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Abstract
Based on general mathematical assumptions we give an independent, 
elementary derivation of a theorem by Brown and Dupont (2018 Talk given 
by F Brown in ‘String Math’ (Sendai, June 2018)) which states that tree-level 
amplitudes of closed and open strings are related through the single-valued 
map ‘sv’. This relation can be traced back to the underlying moduli-space 
integrals over punctured Riemann surfaces of genus zero. The sphere 
integrals J in closed-string amplitudes and the disk integrals Z  in open-string 
amplitudes are shown to obey J = sv Z .

Keywords: multiple zeta values, string amplitudes, number theory

1.  Introduction

The study of scattering amplitudes has grown into a fertile and rapidly developing research 
area at the interface of particle physics, mathematics and string theory. A wealth of modern 
mathematical concepts including periods, motives and elliptic functions have become a com-
mon theme in scattering amplitudes of quantum field theory and string theory: field-theory 
amplitudes encounter various flavors of polylogarithms via Feynman integrals, and string 
amplitudes are formulated in terms of moduli-space integrals for punctured Riemann surfaces. 
In contrast to field theory, the infinite number of vibration modes in string spectra introduces 
transcendental numbers already into the tree level of string perturbation theory.
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More specifically, low-energy expansions of tree-level amplitudes of both open and closed 
strings involve multiple zeta values (MZVs),

ζ(k1, k2, . . . , kr) =

∞∑
0<l1<l2<...<lr

l−k1
1 l−k2

2 . . . l−kr
r , k1, k2, . . . , kr ∈ N , kr � 2 ,

�

(1)

characterized by depth r  and weight k1 + k2 + . . .+ kr . MZVs are the periods of the moduli 
space M0,n of n-punctured genus-zero surfaces [2]: for open strings, MZVs arise from iter-
ated integrals over the boundary of a disk, and closed-string tree amplitudes are obtained 
from complex integration over punctures on a sphere. From the work of Kawai, Lewellen 
and Tye (KLT) in 1986 [3], the sphere integrals for closed strings are known to factorize into 
bilinears in disk integrals for open strings. However, the approach of KLT does not mani-
fest whether the ‘squaring procedure’ for disk integrals induces any cancellations for certain 
classes of MZVs. From the observations of [4], only the so-called single-valued subclass of 
MZVs (see [5]) seems to persist in the final results for the sphere integrals in closed-string tree 
amplitudes. The purpose of this work is to give an elementary derivation for these conjectural 
selection rules. In fact, as will be detailed below, the closed-string amplitudes are tied to open-
string amplitudes by the ‘single-valued map’.

While four-point tree-level scattering of open strings gives rise to all Riemann zeta values 
ζ(m), 2 � m ∈ N in the low-energy expansion, the analogous closed-string four-point func-
tion only involves odd zeta values ζ(2k+1), k ∈ N. Here, the cancellations of integer powers 
of π2 can be tracked by the closed-form representation of the four-point amplitudes in terms 
of gamma functions of the kinematic data. In open-string amplitudes with n � 5 external legs, 
in turn, the MZVs in the low-energy expansions include higher-depth instances and follow a 
more elaborate structure that can be understood in terms of motivic MZVs [4] and the Drinfeld 
associator [6, 7]4. It took until 2012 for an all-order conjecture for the selection rules on the 
MZVs in closed-string n-point amplitudes to be made [4], based on an experimental order-by-
order inspection of the output of the KLT relations5.

According to the observations in [4], closed-string low-energy expansions are conjectured 
to follow from the single-valued map [5] of the MZVs in the disk integrals of open-string 
amplitudes [16, 17]. A defining property of the resulting single-valued MZVs is their descent 
from single-valued multiple polylogarithms at unit argument. The procedure of Brown [18] to 
eliminate the monodromies from harmonic polylogarithms induces a map on MZVs which is 
referred to as the single-valued map sv [5, 19]. MZVs in the low-energy expansion of n-point 
sphere integrals J can be obtained from specific disk integrals Z  via the sv map: as will be 
detailed below, see (35), the relation conjectured by Stieberger and Taylor [17] (based on 
results of [4, 16])

J = sv Z� (2)

associates certain anti-meromorphic functions of the punctures on the sphere with cyclic 
orderings of the punctures on the disk boundary, following a Betti–deRham duality. An inde-
pendent proof of (2) by Brown and Dupont was recently announced in [1].

4 State-of-the-art methods to compute the low-energy expansion of n-point disk integrals include matrix represen-
tations of the Drinfeld associator [7] and recursions for off-shell versions of the disk integrals [8] (building upon 
the approach via polylogarithm manipulations in [9]). For certain multiplicities n, explicit results are available for 
download via [10], and one can also use the connection between disk integrals and hypergeometric functions to 
extract low-energy expansions, see e.g. [11–14] and references therein.
5 Also see [15] for earlier work on MZVs at weight � 8 in closed-string five- and six-point functions. The all-order 
conjectures of [4] have, for instance, been checked to match with the KLT relations up to transcendental weight 18 
at five points and weight 9 at six points.
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The proof of Brown and Dupont relies on a ‘motivic’ version of the KLT formula (see sec-
tion 2.4). This motivic KLT is proved to be closely related to the single-valued map (which is 
only proven to exist in the motivic setup). Finally, the authors define ‘dihedral coordinates’ to 
provide an explicit formula which handles the poles in the Laurent expansions of string tree-
level amplitudes.

Note that the proof of Brown and Dupont relies on the notion of ‘motivic periods’. The 
motivic concept allows one to lift integrals from pure numbers (or functions) to objects in 
algebraic geometry. These objects contain the initial data of the integral (the form and the 
cycle) and provide a restricted set of transformations in algebraic cohomology. This bypasses 
notoriously difficult issues with transcendentality: while in many cases it is easy to see that 
certain numbers (such as MZVs) are related by equations, it is much harder to prove that a pair 
of numbers can never be related by a class of operations.

The notion of ‘motivic periods’ is a mathematically beautiful and deep construction which 
may not be readily accessible to physicists. The main claims relating motivic periods with 
pure numbers are:

	 •	�Many properties of pure numbers can only be proven in the motivic setup (like e.g. the 
existence of a weight grading of MZVs).

	 •	�The motivic setup is conjectured to be fully equivalent (isomorphic) to the pure number 
setup.

	 •	�Any explicit relation which is derived within the motivic setup is also (proven to be) true 
in the pure number context.

Because (2) the objects J and Z  are related by the single-valued map, the result can only be 
proven in the motivic context. Therefore, the mathematically beautiful proof of Brown and 
Dupont inevitably uses more advanced mathematics which may be somewhat less accessible 
to physicists.

In this work, we will deliver an elementary inductive derivation (a proof under general 
mathematical assumptions) that sphere integrals are single-valued versions of disk integrals 
and, equivalently, that closed-string tree-level amplitudes are single-valued open-string ampl
itudes. The driving force for the derivation is the notion of single-valued integration [19] along 
with its properties that originate from motivic algebraic geometry [5, 20]. The Betti–deRham 
duality between the anti-meromorphic factors in the integrands on the sphere and integration 
cycles on the disk boundary will arise naturally from the Stokes theorem.

The sv relations between disk and sphere integrals can be applied to closed strings in the 
supersymmetric, heterotic and bosonic theories [17] and have triggered several directions of 
follow-up research. For instance, single-valued open-string amplitudes govern amplitude rela-
tions mixing gauge and gravitational states of the heterotic string [21] as well as the recent 
double-copy description of bosonic and heterotic strings [22]. Moreover, the appearance of 
single-valued MZVs in the sigma-model approach to effective gauge interactions of type-I and 
heterotic strings has been studied in [23]. The derivation in this work and the proof of Brown 
and Dupont will place these results on firm ground without the need to rely on a conjectural 
status for the key relations (2) between sphere integrals and single-valued disk integrals.

