ≡max
λi∈T

d1ðx; λiÞ: ð32Þ

1. Noise case

For the pure noise case of Eq. (29), it is difficult to
determine a reliable expression for Pðd�jh0 ¼ 0Þ, even if
the single-template statistic Pðd1jh0 ¼ 0Þ follows a known
distribution (such as for the F -based statistics discussed in
Sec. II). The reason for this difficulty lies in the correlations
that generally exist between “nearby” templates in λi ∈ T .
If all N templates were strictly uncorrelated, one could

use the well-known expression Eq. (D1) [1,46] for the
distribution of the maximum. In this case one can also
relate the single-trial p-value p1

fa ≈ pfa=N to the wide-
parameter-space p-value pfa (for p1

fa ≪ 1).
Although it is a common assumption in the literature,

template correlations do not simply modify the “effective”
number of independent templates to use in Eq. (D1), but
they generally also affect the functional form of the
underlying distribution for the maximum d�, as illustrated
in Appendix D with a simple toy model.
In this work we assume that the upper limit refers to a

known detection threshold in Eq. (30). This can be obtained
either from (i) the loudest observed candidate (the most
common situation in real searches), or from (ii) setting a
single-template p-value p1

fa and inverting the known single-
template distribution Eq. (29), or from (iii) a numerically
obtained relation between pfa and the threshold dth, e.g., via
Monte-Carlo simulation.

2. Signal case

We assume that the highest value of d1 will be realized
near the signal location, i.e.,

d�ðxÞ ≈ d1ðx; λ�Þ; ð33Þ

where λ� is the “closest” template ∈ T to the signal location
λs, defined in terms of the mismatch Eq. (26). This template
yields the highest effective noncentrality parameter over the
template bank, namely

ρ2eff ≡ ρ2ðλs; λ�Þ ¼ ð1 − μÞρ20ðλsÞ: ð34Þ3or equivalently, false-dismissal probability pfd ¼ 1 − pdet
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This assumption turns out to be valid as long as the
p-value pfa is low (typically pfa ≲ 1%) and the signals
have relatively high detection probability (typically pdet ∼
90% or 95%). However, in Sec. V we also encounter
deviations from the predictions that can be traced to
violations of this assumption.

C. StackSlide-F sensitivity

We first consider a semi-coherent StackSlide-F search
using the summed F̂ -statistic of Eq. (21), i.e., d1ðx; λÞ ¼
2F̂ ðx; λÞ. This case also includes fully coherent F -statistic
searches, which simply correspond to the special case
Nseg ¼ 1.
We see from Eq. (31) that in order to estimate the

sensitivity, we need to knowPð2F̂ jh0Þ. This can be obtained
via marginalization (at fixed h0) of the known distribution
Pð2F̂ jρ2Þ of Eq. (22), combined with the assumption
Eq. (34) that the highest statistic value will occur in the
“closest” template, with mismatch distribution PðμÞ:

Pð2F̂ jh0Þ ¼
Z

Pð2F̂ ; θ; μjh0Þd4θdμ

¼
Z

Pð2F̂ jh0; θ; μÞPðθÞPðμÞd4θdμ

¼
Z

Pð2F̂ jρ2effÞPðθÞPðμÞd4θdμ; ð35Þ

where ρ2effðh0; θ; μÞ ¼ ρ20ðh0; θÞð1 − μÞ in terms of the
perfect-match noncentrality ρ20 defined in Eq. (15), and in
the last step we used the fact that the distribution for 2F̂ is
fully specified in terms of the noncentrality parameter ρ2 of
the χ2-distribution with 4Nseg d.o.f., as given in Eq. (22).
Equation (35) requires five-dimensional integration for

each sensitivity estimation, which would be slow and
cumbersome. One of the key insights in [1] was to notice
that the perfect-match SNR ρ0 of Eq. (15) depends on the
four parameters θ only through the scalar R2ðθÞ, and we can
therefore use a reparametrizationZ

θðR2Þ
PðθÞd4θ ¼ PðR2ÞdR2; ð36Þ

where θðR2Þ denotes the subspace of θ values yielding a
particular R2 from Eq. (C1).
The one-dimensional distribution PðR2Þ can be obtained

by Monte-Carlo sampling over the priors of sky-position n̂
(typically either isotropically over the whole sky, or a single
sky-position in case of a directed search) and polarization
angles cos ι (uniform in ½−1; 1�) and ψ (uniform in
½−π=4; π=4�). The resulting values of R2ðθÞ are histo-
grammed and used as an approximation for PðR2Þ, which
can be reused for repeated sensitivity estimations with the
same θ-priors. We can thus rewrite Eq. (35) as

Pð2F̂ jh0Þ ¼
Z

Pð2F̂ jρ2effÞPðR2ÞPðμÞdR2dμ; ð37Þ

with

Pð2F̂ jρ2effÞ ¼ χ24Nseg
ð2F̂ ; ρ2effÞ; ð38Þ

ρ2effðh0; R2; μÞ ¼ 4

25

h20
Sn

TdataR2ð1 − μÞ: ð39Þ

The mismatch distribution PðμÞ for any given search
can be obtained via injection-recovery Monte-Carlo sim-
ulation, where signals are repeatedly generated (without
noise) and searched for over the template bank, obtaining
the corresponding mismatch μ for each injection. This
is a common step in validating a search and template-
bank setup. Alternatively, for some search methods pre-
computed estimates for the mismatch distributions exist as
a function of the template-bank parameters, e.g., for the
WEAVE search code [47].
Inserting Eq. (37) into the detection probability of

Eq. (31), we obtain

pdetð2F̂ th;h0Þ¼
Z

pdetð2F̂ th;ρ
2
effÞPðR2ÞPðμÞdR2dμ; ð40Þ

where

pdetð2F̂ th; ρ
2
effÞ≡

Z
∞

2F̂ th

χ24Nseg
ð2F̂ ; ρ2effÞd2F̂ : ð41Þ

Equation (40) can be easily and efficiently computed
numerically, and simple inversion (via 1-D root-finding)
yields the sensitivity (i.e., upper limit) h0 for given
detection probability pdet and threshold 2F̂ th.

D. Multistage StackSlide-F sensitivity

The sensitivity estimate for a single StackSlide-F search
can be generalized to hierarchical multistage searches,
where threshold-crossing candidates of one search stage
are followed up by deeper subsequent searches in order to
increase the overall sensitivity (e.g., see [16,26,42,48,49]).
We denote the n stages with an index i ¼ 1…n. Each stage

i is characterized by the number NðiÞ
seg of segments, the

amount of data TðiÞ
data, the noise PSD SðiÞn , a mismatch

distribution PðμðiÞÞ, and a threshold 2F̂ ðiÞ
th (corresponding

to a false-alarm level pðiÞ
fa at that stage).

The initial wide-parameter-space search (stage i ¼ 1)

yields candidates that cross the threshold 2F ð1Þ
th in certain

templates fλg. The next stage follows up these candidates
with a more sensitive search, which can be achieved by
reducing the mismatch μðiÞ (choosing a finer template bank
grid), or by increasing the coherent segment length
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(and reducing the number of segmentsNðiÞ
seg). Often the final

stage i ¼ n in such a follow-up hierarchy would be fully

coherent, i.e., NðnÞ
seg ¼ 1.

In order for any given candidate (which can be either due
to noise or a signal) to cross the final threshold 2F ðnÞ, it has
to cross all previous thresholds as well, in other words
Eq. (29), (30) now generalize to

pðtotÞ
det ðh0Þ ¼ Pðf2F̂ ðiÞ > 2F̂ ðiÞ

th gni¼1jh0Þ: ð42Þ

In order to make progress at this point we need to assume
that the threshold-crossing probabilities in different stages
are independent of each other, so for j ≠ i we assume

Pð2F̂ ðiÞ > 2F̂ ðiÞ
th jρ2;2F̂ ðjÞ> 2F̂ ðjÞ

th Þ¼Pð2F̂ ðiÞ > 2F̂ ðiÞ
th jρ2Þ;

ð43Þ

which would be exactly true if the different stages used
different data (see also [42]). In the case where the same
data is used in different stages, this approximation corre-
sponds to an uninformative approach, in the sense that
we do not know how to quantify and take into account the
correlations between the statistics in different stages. We
proceed without using this potential information, which
could in principle be used to improve the estimate. It is not
clear if and how much of an overall bias this approximation
would introduce. A detailed study of this question is beyond
the scope of this work and will be left for future study.
Using the assumption of independent stages we write

pðtotÞ
det ðh0Þ ¼

Z Yn
i¼1

pðiÞ
detð2F̂ ðiÞ

th ; h0; R
2ÞPðR2ÞdR2; ð44Þ

pðtotÞ
fa ¼

Yn
i¼1

pðiÞ
fa ð2F̂ ðiÞ

th Þ; ð45Þ

where now the R2-marginalization needs to happen over all
stages combined, as the signal parameters R2ðθÞ are
intrinsic to the signal and hence independent of the stage.
On the other hand, the mismatch distribution PðμðiÞÞ
depends on the stage, as each stage will in general use a
different template grid, and so we have

pðiÞ
detð2F̂ ðiÞ

th ; h0; R
2Þ ¼

Z
1

0

pðiÞ
detð2F̂ ðiÞ

th ; ρ
2ðiÞ
eff ÞPðμðiÞÞdμðiÞ;

ð46Þ

where pdetð2F̂ th; ρ
2
effÞ is given by Eq. (41) using the

respective per-stage values.
Equation (44) can easily be solved numerically and

inverted for the sensitivity h0 at given pðtotÞ
det and a set of

thresholds f2F̂ ðiÞ
th g.

Note that in practice (e.g., [49]) onewouldwant to choose
the thresholds in such a way that a signal that passed the
1st-stage threshold 2F̂ ð1Þ

th should have a very low probability
of being discarded by subsequent stages, in other words

pði>1Þ
det ≈ 1, and therefore pðtotÞ

det ðh0Þ ≈ pð1Þ
detð2F̂ ð1Þ

th ; h0Þ.
Therefore subsequent stages mostly serve to reduce the

total false-alarm level pðtotÞ
fa , allowing one to increase the

first-stage pð1Þ
fa by lowering the corresponding threshold

F̂ ð1Þ, resulting in an overall increased sensitivity.

