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The spin-curvature coupling as captured by the so-calledMathisson-Papapetrou-Dixon (MPD) equations is the
leading order effect of the finite size of a rapidly rotating compact astrophysical object moving in a curved back-
ground. It is also a next-to-leading order effect in the phase of gravitational waves emitted by extreme-mass-ratio
inspirals (EMRIs), which are expected to become observable by the LISA space mission. Additionally, exploring
the Hamiltonian formalism for spinning bodies is important for the construction of the so-called Effective-One-
Body waveform models that should eventually cover all mass ratios.

The MPD equations require supplementary conditions determining the frame in which the moments of the
body are computed. We review various choices of these supplementary spin conditions and their properties.
Then, we give Hamiltonians either in proper-time or coordinate-time parametrization for the Tulczyjew-Dixon,
Mathisson-Pirani, and Kyrian-Semerák conditions. Finally, we also give canonical phase-space coordinates
parametrizing the spin tensor. We demonstrate the usefulness of the canonical coordinates for symplectic in-
tegration by constructing Poincaré surfaces of section for spinning bodies moving in the equatorial plane in
Schwarzschild space-time. We observe the motion to be essentially regular for EMRI-ranges of the spin, but for
larger values the Poincaré surfaces of section exhibit the typical structure of a weakly chaotic system. A possible
future application of the numerical integration method is the inclusion of spin effects in EMRIs at the precision
requirements of LISA.
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1. INTRODUCTION

The detection of black-hole and neutron-star binary inspi-
rals by the aLIGO and aLIGO-Virgo detectors mark the dawn
of gravitational-wave astronomy [1–7]. The equations of Ein-
stein gravity are put to test not only by the phenomenon and
detection of gravitational waves itself, but also by the precise
shape of the detected signal [8]. Furthermore, the analysis of
the signal from neutron-star binaries provides precious astro-
physical information about their composition [9–11], and the
observations of the electromagnetic aftermath is key to the ex-
planation of the origin of the energetically unfavorable heavy
elements in our Universe [12, 13].

Upcoming space-based missions such as LISA promise to
probe the gravitational-wave spectrum in lower frequencies
than terrestrial detectors such as Advanced LIGO and Virgo
and, thus, to explore the dynamics of many other types of
sources of gravitational radiation [14]. One such particular
class of sources are the so-called extreme-mass-ratio inspi-
rals (EMRIs), during which stellar-mass compact objects spi-
ral into massive black holes, which have masses at least five
orders of magnitude above the solar mass [15].

Independent of the mass ratio between the components of
the system, neither the primary nor the secondary of the binary
can be modeled as point particles in an accurate treatment of
the inspiral, and effects of the finite size of the bodies must
be taken into account. This is clear in the case of binaries of
comparable size and mass, but in the case of EMRIs a more
careful argumentation must be given.

Let us denote the mass of the primary massive black hole
asM and the mass of the secondary stellar-mass object as µ.
Then themass-ratio in EMRIs is q ≡ µ/M ∼ 10−4−10−7 and
one can describe the gravitational field of the secondary as a
perturbation on top of the gravitational field of the primary. As
a result, the secondary is usually described as moving on the
original background while being subject to a self-force whose
relative size with respect to the Christoffel-connection terms is
of the order O(q) [see 16, 17, for reviews and a complete list
of references].

Now consider the effects of the finite size of the secondary.
If the secondary is rotating at relativistic speeds, a matter ele-
ment on its surface will feel a relative acceleration with respect
to the center of mass that is proportional to the velocity of the
surface v, the radius of the object r, and the local space-time
curvature R. Under the assumption of a balance of forces in-
side the body, this will result in a “spin force” ∼ µvrR act-
ing on the center of mass. Let us further assume that the bi-
nary orbital separation is within a few horizon radii of the pri-
mary, and that the secondary is either a maximally spinning
black hole, a few-millisecond pulsar, or a few-second pulsar.
We then get respectively vrR ∼ 1q/M, 10−1q/M, 10−4q/M .
When we consider that the Christoffel symbols scale as ∼
1/M , we see that the relative size of the acceleration caused
by the spin force is then O(q), the same as the gravitational
self-force.

The effects of the self-force and the spin force on the orbit
will thus both scale as O(q) and would be essentially impos-
sible to distinguish from a geodesic when using observables

collected over just a few orbital periods. Nevertheless, the or-
bit will only decay overO(1/q) cycles and the small deviations
amount to secular effects in the phase of the orbit. The final
orbital phase φf can then be schematically written as a sum of
contributions of the form [18]

φf = φ(1)
avg O(q−1) (1)

+ φ(1)
osc + φ(2)

avg + φspin O(1) (2)

+ φ(2)
osc + φ(3)

avg + φquad O(q) (3)
+ ... O(q2) , (4)

where “avg” and “osc” stand respectively for contributions
from the averaged dissipative, and oscillating dissipative and
conservative parts of the self-force computed from the met-
ric perturbations of order (n). Then, at the same order as the
first-order conservative piece of the self-force appears the con-
tribution of the spin force. Both the O(q−1) and the O(1)
terms must be eventually included if sub-radian precision is to
be achieved in the EMRI wave-form modeling.
The O(q) contributions to the phase then contain the con-

tribution of the next-to-leading effect of the finite size of the
secondary, the quadrupolar coupling. In particular, this will
include the spin-induced quadrupole that scales as ∼ S2 for
neutron stars and black holes [19–21], where S ∼ mrv is the
spin magnitude. Tidal deformation of the body also formally
appears in the quadrupole; however, it can be estimated to enter
the equations of motion at relative order O(q4) [22–24] and it
will thus enter the phase only atO(q3) for conservative effects
and perhaps at O(q2) if the dissipative tidal effects contribute
to the orbital decay time.
In summary, we see that the spin-curvature coupling con-

sidered at least to linear order is an indispensable piece of any
EMRImodel. However, the spin-curvature coupling also plays
an important role in the post-Newtonian (weak-field and slow-
motion) description of comparable-mass binaries [25, 26]; the
conservative dynamics includes all fourth-order spin-induced
effects so far [27]. But still, a wave-form model that encom-
passes mass ratios from comparable to extreme is highly de-
sirable. This is one goal of the effect-one-body (EOB) model
[28–32], being probably the best candidate to succeed in this
endeavor. While incorporating all O(1) self-force effects is
progressing [33], one flavor of EOB models already incorpo-
rates the test-spin force on a Kerr background to linear order
in the test-spin via a Hamiltonian [29, 34], the central piece
encoding the conservative dynamics in any EOB model (but
see the progress of the other EOB flavor in Refs. [35–38]). In
this context, exploring simplified Hamiltonian descriptions of
spinning bodies appears to be crucial.

In this paper, we study theHamiltonian formalism for a spin-
ning particle moving in a given space-timemetric. In Section 2
we review the so-called Mathisson-Papapetrou-Dixon (MPD)
equations that capture the effects of the spin force on the orbit,
and the properties of the equations under various supplemen-
tary conditions that are needed to close the equations.

We then proceed to the Hamiltonian formalism in Section
3. We present the Poisson brackets and various sets of vari-
ables that can be used during the evolution, and Hamiltonians
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for all the usual “comoving” supplementary conditions both
in proper-time and coordinate-time parametrizations. Next, in
Section 4, we also give a set of canonical coordinates covering
the spin tensor, which is useful for the numerical integration of
the MPD equations. Finally, in Section 5, we demonstrate the
power of the new coordinates and Hamiltonian formalism by
numerically studying spinning particles moving in the equato-
rial plane of a Schwarzschild black hole.

The paper also contains a number of Appendices that pro-
vide context to the presented results and details of the deriva-
tions mentioned in the main text.

We use the G = c = 1 geometrized units and the (-
+++) signature of the metric. Our convention for the Rie-
mann tensor Rµναβ is such that 2aµ;[αβ] = Rνµαβaν for a
generic aµ, or explicitly Rµναβ = 2Γµρ[αΓρβ]ν − 2Γµν[α,β].
The anti-symmetrization of a tensor is written as W[αβ] =
1
2 (Wαβ −Wβα), while the symmetrization as W(αβ) =
1
2 (Wαβ +Wβα). We denote the covariant time derivative by
an overdot, Ȧµν...γδ... ≡ DAµν...γδ.../dτ ≡ Aµν...γδ...;κẋ

κ. ηµν with
any indices is the Minkowski tensor, and δµν denotes the Kro-
necker delta.

2. MPD EQUATIONS

The equations of motion of massive bodies in a gravitational
field is among the most basic topics in Newtonian mechanics,
and among the toughest problems in general relativity. Sur-
prisingly, just assuming the covariant conservation of energy-
momentum of the body restricts these equations to be of the
celebrated MPD form in general relativity. The MPD equa-
tions to pole-dipole order read [39–41]

Ṗµ = −1

2
Rµνκλẋ

νSκλ , (5a)

Ṡκλ = Pκẋλ − Pλẋκ , (5b)

where xµ(τ) is the world-line of some representative centroid
from within the rotating body, Sκλ the spin tensor, and Pµ the
momentum (flux of stress-energy) of the body. Here τ is the
proper time, ẋµẋµ = −1. But it is noteworthy that the MPD
equations are invariant under affine reparametrizations of the
world-line.

The relation between ẋν and P ν is underdetermined and
has to be derived from a supplementary spin condition. A
supplementary spin condition is usually given in the form
SµνVν = 0, where Vν is some time-like vector. The physi-
cal interpretation of this supplementary condition is that V ν
is the frame in which the momenta of the stress-energy tensor
Pµ and Sνκ are computed, and the position of the referential
world-line xµ(τ) is then the center of mass of the spinning
body in this frame [42].

