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Abstract We study the trace anomaly of a Weyl fermion
in an abelian gauge background. Although the presence of
the chiral anomaly implies a breakdown of gauge invari-
ance, we find that the trace anomaly can be cast in a gauge
invariant form. In particular, we find that it does not con-
tain any odd-parity contribution proportional to the Chern–
Pontryagin density, which would be allowed by the consis-
tency conditions. We perform our calculations using Pauli–
Villars regularization and heat kernel methods. The issue is
analogous to the one recently discussed in the literature about
the trace anomaly of a Weyl fermion in curved backgrounds.

1 Introduction

In this paper we study the trace anomaly of a chiral fermion
coupled to an abelian gauge field in four dimensions. It is
well-known that the model contains an anomaly in the axial
gauge symmetry, thus preventing the quantization of the
gauge field in a consistent manner. Nevertheless, it is useful
to study the explicit structure of the trace anomaly emerging
in the axial U (1) background.

One reason to study the problem is that an analogous sit-
uation has recently been addressed for a Weyl fermion cou-
pled to gravity. In particular, the presence of an odd-parity
term (the Pontryagin density of the curved background) in
the trace anomaly has been reported in [1], and further elab-
orated upon in [2,3]. This anomaly was envisaged also in
[4], and discussed more recently in [5]. However, there are
many indications that such an anomaly cannot be present in
the theory of a Weyl fermion. The explicit calculation carried
out in [6] confirms this last point of view.

One of the reasons why one does not expect the odd-
parity contribution to the trace anomaly is that by CPT in
four dimensions a left handed fermion has a right handed
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antiparticle, expected to contribute oppositely to any chiral
imbalance in the coupling to gravity. To see that, one may cast
the quantum field theory of a Weyl fermion as the quantum
theory of a Majorana fermion. The latter shows no sign of an
odd-parity trace anomaly. Indeed, the functional determinant
that arises in a path integral quantization can be regulated
using Pauli–Villars Majorana fermions with Majorana mass,
so to keep the determinant manifestly real, thereby exclud-
ing the appearance of a phase that might produce an anomaly
(the odd-parity term would carry an imaginary coefficient)
[7]. Recently, this has been verified again using Feynman
diagrams [8], which confirms the results of [6]. An addi-
tional piece of evidence comes from studies of the 3-point
correlation functions of conserved currents in four dimen-
sional CFTs, which exclude odd-parity terms in the correla-
tion function of three stress tensors at non-coinciding points
[9,10], seemingly excluding its presence also in the trace
anomaly (see however [11]).

Here we analyze the analogous situation of a Weyl fermion
coupled to an abelian U (1) gauge background. The theory
exhibits a chiral anomaly that implies a breakdown of gauge
invariance. It is nevertheless interesting to compute its trace
anomaly. Apart from the standard gauge invariant contribu-
tion (∼ F2) and possible gauge noninvariant terms, which as
we shall show can be canceled by counterterms, one might
expect a contribution from the odd-parity Chern–Pontryagin
density F F̃ . Indeed the latter satisfies the consistency con-
ditions for trace anomalies. In addition, the fermionic func-
tional determinant is now complex in euclidean space, and
thus carries a phase (which is responsible for the knownU (1)

axial anomaly). On the other hand, the structure of the 3-
point correlation function of the stress tensor with two U (1)

currents in generic CFTs does not allow for odd-parity terms
[9,10] that could signal a corresponding anomaly in the trace
of the stress tensor in a U (1) background. Apart from a few
differences, the case seems analogous to that of the chiral
fermion in curved space, and thus it is worth addressing.
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To ascertain the situation we compute explicitly the trace
anomaly of a Weyl fermion coupled to a U (1) gauge field.
Using a Pauli–Villars regularization we find that no odd-
parity term emerges in the quantum trace of the stress tensor.
We use a Majorana mass for computing the trace anomaly, as
this mass term can be covariantized (to curved space) without
the need of introducing additional fields of opposite chirality,
as required by a Dirac mass. The coupling to gravity (needed
only at linear order) is used to treat the metric (or vierbein) as
an external source for the stress tensor, and to relate the trace
of the latter to a Weyl rescaling of the metric (or vierbein).
The manifest covariance of the Majorana mass guarantees
that the stress tensor can be kept conserved and symmet-
ric also at the quantum level, i.e. without general coordinate
(Einstein) and local Lorentz anomalies. We repeat part of our
calculations with a Dirac mass as well. In addition, we cal-
culate also the anomalies of a massless Dirac fermion which,
while well-known, serve for comparison and as a test on the
scheme adopted. We verify the consistency of the different
regularizations, and report the local counterterms that relate
them.

We organize the paper as follows. In Sect. 2 we set up
the stage and review the lagrangians of the Weyl and Dirac
fermions, respectively, and identify the relevant differential
operators that enter our regularization schemes. In Sect. 3 we
review the method that we choose for computing the chiral
and trace anomalies. In Sect. 4 we present our results. We
conclude in Sect. 5, confining to the appendices notational
conventions, heat kernels formulas, and sample calculations.

2 Actions and symmetries

We first present the classical models that we wish to con-
sider, and review their main properties to set up the stage
for our calculations. The model of main interest is a mass-
less Weyl fermion coupled to an abelian gauge field. We first
describe its symmetries, and then the mass terms to be used
in a Pauli–Villars regularization. For comparison, we con-
sider also a massless Dirac fermion coupled to vector and
axial abelian gauge fields, a set-up used by Bardeen to com-
pute systematically the anomalies in vector and axial currents
[12]. Our notation is commented upon and recapitulated in
“Appendix A”.

2.1 The Weyl fermion

The lagrangian of a left handed Weyl spinor λ coupled to a
U (1) gauge field is

LW = −λγ a(∂a − i Aa)λ = −λγ aDa(A)λ = −λD/ (A)λ

(1)

where the chirality of the spinor is defined by the constraint

γ 5λ = λ, or equivalently by λ = 1+γ 5

2 λ. It is classically
gauge invariant and conformally invariant. Both symmetries
become anomalous at the quantum level.