E. Hough-F sensitivity

Here we apply the sensitivity-estimation framework to
the Hough-F statistic introduced in Sec. II C 2. We define
the per-segment threshold-crossing probability as

pl
thðh0; R2Þ≡ Pð2F̃ l > 2F̃ thjh0; R2Þ

¼ pl
detð2F̃ th; h0; R2Þ

¼
Z

1

0

pdetð2F̃ th; ρ
2
eff;lÞPðμ̃Þdμ̃; ð47Þ

where the per-segment effective SNR ρeff;l is given by
replacing Tdata and Sn in Eq. (39) with the per-segment
quantities Tl

data and Sln . For the per-segment mismatch μ̃l

we assume that the distribution Pðμ̃Þ is the same for all
segments.
The key approximation for the estimate is that for a given

signal fh0; R2ðθÞg, the coherent per-segment F̃ l-statistic
has the same threshold-crossing probability pth in every
segment l, i.e., pl

th ¼ pth for all l ¼ 1…Nseg. This allows
us to write the probability for the Hough number count nc
of Eq. (25) for a fixed signal fh0; R2g as a binomial
distribution:

Pðncjh0; R2Þ ¼
�
Nseg

nc

�
pnc
th ð1 − pthÞNseg−nc ; ð48Þ

with pthðh0; R2Þ given by Eq. (47). For a given threshold
nc;th on the number count the detection probability is

pdetðnc;th; h0; R2Þ ¼
XNseg

nc¼nc;th

Pðncjh0; R2Þ: ð49Þ

Marginalization over R2 yields the detection probability at
fixed amplitude h0:

pdetðnc;th; h0Þ ¼
Z

pdetðnc;th; h0; R2ÞPðR2ÞdR2: ð50Þ

We can numerically solve this for h0 at given pdet
and number-count threshold nc;th yielding the desired
sensitivity estimate.
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F. Bayesian Upper Limits

Bayesian upper limits are conceptually quite different
[50] from the frequentist ones discussed up to this point. A
Bayesian upper limit hC0 of given confidence (or “credible
level”) C corresponds to the interval ½0; hC0 � that contains
the true value of h0 with probabilityC. We can compute this
from the posterior distribution Pðh0jxÞ for the signal-
amplitude h0 given data x, namely

C ¼ Pðh0 < hC0 jxÞ ¼
Z

hC
0

0

Pðh0jxÞdh0: ð51Þ

The Bayesian targeted searches (here referred to as
BayesPE) for known pulsars (see Table V and Sec. A 5)
compute the posterior Pðh0jxÞ directly from the data x,
using a time-domain method introduced in [51].
Here we focus instead on F -statistic-based searches over

a template bank. As discussed in [50], to a very good
approximation we can compute the posterior from the
loudest candidate 2F �ðxÞ found in such a search, using this
as a proxy for the data x, i.e.,

Pðh0jxÞ ≈ Pðh0j2F �ðxÞÞ ð52Þ

∝ Pð2F �ðxÞjh0ÞPðh0Þ; ð53Þ

where we used Bayes’ theorem. The proportionality
constant is determined by the normalization conditionR
Pðh0jxÞdh0 ¼ 1.
We have already derived the expression for Pð2F jh0Þ in

Eq. (37). Hence for any choice of prior Pðh0Þ we can now
compute the Bayesian upper limit hC0 ð2F �Þ for given
loudest candidate 2F � by inverting Eq. (51).
It is common for Bayesian upper limits on the amplitude

to choose a uniform prior in h0 (e.g., see [52]), which has
the benefit of simplicity, and also puts relatively more
weight on larger values of h0 than might be physically
expected (weaker signals should be more likely than
stronger ones). This prior therefore results in larger, i.e.,
“more conservative,” upper limits than a more physical
prior would.
Note that the Bayesian ULs of targeted searches for

known pulsars (see Sec. A 5) compute the h0-posterior
directly from the data rather than from an F -statistic.
Therefore we cannot use a known threshold or loudest
candidate 2F � for inverting Eq. (51) and hence we cannot
apply the above framework directly. We instead compute an
expected depth by calculating estimates for 2F �-values
drawn randomly from the central χ24-distribution and
averaging the results.

G. Numerical implementation

The expressions for the various different sensitivity
estimates of the previous sections have been implemented

in GNU OCTAVE [53], and are available as part of the
OctApps [54] data-analysis package for continuous
gravitational waves.
The function to estimate (and cache for later reuse)

the distribution PðR2Þ of Eq. (36) is implemented in
SqrSNRGeometricFactorHist().
The sensitivity-depth estimate for StackSlide-F -searches is

implemented in SensitivityDepthStackSlide(),
both for the single-stage case of Eq. (40) and for
the general multistage case of Eq. (44). For single-
stage StackSlide-F there is also a function
DetectionProbabilityStackSlide() estimat-
ing the detection probability for a given signal depth D
and detection threshold.
The Hough-F sensitivity estimate of Eq. (50) is imple-

mented in SensitivityDepthHoughF(). An earlier
version of this function had been used for the theoretical
sensitivity comparison in [36] (Sec. V B, and also [55]),
where it was found to agree within an rms error of 7% with
the measured upper limits.
The Bayesian F -based upper limit expression Eq. (51) is

implemented in SensitivityDepthBayesian().
Typical input parameters are the number of segments

Nseg, the total amount of data Tdata, the mismatch distri-
bution PðμÞ, name of detectors used, single-template false-
alarm level p1

fa (or alternatively, the F -statistic threshold),
and the confidence level pdet. The default prior on sky-
position is isotropic (suitable for an all-sky search), but this
can be restricted to any sky-region (suitable for directed or
targeted searches).
The typical runtime on a ThinkPad P51 with 3 GHz Intel

Xeon E3 for a sensitivity estimate including computing
PðR2Þ (which is the most expensive part) is about 25 sec-
onds per detector. When reusing the same θ-prior on
subsequent calls, a cached PðR2Þ is used and the runtime
is reduced to about 10 seconds total, independently of the
number of detectors used.

IV. DETERMINING FREQUENTIST
UPPER LIMITS

In order to determine the frequentist upper limit (UL) on
the signal amplitude h0 defined in Eq. (30), one needs to
quantify the probability that a putative signal with fixed
amplitude h0 (and all other signal parameters drawn
randomly from their priors) would produce a statistic value
exceeding the threshold (corresponding to a certain false-
alarm level, or p-value). The upper limit on h0 is then
defined as the value hpdet

0 for which the detection probability
is exactly pdet, typically chosen as 90% or 95%, which is
often referred to as the confidence level of the UL.
Note that here and in the following it will often be

convenient to use the sensitivity depth D≡ ffiffiffiffiffi
Sn

p
=h0 intro-

duced in Sec. II E instead of the amplitude h0. We denote
Dpdet as the sensitivity depth corresponding to the upper
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limit hpdet
0 (note that this corresponds to a lower limit

on depth).
The UL procedure is often implemented via a Monte-

Carlo injection-and-recovery method: a signal of fixed
amplitude h0 ¼

ffiffiffiffiffi
Sn

p
=D and randomly-drawn remaining

parameters is generated in software and added to the data
(either to real detector data or to simulated Gaussian noise).
This step is referred to as a signal injection. A search is then
performed on this data, and the loudest statistic value F � is
recorded and compared against the detection threshold F th.
Repeating this injection and recovery step many times and
recording the fraction of times the threshold is exceeded
yields an approximation for pdetðF th;DÞ. By repeating this
procedure over differentD values and interpolating one can
findDpdet corresponding to the desired detection probability
(and therefore also hpdet

0 ).
We distinguish in the following between measured and

simulated upper limits:
(i) Measured ULs refer to the published UL results

obtained on real detector data. These typically use an
identical search procedure for the ULs as in the
actual search, often using the loudest candidate (over
some range of the parameter space) from the original
search as the corresponding detection threshold for
setting the UL. The injections are done in real
detector data, and normally the various vetoes,
data-cleaning and follow-up procedures of the origi-
nal search are also applied in the UL procedure.

(ii) Simulated ULs are used in this work to verify the
accuracy of the sensitivity estimates. They are
obtained using injections in simulated Gaussian
noise, and searching only a small box in parameter
space around the injected signal locations. The box
size is empirically determined to ensure that the
loudest signal candidates are always recovered
within the box. Only the original search statistic
is used in the search without any further vetoes or
cleaning.

A key difference between (most) published (measured)
ULs and our simulated ULs concerns the method of
interpolation used to obtain Dpdet : in practice this is often
obtained via a sigmoid pdet-interpolation approach
(Sec. IVA), while we use (and advocate for) a (piecewise)
linear threshold interpolation (Sec. IV B) instead.

A. Sigmoid pdet interpolation

In this approach one fixes the detection threshold F th
and determines the corresponding pdet for any given fixed-
D injection set. The corresponding functional form of
pdetðDÞ has a qualitative “sigmoid” shape as illustrated in
Fig. 1. An actual sigmoid function of the form

yðDÞ ¼ 1

1þ e−kðD−D0Þ ; ð54Þ

is then fit to the data by adjusting the free parameters k and
D0, and from this one can obtain an interpolation value
for Dpdet.
One problem with this method is that the actual func-

tional form of pdetðDÞ is not analytically known, and does
not actually seem to be well described by the sigmoid of
Eq. (54), as seen in Fig. 1. In this particular example the
true value at pdet ¼ 90% just so happens to lie very close to
the sigmoid fit, but the deviation is quite noticeable at
pdet ¼ 95% (see the zoomed inset in Fig. 1).
Another problem with this method is that the range of

depths required to sample the relation pdetðDÞ often needs
to be quite wide, due to initial uncertainties about where the
UL value would be found, which can compound the above-
mentioned sigmoid-fitting problem. Furthermore, the injec-
tion-recovery step can be quite computationally expensive,
limiting the number of trials and further increasing the
statistical uncertainty on the pdet measurements.
Both of these problems can be mitigated to some extent

by using the sensitivity-estimation method described in this
paper (Sec. III) to obtain a fairly accurate initial guess about
the expected UL value, and then sample only in a small
region around this estimate, in which case even a linear fit
would probably yield good accuracy.

B. Piecewise-linear threshold interpolation

An alternative approach is used in this work to obtain the
simulated ULs: for each set of fixed-D injections and
recoveries, we determine the threshold on the statistic
required in order to obtain the desired detection fraction
pdet. This is illustrated in Fig. 2, which shows a histogram
of the observed loudest 2F candidates obtained in each of
N ¼ 104 injection and recovery runs at a fixed signal depth

FIG. 1. Detection probability pdet versus sensitivity depth D
for the S6-CasA-StackSlide-F search (cf. Table II and
Sec. A 3), using a detection threshold of 2F th ¼ 8. The squares
indicate the results from a simulation in Gaussian noise, while the
solid line gives the best-fit sigmoid of Eq. (54).
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ofD ¼ 86 Hz−1=2, using the S6-CasA-StackSlide-F
search setup (cf. Sec. A 3). By integrating the probability
density from 2F ¼ 0 until we reach the desired value
1 − pdet, we find the detection threshold 2F th at this signal
depth D. Repeating this procedure at different depths there-
fore generates a sampling of the function Dpdetð2F thÞ,
illustrated in Fig. 3. These points can be interpolated to
the required detection threshold, which yields the desired
upper-limit depth Dpdet .
We see in Fig. 3 that this function appears to be less

“curvy” in the region of interest compared to pdetðDÞ

shown in Fig. 1. This allows for easier fitting and
interpolation, e.g., a linear or quadratic fit should work
quite well. In fact, here we have simply used piecewise-
linear interpolation, which is sufficient given our relatively
fine sampling of signal depths.
As already mentioned in the previous section, using the

sensitivity estimate of Sec. III one can determine the most
relevant region of interest beforehand and focus the Monte-
Carlo injection-recoveries on this region, which will help
ensure that any simple interpolation method will work well.
Alternatively, for either the pdetðDÞ- or the Dð2F thÞ-

sampling approach, one could also use an iterative root-
finding method to approach the desired pdet or 2F th,
respectively.

V. COMPARING ESTIMATES AGAINST
SIMULATED UPPER LIMITS

In this section we compare the sensitivity estimates from
Sec. III against simulated ULs for two example cases (an
all-sky search and a directed search), in order to quantify
the accuracy and reliability of the estimation method and
implementation. This comparison shows generally good
agreement, and also some instructive deviations.
Both examples arewide-parameter-space searches using a

template bank over the unknown signal parameter dimen-
sions (namely, fsky; frequency and spindowng in the all-sky
case, and ffrequency and first and second derivativesg in the
directed-search case).
The simulated-UL procedure (see Sec. IV) performs a

template-bank search over a box in parameter space
containing the injected signal (at a randomized location)
in Gaussian noise. On the other hand, the sensitivity
estimate [cf. Eq. (40)] uses the mismatch distribution
PðμÞ obtained for this template bank via injection-recovery
box searches on signals without noise. We refer to this in
the following as the box search.
It will be instructive to also consider the (unrealistic) case

of a perfectly-matched search, using only a single template
that matches the signal parameters perfectly for every
injection, corresponding to zero mismatch μ ¼ 0 in
Eq. (40). We refer to this as the zero-mismatch search.