The MPD equations as stated here do not include the contri-
butions from the quadrupole and higher-order mass moments
of the body. They are in fact universal at pole-dipole order,
i.e., independent of the internal structure of the body. Amongst
other effects and as already mentioned in the Introduction, one
expects the rotation to deform the body and thus produce a

structure-dependent quadrupole moment that scales asS2; this
holds in particular for rotating black holes and neutron stars.
Since we are not including such spin-quadratic terms in the
equations either way, it is often meaningful to truncate the for-
mulas at some low order in S.
Some of the identities that are useful independent of the sup-

plementary condition read

ẋ(µṠνκ)cycl. = 0 , (6)
Pµ = mẋµ + ẋγ Ṡ

γµ , (7)
m ≡ −Pµẋµ . (8)

A number of other useful identities alongwith a brief historical
review of the MPD equations can be found in Ref. [43].

We also define the spin vector sµ, the spin magnitude S, and
a mass-like quantityM by

sµ ≡ − 1

2
√
−V αVα

εµνκλVνSκλ = − 1√
−V αVα

?SµνVν ,

(9)

S ≡
√
SκλSκλ

2
=
√
sµsµ , (10)

M≡
√
−PαPα , (11)

where ?Sµν = εµνκλSκλ/2. It should be noted that the defini-
tion of sµ will be different whenever a different supplementary
condition is chosen. Now we see that Sκλsλ = 0 and we can
build a projector on the sub-space orthogonal to Vµ, sν as

hµν =
1

S2
SµκSνκ =

(
δµν +

V µVν
(−V αVα)

− sµsν
S2

)
. (12)

Now, the question is which supplementary spin condition
should be adopted to close the system of MPD equations. The
best answer that one can give, however, is that virtually any
condition is physically viable, at least at the (universal) pole-
dipole order. Hence, in the remaining part of this section, we
review all commonly proposed classes of supplementary spin
conditions.

2.1. The KS condition

Eq. (7) indicates that the momentum is generally linearly in-
dependent of the four-velocity. Kyrian and Semerák [44] (KS)
asked the question under which supplementary condition is the
momentum proportional to the four-velocity, Pµ = mẋµ, and
found that this is true when we assume the existence of a time-
like vector wµ such that Sµνwν = 0 and ẇν = 0. We also
conventionally set wαwα = −1. The MPD equations then
simplify into the form

Pµ = mẋµ , (13a)
ṁ = 0 , (13b)

ẍµ = − 1

2m
Rµνκλẋ

νSκλ , (13c)

Ṡκλ = 0 . (13d)

3
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This is probably the simplest form of the MPD equations one
can acquire and it can in fact be generated by a large set of other
supplementary conditions, which is discussed in Appendix A.

In terms of variables that need to be stored and updated
during every step of a numerical integration, the system of
equations (13) is characterized by a phase space (xµ, ẋν , Sκλ).
An important point is to realize that once an initial condition
with some vanishing direction of the spin tensor is chosen,
Sµνwν |τ=τ0 = 0, the equations of motion (13) will evolve
with two vanishing directions (the first one proportional towµ,
and the second one proportional to sµ) in a way so that we can
always choose for one of them to fulfill ẇµ = 0. In other
words, once the initial condition is set up with a degenerate
spin tensor, the set of equations (13) can be evolved at face
value without further reference to the auxiliary vector wµ.
Nevertheless, the equations of motion can also be re-

expressed using wν and the respective spin vector sµ as

ẍµ =
1

m
?Rµνκλẋ

νsκwλ , (14a)

ẇκ = ṡλ = 0 , (14b)

where ?Rµνκλ ≡ Rµνγδε
γδ
κλ/2. In this case the phase space

(xµ, ẋν , sλ, wκ) consists of the coordinate positions, veloci-
ties, the spin vector, and the auxiliary vector wλ.

2.2. The MP condition

Another supplementary spin condition considered by vari-
ous authors [39, 45, 46] is Sµν ẋν = 0. We will call it the
Mathisson-Pirani (MP) spin condition due to the pioneering
works using this condition in the context of curved space-time
[39, 46]; in the context of flat space-time, it is often called the
Frenkel spin condition due to the pioneering work of Frenkel
[45]. Under this supplementary condition, the MPD equations
are simply the equations (5) with the substitution of the fol-
lowing relation in place of ẋµ [47]

ẋµ =
1

m
P ν
(
δµν −

1

S2
SµκSνκ

)
= P ν (δµν − hµν) . (15)

Once again, in this representation the phase space needed for
numerical evolution is (xµ, P ν , Sκλ), the same number of
variables as for the KS condition.

Another representation of the phase space is through the
spin vector and higher order derivatives of the position:

...
xµ = fµ(xν , ẋλ, ẍκ, sγ) , (16)
ṡλ = sν ẍν ẋ

λ , (17)

where fµ is derived in Appendix B and its explicit form is
given in equation (B6). In other words, the phase space in this
description consists of (xµ, ẋν , ẍκ, sλ). When we compare
these variables with that of the KS condition, we see that even
though we are not evolving any auxiliary wλ, we do, however,
store additional data in the acceleration vector ẍλ. A recent
discussion of this degeneracy of the MP condition was given
by Costa et al. [47].

2.3. The TD condition

The Tulczyjew-Dixon supplementary spin condition [48,
49] SµνPν = 0 leads to the MPD equations of motion where
we substitute ẋµ throughout by [50, 51]

ẋµ =
m

M2

(
Pµ +

2SµνRνγκλP
γSκλ

4M2 +RχηωξSχηSωξ

)
, (18)

whereM is an integral of motion, Ṁ = 0. The other massm
is not an integral of motion, and can be easily expressed as a
function of Pµ, Sκλ, Rαβγδ from ẋµẋµ = −1 as

m =
AM2

√
A2M2 − BS2

, (19)

A = 4M2 +RαβγδS
αβSγδ , (20)

B = 4hκηRκιλµP
ιSλµRηνωπP

νSωπ . (21)

The phase space is then parametrized by (xµ, P ν , Sκλ).
Once again, there is the possibility to transform to a spin

vector which yields [cf. 52]

Ṗµ =
1

M
?Rµνκλẋ

νsκPλ , (22)

ṡµ =
1

M3
?Rγνκλs

γ ẋνsκPλPµ , (23)

where we use equation (18) to eliminate ẋν . This set of equa-
tions is non-linear and complicated, but the phase space is now
composed only of (xµ, P ν , sκ), which is probably the most
economic set of variables possible.

2.4. The CP and NW conditions

The Corinaldesi-Papapetrou (CP) [53] and Newton-Wigner
(NW) [54, 55] condition employ an external time-like vector
field ξµ(xν) in the supplementary condition

Sµν
(
ξν + α

Pν
M

)
= 0 , (24)

where α = 0 corresponds to the CP and α = 1 to the NW
condition. The convenience of these supplementary condi-
tions lies in the fact that one can recast the evolution for the
spin tensor in terms of a tetrad basis SAB = eAµ e

B
ν S

µν and by
choosing for instance e0

µ = ξµ we can eliminate 3 of the six
independent spin-tensor components S0I , I = 1, 2, 3 as

S0I = − α

M+ αP0
PJS

JI , J = 1, 2, 3 . (25)

The equations of motion for the spin tensor are obtained with
the help of (6) as

Ṡµν = 2Sκ[µẋν] (Mξκ;λ − αRκ̂λγδSγδ/2)ẋλ

(Mξχ + αPχ)ẋχ
, (26)

where the notation κ̂ in the curvature tensor signifies the part
orthogonal to P ν .

4
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The momentum-velocity relation then attains the following
implicit form

mẋµ =Pµ (27)

− (Sκµ + Sκωẋωẋ
µ)

(Mξκ;λ − αRκ̂λγδSγδ/2)ẋλ

(Mξχ + αPχ)ẋχ
.

This relation is not exactly reversible into a ẋµ(Pν) or Pν(ẋµ)
formula in the general case and one thus cannot always use
the CP/NW condition to give a set of evolution equations in
strictly closed form.

Nevertheless, it is possible to iterate the momentum-
velocity relation by starting from ẋµ = Pµ/m + O(S) to
obtain results of higher and higher precision with respect to
powers of S. The first iteration yields

mẋµ =Pµ −
(
Sκµ +

1

m2
SκωPωP

µ

)
ξκ;λP

λ

(mξχ + αPχ)Pχ

(28)
+O(S2) .

Formulas such as the one above inserted into the MPD equa-
tions along with the assumption that (25) is exactly true at all
times lead to closed-form evolution equations with the phase
space (xµ, Pν , S

IJ). By counting the variables, we see that the
NW and CP conditions lead to systems with the same “mini-
mal” number of degrees of freedom as the TD+MPD equa-
tions. One other reason the NW condition received heightened
attention in the recent years is the fact that it can be formulated
as a Hamiltonian system with the canonical SO(3) commuta-
tion relations for the spin vector [34, 56, 57].

3. HAMILTONIANS FOR SPINNING PARTICLES

In this section we construct Hamiltonian formulations of
the MPD equations supplemented by various choices of spin
conditions. Besides being of fundamental interest, these are
often advantageous for certain applications. For instance, in
forthcoming sections we study a numerical integration of the
MPD equations using efficient symplectic integrators on phase
space. EOB waveform models use Hamiltonians to encode
the conservative binary dynamics since they can naturally be
mapped between the case of two bodies and a reduced mass in
a fixed (effective) background.