In the following we find it convenient to use the charge
conjugated spinor λc, which has the opposite chirality of λ

λc = C−1λ
T
, γ 5λc = −λc. (2)

The lagrangian can be cast in equivalent forms using λc rather
then λ

LW = λT
c CD/ (A)λ = λTCD/ (−A)λc

= 1

2

(
λT
c CD/ (A)λ + λTCD/ (−A)λc

)
(3)

where the last two forms are valid up to boundary terms (we
perform partial integrations in the action and drop boundary
terms). We use the last form in our calculations.

The gauge transformations can be written as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ(x) → λ′(x) = eiα(x)λ(x)

λ(x) → λ
′
(x) = e−iα(x)λ(x)

λc(x) → λ′
c(x) = e−iα(x)λc(x)

Aa(x) → A′
a(x) = Aa(x) + ∂aα(x)

(4)

and the action SW = ∫
d4x LW is gauge invariant. Recall

also that Aa can be used as an external source for the current

Ja = iλγ aλ. (5)

Varying in the action only Aa with a gauge transformation
with infinitesimal parameter α(x) produces

δ(A)
α SW = −

∫
d4x α(x)∂a J

a(x) (6)

and the full gauge symmetry (δαSW = 0) guarantees that the
U (1) current is conserved on-shell (i.e. using the fermion
equations of motion)

∂a J
a(x) = 0. (7)

Similarly, one may check that the action is classically con-
formal invariant and that the stress tensor has a vanishing
trace. To see this one couples the model to gravity by intro-
ducing the vierbein eμ

a (and related spin connection ωμ
ab),

and realizes that the action is invariant under general coor-
dinate, local Lorentz, and Weyl transformations. The stress
tensor, or energy momentum tensor, is defined as usual by

Tμa(x) = 1

e

δSW

δeμa(x)
(8)

where e is the determinant of the vierbein, and is covari-
antly conserved, symmetric, and traceless on-shell, as con-

123



Eur. Phys. J. C           (2019) 79:292 Page 3 of 12   292 

sequence of diffeomorphisms, local Lorentz invariance, and
Weyl symmetry, respectively

∇μT
μa = 0, Tab = Tba, T a

a = 0 (9)

(indices are made “curved” or “flat” by using the vierbein and
its inverse). The vierbein can be used as an external source for
the stress tensor, and an infinitesimal Weyl transformation on
the vierbein acts as a source for the trace T a

a . In the following
we only need a linearized coupling to gravity to produce a
single insertion of the stress tensor in correlation functions.
Otherwise, we are interested in flat space results only. In any
case, the full coupling to gravity reads

LW = −e λγ μ∇μλ (10)

where γ μ = eμ
aγ

a are the gamma matrices with curved
indices, eμ

a is the inverse vierbein, and ∇μ is the covariant
derivative containing both the U (1) gauge field Aμ and spin
connection ωμab

∇μ = ∂μ − i Aμ + 1

4
ωμabγ

aγ b. (11)

The local Weyl symmetry is given by
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ(x) → λ′(x) = e− 3
2 σ(x)λ(x)

λ(x) → λ
′
(x) = e− 3

2 σ(x)λ(x)

Aa(x) → A′
a(x) = Aa(x)

eμ
a(x) → e′

μ
a(x) = eσ(x)eμ

a(x)

(12)

where σ(x) is an arbitrary function. Varying in the action
only the vierbein with an infinitesimal Weyl transformation
produces the trace of the stress tensor

δ(e)
σ SW = −

∫
d4x e σ(x)T a

a(x) (13)

and the full Weyl symmetry of the action (δσ SW = 0) guar-
antees that it is traceless on-shell

T a
a(x) = 0. (14)

For completeness, we record the form of the stress tensor in
flat space emerging from the previous considerations, sim-
plified by using the equations of motion,

Tab = 1

4
λ

(
γa

↔
Db + γb

↔
Da

)
λ (15)

where
↔
Da = Da − ←

Da (in terms of the gauge covariant
derivative). It is traceless on-shell.

2.1.1 Mass terms

To compute the anomalies in the quantum theory we regular-
ize the latter introducing massive Pauli–Villars (PV) fields,
with the anomalies eventually coming from the noninvari-
ance of the mass term. For the massless Weyl fermion, one

can take as PV field a Weyl fermion of the same chirality, with
a Majorana mass added. The mass term is Lorentz invari-
ant, but breaks the gauge and conformal symmetries. It takes
many equivalent forms

ΔMLW = M

2

(
λTCλ + h.c.

)

= M

2

(
λTCλ − λC−1λ

T
)

= M

2

(
λTCλ + λT

c Cλc

)
(16)

where h.c. denotes the hermitian conjugate and M is a real
mass parameter. Since the charge conjugation matrix C is
antisymmetric this term is nonvanishing for an anticommut-
ing spinor.1

Casting the full massive PV action LPV = LW + ΔMLW

in the compact form

LPV = 1

2
φT TOφ + 1

2
MφT Tφ, (18)

where φ is a column vector containing both λ and λc (thus φ

is a 8 dimensional vector)

φ =
(

λ

λc

)
, (19)

permits the identification of the operators

TO =
(

0 CD/ (−A)PR

CD/ (A)PL 0

)
, T =

(
CPL 0

0 CPR

)

(20)

and

O =
(

0 D/ (−A)PR

D/ (A)PL 0

)
,

O2 =
(
D/ (−A)D/ (A)PL 0

0 D/ (A)D/ (−A)PR

)
.