A. Example: S6-AllSky-StackSlide-F search

In this example we use the setup of the all-sky search
S6-AllSky-StackSlide-F [56], which was using
the GCT implementation [57] of the StackSlide-F statistic
and was performed on the volunteer-computing project
Einstein@Home [43], see Table I and Sec. A 2 for more
details.
Figure 4 shows the comparison between simulated ULs

and estimated sensitivity depths D90% versus threshold
2F th, for the box search (squares and solid line), as well as
for the zero-mismatch search (crosses and dashed line). We
see excellent agreement between estimated and simulated

FIG. 2. Histogram of recovered loudest 2F values for repeated
searches on signal injections at fixed sensitivity depth D ¼
86 Hz−1=2 (with all other signal parameters randomized), using
the search setup of the S6-CasA-StackSlide-F directed
search. The vertical line indicates the resulting threshold value
2F th ¼ 7.995 corresponding to pdet ¼ 90% for this injection set.

FIG. 3. Sensitivity depth versus detection threshold. Boxes and
solid lines indicate the piecewise-linear interpolation through the
obtained thresholds at different depths of an injection-recovery
simulation, using the S6-CasA-StackSlide-F search setup
([22] and Sec. A 3).
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ULs for the zero-mismatch search. We also find very good
agreement for the box-search at higher thresholds, while
we see an increasing divergence D → ∞ of the simulated
ULs at decreasing thresholds, which is not captured by the
estimate.
This discrepancy can be understood as the effect of noise

fluctuations, which can enter in two different ways (that are
not completely independent of each other):

(i) For decreasing thresholds the corresponding false-
alarm level Eq. (29) grows, as it becomes increasingly
likely that a “pure noise” candidate (i.e., unrelated
to a signal) crosses the threshold. In the extreme
case where pfa approaches pdet, the frequentist upper
limit would tend to h0 → 0, corresponding to
D → ∞.4 This is illustrated in Fig. 5 showing the
distribution of the loudest 2F in a box search on pure
Gaussian noise, which can be compared to the
diverging depth of the simulated box search around
2F th ≲ 6 in Fig. 4.

TABLE I. All-sky searches: estimated Dest and measured sensitivity depth Dmeas (median and standard deviation, see Sec. VI A 1).
The columns labeled f and _f give the frequency and spindown ranges covered by each search. Sensitivity depths in italics refer to 90%-
confidence upper limits, while normal font refers to 95%-confidence. See Appendix A 2 for further details on the individual results.

Data Search method f [Hz] _f [nHz s−1] Dest [Hz−1=2] Dmed
meas [Hz−1=2] σ̂Dmeas

[Hz−1=2] Ref., Sec.

S2 Hough [200, 400] [−1.1, 0] … 11.3 1.5 [58], A 2 a
S2 F [160, 728.8] 0 6.5 5.5 1.6 [59], A 2 b
S4 StackSlide [50, 1000] [−10, 0] … 10.5 1.1 [35], A 2 c
S4 Hough [50, 1000] [−2.2, 0] … 13.4 0.7 [35], A 2 c
S4 PowerFlux [50, 1000] [−10, 0] … f6.1; 21.3ga f0.7; 2.3g [35], A 2 c
S4 F þ Coinc [50, 1500] [−9.5, 1] … 8.5 0.5 [60], A 2 d
earlyS5 PowerFlux [50, 1100] [−5, 0] … f16.1; 47.9ga f2.4; 5.9g [61], A 2 e
earlyS5 F þ Coinc [50, 1500] [−12.7, 1.3] … 10.9 0.2 [62], A 2 f
S5 PowerFlux [50, 800] [−6, 0] … f25.7; 71.3ga f0.7; 2.2g [63], A 2 g
S5 Hough-F [50, 1190] [−2, 0.1] 30.5 30.0 1.4 [36], A 2 h
S5 Hough [50, 1000] [−0.9, 0] … 28.1 0.6 [64], A 2 i
S5 StackSlide-F [1249.7, 1499.7] [−2.9, 0.6] 27.0 30.7 … [65], A 2 j
VSR1 FTD þ Coinc [100, 1000] [−16, 0] … 22.6 6.0 [66], A 2 k
VSR2,4 FreqHoughþ FUP [20, 128] [−0.1, 0.015] … 35.5 11.1 [67], A 2 l
S6 StackSlide-F [50, 510] [−2.7, 0.3] 34.4 37.0 … [56], A 2 m
S6 StackSlide-F þ FUP [50, 510] [−2.7, 0.3] 38.3 46.9 … [49], A 2 n
S6 PowerFlux [100, 1500] [−11.8, 10] … f17.9; 52.8ga f1.4; 3.4g [68], A 2 o
O1 StackSlide-F [20, 100] [−2.7, 0.3] 46.4 48.7 … [26], A 2 p
O1 PowerFlux [20, 200] [−10, 1] … 28.9 2.2 [26], A 2 q
O1 PowerFlux [20, 475] [−10, 1] … f19.9; 54.6ga f1.3; 3.2g [25], A 2 q
O1 SkyHough [20, 475] [−10, 1] … 22.4 1.1 [25], A 2 q
O1 FTD þ Coinc [20, 475] [−10, 1] … 23.7 2.1 [25], A 2 q
O1 FreqHough [20, 475] [−10, 1] … 21.4 10.6 [25], A 2 q
O1 PowerFlux [475, 2000] [−10, 1] … f18.6; 50.9ga f1.3; 3.4g [69], A 2 q
O1 SkyHough [475, 2000] [−10, 1] … 16.8 3.0 [69], A 2 q
O1 FTD þ Coinc [475, 2000] [−10, 1] … 10.9 0.6 [69], A 2 q

aSensitivity depths corresponding to worst linear and circular polarization, respectively, cf. Sec. A 1.

FIG. 4. Comparison of estimated and simulated sensitivity
depth D90% as a function of threshold 2F th for the S6-
AllSky-StackSlide-F search [56]. The solid line shows
the UL estimate for the box search, and the squares (□) show the
corresponding simulated ULs. The dashed line indicates the
estimate for the zero-mismatch case, and the crosses (×) are for
the simulated zero-mismatch ULs. In the box search we observe
an increasing divergence at decreasing thresholds due to noise
effects, discussed in Sec. VA.

4Bayesian upper limits do not have this property, e.g., see [50]
for more detailed analysis of these different types of upper limits.
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We note that the procedures used for measured
ULs in CW searches typically make sure that the
detection threshold has a very small false-alarm level,
and we thus expect this effect to have a negligible
impact in cases of practical interest.

(ii) The sensitivity estimate for wide-parameter-space
searches makes the assumption that the loudest
candidate 2F � is always found in the closest
template to the signal (i.e., with the smallest mis-
match μ), as discussed in Sec. III B. However, while
the closest template has the highest expected statistic
value (by definition), other templates can actually
produce the loudest statistic value in any given noise
realization. How likely that is to happen depends on
the details of the parameter space, the template bank
and the threshold. Generally it is more likely at
lower thresholds, as more templates further away

from the signal are given a chance to cross the
threshold (despite their larger mismatch).
The true distribution Pð2F �jh0Þ of a box search

will therefore be shifted to higher values compared
to the approximate distribution used in Eq. (37). This
implies that an actual search can have a higher
detection probability than predicted by the estimate
(corresponding to a larger sensitivity depth).

Both of these effects contribute to different extents to the
box-search discrepancy in Fig. 4 at lower thresholds:
The sampling distribution for 2F � in the presence of

relatively strong signals at D ¼ 20 Hz−1=2 is shown in the
left plot of Fig. 6, both for a simulated box search as well
for the assumed distribution in the estimate. We see that
most of the loudest candidates obtained in the simulation
are above 2F � > 9, and are therefore extremely unlikely to
be due to noise alone, as seen from Fig. 5. The difference
between the two distributions in the left plot of Fig. 6 is
therefore solely due to effect (ii). However, we see in Fig. 4
that the resulting discrepancy in the sensitivity estimate at
D ¼ 20 Hz−1=2 is still very small.
For weaker signals atD ¼ 46 Hz−1=2, we see in the right

plot of Fig. 6 that the corresponding distribution now
overlaps with the pure-noise distribution of Fig. 5. The
sensitivity depth therefore increasingly diverges for thresh-
olds in the range 2F th ∼ ½5.8; 6.1� due to the increasing
impact of effect (i).

B. Example: Multidirected O1-MD-StackSlide-F

In this example we use the search setup of the directed
search O1-MD-StackSlide-F [30] currently running
on Einstein@Home. This search consists of several
directed searches for different targets on the sky, including
Vela Jr. and Cas-A.

FIG. 5. Distribution of the loudest 2F for a box search on pure
Gaussian noise, using the S6-AllSky-StackSlide-F
search setup.

FIG. 6. Loudest 2F distribution for a box-search (using the S6-AllSky-StackSlide-F setup) with signals at a depth of
D ¼ 20 Hz−1=2 (left plot) andD ¼ 46 Hz−1=2 (right plot). The black histogram shows the assumed distribution for sensitivity estimation
in Eq. (37), and the lighter color shows the histogram obtained in a Monte-Carlo simulation with signals injected in Gaussian noise.
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The comparison between simulated and estimated UL
depths D90% for these two targets is shown in Fig. 7. We
see again very good agreement (relative deviations ≲3%)
in the zero-mismatch case. However, these deviations
are larger than in the all-sky case shown in Fig. 4. We
suspect that this is due to the different antenna-pattern
implementations of Eq. (B10) between the search
code and the estimation scripts: we see different signs
of the deviation for different sky positions (Vela Jr.
versus Cas-A), and the effect disappears when averaging
over the whole sky (as seen in Fig. 4). However, the
small size of the deviations did not warrant further
efforts to try to mitigate this.
For the box-search case we see good agreement at higher

thresholds, with again increasing deviations at lower
thresholds due to the noise effects discussed in the previous
all-sky example Sec. VA.

VI. COMPARING ESTIMATES AGAINST
MEASURED UPPER LIMITS

In this section we present a general overview of
measured sensitivity depths Dmeas derived from the pub-
lished upper limits of various past CW searches. For the
subset of searches where an F -statistic-based method was
used (and for Bayesian targeted ULs), we provide the
sensitivity estimate for comparison.
The results are summarized in Tables I–IV for the

different search categories (all-sky, directed and narrow-
band, binary, and targeted), and more details about each
search are found in Appendix A.

A. General remarks and caveats

1. Converting published h0 ULs into depths D

Some searches already provide their upper limits in the
form of a sensitivity depth Dpdet , but in most cases only the
amplitude upper-limits hpdet

0 are given. For these latter cases
we try to use a reasonable PSD estimate SnðfÞ for the data
used in the search in order to convert the quoted amplitude
upper limits into sensitivity depths according to Eq. (28).
This PSD estimate introduces a systematic uncertainty in
the converted depth values, as in most cases we do not have
access to the “original” PSD estimate used for the h0 UL
calculation.
In particular, even small differences in windowing or the

type of frequency averaging can results in large differences
in the PSD estimate near spectral disturbances. This can
translate into large differences in the resulting converted
depth values. In order to mitigate outliers due to such noise
artifacts we quote the median over the converted measured
depth values fDkg (where k either runs over multiple
frequencies, targets or detectors) and estimate the corre-
sponding standard deviation using the median absolute
deviation (MAD) [82], namely

Dmed ≡median½Dk�;
σ̂ ≡ 1.4826median½jDk −Dmedj�: ð55Þ

2. Comparing different searches by sensitivity depth D

We can see in the Tables I–IV that searches within the
same search category often show roughly comparable
sensitivity depths. At one end of the spectrum are the

FIG. 7. Comparison of estimated and simulated sensitivity
depth D90% as a function of the threshold 2F th for two targets
of the multidirected search setup O1-MD-StackSlide-F . The
solid lines show the UL estimate for a box search, while the
squares (□) show the corresponding simulated ULs. The dashed
lines indicate the estimate for the zero-mismatch case, and the
crosses (×) are for the simulated zero-mismatch ULs. The upper
group of curves are for the target Vela Jr., while the lower group
of curves are for Cas A.