3.1. The Poisson brackets

Before we are able to discuss Hamiltonians, we need to set
up the stage in the form of a phase space endowed with a Pois-
son bracket. Consider the set of non-zero Poisson brackets for

the phase-space coordinates xµ, Pν , Sγκ

{xµ, Pν} = δµν , (29a)

{Pµ, Pν} = −1

2
RµνκλS

κλ , (29b)

{Sµν , Pκ} = −ΓµλκS
λν − ΓνλκS

µλ , (29c)
{Sµν , Sκλ} = gµκSνλ − gµλSνκ + gνλSµκ

− gνκSµλ .
(29d)

This set of brackets arises in many models for spinning-
particle dynamics [34, 58–63] and we provide our own mo-
tivation from field theory in Appendix C. Furthermore, it is
easy to prove that the Poisson brackets follow from the generic
effective action used in Refs. [21, 57, 64] (see Appendix E).
The Poisson brackets (29) can be partially canonicalized

by choosing an orthonormal tetrad eAµ , eAµ eµB = ηAB (=
Minkowski metric), and adopting a set of variables [59–61]

SAB = SµνeAµ e
B
ν , (30)

pµ = Pµ −
1

2
eνA;µe

ν
BS

AB = Pµ −
1

2
ΓνκµS

νκ . (31)

Under this change of variables the only non-zero brackets read

{xµ, pν} = δµν , (32a)
{SAB , SCD} = ηACSBD − ηADSBC + ηBDSAC

− ηBCSAD .
(32b)

In this coordinate basis it is clear that SAB and its commu-
tation relations are a representation of the generators of the
Lorentz group. Additionally, we see that 2S2 = SABSAB =
SµνSµν and 2(S∗)2 ≡ SABSCDεABCD = SµνSκλεµνκλ are
Casimir elements of this algebra. That is, the spin magnitudes
S, S∗ commute with all the phase-space coordinates and will
always be integrals of motion independent of the Hamiltonian.
However, if we compare with the MPD equations (5), we

see that

d

dτ
(S2) = Sµν Ṡ

µν = 2Sµνp
µẋν . (33)

In other words, for conditions such as NW/CP that have Ṡ 6= 0,
the herein presented bracket will either not have any corre-
sponding Hamiltonian, or the Hamiltonian dynamics will de-
scribe the NW/CP+MPD system indirectly through some de-
formed (non-MPD) set of variables.

3.2. Hamilton’s equations of motion

We are now in a position to study the equations of motion
for a generic Hamiltonian H(xµ, Pν , S

κλ) with the Poisson

5
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brackets (29). We obtain
dxµ

dλ
=

∂H

∂Pµ
, (34a)

dPν
dλ

+
∂H

∂xν
− ∂H

∂Sµκ
(ΓµνγS

γκ + ΓκνγS
µγ) =

− 1

2
Rνωλχ

∂H

∂Pω
Sλχ ,

(34b)

dSγκ

dλ
+ Γγνλ

∂H

∂Pν
Sλκ + Γκνλ

∂H

∂Pν
Sγλ =

∂H

∂Sµν
(gγµSκν − gγνSκµ + gκνSγµ − gκµSγν) ,

(34c)

where λ is some parameter along the trajectory. These equa-
tions cannot be expected to make any sense on the full phase
space, but only on the part where some supplementary condi-
tion SµνVν = 0 holds.

By comparison with equations (5), the equations (34) will
be the MPD equations when the following equalities are ful-
filled

∂H

∂Sµν
(gγµSκν + perm.) ∼= Pκ

∂H

∂Pγ
− P γ ∂H

∂Pκ
, (35)

∂H

∂xν
− ∂H

∂Sµκ
(ΓµνγS

γκ + ΓκνγS
µγ) ∼= −Γαβν

∂H

∂Pβ
Pα ,

(36)
where ∼= means that the equalities need to hold only on a cer-
tain “on-shell” part of the phase space where conditions such
as SµνVν = 0 hold. The fact that the equalities are ∼= makes
them impractical to solve directly and we resort to heuristic
approaches.

3.3. Hamiltonian for KS condition

Khriplovich [61] postulated the following Hamiltonian for
semi-classical spinning particles which is to be used along the
Poisson brackets (29) (see also d’Ambrosi et al. [63])

HKS =
1

2m
gµνPµPν ∼= −

m

2
. (37)

However, at the time of the publication of this Hamiltonian it
was not clear what is the relation of the generated set of equa-
tions with theMPD equations. Nevertheless, we can now com-
pare the generated equations of motion (34) with those corre-
sponding to the relatively recently discovered KS supplemen-
tary spin condition (13) to see that the two sets of equation
agree.

In other words, the Hamiltonian (37) generates the MPD
equations under the KS spin condition. The only requirement
that needs to be fulfilled by the initial condition apart from
four-velocity normalization is for Sµν to have some vanishing
time-like direction wν , Sµνwν = 0.

3.4. Hamiltonian for TD condition

Our initial heuristic is to simply reproduce the momentum-
velocity relation under the TD condition and see whether this

is sufficient to determine the correct Hamiltonian. We take the
velocity-momentum relation (18) and combine it with (34a) to
obtain

∂H

∂Pν
∼=

m

M2

(
P ν +

2SνµRµγκλP
γSκλ

4M2 +RχηωξSχηSωξ

)
. (38)

Now let us assume that the equations of motion hold under
the on-shell conditionsM =

√
−PαPα , SµνPν = 0 where

M is now some chosen constant independent of phase-space
coordinates. Then the following holds

∂

∂Pω

[
(gµνPµPν +M2)F

] ∼= 2FPω , (39)

∂

∂Pω
(GµS

µνPν) ∼= GµS
µω , (40)

where F,Gµ are arbitrary functions of the phase-space coor-
dinates xκ, Pλ, Sγδ . By choosing appropriate F,Gµ, we are
able to reproduce all the terms on the right hand side of (38)
and thus obtain the Hamiltonian

HTD =
m

2M2

[(
gµν −

4SνγRµγκλS
κλ

4M2 +RχηωξSχηSωξ

)
PµPν

(41)

+M2

]
∼= 0 ,

where we substitute the expression (19) for m. A straight-
forward computation of Hamilton’s equations of motion then
shows that they agree with theMPD equations of motion under
the TD supplementary condition.
An interesting fact discussed in Appendix D is that the

Hamiltonian (for a different time parametrization, λ 6= τ ) can
be obtained by applying SµνPν = 0 as a Hamiltonian con-
straint of the Khriplovich Hamiltonian (37). However, this
procedure does not seem to work for any other supplementary
condition.

3.5. The MP Hamiltonian

Similarly to the TD condition, we are now looking for a
Hamiltonian that generates the MP momentum-velocity rela-
tion (15)

∂H

∂Pµ
∼=

1

m
P ν
(
δµν −

1

S2
SµκSνκ

)
. (42)

We can compose it from the single on-shell condition
PµPν(gµν − SµκSνκ/S

2) = −m2 similarly to the previous
section (m is now a fixed number independent of the phase-
space variables) to obtain

HMP =
1

2m

(
gµν − 1

S2
SµκSνκ

)
PµPν ∼= −

m

2
. (43)

Once again, the computation of the equations of motion shows
that they are identical to theMPD equations under theMP con-
dition.
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3.6. Linear NW and CP Hamiltonian?

Let us try to reproduce the linearized NW/CP momentum-
velocity relation (28)

∂H

∂Pµ
=

1

m
Pµ −

(
Sκµ +

1

m2
SκωPωP

κ

)
ξκ;λP

λ

(mξχ + αPχ)Pχ
.

(44)

We use the on-shell condition PµPµ = −m2 + O(S2) and
Sκµ(αPµ/m + ξµ) = 0 to build the unique Hamiltonian that
reproduces the relation above

HNW/CP =
1

2m
gµνPµPν (45)

− 1

α

ξκ;λP
λ

(mξχ + αPχ)Pχ
Sκµ

(
α
Pµ
m

+ ξµ

)
.

However, the computation of Hamilton’s equations related to
this Hamiltonian show that they are not a set of MPD equa-
tions. It is thus probably possible to cast the NW/CP+MPD
system into Hamiltonian form only through a more sophisti-
cated set of variables such as in Refs. [34, 56, 57, 65].

3.7. Coordinate-time parametrization

All of the above-stated Hamiltonians (37), (41), and (43)
generate motion parametrized by proper time τ . It is possible
to generalize them to any time parametrization λ with dλ/dτ
an arbitrary function of any variables by exploiting the fact that
the Hamiltonians have a constant value for any trajectory. We
can then get the new λ-Hamiltonians as

Hλ =

(
dλ

dτ

)−1

(Hτ −H0) . (46)

The constant H0 is −m/2 for the KS and MP Hamiltonians
(37) and (43), and 0 for the TD Hamiltonian (41). These
Hamiltonians evolve the full set of variables xµ, Pν , Sγκ.
However, it is also possible to use the component of “non-

covariant” momentum pt from Eq. (31) expressed as a func-
tion of the other variables to generate the equations of motion
parametrized by coordinate time t. To show this in the sim-
plest possible way, we pass to the coordinates pµ, SAB defined
in equations (30) and (31). We compute

dpi
dt

= −∂H
∂xi

(
∂H

∂pt

)−1

= −∂(−pt)
∂xi

∣∣∣
H=const.

