date: 2019-01-18T12:27:20Z pdf:PDFVersion: 1.5 pdf:docinfo:title: Interfacial Properties of Active-Passive Polymer Mixtures xmp:CreatorTool: LaTeX with hyperref package access_permission:can_print_degraded: true subject: Active matter consists of particles that dissipate energy, from their own sources, in the form of mechanical work on their surroundings. Recent interest in active-passive polymer mixtures has been driven by their relevance in phase separation of (e.g., transcriptionally) active and inactive (transcriptionally silent) DNA strands in nuclei of living cells. In this paper, we study the interfacial properties of the phase separated steady states of the active-passive polymer mixtures and compare them with equilibrium phase separation. We model the active constituents by assigning them stronger-than-thermal fluctuations. We demonstrate that the entropy production is an accurate indicator of the phase transition. We then construct phase diagrams and analyze kinetic properties of the particles as a function of the distance from the interface. Studying the interface fluctuations, we find that they follow the capillary waves spectrum. This allows us to establish a mechanistic definition of the interfacial stiffness and its dependence on the relative level of activity with respect to the passive constituents. We show how the interfacial width depends on the activity ratio and comment on the finite size effects. Our results highlight similarities and differences of the non-equilibrium steady states with an equilibrium phase separated polymer mixture with a lower critical solution temperature. We present several directions in which the non-equilibrium system can be studied further and point out interesting observations that indicate general principles behind the non-equilibrium phase separation. dc:format: application/pdf; version=1.5 pdf:docinfo:creator_tool: LaTeX with hyperref package access_permission:fill_in_form: true pdf:encrypted: false dc:title: Interfacial Properties of Active-Passive Polymer Mixtures modified: 2019-01-18T12:27:20Z cp:subject: Active matter consists of particles that dissipate energy, from their own sources, in the form of mechanical work on their surroundings. Recent interest in active-passive polymer mixtures has been driven by their relevance in phase separation of (e.g., transcriptionally) active and inactive (transcriptionally silent) DNA strands in nuclei of living cells. In this paper, we study the interfacial properties of the phase separated steady states of the active-passive polymer mixtures and compare them with equilibrium phase separation. We model the active constituents by assigning them stronger-than-thermal fluctuations. We demonstrate that the entropy production is an accurate indicator of the phase transition. We then construct phase diagrams and analyze kinetic properties of the particles as a function of the distance from the interface. Studying the interface fluctuations, we find that they follow the capillary waves spectrum. This allows us to establish a mechanistic definition of the interfacial stiffness and its dependence on the relative level of activity with respect to the passive constituents. We show how the interfacial width depends on the activity ratio and comment on the finite size effects. Our results highlight similarities and differences of the non-equilibrium steady states with an equilibrium phase separated polymer mixture with a lower critical solution temperature. We present several directions in which the non-equilibrium system can be studied further and point out interesting observations that indicate general principles behind the non-equilibrium phase separation. pdf:docinfo:subject: Active matter consists of particles that dissipate energy, from their own sources, in the form of mechanical work on their surroundings. Recent interest in active-passive polymer mixtures has been driven by their relevance in phase separation of (e.g., transcriptionally) active and inactive (transcriptionally silent) DNA strands in nuclei of living cells. In this paper, we study the interfacial properties of the phase separated steady states of the active-passive polymer mixtures and compare them with equilibrium phase separation. We model the active constituents by assigning them stronger-than-thermal fluctuations. We demonstrate that the entropy production is an accurate indicator of the phase transition. We then construct phase diagrams and analyze kinetic properties of the particles as a function of the distance from the interface. Studying the interface fluctuations, we find that they follow the capillary waves spectrum. This allows us to establish a mechanistic definition of the interfacial stiffness and its dependence on the relative level of activity with respect to the passive constituents. We show how the interfacial width depends on the activity ratio and comment on the finite size effects. Our results highlight similarities and differences of the non-equilibrium steady states with an equilibrium phase separated polymer mixture with a lower critical