The derivation in this article is not a proof in a full mathematical sense for the following 
three reasons:

Firstly, one has to keep in mind that the single-valued map is only defined to exist in a 
‘motivic’ framework. Because the singular divisors in the disk and sphere integrals are not nor-
mal crossing, it is a non-trivial step to set up a motivic theory for these objects. Alternatively, 
one can assume standard transcendentality conjectures for the related integrals.
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Secondly, we use three natural properties of the single-valued map in section 3.1. These 
properties are thoroughly tested. Properties (i) and (ii) are proven or mostly proved in the 
stated literature. Property (iii) is proved in the text using a standard property of the ‘ f -alpha-
bet’ which may not be fully proved in the mathematical literature (the f -alphabet has not yet 
drawn much attention in mathematics).

Thirdly, we use the existence of a subtraction scheme whose existence we do not prove 
here. In tree-level string theory, the purpose of subtraction schemes is to capture the kinematic 
poles in disk and sphere integrals. These poles have already been investigated from various 
different perspectives [8, 9, 24]. Moreover, subtractions schemes are extensively studied in 
the much more complicated case of quantum field theory (see e.g. [25, 26]). Further, note that 
in [1] Brown and Dupont prove the existence of this subtraction scheme in full mathematical 
rigor. So, we considered it more beneficial to provide the reader with explicit examples in 
appendix A and refer to [1] for the full proof.

In spite of these restrictions we informally use the word ‘proof’ in this article.

2.  Reviewing the bases and relations of disk and sphere integrals

In this section, we review the classes of disk and sphere integrals that are related through 
the sv map. These moduli-space integrals encode the low-energy regime of string tree-level 
amplitudes through their series expansion in the dimensionless Mandelstam invariants

sij := 2α′ki · kj = sji, sij ∈ R ,� (3)

where α′ denotes the inverse string tension. The external momenta ki are Lorentz vectors 
referring to massless external states i = 1, 2, . . . , n of an n-point amplitude subject to k2

i = 0 
and momentum conservation 

∑n
i=1 ki = 0. These kinematic constraints imply

si,i = 0,
n∑

i=1

sij = 0 ∀ j = 1, 2, . . . , n ,� (4)

so that only n2 (n−3) Mandelstam invariants are independent.

2.1.  Four-point integrals: an inviting example

The simplest appearance of MZVs in string perturbation theory occurs in the four-point tree 
amplitude of open strings. After peeling off suitable kinematic factors, the amplitude boils 
down to the disk integral

Z4pt :=
∫ 1

0

dz
z

zs12(1 − z)s23 =
Γ(s12)Γ(1 + s23)

Γ(1 + s12 + s23)
� (5)

and its permutations w.r.t. the external momenta. The α′-expansion of the integral Z4pt—i.e. 
the simultaneous series expansion in the dimensionless sij variables (3)—follows from the 

Γ-function identity log Γ(1 + x) = −γx +
∑∞

k=2
ζ(k)

k (−x)k ,

Z4pt =
1

s12
exp

( ∞∑
k=2

ζ(k)
k

(−1)k[sk
12 + sk

23 − (s12 + s23)
k])

=
1

s12
− ζ(2)s23 + ζ(3)s23(s12 + s23) + O(α′3) ,

�

(6)

and involves all Riemann zeta values (while the Euler Mascheroni constant γ  cancels).
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The simplest appearance of MZVs in a closed-string setup is the following complex int
egral in the four-point tree amplitude

J4pt :=
1
π

∫

C

d2z
zz̄(1 − z̄)

|z|2s12 |1 − z|2s23 =
Γ(s12)Γ(1 + s23)Γ(1 + s13)

Γ(1 − s12)Γ(1 − s23)Γ(1 − s13)
,

� (7)
where z is the complex conjugate of z = x + iy and d2z := dx dy. The α′-expansion takes a 
particularly symmetric form in terms of s13 = −s12 − s23, see (3),

J4pt =
1

s12
exp

(
−2

∞∑
k=1

ζ(2k+1)
2k+1

[
s2k+1

12 + s2k+1
23 + s2k+1

13

])

=
1

s12
+ 2ζ(3)s23(s12 + s23) + O(α′4) ,

�

(8)

and the first line of (8) manifests the cancellation of even Riemann-zeta values.

2.2. The integrals for n points

The above four-point integrals fall into the following general classes of n-point disk integrals 
Z(τ |ρ) and sphere integrals J(τ |ρ),

Z(τ |ρ) :=
∫

−∞�zτ(1)�zτ(2)�...�zτ(n)�∞

dz1 dz2 . . . dzn

vol SL2(R)
(−1)n−3 ∏

1�i<j�n |zi,j|sij

zρ(1),ρ(2)zρ(2),ρ(3) . . . zρ(n−1),ρ(n)zρ(n),ρ(1)
,

� (9)

J(τ |ρ) :=
∫

Cn

d2z1 d2z2 . . . d2zn

πn−3 vol SL2(C)

∏
1�i<j�n |zi,j|2sij

(zρ(1),ρ(2)zρ(2),ρ(3) . . . zρ(n),ρ(1)) (z̄τ(1),τ(2)z̄τ(2),τ(3) . . . z̄τ(n),τ(1))
,

� (10)
where zi,j := zi − zj. Both types of integrals are indexed by two permutations ρ, τ ∈ Sn of the 
legs {1, 2, . . . , n}. The absolute value in the integrand 

∏
1�i<j�n |zi,j|sij  of (9) ensures that only 

positive numbers are raised to the power of sij, regardless of the integration domain character-
ized by zτ(i) < zτ(i+1).

The inverse factor of vol SL2(R) in the disk integrals (9) is implemented by dropping 
three integrations over any zi, zj, zk  (with i, j, k ∈ {1, 2, . . . , n}), inserting |zi,jzi,kzj,k| and fixing 
(zi, zj, zk) → (0, 1,∞). Its analogue (vol SL2(C))−1 in the sphere integral (10) instructs to 
insert |zi,jzi,kzj,k|2. The limit zk → ∞ is non-singular by the Mandelstam identity (4) and the 
choice of cyclic ‘Parke–Taylor’ denominators in (9) and (10).

Note that the four-point integrals (5) and (7) can be recovered from the general definition 
via

Z4pt = −Z(1, 2, 3, 4|1, 2, 4, 3), J4pt = −J(1, 2, 3, 4|1, 2, 4, 3)� (11)

after fixing (z1, z3, z4) → (0, 1,∞) and identifying z2 → z. The low-energy expansions (6) 
and (8) of the four-point integrals generalize as follows to a higher multiplicity: the n-point 
integrals (9) and (10) admit a Laurent expansion in the dimensionless Mandelstam invariants 
(3) of the form [4, 7, 24]

Z(τ |ρ) = p3−n(τ |ρ) + ζ(2) p5−n(τ |ρ) + ζ(3) p6−n(τ |ρ) + ζ(4) p7−n(τ |ρ) + O(α′8−n) ,� (12)

where pk(τ |ρ) are Laurent polynomials in si...j = α′(ki + . . .+ kj)
2 of homogeneity degree k 

with rational coefficients. The α′-expansion of J(τ |ρ) follows the same structure: equation (2) 
translates the leading low-energy orders (12) of the disk integrals into

O Schlotterer and O Schnetz﻿J. Phys. A: Math. Theor. 52 (2019) 045401
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J(τ |ρ) = p3−n(τ |ρ) + 2ζ(3) p6−n(τ |ρ) + O(α′8−n) ,� (13)

see (25), with the same degree-k Laurent polynomials pk(τ |ρ) in sij as seen in the α′-expan-
sion (12) of the disk integrals.