, (47)

dxi

dt
=
∂H

∂pi

(
∂H

∂pt

)−1

=
∂(−pt)
∂pi

∣∣∣
H=const.

, (48)

dSAB

dt
= {SAB , SCD} ∂H

∂SCD

(
∂H

∂pt

)−1

= {SAB , SCD}∂(−pt)
∂SCD

∣∣∣
H=const.

,

(49)

where we have used the implicit function theorem. In other
words, for any phase-space function F (xi, Pi, S

AB)

dF

dt
= {F,−pt

∣∣∣
H=const.

} . (50)

We now list the respective Hamiltonians Ht = −pt|H=const.

for the KS, TD, and MP spin conditions, given here in terms
of the phase-space coordinates Pµ, Sκλ

HtKS = −Piωi +
√
α2m2 + γijPiPj +

1

2
ΓνκtS

νκ , (51)

ωi ≡ −g
ti

gtt
, α ≡ 1√

−gtt
, γij = −g

ij

gtt
+ ωiωj , (52)

HtTD = −Piω̃i +
√
α̃2M2 + γ̃ijPiPj +

1

2
ΓνκtS

νκ , (53)

g̃µν ≡ gµν +
4Sγ(νR

µ)
γκλS

κλ

4M2 +RχηωξSχηSωξ
, (54)

ω̃i ≡ − g̃
ti

g̃tt
, α̃ ≡ 1√

−g̃tt
, γ̃ij = − g̃

ij

g̃tt
+ ω̃iω̃j , (55)

HtMP = −Piω̄i +
√
ᾱ2m2 + γ̄ijPiPj +

1

2
ΓνκtS

νκ , (56)

ḡµν ≡ gµν − 1

S2
SµκSνκ , (57)

ω̄i ≡ − ḡ
ti

ḡtt
, ᾱ ≡ 1√

−ḡtt
, γ̄ij = − ḡ

ij

ḡtt
+ ω̄iω̄j , (58)

where we have chosen roots of pt corresponding to particles
traveling forward in time.
Now the reduced set of variables, to be evolved by the spatial

part of the Poisson brackets (29) and the Hamiltonians above,
are xi, Pj , Sµκ. Alternatively, one can rewrite the Hamiltoni-
ans using the variables xi, pj , SAB and use the spatial part of
the brackets (32).

4. CANONICAL COORDINATES AND NUMERICAL
INTEGRATION

In this section, we elaborate on the structure of the phase
space. Being a geometric space (symplectic manifold), con-
straints can be viewed as defining a surface/submanifold. The
projection of the Poisson bracket into the constraint surface
leads to the so-called Dirac bracket [66, 67]. Furthermore,
canonical coordinates can be adopted (at least locally), which
we construct explicitly. This is crucial for the symplectic inte-
gration studied in the next section.

4.1. Importance of canonical coordinates and Dirac brackets

Let us assume that we have a set of constraints Φa = 0
and the constraint algebra Cab = {Φa,Φb} with Cab a non-
degenerate matrix with an inverse C−1

ab . Then it is possible to
define a new constrained Poisson bracket [66, 67]

{A,B}′ = {A,B} − {A,Φa}C−1
ab {Φ

b, B} . (59)
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The bracket {, }′ is often called the Dirac or Dirac-Poisson
bracket. If we have a Hamiltonian that fulfills {Φa, H} ∼= 0,
then the equations of motion generated by {, }′ and H are the
same as with {, } and H . The bracket-constraining procedure
was originally devised for the purposes of canonical quantiza-
tion. Nonetheless, it is also useful for classical Hamiltonian
dynamics.

When we want to study a classical Hamiltonian system at
high accuracy over a large number of periods (such as would be
the case of EMRIs), it is highly advantageous to use symplectic
integration [see e.g. 68]. Most symplectic integrators require
that the equations are formulated in terms of pairs of canonical
coordinates, i.e. a colection of phase-space coordinates χi, πi,
with i some labelling index, such that {χi, πj} = δij (how-
ever, there do exist symplectic integrators for special classes
of systems that require no such coordinates [69, 70]).

The usefulness of the constrained bracket {, }′ in this con-
text can be twofold. First, it may be easier to find canonical
coordinates for {, }′ rather than {, }. Second, the constraints
Φa = 0 are only integrals of motion with respect to the dy-
namical system evolved by the unconstrained bracket {, }, and
they cannot be forced to be zero during integration, otherwise
the advantageous properties of the symplectic algorithm are
broken. On the other hand, in the case of the bracket {, }′,
the constraints Φa commute with any phase-space variable. In
return, they are effectively promoted to a “phase-space iden-
tity” and can be used to reduce the number of variables in a
numerical integrator symplectic with respect to {, }′.

For example, Barausse et al. [34] applied the NW supple-
mentary condition as a constraint to the bracket (32) (along
with brackets and constraints for auxilliary variables) to ob-
tain, at least at linear order in spin, a simplified bracket for the
reduced number of variables pµ, xν , SIJ (see Subsection 2.4).
This system was then easy to cover by approximate canonical
coordinates and thus to study by symplectic integration [71].

As for the possibility to reduce the variables in the case of
other supplementary conditions, the TD condition SµνPν =
0 applied as a constraint leads to a very complicated Dirac
bracket that mixes the spin and momentum degrees of free-
dom. As a result, it is very difficult to find the canonical coor-
dinate basis for the TD-constrained bracket.

On the other hand, as discussed in Subsections 2.1 and 2.2,
the KS and MP condition in fact do not allow to reduce the
number of evolved variables to the same extent as the TD and
NW/CP conditions. A closer inspection shows that the KS and
MP conditions cannot even be formulated as a constraint on the
phase space pµ, xν , SAB , and the Poisson bracket will thus al-
ways be (32). Hence, for the purposes of the TD, KS, and
MP conditions we have decided to find the canonical coordi-
nates covering the full phase-space pµ, xν , SAB for the uncon-
strained bracket (32).

4.2. Canonical coordinates on SAB

The pµ, xν sector of the phase-space coordinates is already
canonical, so we are looking for canonical coordinates cover-
ing the spin tensor SAB . To find the canonical coordinates,

we mimic the procedure of Tessmer et al. [72] by express-
ing SAB as a simple constant tensor SÂB̂ in some “body-
fixed frame” plus a Lorentz transformationΛA

Â
into the “back-

ground frame” eAµ . The parameters of the transformation,
when chosen appropriately, then turn out to be canonically
conjugate pairs of coordinates.
The details of the procedure are given in Appendix E, we

only summarize here the resulting coordinates

A = S12 −
√

(S12)2 + (S23)2 + (S31)2 , (60a)

B =
√

(S12)2 + (S23)2 + (S31)2 − S , (60b)

φ = − arctan

(
S23

S31

)
, (60c)

ψ = − arctan

(
S23

S31

)
− arccos

(
S03
√
C
)
, (60d)

C =
(S12)2 + (S23)2 + (S31)2

[(S13)2 + (S32)2] [(S01)2 + (S02)2 + (S03)2]
. (60e)

Even though the construction in Appendix E provides the path
to the derivation of these coordinates, one may simply ver-
ify their Poisson brackets by direct computation. The brackets
then are {φ,A} = {ψ,B} = 1 and 0 otherwise.
The backwards transformations from the canonical coordi-

nates to the spin tensor read

S01 = D [A cos(2φ− ψ) + (A+ 2B + 2S) cosψ] , (61a)
S02 = D [A sin(2φ− ψ) + (A+ 2B + 2S) sinψ] , (61b)
S03 = 2DE cos(φ− ψ) , (61c)
S12 = A+B + S , (61d)
S23 = −E sinφ , (61e)
S31 = E cosφ , (61f)

D = −
√
B(B + 2S)

2(B + S)
, (61g)

E =
√
−A(A+ 2B + 2S) . (61h)

The coordinates cover the space of general antisymmetric ten-
sors with a degenerate time-like direction and a closer consid-
eration reveals a number of similarities with hyperspherical
coordinates in R4.
The coordinates have singularities at B = 0 and A =

0,−2(B + S) which have the character similar to those of the
singularities at r = 0 and cos(ϑ) = 1,−1 in spherical coor-
dinates in R3. As a result, the physical coordinate ranges then
are B ∈ (0,∞) and A ∈ (−2(B + S), 0). The coordinates
φ, ψ are simple angular coordinates similar to the azimuthal
angle ϕ in spherical coordinates in R3, and they both run in
the [0, 2π) interval. Some more details about the coordinate
singularities are given in Appendix E.
One last remark is that the coordinates φ, ψ are dimension-

less and have finite limits as S → 0, whereas A,B have the
dimension of the spin and should generally go to zero when
S → 0. However, if we keep a ≡ A/S, b ≡ B/S finite, then
the evolution of the coordinates a, b, φ, ψ can be used to track
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the evolution of a “test spin”, i.e. an intrinsic spin of the par-
ticle that is transported along the trajectory while not exerting
any back-reaction on the orbit itself.

There is a special case when A,B can remain finite while
S → 0, and that corresponds to the body-fixed frame be-
ing infinitely boosted with respect to the background frame
and the vanishing direction of the spin tensor becoming light-
like. This particular limit may be useful for the description of
massless particles with spin but we consider it to be physically
meaningless for the current context of massive bodies.