solution temperature. We present several directions in which the non-equilibrium system can be studied further and point out interesting observations that indicate general principles behind the non-equilibrium phase separation. pdf:docinfo:creator: Jan Smrek, Kurt Kremer PTEX.Fullbanner: This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/W32TeX) kpathsea version 6.2.2 meta:author: Jan Smrek, Kurt Kremer trapped: False meta:creation-date: 2018-07-10T13:21:37Z created: 2018-07-10T13:21:37Z access_permission:extract_for_accessibility: true Creation-Date: 2018-07-10T13:21:37Z Author: Jan Smrek, Kurt Kremer producer: pdfTeX-1.40.17 pdf:docinfo:producer: pdfTeX-1.40.17 pdf:unmappedUnicodeCharsPerPage: 17 dc:description: Active matter consists of particles that dissipate energy, from their own sources, in the form of mechanical work on their surroundings. Recent interest in active-passive polymer mixtures has been driven by their relevance in phase separation of (e.g., transcriptionally) active and inactive (transcriptionally silent) DNA strands in nuclei of living cells. In this paper, we study the interfacial properties of the phase separated steady states of the active-passive polymer mixtures and compare them with equilibrium phase separation. We model the active constituents by assigning them stronger-than-thermal fluctuations. We demonstrate that the entropy production is an accurate indicator of the phase transition. We then construct phase diagrams and analyze kinetic properties of the particles as a function of the distance from the interface. Studying the interface fluctuations, we find that they follow the capillary waves spectrum. This allows us to establish a mechanistic definition of the interfacial stiffness and its dependence on the relative level of activity with respect to the passive constituents. We show how the interfacial width depends on the activity ratio and comment on the finite size effects. Our results highlight similarities and differences of the non-equilibrium steady states with an equilibrium phase separated polymer mixture with a lower critical solution temperature. We present several directions in which the non-equilibrium system can be studied further and point out interesting observations that indicate general principles behind the non-equilibrium phase separation. Keywords: active matter; polymers; capillary waves access_permission:modify_annotations: true dc:creator: Jan Smrek, Kurt Kremer description: Active matter consists of particles that dissipate energy, from their own sources, in the form of mechanical work on their surroundings. Recent interest in active-passive polymer mixtures has been driven by their relevance in phase separation of (e.g., transcriptionally) active and inactive (transcriptionally silent) DNA strands in nuclei of living cells. In this paper, we study the interfacial properties of the phase separated steady states of the active-passive polymer mixtures and compare them with equilibrium phase separation. We model the active constituents by assigning them stronger-than-thermal fluctuations. We demonstrate that the entropy production is an accurate indicator of the phase transition. We then construct phase diagrams and analyze kinetic properties of the particles as a function of the distance from the interface. Studying the interface fluctuations, we find that they follow the capillary waves spectrum. This allows us to establish a mechanistic definition of the interfacial stiffness and its dependence on the relative level of activity with respect to the passive constituents. We show how the interfacial width depends on the activity ratio and comment on the finite size effects. Our results highlight similarities and differences of the non-equilibrium steady states with an equilibrium phase separated polymer mixture with a lower critical solution temperature. We present several directions in which the non-equilibrium system can be studied further and point out interesting observations that indicate general principles behind the non-equilibrium phase separation. dcterms:created: 2018-07-10T13:21:37Z Last-Modified: 2019-01-18T12:27:20Z dcterms:modified: 2019-01-18T12:27:20Z title: Interfacial Properties of Active-Passive Polymer Mixtures xmpMM:DocumentID: uuid:63e3c4fc-5499-493c-a5b9-1392f154b219 Last-Save-Date: 2019-01-18T12:27:20Z pdf:docinfo:keywords: active matter; polymers; capillary waves pdf:docinfo:modified: 2019-01-18T12:27:20Z meta:save-date: 2019-01-18T12:27:20Z pdf:docinfo:custom:PTEX.Fullbanner: This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/W32TeX) kpathsea version 6.2.2 Content-Type: application/pdf X-Parsed-By: org.apache.tika.parser.DefaultParser creator: Jan Smrek, Kurt Kremer dc:subject: active matter; polymers; capillary waves access_permission:assemble_document: true xmpTPg:NPages: 20 pdf:charsPerPage: 3142 access_permission:extract_content: true access_permission:can_print: true pdf:docinfo:trapped: False meta:keyword: active matter; polymers; capillary waves access_permission:can_modify: true pdf:docinfo:created: 2018-07-10T13:21:37Z