By the results of [9, 27], the n-point tree-level amplitudes of open and closed superstrings 
are expressible in terms of the integrals (9) and (10), also see [22, 28] for analogous statements 
on bosonic and heterotic strings.

2.3.  Relations of disk and sphere integrals

One can infer from the right-hand sides of (9) and (10) that the disk and sphere integrals 
Z(τ |ρ) and J(τ |ρ) only depend on the cyclic equivalence class of the permutations τ , ρ. The 
cyclic denominators manifest that

Z(τ |1, 2, 3, . . . , n) = Z(τ |2, 3, . . . , n, 1) , J(τ |1, 2, 3, . . . , n) = J(τ |2, 3, . . . , n, 1) ∀ τ ∈ Sn ,� (14)

and the same is true for the first entry of the sphere integrals [by reality J(τ |ρ) = J(ρ|τ)]. 
Also, the integration domain of the disk integrals (9) is cyclically invariant

Z(1, 2, 3, . . . , n|ρ) = Z(2, 3, . . . , n, 1|ρ) ∀ ρ ∈ Sn .� (15)

Still, the number (n−1)! of cyclically inequivalent permutations in Sn overcounts the number 
of inequivalent disk and sphere integrals: different choices of the cyclic denominators are 
related via integration-by-parts relations which lead to a basis of (n−3)! inequivalent permu-
tations of (z1,2z2,3 . . . zn,1)

−1. For disk integrals, dropping total derivatives w.r.t. the punctures 
yields [9]

n−1∑
j=2

k1·(k2+k3+ . . .+kj)Z(τ |2, 3, . . . , j, 1, j+1, . . . , n−1, n) = 0 ∀ τ ∈ Sn ,

�

(16)

and the same relations hold for both entries of the sphere integrals. Since the first entry of the 
disk integrals (9) refers to an integration cycle −∞ � zτ(1) � zτ(2) � . . . � zτ(n) � ∞ rather 
than a choice of integrand, i.e. Z(τ |ρ) �= Z(ρ|τ), monodromy properties of the Koba–Nielsen 
factor 

∏
1�i<j�n |zi,j|sij  yield [29, 30]

n−1∑
j=2

sin
[
2πα′k1·(k2+k3+ . . .+kj)

]
Z(2, 3, . . . , j, 1, j+1, . . . , n−1, n|ρ) = 0 ∀ ρ ∈ Sn .� (17)

The combinatorics of these monodromy relations follow the structure of (16) except for the 
promotion of the coefficients k1·(k2+k3+ . . .+kj) to a trigonometric function. Hence, permu-
tations of (17) leave (n−3)! independent integration cycles [29, 30].

By combining permutations of (16) and (17), the moduli-space integrals Z(τ |ρ) and 
J(τ |ρ) can be expressed in a basis of (n−3)!× (n−3)! elements. For both entries, one can fix 
legs n−1, n, 1 in adjacent positions and take ρ = 1,β, n−1, n with permutations β ∈ Sn−3 of 
{2, 3, . . . , n−2} as a convenient basis choice. These relations can be understood in the frame-
work of intersection theory, where (n−3)! arises as the dimension of twisted homologies and 
cohomologies [31, 32].

O Schlotterer and O Schnetz﻿J. Phys. A: Math. Theor. 52 (2019) 045401
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2.4.  Kawai–Lewellen–Tye relations

Using the representations of the four-point integrals (5) and (7) in terms of Γ functions, one 
can observe via sin(πx) = π

Γ(1−x)Γ(x)  that

J(1, 2, 3, 4|1, 2, 4, 3) = − 1
π

Z(1, 2, 3, 4|1, 2, 4, 3) sin(πs12)Z(1, 2, 4, 3|1, 2, 3, 4) .
�

(18)

This is the simplest instance of the KLT relations [3] between sphere integrals and bilinears 
in disk integrals which can be derived by suitable deformations of the complex integration 
contours. Their generalizations to n-points do not depend on the Parke–Taylor denominators 
in the integrand of J(τ |ρ) and may be described in terms of a (n−3)!× (n−3)! KLT matrix 
Sα′(σ|β)1 [3, 33, 34]

J(τ |ρ) =
∑

σ,β∈Sn−3

Z(1,σ, n, n−1|τ)Sα′(σ|β)1Z(1,β, n−1, n|ρ) .
� (19)

The KLT matrix Sα′(σ|β)1 is indexed by permutations σ,β ∈ Sn−3 of {2, 3, . . . , n−2} and 
admits a recursive definition [34, 35]

Sα′(2|2)1 = − 1
π
sin(πs12) = − 1

π
sin(2πα′k1 · k2)

Sα′(A, j|B, j, C)1 = − 1
π
sin

(
2πα′kj · (k1 + kB)

)
Sα′(A|B, C)1 .

� (20)

Here, we are employing the notation A = a1a2 . . . ap and B = b1b2 . . . bq for words of length 
p, q � 0 composed of external-state labels ai and bj as their letters. We also use kB =

∑q
j=1 kbj 

for the overall momentum associated with the word B = b1b2 . . . bq. The recursive step in (20) 
removes the last leg j in the first entry of Sα′(·|·)1 which is not necessarily in the last position 
in the second entry. The subscript of Sα′(σ|β)1 indicates that the entries in (20) depend on both 
k1 and the momenta k2, k3 . . . , kn−2 associated with the permutations σ,β.

Similar to the integration-by-parts and monodromy relations (16) and (17), the KLT rela-
tions (19) can be elegantly understood in terms of intersection theory [31] where they follow 
from the twisted period relations [36].

The permutations 1,σ, n, n−1 and 1,β, n−1, n in (19) reflect a particular basis choice of 
twisted homologies that is tailored to simplify the KLT matrix (20): the three legs 1, n−1, n 
are kept in adjacent positions, and the sets of integration cycles for Z(1,σ, n, n−1|τ) and 
Z(1,β, n−1, n|ρ) in (19) are related through the transposition n−1 ↔ n. With this choice of 
bases, the entries of Sα′(σ|β)1 do not depend on kn−1 or kn.

Given the α′-expansion of the disk integrals Z(τ |ρ), the KLT relations (19) in principle 
determine the analogous expansion of J(τ |ρ). However, already the four-point example (18) 
reveals the shortcoming of the KLT relations that both of its ingredients Z(τ |ρ) and Sα′(σ|β)1 
carry spurious contributions of ζ(2k), k ∈ N, which are absent in the final result (8).

At n � 5 points, similar cancellations have been observed [4] by inserting explicit α′-expan-
sions of disk integrals into KLT formulae equivalent to (19). In the following we will not use 
the KLT relations. We rather give a general proof that the observed patterns of MZVs in sphere 
integrals are governed by the single-valued map.

Note that, in contrast to our approach, the proof of (2) in [1] uses a motivic version of the 
KLT relations.
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3. The main result

3.1.  Single-valued iterated integrals and single-valued MZVs

The notion of single-valued (motivic6) MZVs is based on the representation of generic MZVs 
(1) in terms of multiple (harmonic) polylogarithms at unit argument (see [37] for the general 
definition of iterated integrals I)

I(0, a1a2 . . . aw, z) =
∫ z

0

dt
t − aw

I(0, a1a2 . . . aw−1, t) , I(0, z) = 1 ,� (21)

ζ(n1, n2, . . . , nr) = (−1)rI(0, 100 . . . 0︸ ︷︷ ︸
n1

100 . . . 0︸ ︷︷ ︸
n2

. . . 100 . . . 0︸ ︷︷ ︸
nr

, 1) ,
� (22)

where z ∈ C. For each choice of a1, a2, . . . , aw ∈ {0, 1}, a construction by Brown [18] pro-
vides a unique single-valued iterated integral I(0, a1a2 . . . aw, z). The latter can be considered 
as iteratively performing ‘single-valued integrations’ from the base point 0 to z in complete 
analogy to the analytic integration in (21).