5. SPECIAL PLANAR MOTION

We now want to study a simple restricted problem that
would allow us to demonstrate the properties of the canon-
ical coordinates. We do so by considering a motion in the
equatorial plane of the Schwarzschild space-time under the
KS condition. Then we require that both the four-velocity
and the spin tensor are initially vanishing in the ϑ direction,
Sµϑ = 0, = ϑ̇ = 0. We then easily compute that

d2ϑ

dτ2
= 0 , (62)

dSµϑ

dτ
= 0 . (63)

In other words, the conditions Sµϑ = 0, ϑ̇ = 0 will be satis-
fied throughout the motion.

A similar system restricted to the equatorial plane can be for-
mulated by requiring Pϑ = Sµϑ = 0 also for the MP and TD
conditions, and, furthermore, the background could be gen-
eralized to the Kerr space-time. However, we choose here to
study the special planar problem only in the KS incarnation
and in the Schwarzschild space-time because of its simplicity.

It should also be noted that this system is more general than
the motion of a particle with the spin vector aligned normal
to the equatorial plane; such motion can be acquired from the
system described below by settingB = 0. However, forB 6= 0
the motion is different from the aligned-spin case. The spin
vector undergoes nutations and exerts non-uniform torques on
the orbit that, nonetheless, never push the worldline out of the
equatorial plane.

5.1. The Hamiltonian

For our computations, we choose the coordinate-aligned
tetrad in the usual Schwarzschild coordinates t, ϕ, r, ϑ: e0

µ =√
−gttδtµ, e1

µ =
√
gϕϕδ

ϕ
µ , e

2
µ =

√
grrδ

r
µ, e

3
µ =

√
gϑϑδ

ϑ
µ .

The choice of the tetrad and even the order of the legs are im-
portant for the final form of the Hamiltonian and the physical
interpretation of the quantities appearing in it. However, the
choice of the tetrad never matters for the real physical evolu-
tion of the KS, TD, or MP conditions (unlike in the case of
the NW/CP condition where the choice ∼ ξµ ∼ eµ0 is crucial
[73]).

The condition Sϑµ = 0 then translates into either A = 0
or A = −2(B + S) for S12 > 0 and S12 < 0 respectively.
Here we choose S12 > 0, and φ thus becomes a redundant
coordinate (see more details in Appendix E). In a typical right-
hand-oriented interpretation and for an orbit with positive ϕ̇,
this corresponds to a spin vector counter-aligned to the orbital
angular-momentum vector.
When the dust settles, the Hamiltonian (37) expressed in

canonical coordinates in the case of the special planar motion
reads

HSP =
1

2m

[
−1

1− 2M/r

(
pt −

M
√
B(B + 2S) sinψ

r2

)2

(64)

+

(
1− 2M

r

)
p2
r +

1

r2

(
pϕ −

√
1− 2M

r
(B + S)

)2 ]
.

The system has two obvious integrals of motion pϕ, pt, since
the coordinates t, ϕ are cyclic. However, it should be noted
that the orbital angular momentum and energy will generally
vary during the evolution since they relate to the phase-space
coordinates as

ut =
1

m

(
pt −

M
√
B(B + 2S) sinψ

r2

)
, (65)

uϕ =
1

m

(
pϕ −

r5/2(B + S)√
r − 2M

)
. (66)

5.2. Poincaré surfaces of section

We have constructed the problem so that only two degrees
of freedom become dynamically important, r, pr, and ψ,B.
Since the trajectory is also constrained by four-velocity nor-
malization, all the phase-space trajectories of a given pϕ, pt
are then confined to a 3-dimensional hypersurface. We make
a natural Poincaré surface of section through this hypersurface
by sampling this set of trajectories and recording the phase-
space variables every time ψ finishes a 2π cycle. Thanks to
this construction, we obtain well-defined 2D Poincaré surface
of section, whereas in the general case the surface of section
becomes higher-dimensional and new methods need to be em-
ployed for visualization [see 74].
We have integrated the trajectories using the 6-th order

Gauss collocation scheme with a fixed-point iteration of the
collocation points [see, e.g., 68]. Additionally, we exploited
the parametrization invariance of the trajectory by using a time
parameter λ such that

dλ

dτ
=

r2
0

r(r − 2M)

S√
B(B + 2S) + ε

, (67)

where ε, r0 are constants we set to 10−4, 10M respectively.
This effective time-stepping does not spoil the symplecticity
of the integrator because the respective equations of motion
can be generated by a Hamiltonian of the form (46).
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FIG. 1. Poincaré surfaces of section for the special planar problem at pt/m = −0.97, pϕ/m = 3.7M created by snapshots after every cycle
in the spin-angle ψ. The left column corresponds to S/m = 0.05M and the right column to S/m = 0.1M . The outer parts of the nested
sections correspond to small B/S whereas the inner parts to growing B/S. The left column features a smaller number of orbits because the
“outer” orbits are plunging into the black hole.

With these measures in place and by using a standard single-
thread computation in C++, we were able to integrate through
104 spin cycles within minutes at a relative error less than
10−12 in the four-velocity normalization. Of course, such
efficiency and long-term accuracy would hardly be possible
without the canonical coordinates and geometrical integration.
This is an important point of the present section.

In general, the dimensionless parameter S/(Mm) can

be understood as a perturbation strength non-linearly cou-
pling two exactly integrable systems, the geodesic motion in
Schwarzschild space-time, and the parallel transport of the
“test spin” on top of that geodesic. As such, the dependence
of the phase portrait of the special planar problem on the par-
ticle spin should have the same characteristics as any weakly
non-integrable system [e.g. 75]: The originally smooth phase-
space foliation by regular oscillations of the trajectories should

10
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FIG. 2. A detailed Poincaré surface of section of a single chaotic trajectory at pt/m = −0.97, pϕ/m = 3.7M,S/m = 0.05M (compare with
left column of Fig. 1). The trajectory was integrated over ∼ 105 spin cycles (∼ 104 orbital cycles) so that we would observe its release from
the sticky fractal layer around the resonance into the general separatrix chaos.

now feature occasional “breaks” in the form of resonances and
thin chaotic layers.

In order to demonstrate the presence of such structures, we
probed values of pt, pϕ so that phase-space trajectories in the
studied congruence are near unstable circular orbits in the orig-
inal geodesic flow. This is because the neighboring phase
space also contains the “homoclinic” infinite whirl-zoom or-
bits that are well known to act as “seeds of chaos” in perturbed
black hole space-times [see, e.g., 76–79]. However, as can be
seen from equations (65) and (66), the variations of S also
have the unfortunate effect of shifting the meaning of pt, pϕ,
and this easily pushes us into the phase-space regions of orbits
plunging into the black hole.

As already discussed in the Introduction, we should be al-
ready imposing self-force effects along with the spin-force
even for the smallest values of S/(mM) in a self-consistent
physical model. Thus, it does not make sense to study the
influence of the spin beyond perturbation-like values and we
choose to study only S/(mM) ≤ 0.1.
Furthermore, the ratio B/S is equal to γ − 1, where γ is

the usual gamma factor of the Lorentz boost from the body-
fixed frame to the background frame (see Appendix E). The
unconstrained nature of the KS condition allows this γ to be
arbitrary, but we believe that if it becomes too large, the world-
line becomes shifted outside of the interior of the real physical
body, and the system of equations instead obtains the character
of some sort of perturbed geodesic-deviation equation. Hence,
we only allow B/S . 5 in our initial conditions.

We show two Poincaré surfaces of section in the relevant
ranges in Fig. 1. In these sections, we are able to find reso-
nances corresponding to ratios as low as 1 : 1 or 1 : 2 in the
spin-orbital frequencies. Additionally, small chaotic layers can
be found near the saddle points of the resonant chains (see Fig.
2).

As we go to smaller values of S/(mM) . 0.01, the reso-
nances become extremely thin, and most of the chaotic struc-
ture is disqualified based on the criterion B/S . 5. If we
ignore the B/S criterion and go to B/S & 10, chaos can be

found up to S/(mM) ∼ 10−3.

5.3. Comparison with previous results

Let us briefly compare these results with the study of Lukes-
Gerakopoulos et al. [74], who studied the chaotization of gen-
eral orbits of spinning particles in Kerr space-time while us-
ing the NW-condition Hamiltonian of Barausse et al. [34].
The motion of non-planar orbits with general spin orientations
leads to richer dynamics, as an additional degree of freedom
enters the interactions. Consequently, Lukes-Gerakopoulos et
al. found chaotic motion in the phase space until S/(mM) =
10−3.

At face value, it might not be clear whether our findings are
in tension or in agreement with those of Lukes-Gerakopoulos
et al. [74]. As discussed in Subsection 2.4, the NW condition
constrains one more degree of freedom than the KS condition.
Consequently, an analogous special planarmotionPϑ = ẋϑ =
Sµϑ = 0 would in fact have only a single active degree of
freedom under the NW condition and would thus be integrable
at any value of spin. Additionally, even the non-planar motion
under the NWHamiltonian of Barausse et al. [34] is integrable
to linear order in S in Schwarzschild space-time, at least under
the right choice of ξµ [73].
In this sense, we are adding a result to this chain of re-

search by showing that the KS+MPD system is not integrable
in Schwarzschild space-time even in the planar case. Hence,
one should be cautious in issuing general statements about the
(non)-integrability and chaos in MPD equations near black
holes, because such statements seem to be dependent on the
context and approximations made.