FIG. 8. Estimated (–) and simulated (□) sensitivity depth
versus threshold 2F th for the S6-AllSky-StackSlide-F
(+FUP) search setup, illustrating the effect of the template-
maximization in the estimate (discussed in Sec. VA). The
triangles (Δ) and dashed lines show the measured upper-limit
depth Dmed

meas in the initial S6-AllSky-StackSlide-F search
[56], and the diamond (⋄) shows the corresponding result from
the follow-up (FUP) search [49] (threshold 2F th ¼ 6.1).
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fully-targeted searches, for which the parameter space (for
each pulsar) is a single point, and one can achieve the
maximal possible sensitivity for the available data, namely
D ∼Oð500 Hz−1=2Þ (see Table V). At the other end of the
spectrum lies the all-sky binary search with a sensitivity

depth of D ∼ 3 Hz−1=2 (see Table IV), which covers the
largest parameter space of any search to date.
One cannot directly compare searches on sensitivity depth

alone, even within the same search category. Other key
aspects of a search are the parameter-space volume covered,

TABLE IV. Binary searches: measured sensitivity depthDmeas (median and standard deviation, see Sec. VI A 1). All sensitivity depths
refer to 95%-confidence. See Appendix A 4 for further details on the individual results.

Science run Search method Target f [Hz] Dmed
meas [Hz−1=2] σ̂Dmeas

[Hz−1=2] Ref., Sec.

S2 F ScoX1 [464, 484],[604, 624] 4.1 0.1 [59], A 4 a

S5 Sideband ScoX1 [50, 550] 8.1 1.0 [76], A 4 b

S6,VSR2,3 TwoSpect AllSky [20, 520] 3.2 0.4 [28], A 4 c
S6,VSR2,3 TwoSpect ScoX1 [20, 57.25] 8.2 4.0 [28], A 4 c

S6 TwoSpect ScoX1 [40, 2040] 5.7 1.6 [77], A 4 d
S6 TwoSpect J1751 f435.5; 621.5; 870.5g � 1 9.4 1.2 [77], A 4 d

O1 Viterbi ScoX1 [60, 650] 7.6 1.0 [24], A 4 e
O1 CrossCorr ScoX1 [25, 2000] 24.0 2.0 [23], A 4 f
O1 Radiometer ScoX1 [25, 1726] 5.8 1.0 [75], A 4 g

TABLE II. Directed and narrow-band searches: estimated Dest and measured sensitivity depth Dmeas (median and standard deviation,
see Sec. VI A 1). The column labeled f gives the frequency range covered by each search (omitting _f and f̈ search ranges). Sensitivity
depths in italics refer to 90%-confidence upper limits, while normal font refers to 95%-confidence. See Appendix A 3 for further details
on the individual results.

Science run Search method Target f [Hz] Dest [Hz−1=2] Dmed
meas [Hz−1=2] σ̂Dmeas

[Hz−1=2] Ref., Sec.

earlyS5 F Crab 59.56� 0.006 221.3 223.1 … [70], A 3 a

S5 F CasA [100, 300] 35.9 35.5 0.8 [46], A 3 b
S5 StackSlide-F GalacticCenter [78, 496] 58.2 72.1 4.5 [71], A 3 c

VSR4 5-vector Vela 22.384� 0.02 … 100.5 … [72], A 3 d
VSR4 5-vector Crab 59.445� 0.02 … 90.1 … [72], A 3 d

S6 F NineYoung (Table III) [46, 2034] 37.8 37.7 0.3 [21], A 3 e
S6 StackSlide-F CasA [50, 1000] 79.6 72.9 0.4 [22], A 3 f
S6 LooselyCoherent OrionSpur [50, 1500] … f30.2; 85.7gb f2.3; 4.3g [73], A 3 g
S6 F NGC6544 [92.5, 675] 29.3 29.6 1.7 [74], A 3 h

O1 5-vector 11 pulsars <�0.1a … 111.6 12.2 [20], A 3 i
O1 Radiometer SN1987A [25, 1726] … 11.1 4.3 [75], A 4 g
O1 Radiometer GalacticCenter [25, 1726] … 7.7 2.9 [75], A 4 g

asearch band around twice the pulsar spin frequency.
bSensitivity depths corresponding to worst linear and circular polarization, respectively, cf. Sec. A 1.

TABLE III. S6-NineYoung-F search: estimated Dest and measured sensitivity depth Dmeas (median and standard deviation, see
Sec. VI A 1). for nine young supernova remnants [21]. All sensitivity depths refer to 95%-confidence. See Appendix A 3 e for further
details.

SN remnant G1.9 G18.9 G93.3 G111.7 G189.1 G266.2deep G266.2wide G291.0 G347.3 G350.1

Name DA 530 Cas A IC 443 Vela Jr. Vela Jr. MSH 11-62

Dest [Hz−1=2] 29.0 43.9 46.8 29.3 40.1 38.3 24.2 41.1 32.8 37.3
Dmed

meas [Hz−1=2] 28.3 44.4 49.6 31.5 39.2 40.8 26.1 44.0 32.1 36.1
σ̂Dmeas

[Hz−1=2] 0.8 1.3 1.5 0.9 1.2 1.0 0.7 1.2 0.8 1.1

Tdata [106 s] 1.2 3.1 2.8 1.1 2.3 1.9 0.7 2.2 1.4 1.9
2F th 58.0 56.3 55.6 55.6 55.3 53.7 52.8 56.6 54.1 57.6
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the total computing power used, and the robustness of the
search to deviations from the assumed signal- or noise-model.
Is it intuitively obvious that the more computing power

spent on a fixed parameter-space volume, the more sensi-
tive the search will tend to be, although the increase in
sensitivity is typically very weak, often of order the 10th-
14th root of the computing power [17].
It is also evident that the larger the parameter space

covered by a search, the less sensitivity depth can be
achieved due to the increased spending of computing power
on “breadth” rather than depth. Ultimately the most directly
relevant characteristic of a search would be its total
detection probability [29,30], which factors in both breadth
and depth as well as the underlying astrophysical prior on
signal amplitudes over the parameter space searched.

B. All-sky searches

Estimated and measured sensitivity depths for all-sky
searches are given in Table I, and further details about
individual searches can be found in Appendix A 2.
The mean relative error between measured and estimated

depths is 9%, while the median error is 7%.
One case of interest is the surprisingly large discrepancy

of ∼18% observed for the S6-AllSky-StackSlide-
FþFUP search, shown in Fig. 8, were we see a signifi-
cantly higher measured depth (Dmed

meas ¼ 46.9Hz−1=2) than
estimated (Dest ¼ 38.3Hz−1=2). This can be traced back to
the template-maximization approximation used in the
estimate, namely effect (ii) discussed in Sec. VA. The
low threshold used in the search (2F th ¼ 6.1) appears to be
at the cusp of becoming affected by pure-noise candidates
(effect (i) in Sec. VA), but this effect is still small and does
not account for the discrepancy. Furthermore, the upper
limit procedure used a multi-stage follow-up, which
ensures the final false-alarm level (p-value) is very small,
which rules out contamination from pure-noise candidates.

C. Directed and narrow-band searches

Estimated and measured sensitivity depths for directed
and narrow-band searches are given in Tables II and III, and
further details about individual searches can be found in
Appendix A 3.
The mean relative error between measured and estimated

depths is 5%, and the median error is 1%.
For the S6-NineYoung-F search for nine young

supernova remnants shown in Table III, the mean relative
error between measured and estimated depths is 4%
(median error 4%).
For two cases of interest we investigated more closely to

understand the origin of the observed deviation:
S5-GalacticCenter-StackSlide-F search [71]:

the reason for the relatively large deviation of 19% in this
case betweenDest ¼ 58.2 Hz−1=2 and Dmed

meas ¼ 72.1 Hz−1=2

can be understood by looking at the details of this search
setup: contrary to the assumed uniform averaging of
antenna-pattern functions over time (cf. Sec. III C, this
search setup was specifically optimized by choosing the
relatively short segments of Tseg ¼ 11.5 hours in such a
way as to maximize sensitivity, by selecting times of
maximal antenna-pattern sensitivity towards the particular
sky direction of the galactic center. This is described inmore
detail in [45], and is quoted there as yielding a sensitivity
improvement of about 20%, consistent with the observed
enhancement of measured sensitivity compared to our
estimate.
S6-CasA-StackSlide-F search [22]: the deviation

between Dest ¼ 79.6 Hz−1=2 versus Dmed
meas ¼ 72.9 Hz−1=2

does not seem very large per se, but is unusual for the
estimate typically does not tend to overestimate sensitivity
by that much. A detailed investigation led us to discover a
bug in the original upper-limit script used in [22], which
resulted in the injection-recovery procedure to sometimes
search the wrong box in parameter space, missing the

TABLE V. Targeted searches for known pulsars: estimated Dest and measured sensitivity depth Dmeas (with respectively, median and
standard deviation, see Sec. VI A 1). All sensitivity depths refer to 95%-confidence. See Appendix A 5 for further details on the
individual results.

Science run Search method Targets Dmed
est [Hz−1=2] σ̂Dest

[Hz−1=2] Dmed
meas [Hz−1=2] σ̂Dmeas

[Hz−1=2] Ref., Sec.

S1 F (worst-orientation) J1939þ 21 70.8 39.8 64.2 38.1 [32], A 5 a
S1 F J1939þ 21 110.4 66.7 101.8 61.8 [32], A 5 a
S1 BayesPE J1939þ 21 81.5 19.8 85.2 14.3 [32], A 5 a

S2 BayesPE 28 pulsars 243.5 54.3 156.4 42.2 [78], A 5 b

S3,4 BayesPE 78 pulsars 337.8 81.2 299.5 79.0 [79], A 5 c

earlyS5 BayesPE Crab 621.3 129.7 774.1 … [70], A 5 d
S5 BayesPE 116 pulsars 997.8 210.4 932.1 317.1 [80], A 5 e

VSR2 BayesPE,F ,5-vector Vela 351.9 78.5 408.5 20.8 [81], A 5 f

S6,VSR2,4 BayesPE,F ,5-vector 195 pulsars 555.7 116.2 514.7 171.0 [52], A 5 g

O1 BayesPE,F ,5-vector 200 pulsars 321.6 74.0 355.8 95.4 [19], A 5 h
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injected signal. By artificially reproducing the bug in our
upper limit simulation we are able to confirm that this bug
does account for a decrease in detection probability of
about 7%, resulting in an underestimate of the upper-limit
depth as shown in Fig. 9.

D. Searches for neutron stars in binaries

Estimated and measured sensitivity depths for searches
for CWs from neutron stars in binary systems are given in
Table IV, and further details about individual searches can
be found in Appendix A 4. In this case the only F -statistic-
based search is S2-ScoX1-F , for which we obtain an
estimate of Dest ¼ 4.4 Hz−1=2 (assuming an average mis-
match of μ ∼ 0.1=3 corresponding to a cubic lattice with
maximal mismatch of 0.1 [59]). The relative error is
between measured and estimated sensitivity depth is there-
fore 8%.

E. Targeted searches for known pulsars

Estimated and measured sensitivity depths for targeted
searches are given in Table V, and further details about
individual searches can be found in Appendix A 5.
Note that the quoted upper limits of the BayesPE-method

are obtained by Bayesian parameter-estimation [51] of
Pðh0jxÞ directly on the data x. Therefore we cannot directly
apply the Bayesian sensitivity estimate derived in Sec. III F,
which assumes an initial F ðxÞ-statistic computed on the
data, from which the Bayesian upper limit would be
derived. We therefore provide an approximate comparison
with the expected sensitivity estimate, which we compute
by estimating depths using 2F � drawn from a central χ24
distribution (given each target corresponds to a single
template) and averaging the resulting estimated D values.