In such single-valued multiple polylogarithms the monodromies of (21) around t = 0, 1,∞ 
are annihilated by anti-holomorphic admixtures, e.g.

I(0, 1, z) = I(0, 1, z)+I(0, 1, z̄) , I(0, 10, z) = I(0, 10, z)+I(0, 0, z)I(0, 1, z̄)+I(0, 01, z̄) ,
I(0, 100, z) = I(0, 100, z) + I(0, 00, z)I(0, 1, z̄) + I(0, 0, z)I(0, 01, z̄) + I(0, 001, z̄) .

�
(23)

While the holomorphic differentials ∂∂z of I(0, . . . , z) are preserved by the I(0, . . . , z), the gen-
eral connection between I  and I is more complicated than suggested in the above examples 
(a Maple implementation is [38]). By analogy with (22), single-valued MZVs (and the corre
sponding single-valued map sv) are defined as single-valued multiple polylogarithms at unit 
argument [5, 19],

ζsv(n1, n2, . . . , nr) = (−1)rI(0, 100 . . . 0︸ ︷︷ ︸
n1

100 . . . 0︸ ︷︷ ︸
n2

. . . 100 . . . 0︸ ︷︷ ︸
nr

, 1)

sv : ζ(n1, n2, . . . , nr) → ζsv(n1, n2, . . . , nr) .
� (24)

At the level of Riemann zeta values, single-valued MZVs (24) take the simple form

ζsv(2k) = 0 , ζsv(2k+1) = 2ζ(2k+1) ,� (25)

while higher-depth instances such as

ζsv(3, 5) = −10ζ(3)ζ(5) , ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5)− 10ζ(3)2ζ(5) ,� (26)

are most conveniently understood in terms of the f -alphabet for MZVs [5, 39].
In the f -alphabet (motivic) iterated integrals become words in some alphabet which reflects 

the number-theoretical contents of the iterated integral. The f -alphabet exists for arbitrary 
a1, . . . , aw ∈ C, in which case the iterated integrals (21) are hyperlogarithms. (Single) loga-
rithms are primitive, i.e. they are represented by a single letter (of weight one). The product 
becomes shuffle ∃ , and there is some admixture of polynomial type from pure periods (int
egrals without boundary which in the case of hyperlogarithms are polynomials in 2πi).

6 The single-valued map is only proven to exist in the motivic context [5].
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Iterated integrals in several analytic variables are represented by words with purely analytic 
letters7. In an f -alphabet with purely analytic letters the sv map on a word w is given by

sv w =
∑
w=uv

ũ ∃ v ,� (27)

where ̃u is u in reversed order (and •  is complex conjugation). Moreover, sv 2πi = 0. In physi-
cal terminology the f -alphabet can be considered as a complete symbol [41]. In particular, 
the conversion into the f -alphabet has a trivial kernel, so that no information is lost when one 
uses the f -alphabet.

In pure mathematics the sv map exists as evaluation of ‘deRham’ periods in a very general 
motivic context. Here, we only use sv as the map

sv : I(0, a1a2 . . . aw, z) �→ I(0, a1a2 . . . aw, z)� (28)

(which is consistent with (24)). In general, there exist relations between iterated integrals 
(e.g. for MZVs). A priori it is unclear (surprising even) that the map sv is well-defined (i.e. it 
is consistent with all relations). However, the sv-map on I(0, a1a2 . . . aw, z) can be proved to 
have the following three natural properties:

	 (i)	�The sv-map is well-defined.
	(ii)	�The sv-map commutes with evaluation.
	(iii)	�The sv-map extends to several (analytic) variables. I.e. I(0, a1a2 . . . aw, z) is single-

valued in all variables a1, a2, . . . , aw, z of its letters.

These results have a deep origin in motivic algebraic geometry. The Ihara action [42] plays a 
major role in the proof of property (i) for iterated integrals. Property (i) is theorem 1.1 in [5] 
and property (ii) in the context of multiple polylogarithms is corollary 5.4 in [5]. More on the 
evaluation of hyperlogarithms at special values of the arguments can be found in [20].

Property (iii) can be proved in the f -alphabet [39]:

Proof of (iii).  In the general hyperlogarithmic context, monodromies can be expressed in 
terms of an ‘infinitesimal’ object, M = exp(m), Here, m  can be considered as picking the 
part of the monodromy which is proportional to 2πi. Note that m  is a derivative (i.e. it obeys 
the Leibniz rule). In the f -alphabet, m  is obtained from the first letter on the Betti side (here, 
the left-hand side) [41],

m(aw) = m(a)w ,� (29)

where a is a letter and w is a word.
Expressions with trivial monodromy lie in the kernel of m .
For hyperlogarithms, the only functions represented by single letters in the f -alphabet are 

logarithms (all logarithms are ‘primitives’ of weight one). Hence, only words with logarithms 
(like I(0, a1, z) = log(1 − z/a1)) as first letters contribute to the differential monodromy m . 
For such a logarithm the differential monodromy around z = a1 is 2πi. The complex conju-
gate letter log(1 − z/a1) has differential monodromy −2πi around z = a1 (this also remains 
true if one considers the monodromy of the variable a1 around a fixed value of z). From this we 
conclude that in the f -alphabet for hyperlogarithms single-valuedness means that all words 
not beginning in constants come in pairs with complex conjugate first letters.

7 In the context of quantum field theory, iterated integrals with non-analytic letters also play a prominent role [26, 
40]. Handling these objects is more complicated. Here, we only need the straightforward analytic case.
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For a letter a we define ∂aaw = w (clipping off the first Betti letter) and ∂abw = 0 if b �= a. 
Note that ∂a is a differential with respect to the shuffle product. Because of the monodromy 
property of the f -alphabet, the proof of property (iii) reduces to showing that

∂asv w = ∂asv w� (30)

for all words w and all letters a (with complex conjugate a). From (27) we have

∂asv w =
∑
w=uv

[
(∂aũ) ∃ v + ũ ∃ ∂av

]
=

∑
w=uv

ũ ∃ ∂av .� (31)

Likewise,

∂asv w =
∑
w=uv

(∂aũ) ∃ v .� (32)

Both expressions on the right-hand sides are equivalent to
∑

w=uav

ũ ∃ v� (33)

which completes the proof.� □ 

Note that property (iii) means that single-valued integration with respect to any variable 
of a single-valued iterated integral is single-valued in all variables. A priori, this property of 
‘single-valued integration’ is as mysterious as properties (i) and (ii). Single-valued integra-
tion was originally introduced by Brown using generating functions [5]. In practice, it is more 
convenient to use a bootstrap algorithm first defined in [19]. A practical and fully general 
approach uses a commutative hexagon [26, 40].

Also note that property (iii) relates I(0, a1a2 . . . aw, z) to the single-valued multiple poly-
logarithms in more than one variable constructed in [43, 44].

3.2. The claim

The single-valued map (25) of Riemann zeta values relates the four-point integrals of sec-
tion 2.1 at the level of their α′-expansions in (6) and (8),

J(1, 2, 3, 4|1, 2, 4, 3) = sv Z(1, 2, 3, 4|1, 2, 4, 3) ,� (34)

where sv is understood on the expansion in the parameters sij. By ζsv(2k) = 0, the sv map 

rationalizes the trigonometric functions sin(πsij) = πsij exp
(
−2

∑∞
k=1

ζ(2k)
2k s2k

ij

)
 in the mono-

dromy relations (17), sv sin(πsij)/π = sij. Hence, the observation (34) extends to all four-
point disk and sphere integrals of the general form (9) and (10).