(21)

The latter will be used in our anomaly calculations. The chiral
projectors PL and PR

PL = 1 + γ 5

2
, PR = 1 − γ 5

2
(22)

have been introduced to stress that the matrix T is not invert-
ible in the full 8 dimensional space on which φ lives. An

1 In terms of the 2-component left handed Weyl spinor lα this mass
term reads as

ΔMLW = M

2

(
lα(−iσ 2)αβ lβ + l ∗̇α(iσ 2)α̇β̇ l ∗̇

β

)
(17)

and it does not contain any other spinor apart from lα and its complex
conjugate l ∗̇α . In the chiral representation of the gamma matrices the
2-component spinor lα sits inside λ, as in Eq. (A.12).
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advantage of the Majorana mass term is that it can be con-
structed without the need of introducing extra degrees of free-
dom (as required by the Dirac mass term discussed below).
Moreover, it can be covariantized under Einstein (general
coordinate) and local Lorentz symmetries. The covariantiza-
tion is achieved by multiplying it with the determinant of the
vierbein e

ΔMLW = eM

2

(
λTCλ + λT

c Cλc

)
. (23)

An alternative mass term is the Dirac mass. To use it one
must introduce in addition also an uncoupled right handed
PV fermion ρ (satisfying ρ = PRρ), so that the full massive
PV lagrangian reads

L̃PV = −λD/ (A)λ − ρ∂/ρ − M(λρ + ρλ) (24)

or, equivalently,

L̃PV = 1

2

(
λT
c CD/ (A)λ + λTCD/ (−A)λc

)

+ 1

2

(
ρT
c C∂/ρ + ρTC∂/ρc

)

+ M

2
(λT

c Cρ + ρTCλc + ρT
c Cλ + λTCρc).

(25)

The latter expression allows to cast the PV lagrangian in the
general form (18) with

φ =

⎛
⎜⎜⎝

λ

λc
ρ

ρc

⎞
⎟⎟⎠ (26)

where each entry is a 4 dimensional Dirac spinor (with chiral
projectors attached), and one finds

TO =

⎛
⎜⎜⎝

0
0

CD/ (A)PL

0

0
0
0

CD/ (−A)PR

C∂/PR

0
0
0

0
C∂/PL

0
0

⎞
⎟⎟⎠ (27)

T =

⎛
⎜⎜⎝

0 0 0 CPL
0 0 CPR 0
0 CPR 0 0

CPL 0 0 0

⎞
⎟⎟⎠ (28)

O =

⎛
⎜⎜⎝

0
D/ (A)PL

0
0

D/ (−A)PR

0
0
0

0
0
0

∂/PR

0
0

∂/PL

0
⎞
⎟⎟⎠ (29)

O2 =

⎛
⎜⎜⎝

0
0
0

∂/D/ (A)PL

0
0

∂/D/ (−A)PR

0

0
D/ (A)∂/PR

0
0

D/ (−A)∂/PL

0
0
0

⎞
⎟⎟⎠ .

(30)

The differential operators in O2 have appeared also in [13],
where definitions for the determinant of a chiral Dirac oper-

ator were studied with the purpose of addressing the chiral
anomalies.

A drawback of the Dirac mass term, as regulator of the
Weyl theory, is that one cannot covariantize it while keeping
the auxiliary right handed spinor ρ free in the kinetic term
(it cannot be coupled to gravity, otherwise it would not reg-
ulate properly the original chiral theory). One can still use
the regularization keeping ρ free in the kinetic term but, as
the mass term breaks the Einstein and local Lorentz symme-
tries explicitly, one would get anomalies in the conservation
(∂aT ab) and antisymmetric part (T [ab]) of the stress tensor.
Then, one is forced to study the counterterms to reinstate con-
servation and symmetry of the stress tensor (it can always be
done in 4 dimensions [7,14]), and eventually check which
trace anomaly one is left with. As this is rather laborious, we
do not use this mass term to calculate the trace anomaly in
the Weyl theory.2

2.2 The Dirac fermion

We consider also the more general model of a massless Dirac
fermion coupled to vector and axialU (1) gauge fields Aa and
Ba . The lagrangian is

LD = −ψγ a(∂a − i Aa − i Baγ
5)ψ = −ψD/ (A, B)ψ

= 1

2
ψT
c CD/ (A, B)ψ + 1

2
ψTCD/ (−A, B)ψc (31)

where the last form is valid up to boundary terms. A chiral
projector emerges when Aa = ±Ba , and we use this model
to address again the issue of the chiral fermion in flat space
(the limit Aa = Ba → Aa

2 reproduces the massless part of
(24)).

The lagrangian is invariant under the local U (1)V vector
transformations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x) → ψ ′(x) = eiα(x)ψ(x)

ψ(x) → ψ
′
(x) = e−iα(x)ψ(x)

ψc(x) → ψ ′
c(x) = e−iα(x)ψc(x)

Aa(x) → A′
a(x) = Aa(x) + ∂aα(x)

Ba(x) → B ′
a(x) = Ba(x)

(32)

and local U (1)A axial transformations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x) → ψ ′(x) = eiβ(x)γ 5
ψ(x)

ψ(x) → ψ
′
(x) = ψ(x)eiβ(x)γ 5

ψc(x) → ψ ′
c(x) = eiβ(x)γ 5

ψc(x)

Aa(x) → A′
a(x) = Aa(x)

Ba(x) → B ′
a(x) = Ba(x) + ∂aβ(x).

(33)

2 A possibility to simplify the calculation would be to use the axial met-
ric background introduced in [2,3], but we will not follow this direction
either.
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Again one can use Aa and Ba as sources for Ja = iψγ aψ

and Ja5 = iψγ aγ 5ψ , respectively. Under infinitesimal vari-
ation of these external sources one finds

δ(A)
α SD = −

∫
d4x α(x)∂a J

a(x)

δ
(B)
β SD = −

∫
d4x β(x)∂a J

a
5 (x)

(34)

and the classical gauge symmetries imply that Ja and Ja5 are
conserved on-shell

∂a J
a(x) = 0

∂a J
a
5 (x) = 0.