In cases where several targets are covered by the search, we
assume for simplicity that the targets are isotropically
distributed over the sky and compute a single all-sky
sensitivity estimate. For single-target searches the exact
sky position is used for the estimate. The mean relative
error between measured and estimated depths is 16%, and
the median error is 10%.

VII. DISCUSSION

In this paper we presented a fast and accurate sensitivity-
estimation framework and implementation for F -statistic-
based search methods for continuous gravitational waves,
extending and generalizing an earlier analytic estimate
derived by Wette [1]. In particular the new method is more
direct and uses fewer approximations for single-stage
StackSlide-F searches, and is also applicable to multistage
StackSlide-F searches, Hough-F searches, and Bayesian
upper limits (based on F -statistic searches).
The typical runtime per sensitivity estimate is about

10 seconds with cached PðR2Þ distribution, and about
25 seconds per detector for the first call with a new
parameter prior. The accuracy compared to simulated
Monte-Carlo upper limits in Gaussian noise is within a
few % (provided the threshold corresponds to a low false-
alarm level), and we find generally good agreement (of
less than ∼10% average error) compared to published
upper limits in the literature. Several factors leading to
the observed deviations in various cases are discussed in
detail.
We also provided a comprehensive overview of

published CW upper limit results, converting the quoted
h0 upper limits into sensitivity depths. This introduces
some systematic uncertainties, as we often do not have
access to the original PSD estimate used for the upper
limits. We therefore advocate for future searches to
directly provide their upper-limit results also in terms
of the sensitivity depth of Eq. (28), in order to allow
easier direct comparison between searches and to sensi-
tivity estimates.
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FIG. 9. Estimated (–) and simulated (□) sensitivity depth
versus threshold 2F th for the S6-CasA-StackSlide-F
search setup [22]. The published upper limits are plotted as
triangles (Δ), while the diamonds (⋄) show the simulated depths
if we incorporate the bug found in the original UL procedure.
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APPENDIX A: DETAILS ON REFERENCED
CW SEARCHES

1. General remarks

In this Appendix we will refer to the different detectors
as G for GEO600 [83], V for VIRGO [84,85], H1 and H2
for the two LIGO detectors in Hanford (4 km, 2 km) and L1
for LIGO Livingston [86,87].
We will use the common abbreviations CW for

continuous gravitational waves, SFT for short Fourier
transform, PSD for power spectral density and UL for
upper limits.
The quoted sensitivity depths in Tables I–V can corre-

spond to different confidence levels, as some searches use
90%- and others 95%-confidence upper limits. The appli-
cable confidence level is denoted by using regular versus
italic font in the tables, respectively.
For searches over many frequencies, multiple targets or

for upper limits reported separately for different detectors,
we use a consistent averaging procedure using the median
and median absolute deviation of Eq. (55) in order to
estimate the mean and standard deviation in an outlier-
robust way.
PowerFlux and loosely-coherent searches typically give

separate upper limits for circular (best) polarization and for
the worst linear polarization, but not the more common type
of population-averaged upper limits. There has been some
work estimating conversion factors for these upper limits
into polarization-averaged sensitivity, writing DPF ∼
wworstDPF

worst and DPF ∼ wbestDPF
best. For example [1] obtains

the conversion factors in the ranges wworst ∼ 1.1–1.3 and
wbest ∼ 0.39–0.46. More recent work estimating these
conversion factors on O1 data (cf. Ref. [26]) for 90%-
confidence upper limits yields [88] wworst ¼ 1.51� 0.13
and wbest ¼ 0.52� 0.02. However, these conversion fac-
tors were obtained by treating the set of upper limits as a
whole, they should not be used to derive a proxy of
population average upper limits in individual frequency
bands. Furthermore, PowerFlux strict upper limits are
derived by taking the highest upper limits over regions
of parameter space. This procedure has the advantage of the
upper limits retaining validity over any subset of parameter
space, such as a particular frequency and or particular sky
location. However, the maximization procedure makes it
difficult to convert the data into population average upper
limits which are more robust to small spikes in the data.
Given that there is currently some uncertainty on the
detailed values of the conversion factors to use for different
PowerFlux searches, here we report the best/worst upper
limits converted into sensitivity depths separately in
Tables I and II.
Generally, for converting h0 upper limits into depths

according to Eq. (28), we need to use an estimate for the
corresponding noise PSD Sn, for which we either use a
corresponding PSD over the data used in the search, where
available, or a ’generic’ PSD estimate from LIGO for the

given science run [89,90] otherwise. This adds another
level of uncertainty in the conversions, which could easily
be in the range 10%–20% due to different calibrations and
different types of averaging over time.

2. All-sky searches, see Table I

a. S2-AllSky-Hough [58]

The first all-sky search for CWs from isolated neutron
stars, using a semi-coherent Hough transform method
applied on short Fourier transforms (SFTs) of the data
of length Tseg ¼ 30 min. The search used data from the
second LIGO Science Run (S2), and the number of SFTs
used in the search was 687 from L1, 1761 from H1 and
1384 from H2.
The UL sensitivity depth for this search is calculated as

the mean over the three depths for H1, L1, and H2, where
each depth is computed from the respective quoted best
upper-limit value h95%0 and the corresponding PSD Sn in
Table III of [58].

b. S2-AllSky-F [59]

Amatched-filtering search based on the coherent (single-
detector) F -statistics, using 20 SFTs from H1 and 20 SFTs
from L1 (SFT length TSFT ¼ 30 min). The per-detector F -
statistic values were combined via a coincidence scheme,
determining the most significant candidate in each ∼1 Hz
band, which was then used for measuring the upper limits.
The sensitivity depth for this search is calculated from

the given (combined multidetector) upper limits h95%0 ðfÞ
over the search frequency range, combined with the
harmonic mean over generic H1- and L1- PSDs for the
LIGO S2 data.
The estimate was calculated with the mean loudest

templates of the search given in the paper as F th ¼
ð39.5; 32.2Þ for the L1 and H1 detector, respectively,
and we used an average mismatch of 0.5% in the H1
search and 1% in the L1 search, estimated from Figs. 27,28
in [59].

c. S4-AllSky-fStackSlide;Hough;PowerFluxg [35]

Three semicoherent all-sky searches using different
search methods, all based on incoherently combining
SFTs of length Tseg ¼ 30 min. The StackSlide and the
Hough search used 1004 SFTs from H1 and 899 from L1
and the Hough search additionally included 1063 SFTs
from H2. The PowerFlux search used 1925 and 1628 SFTs
from H1 and L1, respectively.
The sensitivity depths are calculated from the quoted

upper limits h95%0 ðfÞ from each of the three searches over
the search frequency range, combined with the PSDs for
two (H1 and L1) detectors (as a common reference) from
the S4 science run. Note that the Hough depth corresponds
to the quoted multidetector UL, while the other searches
reported only per-detector ULs.
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d. S4-AllSky-F +Coinc [60]

A search which used the distributed computing project
Einstein@Home [43] to analyse 300 h of H1 data and 210 h
of L1 data from the S4 run. The data was split into 30 h long
segments coherently analysed with the multidetector F -
statistic followed by a coincidence-step. The measured
sensitivity depth D90%

meas is calculated by converting the
quoted sensitivity factors R90% ¼ f31.8; 33.2g (for
frequencies below and above 300 Hz, respectively) into
sensitivity depths. However, given these were computed
with respect to an (arithmetic) averaged PSD estimate
(given in Fig. 1 in the paper), we first converted these
factors back into equivalent h0 values using the mean-PSD,
and then computed the Depth with respect to the harmonic-
mean (over detectors) generic noise PSD for S4.

e. earlyS5-AllSky-PowerFlux [61]

An all-sky search with PowerFlux over the first eight
months of S5 data. The search in total used roughly 4077 h
of H1 data and 3070 h L1 data, divided into SFT segments
of Tseg ¼ 30 min.
The sensitivity depth is calculated from the quoted per-

detector upper limits h95%0 ðfÞ over the search frequency
range and the corresponding S5 noise PSDs.

f. earlyS5-AllSky-F +Coinc [62]

An all-sky search run on Einstein@Home [43], using
660 h of data from H1 and 180 h of L1 data, taken from the
first 66 days of the LIGO S5 science run. The data was
divided into 28 segments of Tseg ¼ 30 h duration, and each
segment was searched using the fully coherent multi-
detector F -statistic. These per-segment F -statistics were
combined across segments using a coincidence scheme.
The measured sensitivity depth D90%

meas is calculated as the
median over the converted sensitivity depths converted
from the quoted sensitivity factors R90% ¼ f29.4; 30.3g in
the paper for the frequencies below and above 400 Hz,
respectively.

g. S5-AllSky-PowerFlux [63]

An all-sky search using PowerFlux analyzing the whole
of LIGO S5 data, broken into more than 80000 50%-
overlapping 30-minute SFTs from both H1 and L1.
The sensitivity depth is calculated from the quoted upper

limits h95%0 and the S5 noise PSD.

h. S5-AllSky-Hough-F [36]

An all-sky search using the Hough-F variant of the
semi-coherent Hough method described in Sec. II C 2,
which was run on Einstein@Home. The analyzed data
consisted of 5550 and 5010 SFTs from the LIGO H1 and
L1 interferometers, respectively, taken from the second
year of the S5 science run. The data was divided into 121
segments of length Tseg ¼ 25 h, and the coherent

per-segment F -statistic was combined via the Hough
method to compute the Hough number count of Eq. (25).
The sensitivity depth of the search is calculated from the

quoted h90%0 upper limits and the corresponding S5 noise
PSD.
The estimated sensitivity depth uses the generalization

of the estimator described in Sec. III E with a number-
count threshold of nc;th ¼ 70, a per segment threshold of
F̃ th ¼ 2.6 and a mismatch histogram obtained from an
injection-recovery simulation (with an average mismatch
of μ̃ ¼ 0.61).

i. S5-AllSky-Hough [64]

An SFT-based Hough all-sky search on S5 data. The
search was split into the first and the second year of S5,
which were searched separately. The first year used 11402
SFTs from H1, 12195 SFTs from H2 and 8698 SFTs from
L1, of length TSFT ¼ 30 min. The analysis of the second
year used 12590 H1-SFTs, 12178 H2-SFTs and 10633
L1-SFTs.
The sensitivity depth is calculated from the quoted h90%0

upper limits of the second year search found in the paper
and from the S5 noise PSD.

j. S5-AllSky-StackSlide-F [65]

A high frequency all-sky search to complement
previous lower-frequency all-sky searches on S5 data.
The search used the so-called GCT method [57] imple-
menting the StackSlide-F statistic and was run on the
distributed Einstein@Home platform. The search used a
total of 17797 SFTs spanning the whole two years of S5
data from H1 and L1, divided into 205 segments of
length Tseg ¼ 30 h.
The measured sensitivity depth D90%

meas is determined by
extrapolating the depth values given in the paper for critical
ratios of 0 and 3.5 to the median critical ratio over all
frequency bands of −0.15 according to Fig. 6 of [65].
For the estimatewe determined themedian threshold over

all frequency bands from Fig. 4 of [65] to 2F th ¼ 5.72. Two
mismatch histograms at 1255 Hz and 1495 Hz generated
with injection-recovery studies were used. The average
mismatch for both was μ ≈ 0.82. The quoted value is the
mean of the two estimates with different mismatch
histograms.

k. VSR1-AllSky-FTD +Coinc [66]

An all-sky search using data from the first Virgo science
run, VSR1. The search method uses a time-domain
implementation of the coherent F -statistic, computed over
2-day coherent segments, which are combined using
coincidences. In total the search used 134 days of data.
The measured sensitivity depth D90%

meas is calculated as
median of the given sensitivity factors of 15.6 and 22.4.
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l. fVSR2;4g-AllSky-FreqHough+FUP [67]