The general conjecture of Stieberger and Taylor we want to prove in this work concerns the 
striking connection between n-point disk and sphere integrals in (9) and (10) via [17]

J(τ |ρ) = sv Z(τ |ρ) ∀ τ , ρ ∈ Sn .� (35)

This relation identifies sphere integrals J as single-valued disk integrals sv Z , where the anti-
meromorphic part (zτ(1),τ(2) . . . zτ(n),τ(1))

−1 of the sphere integrand reflects the ordering of 
the integration cycle −∞ � zτ(1) � zτ(2) � . . . � zτ(n) � ∞ on the disk boundary.

The conjecture (35) of [17] is based on equivalent conjectures on an (n−3)!× (n−3)! basis 
of disk and sphere integrals that have been made in [4, 16]. The latter conjectures are based 
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on an experimental order-by-order inspection of the output of the KLT relations (19), e.g. up 
to transcendental weight 18 at five points or weight 9 at six points: the MZVs in the α′-expan-
sions of sphere integrals were observed to realize the representation (27) of the single-valued 
map in the f -alphabet when comparing with the dependence of disk integrals on sij [4, 16]. 
Assuming that (35) holds for said (n−3)!× (n−3)! bases of disk and sphere integrals, integra-
tion-by-parts and monodromy relations (16) and (17) imply its general validity for arbitrary 
pairs of permutations τ , ρ ∈ Sn [17]. As emphasized in the reference, this argument relies on 
the action of the sv map on the trigonometric functions sv sin(πsij)/π = sij in the monodromy 
relations.

Reducing the sphere integral J(τ |ρ) to a single-valued disk integral has both a concep-
tual and a practical advantage over the KLT formula: the low-energy expansion of (35) 
bypasses the spurious appearance of MZVs beyond ζsv(n1, . . . , nr), and the summation over 
(n−3)!× (n − 3)! terms8 on the right-hand side of (19) is replaced by a single term sv Z(τ |ρ). 
The implications of (35) on the leading low-energy orders of disk and sphere integrals are 
spelled out in (12) and (13).

3.3. The proof

As the main result of this work, this section is dedicated to a proof of (35). We emphasize 
again that the proof is subject to the restrictions detailed at the end of the introduction.

For ease of notation, we assume the first slot of the integrals Z(τ |ρ) and J(τ |ρ) to comprise 
the identity permutation τ = 1, 2, . . . , n. This assumption does not cause any loss of general-
ity since all the other disk and sphere integrals with the same relative permutation ρ ◦ τ−1 can 
be inferred by relabellings of the subscripts 1 � i, j � n of sij. Moreover, it will be convenient 
to pick an SL2 frame where (z1, zn−1, zn) → (0, 1,∞), such that

Z(1, 2, . . . , n|ρ) = (−1)n−3
∫

0�z2�z3�...�zn−2�1
dz2 dz3 . . . dzn−2

∏
1�i<j<n

|zi,j|sij f (ρ)� (36)

J(1, 2, . . . , n|ρ) = − 1
πn−3

∫

Cn−3

d2z2 d2z3 . . . d2zn−2

z̄1,2z̄2,3 . . . z̄n−3,n−2z̄n−2,n−1

∏
1�i<j<n

|zi,j|2sij f (ρ) .

�

(37)

The form of the meromorphic integrand

f (ρ) := lim
zn→∞

z2
n

zρ(1),ρ(2)zρ(2),ρ(3) . . . zρ(n−1),ρ(n)zρ(n),ρ(1)
,� (38)

does not affect the subsequent arguments. The values z̄1 = 0 and z̄n−1 = 1 are meant to be 
inserted in the denominator of (37) and subsequent expressions.

The integrals Z  (open string) and J (closed string) are connected by a Betti–deRham 
duality [45, 46]: in (36) the chain of integration is bounded by the identities zi = zi+1 for 
i = 1, . . . , n−2. Likewise, the integrand in (37) has the anti-meromorphic singular divisor 
∪n−2

i=1 {zi = zi+1} which is the deRham version of the chain of integration in (36). Accordingly, 
J(τ |ρ) becomes the deRham analogue of Z(τ |ρ). It is explained in [5] that single-valued 
MZVs are evaluations of deRham periods (after a projection from motivic periods into deR-
ham periods which suppresses 2πi, see also [20]). So, it is natural that J is the image of Z  

8 The KLT formula (19) may also be rewritten more compactly with (n−3)!
(
� n

2�−2
)
!
(
� n

2�−1
)
! terms [33, 34].
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under the single-valued map. These statements, however, do not have the status of a theorem 
so we need a proof of the result (35).

Proof of (35).  We will iteratively integrate (36) and (37) over the variables z2, z3, . . . , zn−2. 
Let Zi(zi+1, . . . , zn−2) and Ji(zi+1, . . . , zn−2) denote the result after the (i−1)st integration, i.e.

Zi(zi+1, . . . , zn−2) := (−1)n−3
∫

0�z2�z3...�zi�zi+1

dz2 dz3 . . . dzi

∏
1�a<b<n

|za,b|sab f (ρ)� (39)

Ji(zi+1, . . . , zn−2) := − 1
πn−3

∫

Ci−1

d2z2 d2z3 . . . d2zi

z̄1,2z̄2,3 . . . z̄n−3,n−2z̄n−2,n−1

∏
1�a<b<n

|za,b|2sab f (ρ) .� (40)

The functions Z1(z2, . . . , zn−2) and J1(z2, . . . , zn−2) at i = 1 are given by the integrands of 
(36) and (37), respectively.

We will show by induction that

Ji(zi+1, . . . , zn−2) =
(−1)n−i+1sv Zi(zi+1, . . . , zn−2)

πn−2−iz1,i+1zi+1,i+2 . . . zn−2,n−1
� (41)

for all i = 1, . . . , n−2. Because Z(1, 2, . . . , n|ρ) = Zn−2(∅) and J(1, 2, . . . , n|ρ) = Jn−2(∅), 
this implies the theorem (35) (because z1,n−1 = −1).

Note that the absolute values in the numerators of (39) and (40) play completely differ-
ent roles in both cases. In Z1 there exist no complex conjugate variables and |za,b| with a < b 
is −za,b. In fact, the only motivation for employing the absolute values for disk integrals 
stems from (9), where the integrand does not need any explicit reference to the permutation 
τ  of the integration cycle. We consider the numerator as a generating series of logarithms 
with the expansion parameters sab. In J1 the numerator is a generating series of logarithms in 
|za,b|2 = za,bza,b. Because

sv log(x − y) = log[(x − y)(x − y)]� (42)

for any complex numbers or variables x, y, equation (41) holds for i = 1.
Now, assume (41) holds for i. In the calculation of Zi+1, the integrand may have a singular-

ity at zi+1 = zi+2 or at zi+1 = 0. In these cases, one has to subtract the asymptotic expansion 
at the singular locus which will be exemplified in appendix A.

Note that Brown and Dupont give a full mathematical proof in [1] that the subtraction of 
singularities is always possible.

The subtraction at zi+1 = zi+2 is of the form c|zi+1,i+2|s−1 for some c = c(zi+2, . . . , zn−2) 
which is constant in zi+1 but may depend on the integration variables zi+2, . . . , zn−2 of later 
steps. The exponent in |zi+1,i+2|s−1 refers to a sum s =

∑
sab  for some pairs a, b that are deter-

mined by previous integration steps. Assuming that9 s > 0, the subtraction can trivially be in-
tegrated from 0 = z1 to zi+2 yielding − c

s · |z1,i+2|s (providing a pole in s = 0). The analogous 
result holds for a singularity at zi+1 = 0.