(35)

A coupling to gravity shows that the stress tensor is trace-
less because of the Weyl symmetry. The Weyl transforma-
tions rules have the same form as in (12), with Ba left invari-
ant. An infinitesimal Weyl variation on the vierbein produces
the trace of the stress tensor

δ(e)
σ SD = −

∫
d4xe σ(x)T a

a(x). (36)

and the Weyl symmetry implies that it vanishes on-shell

T a
a(x) = 0. (37)

2.2.1 Mass terms

To regulate the one-loop graphs we introduces massive PV
fields. The standard Dirac mass term

ΔMLD = −Mψψ = M

2
(ψT

c Cψ + ψTCψc) (38)

preserves vector gauge invariance, and casting the PV
lagrangian LPV = LD + ΔMLD in the form (18), now with

φ =
(

ψ

ψc

)
, allows to recognize the operators

TO =
(

0 CD/ (−A, B)

CD/ (A, B) 0

)
, T =

(
0 C
C 0

)
(39)

and

O =
(
D/ (A, B) 0

0 D/ (−A, B)

)
,

O2 =
(
D/ (A, B)2 0

0 D/ (−A, B)2

)
.

(40)

This mass term mixes the two chiral parts λ and ρ of the Dirac
fermion ψ = λ+ρ, see Eqs. (24) or (25) that makes it visible.
After covariantization to gravity the decoupling of the two
chiralities is not easily achievable, and relations between the
trace anomaly of a Dirac fermion and the trace anomaly of
a Weyl fermion cannot be studied directly by using a Dirac
mass in the PV regularization.

Thus, it is useful to consider a Majorana mass as well. It
breaks both vector and axial symmetries

Δ̃MLD = M

2
(ψTCψ + h.c.) = M

2
(ψTCψ + ψT

c Cψc)

(41)

and one finds from the alternative PV lagrangian L̃PV =
LD + Δ̃MLD the operators

TO =
(

0 CD/ (−A, B)

CD/ (A, B) 0

)
, T =

(
C 0
0 C

)
(42)

and

O =
(

0 D/ (−A, B)

D/ (A, B) 0

)
,

O2 =
(
D/ (−A, B)D/ (A, B) 0

0 D/ (A, B)D/ (−A, B)

)
.

(43)

Covariantization to gravity does not mix the chiral parts of
the Dirac fermion, and a decoupling limit to the chiral theory
of a Weyl fermion λ is now attainable.

3 Regulators and consistent anomalies

To compute the anomalies we employ a Pauli–Villars reg-
ularization [15]. Following the scheme of Refs. [16,17] we
cast the calculation in the same form as the one obtained
by Fujikawa in analyzing the measure of the path integral
[18,19]. This makes it easier to use heat kernel formulas
[20,21] to evaluate the anomalies. At the same time, the
method guarantees one to obtain consistent anomalies, i.e.
anomalies that satisfy the consistency conditions [22,23].

Let us review the scheme of Ref. [16]. One considers a
lagrangian for a field ϕ

L = 1

2
ϕT TOϕ (44)

which is invariant under a linear symmetry

δϕ = Kϕ (45)

that generically acts also on the operator TO , as it may
depend on background fields. The one-loop effective action
can be regulated by subtracting a loop of a massive PV field
φ with action

LPV = 1

2
φT TOφ + 1

2
MφT Tφ (46)
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where M is a real parameter.3 The mass term identifies the
operator T , that in turn allows to find the operator O . As we
shall see, in fermionic theories with a first order differential
operator O in the kinetic term, the operator O2 acts as a
regulator in the final formula for the anomaly. The invariance
of the original action extends to an invariance of the massless
part of the PV action by defining

δφ = Kφ (47)

so that only the mass term may break the symmetry

δLPV = 1

2
MφT (T K + KT T + δT )φ

= MφT
(
T K + 1

2
δT

)
φ.

(48)

The path integral Z and the one-loop effective action Γ

are regulated by the PV field

Z = eiΓ =
∫

Dϕ ei S ⇒ Z = eiΓ

=
∫

DϕDφ ei(S+SPV ) (49)

where it is understood that one should take the M → ∞
limit, with all divergences canceled as explained in the foot-
note. The anomalous response of the path integral under a
symmetry is due to the PV mass term only, as one can define
the measure of the PV field so to make the whole path inte-
gral measure invariant [16]. In a hypercondensed notation,
where a term like φTφ includes in the sum of the indices a
spacetime integration as well, a lagrangian like the one in
(46) is equivalent to the action, and one may compute the
symmetry variation of the regulated path integral to obtain

iδΓ = i〈δS〉 = lim
M→∞ iM〈φT (T K + 1

2
δT )φ〉

= − lim
M→∞ Tr

[(
K + 1

2
T−1δT

)(
1 + O

M

)−1] (50)

where brackets 〈. . .〉 denote normalized correlation func-
tions. For our purposes, it is convenient to cast it in an equiv-
alent form [17]

iδΓ = i〈δS〉
= − lim

M→∞ Tr

[(
K + 1

2
T−1δT + 1

2

δO

M

)(
1 − O2

M2

)−1]

(51)

3 To be precise, one should employ a set of PV fields with mass Mi
and relative weight ci in the loop to be able to regulate and cancel all
possible one-loop divergences [15]. For simplicity, we consider only
one PV field with relative weight c = −1, as this is enough for our
purposes. The weight c = −1 means that we are subtracting a massive
PV loop from the original one.

obtained by inserting the identity 1 = (1 − O
M )(1 − O

M )−1

and using the invariance of the massless action

δL = ϕT
(
TOK + 1

2
δTO + 1

2
T δO

)
ϕ = 0. (52)

In deriving these expressions, we have considered a fermionic
theory, used the PV propagator

〈φφT 〉 = i

TO + T M
, (53)

taken into account the opposite sign for the PV field in the
loop, and considered an invertible mass matrix T .

In the limit M → ∞ the regulating term (1 − O2

M2 )−1

inside (51) can be replaced by e
O 2

M2 . This is allowed as, for
the purpose of extracting the limit, these regulators cut off
the ultraviolet frequencies in an equivalent way (we assume
that O2 is negative definite after a Wick rotation to euclidean
space) [16]. Clearly, if one finds a symmetrical mass term,
then the symmetry would remain automatically anomaly free.