6. CONCLUSIONS AND OUTLOOKS

In this paper we have built the Hamiltonian formalism for
spinning particles under all commonly used “comoving” sup-

11



V. Witzany, J. Steinhoff, and G. Lukes-Gerakopoulos Hamiltonians and canonical coordinates for spinning particles

plementary conditions, that is, conditions that utilize only the
local dynamics of the body and no background vector field.
The full set of canonical coordinates that we provide is the
minimal set of variables needed to evolve theMathisson-Pirani
and Kyrian-Semerák conditions. Hence, our formalism allows
to integrate the respective equations at peak efficiency. How-
ever, the canonical coordinates contain a redundant degree of
freedom for the case of the Tulczyjew-Dixon condition. Nev-
ertheless, a pair of extra variables to be evolved in a numerical
routine is a small price to pay for the long-term quality of the
evolution such as the one seen in Section 5.

Of course, it would be interesting to see whether a minimal
set of canonical coordinates can be found for the Tulczyjew-
Dixon condition. In principle, this can be achieved by con-
straining the Poisson bracket similarly to Barausse et al. [34],
and by finding the canonical basis thereof. However, the con-
straint procedure introduces non-zero commutation relations
between momenta, space-time coordinates, and spin degrees
of freedom. Consequently, the canonical coordinates would in
fact be an intricate transformation of all pµ, xµ, SAB . We plan
to investigate this possibility in future work.

Another less obvious application of the canonical coordi-
nates is the fact that now we are able to formulate a Hamilton-
Jacobi equation by making the action S also a function of the
spin angles ψ, φ with the gradients defining the conjugate mo-
menta S,φ = A, S,ψ = B. We are currently preparing a

manuscript presenting solutions to the Hamilton-Jacobi equa-
tion in black hole space-times.
Similarly, we believe that the herein presented formalism

can be very useful to the various averaging and two-timescale
approaches to EMRIs [18, 80–82] since we can easily con-
struct action-angle coordinates in the spin sector and thus pro-
vide an elegant treatment of the non-dissipative (“fast”) part of
the dynamics of the binary. Furthermore, the simplicity of the
Hamiltonian under the Kyrian-Semerák condition makes it an
attractive alternative to the Hamiltonian of Barausse et al. [34]
in EOB models [83].
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Appendix A: The generalized KS conditions

The only condition that we need to be fulfilled for Ṡκλ =
0 to hold is that Ṡµνwν = 0 for some time-like wν . From
equation (6) projected into wν we then get

wν ẋν Ṡ
κλ = 0 . (A1)

Because the product of any two time-like vectors is non-zero,
we then get simply Ṡκλ = 0. The supplementary condition
can thus be of the form Sµνwν = mµ with

Sµνẇν = ṁµ , (A2)

because thenwewill have Ṡµνwν = 0. In the casewhenmµ =
0, we get that ẇν must lay in the degenerate directions of the
spin tensor, ẇν = αwν + βsν with α, β arbitrary functions of
any variables [84]. However, we may generally set mµ 6= 0
and then the only condition on the evolution is Eq. (A2). One
particular option is ẇµ = ṁµ = 0.

Nevertheless, it should be noted that only the initial choices
of wµ,mν matter. This can be seen from the fact that if the
equations of motion are expressed in terms of Sµν , we need
no reference to ẇµ, ṁν as long as equation (A2) is satisfied.

In summary, once we allow for mµ 6= 0, the initial con-
ditions for Sµν are completely unconstrained. The study of
d’Ambrosi et al. [85] can be understood as conducted exactly
in them 6= 0 generalized KS condition.

One last note is that the vectormµ represents a mass dipole
in the frame wµ, and by setting its dynamics to fulfill different
evolution equations than in Eq. (A2), we can in fact obtain
other supplementary conditions [86].

Appendix B: The expression for ...xµ under MP condition

Take the equations (5) and (7) to express

(mẋµ + ẋγ Ṡ
γµ)˙ = −1

2
Rµνκλẋ

νSκλ . (B1)

Now use Sµν ẋν = 0 along with its time-derivatives and the
fact that ẋγ ẍγ = 0, ẋγṖ γ = 0 to obtain [46]

mẍµ − ...
xγS

γµ = −1

2
Rµνκλẋ

νSκλ . (B2)

We now contract the expression above with Sνµ/S2 and par-
tially re-express the result using the spin vector sλ to obtain

...
xκ
(
δνκ + ẋκẋ

ν − sκs
ν

S2

)
=
m

S2
ẍµSνµ (B3)

+
1

2S2
Rµλκγ ẋ

λSνµSκγ .

That is, we now have the expression for the jerk ...
xν on the

subspace orthogonal to sλ, ẋκ. The projection of the jerk into
velocity can be computed from the second derivative of four-
velocity normalization as ...xµẋµ = −ẍµẍµ. For the projec-
tion of the jerk into the spin vector, we use the Fermi-transport
property ṡµ = −ṡν ẋν ẋµ to express ṡν ẍν = 0. This allows us
rewrite the projection as

sµ
...
xµ =

D

dτ
(sµẍµ) . (B4)

Now let us project Eq. (B2) into sµ to obtain

sµẍµ = − 1

2m
Rµνκλs

µẋνSκλ . (B5)

We now see that the time-derivative of ẍµsµ can be completely
expressed by known functions of xµ, ẋν , ẍκ, sλ.
From that, it is now easy to compose the complete prescrip-

tion for the jerk only in terms of the variables ẋµ, ẍλ, sγ as

...
xν =

1

S2

(
mẍµ − ?Rµλκγ ẋλsκẋγ

)
ενµστ ẋσsτ + ẍκẍκẋ

ν +
1

mS2

(
?Rµλκγ;σs

µẋλsκẋγ ẋσ + 2?Rµλκγs
µsκẋ(λẍγ)

)
sν .

(B6)

Appendix C: Field-theoretic motivation for Poisson brackets

We assume a fixed 3+1 split of space-time which consists
of a family of non-intersecting spatial hypersurfaces Σt (we
will suppress the t in the following) with coordinates xi and
induced metric dij , volume element dΣ =

√
dd3x. This

means that our time parametrization is fixed and what we ex-
pect to find is not strictly the parametrization-invariant Poisson
bracket (29), but rather a constrained bracket with new terms
in the temporal sector [see 56, 67, for more details].

We can then take a Lagrangian density L = L̃
√
−g (L̃ is

the Lagrangian scalar) and obtain a Hamiltonian density using
the usual Legendre transformation

πa =
∂L

∂(∂tφa)
, → ∂tφa = f(πb, φ

b, ...) , (C1)

H(πb, φ
b, ...) =

∂L
∂(∂tφa)

∂tφ
a − L , (C2)

where φa stands for a generic collection of fields. Note that
πa is a density on Σ (not in the whole space-time). In the fol-
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lowing we will always assume that all the fields and momenta
vanish smoothly at the boundary of Σ (spatial infinity).
This system now has the non-zero local Poisson brackets

(meaningful only when evaluated for fields at the same t)

{φa(xi, t), πb(y
i, t)} = δab δ

(3)(xi − yi) , (C3)

where we can generate brackets for gradients by commuting
the gradient with the bracket. It can be shown that this gener-
ates a Poisson bracket for functionals

A(t)[π, φ] =

∫
A(πa, πa,i, φ, φ

a
,i, x

i, t)d3x , (C4)

B(t)[π, φ] =

∫
B(πa, πa,i, φ, φ

a
,i, x

i, t)d3x , (C5)

{A(t), B(t)} =

∫
δA
δφa

δB
δπa
− δB
δφa

δA
δπa

d3x , (C6)

where A,B are densities on Σ and δF/δf is the variational
derivative

δF
δf

=
∂F
∂f
− ∂

∂xi
∂F
∂(f,i)

, (C7)

where we have assumed that F is dependent only on f and its
first-order gradients (for higher order gradients we get a series
of analogous terms of varying sign).

1. Total momentum

We define a particular momentum quantityΠµ that will play
an analogous role as the covariant momentum Pµ

Πµ(t) ≡ −
∫

Σ

T νµnνdΣ , (C8)

where nν is the unit normal to Σ.
For this expression, we choose the canonical stress-energy

tensor generated by diffeomorphism invariance rather than the
Hilbert stress-energy tensor

T νµ =
∂L̃

∂(φa,ν)
φa;µ − δνµL̃ . (C9)

The momentum can then be rewritten as

Πµ(t) = −
∫
πaφ

a
;µ − δtµLd3x . (C10)

Namely, we have

Πt = −
∫
H+ γatbπaφ

bd3x , (C11)

where γaµb are some connection coefficients for the covariant
derivative of the fields φa, φa;µ = φa,µ + γaµbφ

b.
We require that (φaπa),µ = (φaπa);µ and the validity of the

Leibniz rule, which leads us to the definition of the pseudo-
covariant derivative of πa as πa;µ = πa,µ− γbµaπb. This con-
vention is at odds with the usual convention for the covariant

gradient of a density; its intuitive meaning is that πa;µ is rather
some kind of “total density variation” of πa.
Since {φa(xi, t),H(yi, t)} = ∂tφ(xi, t)δ(3)(xi − yi) then

we get

{φa(xi, t),Πt} = −φa,t − γatbφb = −φa;t(xi, t) . (C12)

For the spatial part we obtain similarly

{φa(xj , t),Πi} = −
∫
{φa, πbφb;i}d3x = −φa;i(xj , t) .

(C13)
For the momenta we obtain analogously

{πa(xi, t),Πµ} = −πa,µ + γbµaπb = −πa;µ(xi, t) . (C14)

That is, at least for functions of fields and momenta which do
not involve their gradients, {·,Πµ} is minus the covariant gra-
dient operator.