The systematics of the kinematic poles of disk integrals generated in this way have been 
discussed in the literature from various perspectives [8, 9, 24]. Note that for the present proof, 
we only need the existence of such a subtraction scheme, i.e. the four- and five-point examples 
in appendix A are merely displayed for illustrative purposes. The closed-string analogues of 
the disk integrals with kinematic poles can be addressed with almost identical subtraction 

9 Negative values of s can be addressed via analytic continuation, based on the same form of the primitive that arises 
for s > 0.
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schemes, where the primitives involve factors of |zi+1,i+2|2s rather than |zi+1,i+2|s. All the inter-
mediate steps of the open-string and closed-string subtraction scheme are related through the 
sv map as one can see from the Taylor expansions of |zi+1,i+2|2s and |zi+1,i+2|s.

After the subtraction, the integrands of (39) and (40) have an integrable expansion at sij = 0 
and we can consider the integrand as a generating series in the sij. With this prescription we 
define the primitive Fi of Zi with respect to zi+1 and obtain

Zi+1 =

∫ zi+2

0
dzi+1 Zi = Fi(zi+2)− Fi(0) .� (43)

In general, the right-hand side of (43) is a series of Laurent type whose coefficients are iterated 
integrals in the letters 0, 1, zk for k = i+2, . . . , n−2.

By the inductive assumption we have

Ji+1 :=
∫

C
d2zi+1 Ji =

∫

C
d2zi+1

(−1)n−i+1sv Zi

πn−2−iz1,i+1zi+1,i+2 . . . zn−2,n−1
.� (44)

We calculate the integral with the residue theorem of section 2.8 in [19]. To do so we need 
a single-valued primitive of the integrand with respect to the holomorphic variable zi+1. By 
single-valued integration—see property (iii) in section 3.1—this primitive is

Fi :=
(−1)n−i+1sv Fi

πn−2−iz1,i+1zi+1,i+2 . . . zn−2,n−1
.� (45)

Because the denominator of Fi  is of degree two in zi+1, its anti-residue at infinity (the residue 
with respect to the anti-holomorphic variable zi+1) vanishes. Moreover, Fi  has simple poles at 
zi+1 = z1 = 0 and at zi+1 = zi+2 whose anti-residues are obtained by substitution. From the 
residue theorem in [19] (using Stokes’ theorem)10 we obtain

Ji+1 =

∫

C
d2zi+1

∂

∂zi+1
Fi

=
(−2πi)

2i
(−1)n−i+1[(sv Fi)(zi+2)− (sv Fi)(0)]

πn−2−iz1,i+2 . . . zn−2,n−1

=
(−1)n−i sv Zi+1

πn−3−iz1,i+2 . . . zn−2,n−1
.

�

(46)

Because the evaluation of Fi commutes with the sv-map—see property (ii) in section 3.1—this 
reproduces the shifted form i → i+1 of the inductive assumption (41) and therefore completes 
the induction.� □ 

The proof confirms the result of [2, 47] that the Laurent series of Z  has MZV coefficients 
and provides a method to calculate them which closely follows the lines of [8, 9]. At the same 
time, it clarifies that the coefficients of J are single-valued MZVs which can be inferred from 
open-string results on Z  without any reference to KLT relations (19).

10 Schematically, after using Stokes’ theorem we use the residue theorem in the following way in passing to the 
second line of (46)

∮

∂(C\{za,zc})
dz̄b

f (zb)

z̄abz̄bc
= −2πi

z̄ac

(
f (zc)− f (za)

)
,

where the function f  is regular at zb = za, zc . Note that the ‘boundary’ of C \ {za, zc} has negative orientation. 
A proof of this identity is in [19], see theorem 2.29.
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4.  Conclusions

In this work, we have proved that the moduli-space integrals in n-point tree-level amplitudes 
of open and closed strings are related by the sv map, confirming the conjectures of [4, 16, 
17]. More precisely, sphere integrals are expressed as single-valued disk integrals, where the 
singular parts of the anti-meromorphic sphere integrand are traded for an integration cycle 
on the disk boundary related by Betti–deRham duality. Our proof puts an intriguing web of 
connections between low-energy interactions of gauge- and gravity states in different string 
theories [17, 21, 22] on firm ground. These results go beyond the reach of the KLT relations 
(19) as well as the known string dualities [48–50] and call for various directions of follow-up 
research.

In the same way as the notion of a single-valued map applies to a variety of periods [20], 
the sv relations between string tree-level amplitudes should have an echo at loop level. At 
genus one, this gives rise to expect a relation between elliptic multiple zeta values [51] in 
open-string α′-expansions [52, 53] and modular graph functions in closed-string expansions 
[54–57]11.

Single-valued polylogarithms and MZVs were found to play a key role in one-loop ampl
itudes of closed superstrings [57, 60]. Moreover, first explicit connections between open- and 
closed-string results at genus one were established in [61], along with an empirically moti-
vated conjecture for the form of an elliptic single-valued map. Since the proof of this work 
only relies on general properties of the genus-zero integrals—such as singularities of the inte-
grands and the existence of suitable primitives—it is conceivable that similar methods can be 
applied to timely research problems at genus one and beyond.

At higher genus, the α′-expansion of moduli-space integrals of closed strings was pio-
neered in [62, 63], and the last months witnessed tremendous progress in understanding their 
systematics and degenerations [64, 65]. However, a higher-genus framework of elliptic multi-
ple zeta values is still lacking, so the knowledge of open-string low-energy expansions is very 
limited. We hope that the ideas of the proof in this work are helpful to identify a language 
for loop-level integrals in open- and closed-string amplitudes that is tailored to expose their 
relations.
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Appendix.  Pole subtractions

In this appendix, we illustrate the subtraction of singularities in the successive integration over 
disk punctures, see the discussion below (42). In the representation (36) of disk integrals, the 
rational function f (ρ) defined in (38) may contribute a pole in zi+1,i+2 or zi+1 to the integrand 
of 

∫ zi+2

0 dzi+1 in the induction step of the main proof. An explicit realization of subtraction 
schemes will now be spelled out for certain four- and five-point integrals which reflect the key 
features of the strategy at n points. Still, we reiterate that the proof in section 3.3 only requires 
the existence of a subtraction scheme, i.e. the details of the subsequent examples are just given 
to illustrate the general mechanism.

Similar subtractions were done in the more complicated framework of φ4 quantum field 
theory in [26] to obtain the seven loop beta-function (see figure 7 and conjecture 4.12). In 
tree-level amplitudes of string theories, the singularities are logarithmic once the disk and 
sphere integrals are brought into the form of Z(τ |ρ) and J(τ |ρ) via integration by parts. Since 
there is no need for dimensional regularization in string tree-level amplitudes, the analogue of 
conjecture 4.12 in [26] becomes a lemma that follows from blowing up all singular loci in the 
integrand. See [66] for the application of the concept of blowing up singularities in the context 
of quantum field theory.

A.1.  Four-point examples

In an SL2(R) frame with (z1, z3, z4) → (0, 1,∞), we consider the following instances of the 
disk and sphere integrals (36) and (37) with a single kinematic pole,

Z(1, 2, 3, 4|1, 2, 4, 3) = −
∫ 1

0
dz2

zs12
2 (1−z2)

s23

z2
= −

∫ 1

0
dz2

zs12
2

z2

(
(1−z2)

s23 − 1︸ ︷︷ ︸
(i)

+ 1︸︷︷︸
(ii)

)
� (A.1)

Z(1, 2, 3, 4|1, 4, 2, 3) = −
∫ 1

0
dz2

zs12
2 (1−z2)

s23

1 − z2
= −

∫ 1

0
dz2

(1−z2)
s23

1 − z2

(
zs12

2 − 1︸ ︷︷ ︸
(iii)

+ 1︸︷︷︸
(iv)

)
� (A.2)

J(1, 2, 3, 4|1, 2, 4, 3) =
∫

C

d2z2 |z2|2s12 |1−z2|2s23

π z2 z̄2(z̄2 − 1)
=

∫

C

d2z2 |z2|2s12
(

(v)︷ ︸︸ ︷
|1−z2|2s23 − 1+

(vi)︷︸︸︷
1

)
π z2 z̄2(z̄2 − 1)

� (A.3)

J(1, 2, 3, 4|1, 4, 2, 3) =
∫

C

d2z2 |z2|2s12 |1−z2|2s23

π (1 − z2) z̄2(z̄2 − 1)
=

∫

C

d2z2 |1−z2|2s23
(

(vii)︷ ︸︸ ︷
|z2|2s12 − 1+

(viii)︷︸︸︷
1

)
π (1 − z2) z̄2(z̄2 − 1)

,
� (A.4)

where the shorthands (i) to (viii) refer to the full-fledged integrals after isolating the high-
lighted terms in the sums (. . .) of the integrand, e.g.