Heat kernel formulas may now be directly applied. Denot-
ing

J = K + 1

2
T−1δT + 1

2

δO

M
, R = −O2 (54)

the anomaly is related to the trace of the heat kernel of the
regulator R with an insertion of J

iδΓ = i〈δS〉 = − lim
M→∞ Tr[Je− R

M2 ]. (55)

This has the same form that appears in Fujikawa’s method
for computing anomalies [18,19], where J is the infinitesi-
mal part of the fermionic jacobian arising from a change of
the path integral variables under a symmetry transformation,
and R is the regulator. The limit extracts the mass indepen-
dent term (negative powers of the mass vanish in the limit,
while positive (diverging) powers are made to cancel by using
additional PV fields). The PV method guarantees that the
regulator R together with J produces consistent anomalies,
which follows from the fact that one is computing directly
the variation of the effective action.

The heat kernel formulas that we need in the anomaly cal-
culation are well-known, and we report them in “Appendix B”
using a minkowskian time. In particular, in four dimensions
we need the Seeley–DeWitt coefficients a2(R), correspond-
ing to the various regulators R associated to the fields assem-
bled into φ. These are the only coefficients that survive in the
limit M → ∞ (as said, diverging pieces are removed by the
PV renomalization). Running through the various cases pre-
sented in the previous section, we extract the “jacobians” J
and regulators R to find the structure of the anomalies. For
the Weyl theory we find
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∂a〈Ja〉 = i

(4π)2

[
tr [PLa2(Rλ)] − tr [PRa2(Rλc )]

]

〈T a
a〉 = − 1

2(4π)2

[
tr [PLa2(Rλ)] + tr [PRa2(Rλc )]

]
.

(56)

These formulas are obtained by considering that for theU (1)

symmetry the jacobian J in (54) is found from the symmetry
transformations of λ and λc in (4)

J =
(
iαPL 0

0 −iαPR

)
. (57)

Only K contributes, as δT vanishes as well as the contribution
from δO (it vanishes after taking the traces in (56), as will
be checked in the next section). The infinitesimal parameter
α is eventually factorized away from (55) to obtain the local
form in (56). In computing J from (54), it is enough to check
that the mass matrix T is invertible on the relevant chiral
spaces (extracted by the projectors PL and PR). For the Weyl
symmetry one uses instead the transformation laws in (12)
to find

J =
( 1

2σ PL 0
0 1

2σ PR

)
, (58)

where it is now crucial to consider that the covariant (under
gravity) extension of the mass terms contains a factor of e,
see Eq. (23), which brings in a contribution from 1

2T
−1δT

to J . This contribution is necessary to guarantee that general
coordinate invariance is kept anomaly free in the regulariza-
tion (δO is neglected again for the same reason as before).
The infinitesimal Weyl parameter σ is then factorized away
from (55) to obtain the second equation in (56).

Proceeding in a similar way, we find for the Dirac model

∂a〈Ja〉 = i

(4π)2 [tr a2(Rψ) − tr a2(Rψc )]

∂a〈Ja5 〉 = i

(4π)2

[
tr [γ 5a2(Rψ)] + tr γ 5[a2(Rψc )]

]

〈T a
a〉 = − 1

2(4π)2 [tr a2(Rψ) + tr a2(Rψc )].

(59)

All remaining traces are traces on the gamma matrices taken
in the standard four dimensional Dirac spinor space.

4 Anomalies

In this section we compute systematically the chiral and trace
anomalies for the Weyl and Dirac theories described ear-
lier. We use, when applicable, two different versions of the
Pauli–Villars regularization with different mass terms. We
verify that the final results are consistent with each other,
and coincide after taking into account the variation of local
counterterms.

4.1 Chiral and trace anomalies of a Weyl fermion

We consider first the case of a Weyl fermion.

4.1.1 PV regularization with Majorana mass

The regularization of the Weyl fermion coupled to an abelian
gauge field is achieved in the most minimal way by using a
PV fermion of the same chirality with the Majorana mass
term in Eq. (16) added. This set-up was already used in [6]
to address the case of a Weyl fermion in a gravitational back-
ground, but without the abelian gauge coupling. The mass
term is Lorentz invariant and does not introduce additional
chiralities, but breaks the gauge and conformal (Weyl) sym-
metries. Therefore, one expects chiral and trace anomalies.

To obtain the anomalies we have to compute the expres-
sions in (56) with the regulators contained inside O2 of Eq.
(21). They read

Rλ = −D/ (−A)D/ (A)PL

Rλc = −D/ (A)D/ (−A)PR .
(60)

Using the Seeley-DeWitt coefficients a2 of these regulators
we find the chiral anomaly

∂a〈Ja〉 = 1

(4π)2

(
1

6
εabcd FabFcd − 8

3
∂a(A

a A2) + 2

3
�(∂A)

)

(61)

where Fab = ∂a Ab − ∂b Aa (see “Appendix C” for an outline
of the calculation). It contains normal-parity terms that can
be canceled by the gauge variation of the local counterterm

Γ1 =
∫

d4x

(4π)2

(
2

3
A4 − 1

3
Aa�Aa

)
, (62)

so that the chiral gauge anomaly takes the form

∂a〈Ja〉 = 1

96π2 εabcd FabFcd . (63)

This is the standard result.
Similarly, we compute the trace anomaly, given by

〈T a
a〉 = − 1

(4π)2

(
2

3
(∂a Ab)(∂

a Ab) − 2

3
(∂A)2 − 2

3
�A2

)
.