This all-sky search was performed using data from initial
Virgos second (VSR2) and forth (VSR4) science run. It
used the FrequencyHough transform as incoherent step
with 149 days of data of VSR2 and 476 days of data
of VSR4 using segments of length 8192 seconds. The
initial candidates were followed-up using 10 times longer
segments.
The measured sensitivity depth was calculated from

upper limits h90%0 extracted from Fig. 12 of [67] and the
harmonic mean of the PSD estimates of VSR2 and VSR4 in
0.1 Hz frequency bands.

m. S6-AllSky-StackSlide-F [56]

This search used 12080 SFTs from L1 and H1 data to
perform a StackSlide-F search based on the GCT imple-
mentation, and was run on Einstein@Home. The search
used 90 coherent segments of length Tseg ¼ 60 h.
The measured sensitivity depth D90%

meas is determined by
extrapolating the depth from the given critical ratios 0 and 6
to the median critical ratio of −0.07 according to Fig. 5
of [56].
The estimated depth is given for a threshold of 2F th ¼

6.694 which is the median of the thresholds given for the
frequency bands in Fig. 4 of [56]. For the estimate two
mismatch histogram created with injection-recovery studies
for 55 and 505 Hz was used. The average mismatch of the
grid in the parameter space was at both frequencies found to
be μ ¼ 0.72. The quoted value is the mean of the two
estimates with different mismatch histograms.

n. S6-AllSky-StackSlide-F +FUP [49]

A multistage follow-up on candidates from the
S6-AllSky-StackSlide-F search described in the
previous paragraph, zooming in on candidates using
increasingly finer grid resolution and longer segments.
Every candidate from the initial stage with 2F ≥ 6.109was
used as the center of a new search box for the first-stage
follow-up, continuing for a total of four semi-coherent
follow-up stages. The sensitivity of the search is dominated
by the initial-stage threshold, because the later stages
are designed to have a very low probability of dismissing
a real signal. The measured sensitivity depth D90%

meas ¼
46.9 Hz−1=2 of this search is directly taken from the quoted
value in the paper.
The estimated multistage sensitivity of Sec. III D using

the thresholds given in the paper, namely f2F ðiÞ
th g ¼

ð6.109; 6.109; 7.38; 8.82; 15Þ and a mismatch histogram
generated by recovery injection studies for the main
search and mismatch histograms provided by the original
authors for every stage with average mismatches
fμðiÞg ¼ ð0.72; 0.55; 0.54; 0.29; 0.14Þ, yields a value of
D90% ¼ 38.3 Hz−1=2, which differs significantly from the
quoted measured sensitivity depth. As discussed in Sec. V,

we trace this discrepancy to the low threshold used,
which significantly affects the loudest-candidate mismatch
approximation used in the theoretical estimate.

o. S6-AllSky-PowerFlux [68]

The data used by this search span a time of 232.5 d with
duty factor of the detectors of 53% for H1 and 51% for L1.
The measured sensitivity depth is calculated from the

quoted upper limits h95%0 in the paper and the S6 noise PSD.

p. O1-AllSky-StackSlide-F [26]

A low-frequency all-sky search for gravitational waves
from isolated neutron stars using the distributed computing
project Einstein@Home on data from Advanced LIGO’s
first observing run (O1). This search used the GCT
implementation of the semi-coherent StackSlide-F method
with Nseg ¼ 12 segments of length Tseg ¼ 210 h in the
initial search stage. The analyzed data consisted of 4744
SFTs from the H1 and the L1 detector. The search also
included a hierarchical follow-up similar to the S6Bucket
follow-up search [49].
The measured sensitivity depth D90%

meas ¼ 48.7 Hz−1=2 of
this search is directly taken from the quoted value in
the paper.
The sensitivity estimate used a threshold 2F th ¼ 14.5

which we inferred from Fig. 4 in [26] and we obtained the
mismatch histograms of the template grid at different
frequencies using an injection-recovery study, which
yielded an average mismatch of μ ¼ 0.35 and μ ¼ 0.37
at 20 Hz and 100 Hz respectively. The quoted depth is the
average of the two different estimates resulting for each
mismatch histogram. Note that the contrary to the measured
sensitivity, the estimate only uses the first-stage parameters
in this case, as we currently cannot model the line-robust
statistic used in the follow-up stages. However, as men-
tioned in Sec. III D, the overall detection probability is
dominated by the first stage, while subsequent stages
mostly serve to reduce the false-alarm level.

q. O1-AllSky-fPowerFlux;Hough;FTD +Coincg
[25,69]

Two papers detailing the results of all-sky searches on
O1 data using four different search methods.
The first paper [25] searched the lower frequency

range [20,475] Hz, using four methods: PowerFlux,
FrequencyHough, SkyHough, and a time-domain
F -statistic search with segment-coincidences (denoted
as FTD þ Coinc). The PowerFlux, FrequencyHough,
and SkyHough search used SFT lengths in the range
1800–7200 s as coherent segments while the time-domain
F -statistic used a coherence time of Tseg ¼ 6 d. The total
amount of analyzed data was about 77 d of H1 data and
66 d of L1 data.
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In the second paper [69] three of these searches were
extended up to 2000 Hz, namely PowerFlux, SkyHough,
and a time-domain F -statistic search with segment-coin-
cidences (denoted as FTD þ Coinc), using the same data.
The sensitivity depths for the four searches are calculated

from the quoted h95%0 amplitude upper limits and the noise
PSD for the O1 science run.
Note that for the SkyHough method a sensitivity depth of

24.2 Hz−1=2 is quoted in the paper. However, this value is
based on a slightly different convention for the multi-
detector noise PSD Sn (maximum over detectors instead of
the harmonic mean) than used here. For consistency with
the other searches in Table I we therefore compute the
sensitivity depth by converting from the quoted h95%0 upper
limits instead.
A comparison of PowerFlux 90%-confidence upper

limits for an isotropic polarization population were pro-
vided for the O1 Einstein@Home paper [26], with a
frequency spacing of 0.0625 Hz, which are converted into
sensitivity depth using the O1 noise PSD.

3. Directed searches, see Tables II, III

a. earlyS5-Crab-F [70]

This search aimed at the Crab pulsar and used the first
nine month of initial LIGO’s fifth science run (S5). It
consisted of both a targeted (described in Sec. A 5 d) and
a directed F -statistic search described here. The directed
search used 182, 206 and 141 days of data from the H1,
H2, and L1 LIGO detectors, respectively. The measured
depth value is calculated from the given upper limits
h95%0 and the PSD estimate of the S5 data at the search
frequency.
The estimated depth uses the StackSlide estimator for a

coherent search with Nseg ¼ 1 segment, a threshold of
F th ¼ 37 and a maximal template bank mismatch of 5%
(given in the paper), from which we estimate the average
mismatch as μ̃ ∼ 1

3
5% (assuming a square lattice).

b. S5-CasA-F [46,91]

The first search for continuous gravitational waves from
the Cassiopeia A supernova remnant using data from initial
LIGO’s fifth science run (S5). The search coherently
analyzed data in an interval of 12 days (934 SFTs of
length 30 min) using the F -statistic.
The measured sensitivity depth is obtained from the

quoted upper limits h95%0 in the paper and the S5 noise PSD.
The estimate is calculated using the StackSlide estimator

for a coherent search (Nseg ¼ 1 segment), with the mis-
match histogram for an A�

n lattice with maximal mismatch
of μ ¼ 0.2 (obtained from LATTICEMISMATCHHIST() in
[54]), and the average threshold of 2F th ¼ 55.8 (averaged
over the respective loudest 2F -candidates found in each of
the upper-limit bands).

c. S5-GalacticCenter-StackSlide-F [45,71]

The first search for continuous gravitational waves
directed at the Galactic center. The search used LIGO S5
data and theGCT implementation of the StackSlide-F semi-
coherent search algorithm with 630 segments, each span-
ning 11.5h, for total data set of 21463SFTs of length 30min.
The segments of the search were selected from the whole

S5 science run in such a way as to maximize the SNR for
fixed-strength GW signals at the skyposition of the galactic
center. Therefore the selected segments fall at times where
the antenna patterns of the LIGO detectors are better than
average for this particular sky position. As discussed in
Sec. VI C, the sensitivity-estimation method presented in
this work assumes the antenna patterns are averaged over
multiple days, which causes a unusually large deviation
between the estimate and the measured sensitivity depth
from the h90%0 upper limits.
The estimate is calculated using the mismatch histogram

(with mean μ ¼ 0.13) obtained from an injection-recovery
study on the template bank of this search, and a detection
threshold of 2F th ¼ 4.77.

d. VSR4-fVela;Crabg-5-vector [72]

This coherent narrow-band search on the data from
initial Virgo’s forth science run (VSR4) was directed at
the Vela and the Crab pulsars. This search used the 5-vector
method, and covers a range of �0.02 Hz the twice the
known frequencies of Vela and Crab. The total amount of
data used is 76 d.
The measured sensitivity depth for this search was

obtained from the published h95%0 upper limits and the
noise PSD estimate for VSR4.

e. S6-NineYoung-F [21]

This search was directed at nine different targets, listed in
Table III, each corresponding to a (confirmed or suspected)
compact object in a young supernova remnant. The search
uses a fully coherent F -statistic. The amount of data used
for every target varies between 7.3 × 105 s and 3.1 × 106 s
(cf. Table III).
The measured depth is calculated for each of the targets

from the quoted upper limits h95%0 and the corresponding
PSD for the actual data used in the search.
The estimate for each target is calculated using

the StackSlide estimator for a coherent search (Nseg ¼ 1
segment), with the mismatch histogram for an A�

n lattice
with maximal mismatch of μ ¼ 0.2 (obtained from
LATTICEMISMATCHHIST() in [54]), and the average 2F th
threshold found for each target (averaged over the respec-
tive loudest 2F -candidates found in each of the upper-limit
bands) are given in Table III.
The “NineYoung” entry in Table II presents the median

depth over all targets for the measured and estimated
depths, respectively.
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f. S6-CasA-StackSlide-F [22]

A search directed at Cassiopeia A, which was run on
the distributed computing project Einstein@Home using
data from the LIGO S6 science run. The search was based
on the GCT implementation of the semi-coherent
StackSlide-F statistic, with Nseg ¼ 44 segments of length
Tseg ¼ 140 h, and a total amount of data of 13143 SFTs
of length 30 min from the two LIGO detectors in Hanford
(H1) and Livingston (L1). The measured sensitivity
depth given in Table II is computed from the h90%0 upper
limits quoted the paper [22] combined with the corre-
sponding PSD estimates. However, as discussed in VI C,
this measurement suffered from a bug in the upper-limit
script and as a result is somewhat too conservative (i.e.,
too high).
The estimated sensitivity is calculated assuming an

average threshold of F th ¼ 8.25 (estimated from Fig. 4
in [22]) using the mean over estimates with different
mismatch histograms generated by injection-recovery stud-
ies at different frequencies (spanning 50–1000 Hz, average
mismatch ∼9%).

g. S6-OrionSpur-LooselyCoherent [73]

This was a search employing the so-called loosely-
coherent method, aimed at the Orion spur towards both
the inner and outer regions of our Galaxy. The explored
sky regions are disks with 6.87° diameter around
20h10m54.71s þ 33°33025.2900 and 7.45° diameter around
8h35m20.61s − 46°49025.15100. The data used in this
search spanned 20 085 802 s with duty factors of 53%
and 51% for LIGO Hanford and Livingston, respectively.
Due to weighting of the data the effective amount of data
used was only ∼12.5% of the available S6 data. For the
analysis data segments of length 30 min were searched
coherently.
The measured sensitivity depth was calculated from the

quoted upper limits h95%0 and a PSD estimate for the LIGO
S6 data.

h. S6-NGC6544-F [74]

This was the first search directed at the nearby globular
cluster NGC 6544. The search coherently analyzed data
from the two LIGO detectors S6 science run with the F -
statistic, using a single coherent segment with Tseg ¼ 9.2 d.
The search analyzed two different data stretches separately.
The first one contained 374 SFTs while the second
contained 642 SFTs, with SFT duration of 30 min.
The measured depth was determined from the upper

limits h95%0 given in Fig. 2 of [74] and a PSD estimate for
the LIGO S6 run.
The estimate used the StackSlide estimator with one

segment, a threshold of 2F th ¼ 55 (quoted in the paper)
and an average mismatch of 0.2=3 (assuming a roughly
square lattice).

i. O1-Narrow-band-5-vector [20]

A narrow-band search aiming at 11 known pulsars using
the fully-coherent 5-vector method on data from Advanced
LIGO’s first observing run (O1). The search used a total of
121 days of data from the Hanford (H1) and Livingston
(L1) detectors.
The sensitivity depth in the table is calculated from the

median over the single-target depths, which are converted
from the upper-limits h95% quoted in the paper and the
corresponding noise PSD of the data used.

j. O1-fSN1987;GalacticCenterg-Radiometer [75]

Described in Sec. A 4 g.