(v) =
∫

C

d2z2 |z2|2s12
(
|1−z2|2s23 − 1

)
π z2 z̄2(z̄2 − 1)

.� (A.5)

The subtractions on the right-hand side are tailored to isolate the field-theory limits

Z(1, 2, 3, 4|1, 2, 4, 3) = − 1
s12

+ O(α′), J(1, 2, 3, 4|1, 2, 4, 3) = − 1
s12

+ O(α′)

�

(A.6)
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Z(1, 2, 3, 4|1, 4, 2, 3) = − 1
s23

+ O(α′), J(1, 2, 3, 4|1, 4, 2, 3) = − 1
s23

+ O(α′),

�
(A.7)

which can be straightforwardly generated from the integrals

(ii) = −
∫ 1

0
dz2 zs12−1

2 = − zs12
2

s12

∣∣∣
z2=1

z2=0
= − 1

s12
� (A.8)

(iv) = −
∫ 1

0
dz2 (1 − z2)

s23−1 =
(1 − z2)

s23

s23

∣∣∣
z2=1

z2=0
= − 1

s23

(vi) =
∫

C\{0,1}

d2z2 |z2|2s12

π z2 z̄2 (z̄2 − 1)
=

1
πs12

∫

C\{0,1}
d2z2

∂

∂z2

|z2|2s12

z̄2 (z̄2 − 1)

�

(A.9)

=
1

2πi s12

∮

∂(C\{0,1})

dz̄2 |z2|2s12

z̄2 (z̄2 − 1)

=
1

2πi s12

{
− 2πi |z2|2s12

z̄2 − 1

∣∣∣
z2=0

− 2πi |z2|2s12

z̄2

∣∣∣
z2=1

}
= − 1

s12
.

�

(A.10)

The evaluation of (viii) is completely analogous to (vi) and yields −1/s23. Note that, following 
the proof in section 3.3, the meromorphic parts of the primitives in (A.8) and (A.10) are identi-

cal. So, the fact that (vi) = sv (ii) is clear from the general arguments given above and con-

firmed by the inspection of the final result − 1
s12

 in both cases, where the action of sv trivializes.
The integrands in the curly bracket of (i), (v) and (iii), (vii) are designed to be regular as 

z2 → 0 and z2 → 1, respectively. This renders the integrated expressions non-singular w.r.t. sij, 
and the arguments in the proof in section 3.3 can be applied to the series in log(zij) and log |zij|2 
without the need for further subtractions: along with each monomial in sm

12sn
23 with m, n � 0, 

the holomorphic primitives of (log z2)
m(log(1−z2))

n/z2 and (log |z2|2)m(log |1−z2|2)n/z2 are 
related by the sv map and ultimately evaluated at z2 = 1. Hence, at the level of the resulting 
MZVs,

(v) = sv (i), (vii) = sv (iii) .� (A.11)

A.2.  Five-point examples: non-overlapping singularities

Starting from five-point disk and sphere integrals, the residues of the kinematic poles are by 
themselves series in sij with MZV coefficients. As a first example, we consider the integral

Z(1, 2, 3, 4, 5|1, 2, 5, 3, 4) =
∫ 1

0
dz3

∫ z3

0
dz2

zs12
2 zs13

3 zs23
32 (1−z2)

s24(1−z3)
s34

z2 (z3−1)

= − 1
s12s34

+ O(α′0)

�

(A.12)
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in an SL2(R) frame with (z1, z4, z5) → (0, 1,∞), where the poles s−1
12  and s−1

34  stem from differ-
ent endpoints z2 → 0 and z3 → 1 of the integration domain 0 � z2 � z3 � 1. As an analogue 
of the subtraction scheme in (A.1)–(A.4), we rewrite the integrand of (A.12) as

Z(1, 2, 3, 4, 5|1, 2, 5, 3, 4) =
∫ 1

0
dz3

zs13
3 (1−z3)

s34

z3−1∫ z3

0
dz2

zs12
2

z2

(
zs23

32 (1−z2)
s24 − zs23

3︸ ︷︷ ︸
(α)

+ zs23
3︸︷︷︸
(β)

)
.

�

(A.13)

The contribution of (β) involves a straightforward integral over z2 similar to (A.8) along with 
an integral over z3 of four-point type, see (A.2),

(β) =

∫ 1

0
dz3

zs13+s23
3 (1−z3)

s34

(z3−1)
zs12

2

s12

∣∣∣
z2=z3

z2=0

=
1

s12

∫ 1

0
dz3

zs12+s13+s23
3 (1−z3)

s34

z3−1

=
1

s12

(
Z(1, 2, 3, 4|1, 4, 2, 3)

∣∣∣
s23→s34

s12→s12+s13+s23

)
.

�

(A.14)

The leading order of Z(1, 2, 3, 4|1, 4, 2, 3) in (A.7) then yields the low-energy limit −(s12s34)
−1 

of the integral Z(1, 2, 3, 4, 5|1, 2, 5, 3, 4), see (A.12).
The integrand of the contribution of (α) in (A.13) is regular at z2 = 0, so the integral over 

z2

H(z3) :=
∫ z3

0
dz2

zs12
2

z2

(
zs23

32 (1−z2)
s24 − zs23

3

)
� (A.15)

does not involve any singularity in sij, and the α′-expansion can be performed at the level of 
the log(zij) in the integrand. The limit z3 → 1 of (A.15) is smooth and again reproduces an 
integral of four-point type, see (i) in (A.1)

H(1) =
∫ 1

0
dz2

zs12
2

z2

(
(1−z2)

s23+s24 − 1
)

.� (A.16)

The contribution of (α) in (A.13) still yields a pole in s34 upon integration over z3. This pole 

can be traced back to the factor of (1−z3)
s34

(z3−1) , and we isolate it by the subtraction scheme

(α) =

∫ 1

0
dz3

(1−z3)
s34

z3−1
(

zs13
3 H(z3)− H(1)︸ ︷︷ ︸

(γ)

+H(1)︸︷︷︸
(δ)

)
.� (A.17)

The integral in (A.9) determines

(δ) = −H(1)
s34

,� (A.18)

and the integrand for the contribution (γ) to (A.17) is regular at z3 → 1 such that

(γ) =

∫ 1

0
dz3

(1−z3)
s34

z3−1
(
zs13

3 H(z3)− H(1)
)

� (A.19)

is regular in s34 and can be α′-expanded at the level of the integrand.
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In adapting the subtraction scheme to the corresponding sphere integral

J(1, 2, 3, 4, 5|1, 2, 5, 3, 4) = − 1
π2

∫

C2

d2z2 d2z3

z̄12z̄23z̄34

|z3|2s13 |1−z3|2s34

(z3−1)

× |z2|2s12

z2

(
|z23|2s23 |1−z2|2s24 − |z3|2s23

︸ ︷︷ ︸
(A)

+ |z3|2s23

︸ ︷︷ ︸
(B)

)
,

�

(A.20)

the primitives for all contributions (α), (β), (γ), (δ) have the same meromorphic parts as in the 
case of J(1, 2, 3, 4, 5|1, 2, 5, 3, 4). In analogy with (A.14), we have