2. Mutual momentum brackets

Let us compute the bracket {Πµ,Πν}. We start with

{Πi,Πt} =

∫∫
{πc(φc,i + γcidφ

d),H+ γatbπaφ
b} d3xd3y

(C15)

= −2

∫
πc;[iφ

c
;t]d

3x .

The spatial brackets then yield

{Πi,Πj} =

∫∫
{πc(φc,i + γcidφ

d), πa(φa,i + γaidφ
b)}d3x d3y

(C16)

= −2

∫
πc;[iφ

c
;j]d

3x .

In summary {Πµ,Πν} = −2
∫
πc[;µφ

c
;ν]d

3x. On the
other hand, in the brackets (29) we have {Pµ, Pν} =
−RαβµνSαβ/2.
We try to simplify the brackets further, starting with
{Πi,Πj}. To do that we reexpress

πc;iφ
c
;j = (πcφ

c
;j),i − πcφc|ji , (C17)

φc|ji ≡ φ
c
,ji + γcibφ

b
,j + γcjbφ

b
,i + γcjb,iφ

b + γcjbγ
b
iaφ

a

(C18)
= φc;ji − Γkjiφ

c
,k ,

Even though φc|ij is missing a part to be fully covariant with
respect to the background space-time, its antisymmetric part
is in fact covariant and yields

φc|ji − φ
c
|ij = Rcbjiφ

b . (C19)

We then assume that the field vanishes at the boundaries of Σ
and obtain

{Πi,Πj} =

∫
πc;jφ

c
;i − πc;iφc;jd3x = −

∫
Rabijπaφ

bd3x .

(C20)
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For the {Πt,Πi} bracket we can use a similar trick but some
of the gradients will be with respect to t and do not integrate
out to boundary terms. As a result, we obtain

{Πi,Πt} = −
∫
Rabitπaφ

bd3x+

∫
(πcφ

c
;i),td

3x . (C21)

In summary

{Πµ,Πν} = −
∫
Rabµνπaφ

bd3x+ δtµ
dΠν

dt
− δtν

dΠµ

dt
.

(C22)
This is an exact relation for an arbitrary collection of fields
vanishing at infinity and an arbitrary 3+1 split. Note that for
a single scalar field the first term vanishes and we probably
cannot get anything resembling the Poisson brackets (29). In
the next Section we briefly describe a formal expansion of this
relation.

3. “Monopole” approximation

Wenow assume that the fieldsφa, πb are non-vanishing only
over a small volume as compared to the variability length of the
curvature. Thenwe can expand the integral from the {Πµ,Πν}
bracket as∫

Rabµνπaφ
bd3x =Rabµν(xiW, t)

∫
πaφ

bd3x (C23)

+Rabµν;k(xiW, t)

∫
Xkπaφ

bd3x

+ ... ,

where xiW is some referential point inside the volume where
the fields are non-vanishing, and the vector fieldXk(xi, xiW, t)
can be constructed, e.g., as the gradient of Synge’s world func-
tion around xiW [87]. If we take only the first term of this ex-
pansion, we obtain

{Πµ(t),Πν(t)} =− 1

2
Rabµν(xiW, t)S ba (C24)

+ δtµ
dΠν

dt
− δtν

dΠµ

dt
+ ... ,

S ba ≡2

∫
πaφ

bd3x , (C25)

where the spin tensor SAB corresponds to the antisymmetric
part of S ba drawn into tetrad components.

4. {S ba ,Πµ} bracket

Let us start with the spatial part,

{S ba ,Πi} = −2

∫∫
{πaφb, πcφc;i}d3xd3y (C26)

= −2

∫
πaφ

b
;i + πa;iφ

bd3x

= −2

∫
(πaφ

b),i + γbidπaφ
d − γciaπcφbd3x .

The temporal part reads

{S ba ,Πt} = −2

∫∫
{πaφb,H+ γctdπcφ

d}d3xd3y (C27)

= −2

∫
(πaφ

b),t + γbtdπaφ
d − γctaπcφbd3x .

The first term in the last line can be rewritten as dS ba /dt.
Assuming again a leading-order expansion of the integrals

we obtain

{S ba ,Πµ} = −γbµdS da + γcµaS bc + δtµ
dS ba
dt

+ ... . (C28)

This is in good correspondence to the respective Poisson
bracket in (29).

5. {S ba ,S dc } bracket

{S ba ,S dc } =

∫∫
{πaφb, πcφd}d3xd3y = δ bc S da − δ da S bc .

(C29)
The corresponding Poisson bracket in (29) contains additional
terms that follow once we anti-symmetrize S ba .

6. The world-line coordinate

The referential point for the “monopole” approximation de-
fined above can be constructed as

xiW ≡
∫
xif(φaπa)d3x∫
f(φaπa)d3x

(C30)

With f an arbitrary differentiable, positive definite function of
its argument. Then we can compute

{xjW,Πi} =−
∫
xjf ′(φaπa)(φaπa),id

3x∫
f(φaπa)d3x

(C31)

+

∫
xjf(φaπa)d3x∫
f(φaπa)d3x

∫
f ′(φaπa)(φaπa),id

3x∫
f(φaπa)d3x

=

∫
(xj),if(φaπa)d3x∫
f(φaπa)d3x

= δji .

That is, this is exactly the canonically conjugate coordinate we
are looking for.
The time coordinate tW is just t. In principle, we can then

write the commutation relation in a unified form that empha-
sizes the similarity with the other brackets and thus the terms
coming from the time-parametrization constraint

{xµW,Πν} = δµν − δtν
dxµW
dt

. (C32)
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7. Discussion of field-theoretic motivation of Poisson bracket

The spin structure of the brackets comes from the internal
field structure already in a monopole, rather than a pole-dipole
approximation. However, for instance a perfect fluid can be
described only by a set of scalar fields and would not gener-
ate these “spin dynamics”. Hence, the present “derivation”
of the Poisson brackets is not a fundamental reasoning as to
why such a set of brackets should apply to the motion of com-
pact astrophysical objects. We thus understand the procedure
given in this Appendix merely as one of the possible moti-
vations for the Poisson brackets (29). The procedure above
also provides an interesting field-theoretic background for the
spinor and vector-based models of classical particles with spin
[62, 88–91].

Attempts to derive brackets for higher-order multipoles
break down as inelegant non-covariant terms start mixing into
the expressions. We are convinced that for a generalization of
the procedure above to higher multipoles, a more careful con-
struction of the multipolar expansion must be given. Namely,
definitions of “vector-like” quantities such as Πµ are not co-
variant even with respect to coordinate changes on Σ and co-
variant definitions with similar properties must be found.

Appendix D: Constraining the Khriplovich Hamiltonian

1. Constraint theory

Let us first introduce some elements of Dirac-Bergmann
constraint theory as presented, e.g., by Dirac [66], Hanson
et al. [67].

Let Φa = 0 be a set of constraints on phase space we want
to impose on the system, with a some index labeling the con-
straints. Let us further assume that thematrixCab ≡ {Φa,Φb}
is non-degenerate and we can thus find an inverse matrixC−1

ab .
The goal is to find aHamiltonianH ′ which fulfills {Φa, H ′} =

Φ̇a ∼= 0, where ∼= denotes an equality which is fulfilled under
the condition that all the constraints Φa = 0 hold. Such a
Hamiltonian can be obtained from the original one as

H ′ = H − {H,Φa}C−1
ab Φb . (D1)

In our particular case we will be imposing the constraints of
the form SµνVν = 0. By counting the components of the
constraint, we might be tempted to state that there are a total
of 4 constraints imposed on the system. However, two compo-
nents of the constraint are satisfied trivially due to the identities
SµνVνVµ = 0 and SµνVν?SµκV κ = 0. As a consequence,
the matrix Cµλ ≡ {SµνVν , SλκVκ} will be degenerate on
subspaces corresponding to these trivial constraints. However,
it can be easily seen that if we find any pseudo-inverse C†µλ,
then the following Hamiltonian will conserve the non-trivial
parts of the constraint and thus also the whole set SµνVν = 0

H ′ = H − {H,SµνVν}C†µλS
λκVκ . (D2)

The last note to this procedure is that in the following we
never constrain the Poisson algebra; in other words, the Pois-

son brackets are always those given in (29). More details about
this topic are discussed in the main text in Section 4.