4. Searches for neutron stars in binary
systems, see Table IV

a. S2-ScoX1-F [59]

This first search designed specifically aimed at the NS in
the LMXB system Scorpius X-1, using a coherent single-
detector F -statistic and a coincidence check on a 6 h long
stretch of S2 dat.
The measured sensitivity depth was calculated from the

quoted upper limits h95%0 in the paper (for the zero-
eccentricity case e ¼ 0) and the PSD estimate of the
corresponding S2 data.

b. S5-ScoX1-Sideband [76]

A search aimed at Scorpius X-1 by incoherently com-
bining sidebands of a coherent F -statistic search that only
demodulates the signal for the sky-position but not its
binary-orbital Doppler modulation. This method used a
stretch of 10 days of data selected from the S5 science run
for maximal sensitivity. Two searches were performed, one
with no prior assumptions about the orientation of Sco-X1,
and one using more restrictive angle-priors based on
electromagnetic observations.
Bayesian upper limits h95%0 were computed over the

search frequency range, which we convert into sensitivity
depths (for the unknown-polarization case, see Fig. 5(a) in
[76]) using the noise PSD for the data given in the paper. In
each 1 Hz-band, 2 × 106 upper limit values were quoted, of
which we use the maximum value in each 1 Hz-band in
order to be consistent with the usual “loudest-candidate”
approach of setting upper limits in a given frequency band.

c. fS6;VSR2;3g-fAllSky;ScoX1g-TwoSpect [28]
ATwoSpect search for unknown binary signals from any

sky-position, and a directed TwoSpect search for Scorpius
X-1 specifically. This search used data from LIGO S6
science run, as well as from Virgo VSR2 and VSR3 runs,
spanning 40 551 300 s from each detector.
The quoted upper limits h95%0 for the all-sky search and

the Scorpius X-1 search were converted into Depths using a
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combined (generic) PSD for the S6, VSR2 and VSR3
science runs.

d. S6-fScoX1;J1751g-TwoSpect [77]
A search for CW from the low-mass X-ray binaries

Scorpius X-1 and XTE J1751-305 using the TwoSpect
algorithm. It used about 4 × 107 s from each of the two
detector in the S6 science run. It used two different length
of the SFTs 840 and 360 s which also where the length of
the coherently analysed segments.
The given sensitivity depth D95%

0 is obtained from the
quoted h95%0 upper limits combined with the corresponding
noise PSD for S6 data.

e. O1-ScoX1-Viterbi [24]

A search aimed at Scorpius X-1 using the Viterbi search
method performed on 130 days of data from Advanced
LIGO’s first observational run (O1), segmented into coher-
ent segments of length Tseg ¼ 10 days.
The measured sensitivity depth is converted from the

quoted upper limits h95%0 (for unknown polarization) and
the noise PSD of the corresponding O1 data.
Note that contrary to many other search methods, this

search setup appears to result in a frequency-dependent
sensitivity depth, namely DðfÞ ∝ f−1=4 (see Eq. (9) in
[24]). For consistency with other searches, we quote the
median and (MAD) standard-deviation over frequencies in
Table IV, and note that the total range of sensitivity depths
of this search is found as DðfÞ ∼ 11ðf=f0Þ−1=4 Hz−1=2 ∈
½4.6; 11.2� Hz−1=2 with f0 ¼ 60.5 Hz.

f. O1-ScoX1-CrossCorr [23]

This search aimed at Scorpius X-1 using the CrossCorr
search algorithm using data from Advanced LIGO’s first
observational run (O1). The data was split into coherently
analyzed segments (SFTs) with a (frequency-dependent)
length between 240 and 1400 s.
The measured sensitivity depth is obtained from the

quoted (isotropic-prior) upper limits h95%0 and the noise
PSD of the O1 data. Note, however, that the search ULs are
given per 0.05 Hz bands, which is unusually small
compared to most other upper-limit bands (typically
0.25–1 Hz), and therefore they display more variability.
In order to make these ULs more comparable to other
searches, we use the 95th-percentile highest upper limits
per 1 Hz-bands (as recommended in Fig. 5 of [23]). This
“binning” procedure only has a small effect on the resulting
sensitivity depth, which is reduced from 25.3 Hz−1=2

to 24.0 Hz−1=2.
Note that this search has a frequency-dependent sensi-

tivity depth, which starts at around Dð25 HzÞ ∼ 45 Hz−1=2

for low frequencies, asymptoting down to D ∼ 23 Hz−1=2

above f ≳ 800 Hz. However, in order to be consistent with

other searches, we quote the median and (MAD) standard
deviation over all frequencies in Table. IV.

g. O1-fScoX1 and othersg-Radiometer [75]

The “radiometer” search method, which was developed
mainly for stochastic background searches, can also be
used for directed CW searches at particular sky-positions.
This method does not use a particular signal model, which
allows it to be sensitive to a wide range of possible signal
families, at the cost of somewhat lower sensitivity to
“regular” CW signals. This search aimed at the sky-
positions of Sco-X1, as well as at the supernova remnant
1987A and the Galactic center.
The search reported h90%0 (and h95%0 for Sco-X1, reported

in [23]) upper limits in narrow frequency bands of
1=32 Hz ¼ 0.03125 Hz bands, which is unusually small
compared to most other upper-limit bands (typically 0.25–
1 Hz), and therefore they display more variability. In order
to make these ULs more comparable to other searches, we
use the 95th-percentile highest upper limits per 1 Hz-bands
(as recommended in Fig. 5 of [23]), and following the same
procedure as used for the CrossCorr results (discussed in
Sec. A 4 f).

5. Targeted searches, see Table V

a. S1-J1939 + 21-fF ;BayesPEg [32]

This first CW search on data from GEO 600 and LIGO’s
first science run (S1). It used (16.7,5.73,8.73,8.9) days of
data from four detectors, GEO 600 (G1), LIGO Livingston
(L1), LIGO Hanford-4 km (H1), and LIGO Hanford-2 km
(H2), respectively. Two types of searches were performed, a
coherent F -statistic search as well as direct Bayesian
parameter estimation (BayesPE).
Table V gives the mean and standard deviation for the

sensitivity depths over the four detectors. The measured
sensitivity depth for the F -search was determined from
the quoted upper limits h95%0 in Table IV [32] for the
most pessimistic ι (cos ι ¼ 0) and ψ , and from the quoted
numbers in the conclusion for the (standard) population-
averaged orientation. The noise PSD values are taken
from Table III in [32]. The corresponding estimate is
calculated with the StackSlide estimator for Nseg ¼ 1 and
quoted threshold values 2F th ¼ ð1.5; 3.6; 6.0; 3.4Þ for the
four detectors from Table III in the paper. For the
“worst-case” estimate we use the prior cos ι ¼ 0 and
minimise the sensitivity depth over ψ ∈ ½−π=4; π=4� in
order to reflect the “conservative” ULs quoted in the
paper. Note, however, that contrary to the typically small
false-alarm level (p-value) of the UL thresholds used
(typically 1%), the loudest candidates used here as
thresholds here had relatively high p-values of 83%,
46%, 20%, and 49%, respectively, as seen in Table III
of [32].
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b. S2-Known pulsars-BayesPE [78]

A coherent targeted search for 28 known isolated radio
pulsars was performed using the Bayesian parameter-
estimation pipline (BayesPE) on data from the second
LIGO Science Run (S2), using 910 h of data from H1,
691 h from H2 and 342 h of L1 data from the S2 data set.
The measured sensitivity depth is calculated from the

quoted Bayesian upper limits h95%0 and corresponding noise
PSD estimates for the S2 science run.
The sensitivity estimate is performed using the Bayesian

sensitivity estimator, for simplicity assuming the sources
are distributed isotropically over the sky.

c. fS3;4g-Known pulsars-BayesPE [79]

This search targeted 78 known radio pulsars by ana-
lysing (45.5,42.1,13.4) days of data from the three detectors
(H1, H2, L1) from the third science run (S3) of LIGO and
GEO 600, and (19.4,22.5,17.1) days of data from the three
detectors from the S4 science run. The analysis used the
Bayesian parameter-estimation pipeline (BayesPE).
The measured sensitivity depth was determined from the

quoted Bayesian upper limits h95%0 combined with the noise
PSD of the S3 and S4 science runs combined (using
harmonic mean).
The sensitivity estimate is calculated using the Bayesian

sensitivity estimate, for simplicity assuming the sources to
be isotropically distributed on the sky.

d. earlyS5-Crab-BayesPE [70]

This search on 9 months of data from the early LIGO S5
science run targeted only the Crab pulsar at twice its
rotation rate, using the Bayesian parameter-estimation
pipeline. A corresponding narrow-band search using the
F -statistic is described in Sec. A 3 a. The targeted search
used 201, 222, and 158 days of data of the H1, H2, and L1
LIGO detectors.
The measured depth is determined from the quoted

(i.e., the corrected value in the Erratum) upper limit h95%0

assuming an isotropic polarization prior, and the corre-
sponding noise PSD of the detectors for the early S5
science run data.

e. S5-Known pulsars-BayesPE [80]

A search targeting 116 known pulsars using 525 days of
H1 data, 532 days of H2 data, and 437 days of L1 data from
LIGO’s fifth science run (S5). The search employed the
Bayesian parameter-estimation pipeline.
The measured sensitivity depth is calculated from the

quoted Bayesian upper limits h95%0 and the noise PSD of the
S5 data.
The estimate is calculated with the Bayesian sensitivity

estimator under the assumption that the targets are distrib-
uted isotropically over the sky.

f. VSR2-Vela-fBayesPE;F ;5-vectorg [81]

A targeted search for the Vela pulsar using Virgo’s
second science-run (VSR2) data, using three different
methods: Bayesian parameter estimation, the F -statistic
(and G-statistic) and the 5-vector method. The data set
consisted of 149 days of Virgo data.
Two types of searches and upper limits were computed,

namely (i) using uninformative (isotropic) priors on the
pulsar orientation, and (ii) using angle priors on cos ι and ψ
from electromagnetic observations.
InTableVweonly give themeasured depth corresponding

to the isotropic prior, averaged over the threemethods,which
obtained very similar results. This was computed from the
quoted upper limits h95%0 and the noise PSD for the Vela
VSR2 run. The measured sensitivity depth obtained when
using the angle priors is found as 462.1� 35.0 Hz−1=2.
The estimated sensitivity depth is calculated using the

Bayesian sensitivity estimator.

g. fS6;VSR2;4g-Known pulsars-
fBayesPE;F ;5-vectorg [52]