(64)

It does not contain any odd-parity contribution. Gauge invari-
ance is broken by the chiral anomaly, but we find that the trace
anomaly can be cast in a gauge invariant form by varying
a local counterterm with a Weyl transformation (and then
restricting to flat space). The (gravity covariant but gauge
noninvariant) counterterm is given by

Γ2 =
∫

d4x
√
g

(4π)2

(
1

3
(∇μAν)(∇μAν) + 1

6
RA2

)
(65)
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and the trace anomaly takes the form

〈T a
a〉 = − 1

48π2 FabF
ab. (66)

The counterterms Γ1 and Γ2 are consistent with each other,
and merge into the unique counterterm (needed only at linear
order in the metric)

Γ3 =
∫

d4x
√
g

(4π)2

(
2

3
A4 + 1

3
(∇μAν)(∇μAν) + 1

6
RA2

)

(67)

where, of course, A2 = gμν AμAν and A4 = (A2)2.
Thus, we have seen that the trace anomaly of a Weyl

fermion does not contain any contribution from the topolog-
ical density F F̃ (which on the other hand enters the chiral
anomaly in (63), as well-known). It can be presented in a
gauge invariant form by the variation of a local countert-
erm, and equals half the standard trace anomaly of a Dirac
fermion. These are the main results of our paper.

4.1.2 PV regularization with Dirac mass

For using a Dirac mass we have to include a right handed
free fermion in the PV lagrangian as well. The lagrangian is
given in (24), and from Eq. (27) one finds the regulators

Rλ = −∂/D/ (A)PL

Rλc = −∂/D/ (−A)PR .
(68)

Then, from the corresponding heat kernel coefficients a2 we
find the chiral anomaly

∂a〈Ja〉 = 1

(4π)2

(
1

6
εabcd FabFcd − 1

3
∂a(A

a A2) + 1

3
�(∂A)

)
.

(69)

It contains noncovariant normal-parity terms, that are can-
celed by the variation of the local counterterm

Γ4 =
∫

d4x

(4π)2

(
1

12
A4 − 1

6
Aa�Aa

)
(70)

so that the anomaly takes the standard form

∂a〈Ja〉 = 1

96π2 εabcd FabFcd (71)

as in the previous section.
Unfortunately, we cannot proceed to compute in a sim-

ple way the trace anomaly using this regularization, as the
mass term breaks the Einstein and local Lorentz symmetries
as well. The ensuing anomalies should then be computed
and canceled by local counterterms, to find eventually the
expected agreement of the remaining trace anomaly with the
one found in the previous section.

4.2 Chiral and trace anomalies of a Dirac fermion

For completeness, we now consider the case of the massless
Dirac spinor coupled to vector and axial gauge fields with
lagrangian given in Eq. (31). The results are well-known, but
we wish to present them for comparison and as a check on
our method. The most natural regularization is obtained by
employing a Dirac mass for the PV fields, but we employ
also a Majorana mass. The latter allows to take a chiral limit
in a simple way, which we use to rederive the previous results
on the Weyl fermion.

4.2.1 PV regularization with Dirac mass

The relevant regulators are obtained from (40) and read

Rψ = −D/ (A, B)2

Rψc = −D/ (−A, B)2.
(72)

The vector symmetry is guaranteed to remain anomaly free
by the invariance of the mass term, while the chiral anomaly
from (59) becomes

∂a〈Ja5 〉 = 1

(4π)2

(
εabcd Fab(A)Fcd(A)

+1

3
εabcd Fab(B)Fcd(B)

−16

3
∂a(B

aB2) + 4

3
�(∂B)

)
. (73)

It contains normal-parity terms in the B field. They are can-
celed by the variation of a local counterterm

Γ5 =
∫

d4x

(4π)2

(
4

3
B4 − 2

3
Ba�Ba

)
(74)

so that one ends up with

∂a〈Ja〉 = 0 (75)

∂a〈Ja5 〉 = 1

(4π)2

(
εabcd Fab(A)Fcd(A)

+1

3
εabcd Fab(B)Fcd(B)

)
. (76)

As for the trace anomaly, we find from (59)

〈T a
a〉 = − 1

(4π)2

(
2

3
Fab(A)Fab(A)

+4

3
(∂a Bb)(∂

a Bb) − 4

3
(∂B)2 − 4

3
�B2

)
(77)

with the counterterm

Γ6 =
∫

d4x
√
g

(4π)2

(
2

3
(∇μBν)(∇μBν) + 1

3
RB2

)
(78)
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that brings it into the gauge invariant form

〈T a
a〉 = − 1

24π2

(
Fab(A)Fab(A) + Fab(B)Fab(B)

)
. (79)

All these counterterms merge naturally into the complete
counterterm

Γ7 =
∫

d4x
√
g

(4π)2

(
4

3
B4 + 2

3
(∇μBν)(∇μBν) + 1

3
RB2

)
.

(80)

4.2.2 PV regularization with Majorana mass

At last, we consider the regularization with a Majorana mass.
As both vector and chiral symmetries are broken by the mass
term, we expect anomalies in both U (1) currents. From Eq.
(43) we find the regulators

Rψ = −D/ (−A, B)D/ (A, B)

Rψc = −D/ (A, B)D/ (−A, B).
(81)

Then, we compute from (59)

∂a〈Ja〉 = 1

(4π)2

(
2

3
εabcd Fab(A)Fcd(B) + 4

3
�(∂A)

−16

3
∂a[Aa(A2 + B2)] − 32

3
∂a(B

a AbB
b)

)

(82)

and

∂a〈Ja5 〉 = 1

(4π)2

(
1

3
εabcd Fab(A)Fcd(A)

+1

3
εabcd Fab(B)Fcd(B) + 4

3
�(∂B)

−16

3
∂a[Ba(A2 + B2)] − 32

3
∂a(A

a AbB
b)

)
.