2. Obtaining the TD Hamiltonian

The first constraint that we apply to the Hamiltonian (37) is
SµνPν = 0. The constraint algebra yields

{SµνPν , SκλPλ} ∼= −M̃2Sµκ , (D3)

M̃2 ≡ −gµνPµPν +
1

4
RµνκλS

µνSκλ . (D4)

The pseudo-inverse of Sµκ on the constrained phase space is
−Sνµ/S2 (cf. eq. (12)). The last bracket that needs to be
evaluated is

{HKS, S
κλPλ} ∼=

1

2m
RµνγχS

κµP νSγχ . (D5)

The constrained Hamiltonian then reads

HTD =
1

2µ
gµνPµPν + {HKS, S

κλPλ}
1

M̃2S2
SµκS

µνPν

=
1

2µ

(
gµν +

1

M̃2
RµχξζS

χνSξζ
)
PµPν ,

(D6)

where we can apply ∼= equalities for expressions multiplied
by the constraint SµνPν without changing the resulting equa-
tions of motion. We have also chosen to change the notation
m→ µ because as we will see, the meaning of the parameter
µ will be different from the definition (8). This Hamiltonian
generates the equations of motion parametrized by some pa-
rameter λ which does not need to be equal to proper time τ .
The equations of motion read

x′µ ∼=
1

µ

(
gµν +

1

2M̃2
RνχξζS

χµSξζ
)
Pν , (D7)

P ′µ ∼= −
1

2
Rµνκλx

′νSκλ , (D8)

S′µν ∼= Pµx′ν − P νx′ν , (D9)

where we denote the derivatives D/dλ by primes. By com-
paring the equations above with the MPD equations of motion
under the TD supplementary condition (18) we see that the
parameter λ fulfills

dλ

dτ
=
µm

M2
, (D10)

where we substitute Eq. (19) for m. Another way to charac-
terize the parametrization under the condition that PαPα =
−M2 = −µ2 is that it holds that Pαx′α/M = −1. This
is exactly the parametrization introduced by Dixon [49] and
vouched for by Ehlers and Rudolph [50] (see also [92]). The
Hamiltonian for world-lines parametrized by proper time is
discussed in the main text in Subsection 3.4. One should com-
pare the above-given constraint procedure with the analogous
constraint procedure in the vector-variable model of Ramírez
and Deriglazov [62].
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3. Other attempts

We attempted to use the MP momentum-velocity re-
lation (15) and thus to apply the constraint Sµν(δκν +
SκλSλν/S

2)P ν = 0. The problem is, however, that
once the spin tensor is degenerate, the identity Sµν(δκν +
SκλSλν/S

2) = 0 holds automatically and has no time deriva-
tive under the Kriplovich Hamiltonian. In other words, theMP
condition expressed in terms of momenta is satisfied by any
degenerate spin tensor and it cannot be used in our constraint
procedure.

The Corinaldesi-Papapetrou condition Sµνξν = 0, where
ξν(xµ) is now some fixed vector field, can be applied as a con-
straint to yield the Hamiltonian

H =
1

2m
gµνPµPν +

1

mξ2
ξν;γP

γSνκξκ . (D11)

Yielding the equations of motion

x′′µ = − 1

2m
Rµνκλx

′νSκλ − 1

ξ2
ξν;γx

′γSνκξ ;µ
κ , (D12)

S′νκ = − 1

ξ2
ξλ;γx

′γ(Sλνξκ − Sκλξν) . (D13)

Nevertheless, this set of equations are not the MPD equations
under the Corinaldesi-Papapetrou condition.

Appendix E: Construction of canonical coordinates

Consider the effective action for spinning bodies given in
Steinhoff and Schaefer [64]:

S =

∫
pµẋ

µ +
1

2
SABΩAB −Hdτ , (E1)

where ΩAB ≡ ΛA
Â

dΛBÂ

dτ and ΛA
Â

are the components of
the “body-fixed frame” with respect to the background tetrad
eAµ . The body-fixed frame is defined by the property that the
spin tensor is constant in it, SÂB̂ = const., and ΛA

Â
thus in

fact carry the dynamical state of the spin tensor along with
gauge degrees of freedom. We further assume here, unlike in
Refs. [21, 57, 64], that the Hamiltonian H is only a function
of the gauge-independent pµ, xν , SAB . It is then easy to show
that the equations of motion following from δS = 0, where
pµ, x

ν ,ΛA
Â
, SAB are varied independently, imply

df

dτ
= {f,H} , (E2)

where f is any function of pµ, xν , SAB and the bracket is given
as in Eq. (32). In this sense, our Hamiltonian-based approach
can be understood, up to the discarding of theΛA

Â
variables, as

equivalent to the action-based approach of Refs. [21, 57, 64].
We now realize that if the term SABΩAB/2 can be trans-

formed into the form
∑
i ρiχ̇

i with ρi, χi some dynamical

variables, then ρi, χi are the desired pairs of canonically con-
jugate coordinates on the phase space. To do so, we mimic the
approach presented in Tessmer et al. [72] and re-express

1

2
SABΩAB =

1

2
SÂB̂Λ Â

A Λ B̂
B ΩAB =

1

2
SÂB̂Λ Â

A

dΛAB̂

dτ
.

(E3)

In other words, we are now looking at the dynamics of the spin
tensor purely from the perspective of a Lorentz transformation
ΛA

Â
from the body-fixed frame into the referential tetrad.

We now choose the spin tensor in the body-fixed frame
to have one degenerate time-like direction and one non-
degenerate space-like direction; conventionally S1̂2̂ =
−S2̂1̂ = S and other components zero. Note that this assumes
that the spin tensor will eventually fulfill a supplementary spin
conditions of the form SµνVν = 0; non-degenerate spin ten-
sors will thus not be possible to express in terms of the coor-
dinates that we give in the following paragraphs.
To enable an intuitive discussion, let us further identify the

legs ΛA
1̂
,ΛB

2̂
,ΛC

3̂
with the x, y, z-axes in Cartesian coordi-

nates, and the ΛD
0̂
with the time axis. Then, by finding the

dual of the spatial part of the spin tensor, we see that it is a
vector of magnitude S pointing purely in the z-direction.
The spin tensor is invariant with respect to rotations around

the z-axis, and with respect to boosts in the z direction. Out of
the total 6 parameters of a general Lorentz transform ΛA

Â
, 2

will be gauge degrees of freedom of the body-fixed tetrad. In
order to not mix the gauge degrees of freedom and the true
dynamical degrees of freedom, we parametrize the general
Lorentz transform as

Λ = R(α,~nz)B(vz, ~nz)B(u, ~nψ)R(−θ, ~nφ) , (E4)

where R(ζ, ~n) stands for a rotation by angle ζ around ~n,
and B(v, ~n) a boost in the ~n direction. The numbers
α, vz, u, ψ, θ, φ are then generally time-dependent parameters
of the transformation, and the vectors ~nψ, ~nφ are given as

~nψ = (− sinψ, cosψ, 0) , (E5)
~nφ = (− sinφ, cosφ, 0) . (E6)

When the dust settles, this transformation yields

1

2
SABΩAB = SΛ 1̂

A

dΛA2̂

dτ
(E7)

= −Sα̇+ S
cos θ − 1√

1− u2
φ̇+ S

(
1√

1− u2
− 1

)
ψ̇ .

The−Sα̇ term is a total time derivative and so it will not con-
tribute to the equations of motion. From the other terms we
see that we have two canonical momenta A and B conjugate
to φ and ψ respectively defined through the parameters of the
Lorentz transformation as

A = S
cos θ − 1√

1− u2
, (E8)

B = S

(
1√

1− u2
− 1

)
. (E9)
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Expressions for these coordinates in terms of the components
of the spin tensor are given in the main text in equation (60).
The expressions for the spin tensor components in terms of
A,B, φ, ψ are then given in equation (61).

1. Coordinate singularities and the special-planar Hamiltonian

Imagine a particle moving along x = 0 and y = 0 in Carte-
sian coordinates in Euclidean space, and make the usual trans-
form to spherical coordinates r, ϑ, ϕ. In principle, the coordi-
nate ϕ = arctan(x/y) is not defined, and we are at ϑ = 0 or
ϑ = π depending on the sign of z. By a limiting procedure
x→ 0, y → 0, we are able to obtain any value between 0 and
2π for ϕ at the pole.

However, it is clear to us from the point of view of the more
fundamental Cartesian coordinates that nothing is wrong, as
the value of ϕ is of no consequence for them at ϑ = 0. Simi-
larly, ϕ̇ is not defined at the pole, and by taking the azimuthal
angular momentum along with ϑ to zero, we obtain any value
for ϕ̇ between −∞ and +∞; again, this is of no physical con-
sequence and evolving ϕ is redundant.
The singularity at the pole of spatial spherical coordinates

is similar to the singularity of the canonical coordinates for
the spin tensor at SA3 = 0. By inspecting the transformation
laws (60) we see that the coordinate φ = − arctan(S23/S31)
is undefined and we are either at A = 0 or A = −2(B + S)

depending on the sign of S12.
In the case A = 0 (S12 > 0), we see from the parametriza-

tion of the spin tensor (61) that the value of φ will in fact be of
no consequence to the spin tensor. These conclusions can then
be easily applied to an evolution that fulfillsSA3 = const. = 0
to reduce the number of variables we need to evolve.
In the case A = −2(B + S) (S12 < 0) the situations is

somewhat more complicated. If we have an evolution that
keeps SA3 = const. = 0, we will also have ṠA3 = 0. This,
however, leads only to Ȧ = −2Ḃ, and it is in fact the combi-
nation 2φ− ψ that uniquely parametrizes the spin tensor. For
practical purposes, it then useful to define new canonical coor-
dinatesD ≡ A/2−B,E ≡ A/2+B, δ ≡ 2φ−ψ, ε ≡ 2φ+ψ
so thatD, δ and E, ε are conjugate respectively. The equation
ṠA3 = 0 with S12 < 0 leads to Ė = 0 and the redundance of
the coordinate ε.
For the special planar problem in Sec. 5, we chose S12 > 0

for simplicity. A trick that can be eventually used to avoid the
redefinitions of coordinates is simply to permute the definition
of the tetrad elements 1 ↔ 2, which will lead to a change of
the physical meaning of the sign of S12.
Another singularity is at SA0 = 0 which unambiguously

leads to B = 0 and ψ undefined. Once again, we see in (61)
that the value of ψ is inconsequential in that case. An inter-
esting fact is that if we have an evolution such that SA0 =
const. = 0, then the coordinatesA, φ reduce just to the canon-
ical coordinates for the SO(3) Poisson algebra [e.g. 71].
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