This search targeted 195 known pulsars, using 149 days
of VSR2 and 76 days of VSR4 data for pulsars with a CW
frequency lower than f < 40 Hz and an additional 238 days
of S6 data from H1 and 225 days from L1 for faster
spinning pulsars with f > 40 Hz. The analysis was done
using three different methods: Bayesian parameter estima-
tion, the F -statistic (or G-statistic for restricted angle
priors), and the 5-vector method.
The given measured sensitivity depth in Table V is the

median and MAD standard deviation over the sensitivity
depths for the different targets (averaged over high- and
low-frequency targets). The sensitivity depths are obtained
from the quoted upper limits h95%0 and the corresponding
noise PSD estimate of the data used (which is either S6 and
VSR2 and VSR4 for high-frequency targets f > 40 Hz, or
only VSR2 and VSR4 for low-frequency targets).
The estimated sensitivity is obtained from the Bayesian

sensitivity estimator assuming an isotropic prior over the
sky, averaged over high- and low-frequency depths results.

h. O1-Known pulsars-fBayesPE;F ;5-vectorg [19]

In this search 200 known pulsars were targeted using
three different methods: Bayesian parameter estimation, the
F -statistic (or G-statistic for restricted angle priors), and the
5-vector method. The searches used 78 and 66 days of H1
and O1 data from the first observational run of advanced
LIGO (O1), respectively.
The measured sensitivity depth is obtained from the

quoted Bayesian upper limits h95%0 over all targets and the
corresponding noise PSD for the LIGO detectors during O1.
The estimated sensitivity depth is determined from the

Bayesian estimator as an all-sky estimate assuming the
targets are isotropically uniformly distributed over the sky.
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APPENDIX B: CW SIGNAL MODEL AND
F -STATISTIC

A plane gravitational wave arriving from a direction n̂
(unit vector) can be written [92] in TT gauge (in the

notation of [93]) as a purely spatial strain tensor h
↔
with two

polarizations þ;×, namely

h
↔
ðτÞ ¼ hþðτÞe↔þ þ h×ðτÞe↔×; ðB1Þ

where τ is the emission time of the signal in the source

frame, and e
↔

þ and e
↔

× are the two polarization basis
tensors, which can be constructed from a right-handed

orthonormal basis fl̂; m̂;−n̂g as e
↔

þ ¼ l̂ ⊗ l̂ − m̂ ⊗ m̂

and e
↔

× ¼ l̂ ⊗ m̂þ m̂ ⊗ l̂.
The measured scalar CW signal hXðtÞ at time t by

detector X is the response of the detector to the GW tensor

h
↔
ðτXðtÞÞ, where τXðtÞ denotes the emission time of a

wavefront that reaches detector X at time t. This timing
relationship depends on the sky-position n̂ of the source as
well as any binary-orbital parameters in case of a CW from
a neutron star in a binary system, as it describes the time-
dependent light-travel time from the source to the detector.
In the long-wavelength limit we assume the GW wave-
length to be much larger than the detector armlength, which
is a good approximation for current ground-based detectors
up to kHz frequencies. This allows us to write the detector
response as a tensor contraction (in both tensor indices):

hXðtÞ ¼ d
↔XðtÞ∶h

↔
ðτXðtÞÞ; ðB2Þ

where d
↔X ¼ û ⊗ û − v̂ ⊗ v̂ for interferometer arms along

unit vectors û and v̂.
It is helpful to define a source-independent orthonormal

polarization basis f{̂; |̂;−n̂g instead, where for any sky
position n̂, the unit vector {̂ is chosen to lie in Earth’s
equatorial plane (pointing West) and |̂ is pointing in the
northern hemisphere. This defines the (sky-position de-

pendent) alternative polarization basis as ε
↔

þðn̂Þ≡ {̂ ⊗ {̂ −
|̂ ⊗ |̂ and ε

↔
×ðn̂Þ≡ {̂ ⊗ |̂þ |̂ ⊗ {̂. The rotation between

these two basis systems defines the polarization angle ψ ,
which is measured counterclockwise from {̂ to l̂, and
relates the two polarization basis tensors as

e
↔

þ ¼ ε
↔

þ cos 2ψ þ ε
↔

× sin 2ψ ðB3Þ

e
↔

× ¼ − ε
↔

þ sin 2ψ þ ε
↔

× cos 2ψ : ðB4Þ

Combining these expression, we can obtain the factored
signal form hXðt;A; λÞ ¼ AμhXμ ðt; λÞ of Eq. (7), which was
first derived in [37]. The four amplitudes fAμg4μ¼1 depend

on the signal amplitude h0, the inclination angle ι via
Aþðh0; ιÞ and A×ðh0; ιÞ given in Eq. (6). They also depend
on the polarization angle ψ , and the reference-time phase
ϕ0, namely

A1 ¼ Aþ cosϕ0 cos 2ψ − A× sinϕ0 sin 2ψ ;

A2 ¼ Aþ cosϕ0 sin 2ψ þ A× sinϕ0 cos 2ψ ;

A3 ¼ −Aþ sinϕ0 cos 2ψ − A× cosϕ0 sin 2ψ ;

A4 ¼ −Aþ sinϕ0 sin 2ψ þ A× cosϕ0 cos 2ψ ; ðB5Þ

and the four (detector-dependent) basis functions
hXμ ðt; λÞ are

hX1 ðtÞ ¼ aXðtÞ cosϕðτXðtÞÞ;
hX2 ðtÞ ¼ bXðtÞ cosϕðτXðtÞÞ;
hX3 ðtÞ ¼ aXðtÞ sinϕðτXðtÞÞ;
hX4 ðtÞ ¼ bXðtÞ sinϕðτXðtÞÞ; ðB6Þ

in terms of the antenna-pattern functions aXðtÞ, bXðtÞ given
by the contractions

aXðt; n̂Þ ¼ d
↔XðtÞ∶ ε↔þðn̂Þ;

bXðt; n̂Þ ¼ d
↔XðtÞ∶ ε↔×ðn̂Þ: ðB7Þ

Using the factored signal form of Eq. (7), the log-likelihood
ratio Eq. (B8) now takes the form

lnΛðx;A; λÞ ¼ Aμxμ −
1

2
AμMμνAν; ðB8Þ

where we defined

xμðλÞ≡ ðx; hμÞ; and MμνðλÞ≡ ðhμ; hνÞ; ðB9Þ

in terms of the four basis function hμðt; λÞ defined in
Eq. (B6). The 4 × 4 antenna-pattern matrix M can be
shown to be well approximated by the block-diagonal form

M¼ S−1n Tdata

�
M 0

0 M

�
with M≡

�
A C

C B

�
; ðB10Þ

defining the antenna-pattern coefficients A, B, C, which
depend on the sky-position n̂.
We see in Eq. (B8) that the log-likelihood ratio is a

quadratic function of the amplitudes Aμ, and can therefore
be analytically maximized [37] (or marginalized [94]) to
yield the well-known F -statistic:
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F ðx; λÞ≡max
A

lnΛðx;A; λÞ

¼ 1

2
xμMμνxν; ðB11Þ

with Mμν defined as the inverse matrix to Mμν of
Eq. (B10).

APPENDIX C: DEFINITION OF THE
GEOMETRIC FACTOR R2

The geometric factor R2 can be explicitly expressed [95]
as

R2ðθÞ ¼ 25

4
½α1Aðn̂Þ þ α2Bðn̂Þ þ 2α3Cðn̂Þ�; ðC1Þ

with the sky-dependent antenna-pattern coefficients
fA; B;Cg of Eq. (B10), and

α1 ≡ 1

4
ð1þ cos2ιÞ2cos22ψ þ cos2ιsin22ψ ; ðC2Þ

α2 ≡ 1

4
ð1þ cos2ιÞ2sin22ψ þ cos2ιcos22ψ ; ðC3Þ

α3 ≡ 1

4
ð1 − cos2ιÞ2 sin 2ψ cos 2ψ : ðC4Þ

One can show that R2 averaged over ψ ∈ ½−π=4; π=4� and
cos ι ∈ ½−1; 1� yields

hR2icos ι;ψ ¼ 5

2
ðAðn̂Þ þ Bðn̂ÞÞ; ðC5Þ

and further averaging n̂ isotropically over the sky yields

hR2iθ ¼ 1: ðC6Þ

APPENDIX D: DISTRIBUTION OF F -STATISTIC
MAXIMIZED OVER CORRELATED TEMPLATES

It has been a long-standing assumption (e.g., [1,46] that
the distribution of the statistic 2F �ðxÞ≡maxλi2F ðx; λiÞ in
Gaussian noise x, maximized over a template bank λi ∈ T
of i ¼ 1…N (generally correlated) templates can be
modeled by assuming maximization over an “effective”
number of uncorrelated trials N 0 instead, namely

Pð2F �jN 0Þ ¼ N 0cdf0ð2F �ÞN 0−1pdf0ð2F �Þ; ðD1Þ

where

pdf0ð2F Þ ¼ Pð2F jρ ¼ 0Þ; ðD2Þ

cdf0ð2F Þ ¼
Z

2F

0

pdf0ð2F 0Þd2F 0; ðD3Þ

where the (single-template) F -statistic in pure Gaussian
noise follows a central χ2 distribution [with four d.o.f. in
the fully-coherent case Eq. (13), or 4Nseg d.o.f. for a
semicoherent F -statistic over Nseg segments, Eq. (22)].
We show here by counterexample that the model of

Eq. (D1) is not generally accurate, as correlations
between templates do not simply modify N 0 but also
change the functional form of the distribution. It has
been hypothesized previously [1] that these (already-
observed) deviations might be due to certain approx-
imations (cf. [95]) used in the numerical implementation
of the F statistic. While such effects will account for
some amount of deviation, one can show this effect to be
quite small overall.
We demonstrate the fundamental statistical nature of this

discrepancy by using a simpler example: we generate a
time-series fxjgN−1

j¼0 of N ¼ 200 samples drawn from a
Gaussian distribution and compute the Fourier transform x̃k
normalized to E½jx̃kj2� ¼ 2, such that 2F 2ðx; fÞ≡ jx̃ðfÞj2
follows a central χ2 distribution with two d.o.f. in every
frequency bin f. We can therefore set pdf0ð2F 2Þ ¼
χ22ð2F 2; 0Þ and use the corresponding cdf in Eq. (D1).
We consider different cases of oversampling by zero-

padding the time series to a multiple (denoted as the
oversampling factor in Fig. 10) of the original N time
samples: the N=2 − 1 ¼ 99 (positive) frequency bins
without oversampling are strictly uncorrelated (and we
also know that there can be at most N ¼ 200 indepen-
dent templates in total, given the length of the initial
time series). With increasing oversampling, the correla-
tions between frequency bins increase. We repeat this
process 106 times for different noise realizations, and in
each case we compute 2F �

2ðxÞ over all the (positive)
frequency bins of the Fourier power, and histogram these
values. We then fit the number of effective templates N 0
in the theoretical distribution of Eq. (D1) by minimizing
the (symmetric) Jensen–Shannon divergence between the
measured and theoretical distributions. The results are
shown in Fig. 10 for different cases of oversampling. We
see that for increased oversampling, i.e., more correla-
tions between “templates” (i.e., frequency bins), the
functional form of the histogram agrees less with the
theoretical distribution assuming independent templates.
The effect seems to saturate for oversampling ≳10, with
N ∼ 230 greater than the known maximal number (i.e.,
N ¼ 200) of (strictly) independent templates in this
vector space.
There is no simple or intuitive explanation for this effect

that we are aware of, but it is reminiscent of a similarly
surprising result found in the localization of the maximum
over different assumed signal durations of transient CW
signals, see Figs. 8 and 9 in [96]. The distribution of the
statistic is identical in each time step, but the steps are
correlated, resulting in a peculiar nonuniform distribution
of the location of the maximum.
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