(83)

The counterterm Γ8 + Γ9

Γ8 =
∫

d4x

(4π)2

(
4

3
(A2 + B2)2 + 16

3
(AaBa)

2 − 2

3
Aa�Aa

−2

3
Ba�Ba

)

Γ9 =
∫

d4x

(4π)2

(
8

3
εabcd Ba Ab(∂c Ad)

)
(84)

allows to recover vector gauge invariance, and the anomalies
take the form

∂a〈Ja〉 = 0 (85)

∂a〈Ja5 〉 = 1

(4π)2

(
εabcd Fab(A)Fcd(A)

+1

3
εabcd Fab(B)Fcd(B)

)
. (86)

As for the trace anomaly, we find

〈T a
a〉 = − 1

(4π)2

(
4

3
(∂a Ab)(∂

a Ab) − 4

3
(∂A)2 − 4

3
�A2

+4

3
(∂a Bb)(∂

a Bb) − 4

3
(∂B)2 − 4

3
�B2

)
(87)

and using the counterterm

Γ10 =
∫

d4x
√
g

(4π)2

(
2

3
(∇μAν)(∇μAν) + 2

3
(∇μBν)(∇μBν)

+1

3
R(A2 + B2)

)
(88)

we get the final gauge invariant form

〈T a
a〉 = − 1

24π2

(
Fab(A)Fab(A) + Fab(B)Fab(B)

)
. (89)

Also the counterterms employed in this section are con-
sistent with each other, and combine into a unique final coun-
terterm, which we report for completeness

Γ11 =
∫

d4x
√
g

(4π)2

(
2

3
(∇μAν)(∇μAν) + 2

3
(∇μBν)(∇μBν)

+1

3
R(A2 + B2) + 4

3
(A2 + B2)2 + 16

3
(AμBμ)2

+4

3

εμνρσ

√
g

BμAνFρσ (A)

)
. (90)

Evidently, the anomalies computed with the Majorana
mass coincide with those obtained with the Dirac mass, after
using local counterterms.

The results of this section can be projected consistently
to recover the chiral and trace anomalies of a Weyl fermion.
Indeed, one can consider the limit Aa = Ba → 1

2 Aa . In

this limit, a chiral projector PL = 1+γ 5

2 emerges inside the
Dirac lagrangian (31) to reproduce the Weyl lagrangian (1).
In addition, in the coupling to gravity, the right handed com-
ponent of the Dirac field can be kept free, both in the kinetic
and PV mass term, preserving at the same time covariance of
the mass term of the left handed part of the PV Dirac fermion.
Then, the right handed part decouples completely and can be
ignored altogether. Thus, one may verify that the anomalies
in Sect. 4.1.1 are reproduced by those computed here, includ-
ing the counterterms, by setting Aa = Ba → 1

2 Aa (note that
the current Ja in Sect. 4.1.1 corresponds to half the sum of
Ja and Ja5 of this section).
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As final remark, we have checked that terms proportional
to δO in (54) never contribute to the anomalies computed
thus far, as the extra terms vanish under the Dirac trace.

5 Conclusions

We have calculated the trace anomaly of a Weyl fermion
coupled to an abelian gauge field. We have found that the
anomaly does not contain any odd-parity contribution. In
particular, we have shown that the Chern–Pontryagin term
F F̃ is absent, notwithstanding the fact that it satisfies the
consistency conditions for Weyl anomalies. Of course, the
chiral anomaly implies that gauge invariance is broken. Nev-
ertheless the trace anomaly can be cast in a gauge invariant
form, equal to half the standard contribution of a nonchiral
Dirac fermion.

While this result seems to have no direct implications for
the analogous case in curved background, it strengthens the
findings of ref. [6].

Recently, a generalized axial metric background has been
developed in [2,3] to motivate and explain the appearance of
the Pontryagin term in the trace anomaly of a Weyl fermion,
which however is in contradiction with the explicit calcula-
tion of [6]. Perhaps it would be useful to apply the methods
used here in the axial metric background to clarify the situ-
ation in that context, and spot the source of disagreement.
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Appendix A: Conventions

We use a mostly plus Minkowski metric ηab. The Dirac matri-
ces γ a satisfy

{γ a, γ b} = 2ηab (A.1)

and the conjugate Dirac spinor ψ is defined using β = iγ 0

by

ψ = ψ†β. (A.2)

The hermitian chiral matrix γ 5 is given by

γ 5 = −iγ 0γ 1γ 2γ 3 (A.3)

and used to define the chiral projectors

PL = 1 + γ5

2
, PR = 1 − γ5

2
(A.4)

that split a Dirac spinor ψ into its left and right Weyl com-
ponents

ψ = λ + ρ, λ = PLψ, ρ = PRψ. (A.5)

The charge conjugation matrix C satisfies

Cγ aC−1 = −γ aT , (A.6)

it is antisymmetric and used to define the charge conjugation
of the spinor ψ by

ψc = C−1ψ
T

(A.7)

where the roles of particle and antiparticle are interchanged.
Note that a chiral spinor λ has its charge conjugated field λc
of opposite chirality. A Majorana spinor μ is a spinor that
equals its charged conjugated spinor

μ = μc. (A.8)

This constraint is incompatible with the chiral constraint, and
Majorana–Weyl spinors do not exist in 4 dimensions.

We find it convenient, as a check on our formulas, to use
the chiral representation of the gamma matrices. In terms of
2 × 2 blocks they are given by

γ 0 = −i

(
0 1

1 0

)
, γ i = −i

(
0 σ i

−σ i 0

)
(A.9)

where σ i are the Pauli matrices, so that

γ 5 =
(
1 0
0 −1

)
, β = iγ 0 =

(
0 1

1 0

)
. (A.10)

The chiral representation makes evident that the Lorentz gen-
erators in the spinor space Mab = 1

4 [γ a, γ b] = 1
2γ ab take a

block diagonal form

M0i = 1

2

(
σ i 0
0 −σ i

)
, Mi j = i

2
εi jk

(
σ k 0
0 σ k

)
(A.11)

and do not mix the chiral components of a Dirac spinor (as
γ 5 is also block diagonal). The usual two-dimensional Weyl
spinors appear inside a four-dimensional Dirac spinor as fol-
lows

ψ =
(
l
r

)
, λ =

(
l
0

)
, ρ =

(
0
r

)
(A.12)

where l and r indicate two-dimensional independent spinors
of opposite chirality. In the chiral representation one may
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take the charge conjugation matrix C to be given by