(B) = − 1
2iπ2s12

∫

C
d2z3

∮

‘∂(C\{0,z3})’
dz̄2

|z2|2s12 |z3|2s13+2s23 |1−z3|2s34

z̄12z̄23z̄34 (z3−1)

=
1

πs12

∫

C
d2z3

|z3|2(s12+s13+s23)|1−z3|2s34

z̄13z̄34 (z3−1)

=
1

s12

(
J(1, 2, 3, 4|1, 4, 2, 3)

∣∣∣
s23→s34

s12→s12+s13+s23

)
,

�

(A.21)

which gives the desired expression sv (β).
The z2 integral of (A),

I(z3) :=
1
π

∫

C
d2z2

|z2|2s12

z2 z̄12z̄23

(
|z23|2s23 |1−z2|2s24 − |z3|2s23

)
� (A.22)

is regular and the general method in the proof of the main result applies. We obtain:

I(z3) = − 1
z13

sv H(z3) .� (A.23)

Upon insertion into (A.20), this implies

(A) =
1
π

∫

C

d2z3

z̄13z̄34

|1−z3|2s34

(z3−1)
(
|z3|2s13 sv H(z3)− sv H(1)︸ ︷︷ ︸

(C)

+ sv H(1)︸ ︷︷ ︸
(D)

)
.� (A.24)

In analogy to (A.10) the integral in the last term gives

(D) = − sv H(1)
s34

,� (A.25)

which is identical to sv (δ) by (A.18). The integral (C) in (A.24) is regular and can be 
expanded in α′ in the integrand. By the general method in the proof of the main result, we 
obtain (C) = sv (γ) and recover J(1, 2, 3, 4, 5|1, 2, 5, 3, 4) = sv Z(1, 2, 3, 4, 5|1, 2, 5, 3, 4) term 
by term in the subtraction scheme.

A.3.  Five-point examples: nested singularities

While the singularities of the five-point example in appendix A.2 stem from differ-
ent regions z2 → 0 and z3 → 1, the following disk integral acquires kinematic poles in 
s123 := s12 + s13 + s23 from the nested singularity12 in the integration region where z2, z3 → 0:

12 In a five-point setup, one can still avoid the nested singularities by representing (A.26) in a different SL2 frame, 
but this is no longer true at six points. We choose the SL2 frame with (z1, z4, z5) → (0, 1,∞) here to illustrate that 
the nesting of singularities does not obstruct the existence of a subtraction scheme.
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Znest = −Z(1, 2, 3, 4, 5|1, 2, 3, 5, 4)− Z(1, 2, 3, 4, 5|1, 3, 2, 5, 4)

=

∫ 1

0
dz3

∫ z3

0
dz2

zs12
2 zs13

3 zs23
32 (1−z2)

s24(1−z3)
s34

z2 z3

=
1

s12s123
+ O(α′0) .

�

(A.26)

The first step of the subtraction scheme closely follows the lines of (A.13)

Znest =

∫ 1

0
dz3

zs13
3 (1−z3)

s34

z3

∫ z3

0
dz2

zs12
2

z2

(
zs23

32 (1−z2)
s24 − zs23

3︸ ︷︷ ︸
( p)

+ zs23
3︸︷︷︸
(q)

)
,� (A.27)

and the evaluation of the second contribution (q) is almost identical to (β) in (A.14),

(q) =
∫ 1

0
dz3

zs13+s23
3 (1−z3)

s34

z3

zs12
2

s12

∣∣∣
z2=z3

z2=0
= − 1

s12

(
Z(1, 2, 3, 4|1, 2, 4, 3)

∣∣∣
s23→s34

s12→s123

)
.

�

(A.28)

The low-energy limit Znest =
1

s12s123
+ O(α′0) in (A.26) then stems from the leading term of the 

four-point integral Z(1, 2, 3, 4|1, 2, 4, 3) in (A.6) at shifted first argument s12 → s123.
In the subtraction scheme for

( p) =
∫ 1

0
dz3

zs13
3 (1−z3)

s34 H(z3)

z3
,� (A.29)

it would be tempting to closely follow the treatment of (α) in (A.17) and to subtract the 
z3 → 0 limit of the quantity H(z3) in (A.15). However, this limit does not admit a regular 
α′-expansion and we shall instead write H(z3) = zs12+s23

3 h(z3) (which extracts the exact scal-
ing behavior of H  at z3 = 0). We set z2 = xz3 in the integral representation (A.15) of H(z3) 
and obtain13

h(z3) =

∫ 1

0

dx
x

xs12
(
(1−x)s23(1−z3x)s24 − 1

)
, z3 � 1 .� (A.30)

Since (A.30) is regular as z3 → 0, the appropriate analogue of (A.17) is

( p) =
∫ 1

0
dz3

zs123
3

z3

(
(1−z3)

s34 h(z3)− h(0)︸ ︷︷ ︸
(r)

+ h(0)︸︷︷︸
(t)

)
,� (A.31)

where the integrand in (r) is regular as z3 → 0. The integral can be performed order by order. 
Finally, the pole from the nested singularity

(t) =
h(0)
s123

=
1

s123

∫ 1

0

dx
x

xs12
(
(1−x)s23 − 1

)
,� (A.32)

has a residue identical to (i) in (A.1).

13 Note that the leading terms of the α′-expansion of (A.30) are given by

h(z3) = s24I(0, 10, z3)− s23ζ(2) + s2
24I(0, 110, z3) + s2

23ζ(3)− s12s24I(0, 100, z3)

+ s12s23ζ(3) + s23s24
[
I(0, 110, z3)− I(0, 100, z3)

]
+ O(α′3) ,

see (21) for the definition of the iterated integrals I(0, a1a2 . . . aw, z).
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For the corresponding sphere integral

Jnest = −J(1, 2, 3, 4, 5|1, 2, 3, 5, 4)− J(1, 2, 3, 4, 5|1, 3, 2, 5, 4)

= − 1
π2

∫

C2

d2z2 d2z3

z̄12z̄23z̄34

|z2|2s12 |z3|2s13 |1−z3|2s34

z2z3

(
|z23|2s23 |1−z2|2s24 − |z3|2s23

︸ ︷︷ ︸
(P)

+ |z3|2s23

︸ ︷︷ ︸
(Q)

)
,� (A.33)

the first step of the subtraction scheme is again almost identical to (A.20), resulting in

(Q) = − 1
s12

(
J(1, 2, 3, 4|1, 2, 4, 3)

∣∣∣
s23→s34

s12→s123

)
,� (A.34)

which matches sv (q) by (A.28).
The z2 integral of (P) is again given by (A.22), and we will use its representation in (A.23),

(P) =
1
π

∫

C

d2z3

z̄13z̄34

|z3|2s13 |1 − z3|2s34

z3
sv H(z3) .� (A.35)

Then, we use the single-valued analogue sv H(z3) = |z3|2s12+2s23 sv h(z3) of the above rewrit-
ing H(z3) = zs12+s23

3 h(z3) with h(z3) given by (A.30) and employ the following subtraction 
scheme:

(P) =
1
π

∫

C

d2z3

z̄13z̄34

|z3|2s123

z3

(
|1 − z3|2s34 sv h(z3)− sv h(0)︸ ︷︷ ︸

(R)

+ sv h(0)︸ ︷︷ ︸
(T)

)
.� (A.36)

The integrand in (R) is regular as z3 → 0 and we arrive at (R) = sv (r) upon order-by-order 
integration, see (A.31). The last term in (A.36) can be trivially integrated to give

(T) =
sv h(0)

s123
,� (A.37)

which agrees with sv (t) by (A.32). Hence, we have checked the relation Jnest = sv Znest at the 
level of all the terms in the subtraction scheme.
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