C = γ 2β = −i

(
σ 2 0
0 −σ 2

)
(A.13)

and satisfies

C = −CT = −C−1 = −C† = C∗ (A.14)

(some of these relations are representation dependent). In the
chiral representation the Majorana constraint (A.8) takes the
form

μ = μc →
(
l
r

)
=

(
iσ 2r∗
−iσ 2l∗

)
(A.15)

which shows that the two-dimensional spinors l and r cannot
be independent. The Majorana condition can be solved in
terms of the single two-dimensional left-handed spinor l by

μ =
(

l
−iσ 2l∗

)
(A.16)

which, evidently, contains the four-dimensional chiral spinors
λ and λc defined by

λ =
(
l
0

)
, λc =

(
0

−iσ 2l∗
)

. (A.17)

In a four-dimensional spinors notation one can write

μ = λ + λc. (A.18)

Alternatively, the Majorana condition can be solved in terms
of the two-dimensional right-handed spinor r by

μ =
(
iσ 2r∗
r

)
(A.19)

which contains the four-dimensional chiral spinors ρ and ρc

ρ =
(

0
r

)
, ρc =

(
iσ 2r∗

0

)
(A.20)

and μ = ρ + ρc. This solution is of course the same as the
previous one, as one identifies λ = ρc.

The explicit dictionary between Weyl and Majorana
spinors shows clearly that the field theory of a Weyl spinor is
equivalent to that of a Majorana spinor, as Lorentz symmetry
fixes uniquely their actions, which are bound to be identical.

Finally, we normalize our ε symbols by ε0123 = −1 and
ε0123 = 1, so that

1

4
tr (γ 5γ aγ bγ cγ d) = iεabcd . (A.21)

Appendix B: The heat kernel

We consider an operator in flat D dimensional spacetime of
the form

H = −∇2 + V (B.22)

with V a matrix potential and ∇2 = ∇a∇a constructed with
a gauge covariant derivative ∇a = ∂a + Wa that satisfies

[∇a,∇b] = ∂aWb − ∂bWa + [Wa,Wb] = Fab. (B.23)

The trace of the corresponding heat kernel is perturba-
tively given by

Tr
[
Je−isH

]
=

∫
dDx tr

[
J (x)〈x |e−isH |x〉

]

=
∫

dDx
i

(4π is)
D
2

∞∑
n=0

tr [J (x)an(x, H)](is)n

= i
∫

dDx

(4π is)
D
2

tr [J (x)(a0(x, H)

+ a1(x, H)is + a2(x, H)(is)2

+ a3(x, H)(is)3 + · · · )] (B.24)

where the symbol “tr” is the trace on the remaining dis-
crete matrix indices, J (x) is an arbitrary matrix function,
and an(x, H) are the so-called Seeley-DeWitt, or heat ker-
nel, coefficients. They are matrix valued, and the first few
ones are given by

a0(x, H) = 1

a1(x, H) = −V

a2(x, H) = 1

2
V 2 − 1

6
∇2V + 1

12
F 2

ab.

(B.25)

As V is allowed to be a matrix, then ∇aV = ∂aV +[Wa, V ],
etc..

In the main text, the role of the hamiltonian H is played
by the various regulators R, and is ∼ 1

M2 , see Eq. (55).
In D = 4 the s-independent term is precisely the one with
a2(x, H), which is the coefficient producing the anomalies
in 4 dimensions (we use a minkowskian set-up, but justify
the heat kernel formulas by Wick rotating to euclidean time
and back, when necessary).

More details on the heat kernel expansion are found in
[20,21], where the coefficients appear with the additional
coupling to a background metric. They have been recom-
puted with quantum mechanical path integrals in [24], a use-
ful report is [25], while in [26] one may find the explicit
expression fora3(x, H), originally calculated by Gilkey [27],
which is relevant for calculations of anomalies in 6 dimen-
sions.

Appendix C: Sample calculations

As an example of the calculations leading to the results of
Sect. 4, we consider the case of the PV regularization with
Majorana mass used for the Weyl model in Sect. 4.1.1. One
regulator needed there is
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Rλ = −D/ (−A)D/ (A)PL . (C.26)

Neglecting the projector, which can be reinstated later, one
cast it in the general form of Eq. (B.22). Expanding the
covariant derivatives in the latter one finds

H = −∇2 + V = −∂a∂a − 2Wa∂a − (∂aW
a)

−WaWa + V . (C.27)

Similarly, by expanding Rλ one finds (up to the projector)

Rλ = −D/ (−A)D/ (A)

= −Da(−A)Da(A) − 2iγ ab Aa∂b + i

2
Fabγ

ab

= −∂a∂a + 2iγ ab Ab∂a + i(∂a Aa) − Aa Aa + i

2
Fabγ

ab

(C.28)

where γ ab = 1
2 [γ a, γ b]. Comparing (C.27) and (C.28) one

fixes

Wa = −iγ ab Ab

V = 2Aa Aa + i(∂a Aa).
(C.29)

At this stage one proceeds to evaluate the field strength Fab

in Eq. (B.23) associated to this particular Wa , and use it to
evaluate the coefficient a2(Rλ) from a2(H) of Eq. (B.25)
(remembering to reinsert the projector). In particular, evalu-
ating the trace one finds

tr [PLa2(Rλ)]
= 2

3
(∂a Ab)(∂

a Ab) − 2

3
(∂A)2 − 2

3
�A2

+ i

(
4

3
∂a(A

a A2) − 1

3
�(∂A) − 1

12
εabcd FabFcd

)
.

(C.30)

Note that this particular coefficient contains an odd-parity
term proportional to the topological density F F̃ . Similarly,
one computes the coefficients related the other regulators,
and proceeds to evaluate (56) and (59).

We have checked our trace calculations on the gamma
matrices also by computer, employing a notebook developed
in [28] using the xAct and xTensor packages [29,30].
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