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Zusammenfassung

In dieser Arbeit untersuchen wir nichtlineare Compton-Streuung, einer der grundle-
gendsten Prozesse der Quantenelektrodynamik in einem starken elektromagnetis-
chen Hintergrundfeld. Man kann sich die nichtlineare Compton-Streuung als
einen Prozess vorstellen, bei dem ein freies Elektron mit einem Laserfeld streut
und dabei Strahlung erzeugt. Mit der bevorstehenden Eröffnung einiger Petawatt-
Laseranlagen wird die nichtlineare Compton-Streuung routinemäßig getestet werden,
insbesondere um die Dynamik von Plasmen zu verstehen, die mit starken Feldern
interagieren.

Trotz seiner vielversprechenden Anwendungen wurde dieser Prozess bisher
immer für einzelne Teilchen mit einem genau definierten Anfangsimpuls untersucht.
Wir werden zeigen, welche Effekte entstehen, wenn sich anfänglich ein oder mehrere
Elektronen in einem Wellenpaketzustand befinden; Insbesondere interessiert uns,
welche Modifikationen durch Quanteneffekte hervorgerufen werden und welche
stattdessen eine klassische Erklärung haben. Darüber hinaus werden wir uns im
Fall mehrerer Teilchen auf die Kohärenz der emittierten Strahlung konzentrieren und
berechnen, wie Quanteneffekte die Frequenzen begrenzen, bei denen die Strahlung
kohärent sein kann, selbst in einem Bereich, der typischerweise mit der klassischen
Elektrodynamik assoziiert wird.

Abstract

In this work we study Nonlinear Compton Scattering, one of the most fundamental
processes of Quantum Electrodynamics in a strong electromagnetic field back-
ground. One can imagine Nonlinear Compton Scattering as a process where a free
electron scatters with a laser field, and while doing so it generates radiation. With
the imminent inauguration of some Petawatt laser facilities, Nonlinear Compton
Scattering will be routinely tested, especially in order to understand the dynamics
of plasmas interacting with strong fields.

Despite its promising applications, this process has always been studied for
single particles with a well-defined initial momentum. We will show which effects
arise when initially one or multiple electrons are in a wave packet state; in particular,
we will be interested in which modifications are brought about by quantum effects,
and which instead have a classical explanation. Moreover, in the multi-particle
case, we will focus on the coherence of the emitted radiation, and calculate how
quantum effects limit the frequencies at which the radiation can be coherent even
at a regime typically associated with Classical Electrodynamics.
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Chapter 1

Introduction

To this day, the theory that best describes fundamental particles and their interac-
tions is the Standard Model; this theory is embedded in the theoretical framework
of Quantum Field Theory (QFT), where elementary particles are thought of as
excitations of underlying entities called quantum fields [Peskin and Schroeder,
1995; Weinberg, 1995]. Although the Standard Model cannot account for some
phenomena which are of great importance in our quest for the full description of
physical processes in the universe (for instance, one fundamental force, gravity, is
still not fully understood at a quantum level), it shapes our knowledge of particle
physics. According to the Standard Model, matter interacts via the exchange of
bosons, which have the role of force carriers. Among the bosons of the Standard
Model, the photon, i. e., the boson associated with the electromagnetic field, has
some quite peculiar features; a striking difference between it and the other force
carriers of the Standard Model is that the photon possesses neither charge of any
kind nor mass: this allows it to propagate in vacuum for infinitely large distances
without decaying, and so it can make it possible for arbitrarily distant objects to
exert a force on each other.

Arguably, in order to explain the vast majority of the world that surrounds us,
the electromagnetic interaction has a privileged role. In fact, the electromagnetic
interaction alone is responsible for the structure of the atoms (if we take for
granted that nuclei are stable), which for many practical purposes can still be
thought of as the fundamental building blocks of matter: this is the case in
Chemistry and most fields related to it. Moreover, although there are many major
technological achievements of mankind that harnessed the energy stored in nuclei
or in gravitational fields in order to achieve our goals, the degree of control we have
over electromagnetic fields is unparalleled, and constitutes the basis for most of
human technology.

In order to further improve our understanding of such an important interaction
it is worthwhile, then, to restrict our attention to the QFT that deals only with
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2 Chapter 1 Introduction

electrically charged particles and their interactions via the electromagnetic field:
Quantum Electrodynamics (QED). Since QED was the first Quantum Field Theory
that successfully served the purpose of modeling a fundamental interaction, it
has been the blueprint for most of the Quantum Field Theories developed sub-
sequently; in fact, it was from the study of QED that powerful tools such as
Feynman diagrams [Feynman, 1949] were developed, and where the appearance
of divergent quantities (i. e., the problem of infinities) stimulated a systematic
study of renormalization [Feynman, 1948; Schwinger, 1948, 1949; Tomonaga and
Oppenheimer, 1948; Dyson, 1949; Gell-Mann and Low, 1954]. QED has been tested
over and over in a vast number of experiments, both at low energies [Odom et al.,
2006; Gabrielse et al., 2006; Miller et al., 2007] (see also [Karshenboim, 2005], and
references therein) and high energies [Levine et al., 1997]. Just to give an idea of
the accuracy that precision tests of QED at low energies are able to achieve, the fine
structure constant α, the parameter that determines the strength of electromagnetic
interactions, has been measured [Gabrielse et al., 2006] with a relative error of
around one part in a billion. Interestingly enough, very few physicists remember
the value of α, although almost everyone remembers its inverse, approximately 137.

Another notable experiment was recently performed in Heidelberg [Sturm et al.,
2014], where by combining QED calculations with state-of-the-art experimental
techniques it was possible to measure the mass of the electron with a remarkably tiny
relative error of 3 · 10−11. This level of precision is quite surprising, for a theory that
unfortunately, as many other Quantum Field Theories, cannot be solved exactly.
This is not a problem in many scenarios because, since α� 1, it can be possible
to study the electromagnetic interaction between particles perturbatively in α.
This means that in experiments involving charged particles one could calculate the
interaction between them as a sum of many contributions, which can be interpreted
as due to the exchange of an increasing number of photons between the charged
particles themselves. It can be shown that the more photon emissions/absorptions
these contributions contain, the more they are suppressed by an increasingly high
power of α, so it is possible at some point to truncate this series and obtain results
which are accurate enough for the purpose of the experiment.

However, it is not always practical, or even possible, to treat the electromagnetic
interaction perturbatively. This happens when the interaction is strong enough to
alter the quantum states of particles in such a way that it cannot be regarded as a
small perturbation anymore. For instance, the quantum state of an electron bound
to an atomic nucleus is not similar at all to the quantum states of a free electron, so
that in general one cannot regard atoms as systems where free electrons exchange
a small number of photons with an oppositely charged particle, the nucleus. Even
a laser field, if strong enough, could modify the quantum state of particles in a
similar fashion. In fact, the discovery of two techniques called Chirped Pulse Am-
plification (CPA) [Strickland and Mourou, 1985] and Optical Parametric Chirped
Pulse Amplification (OPCPA) [Piskarskas et al., 1986] led to a dramatic increase in
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the highest peak intensities of optical laser pulses. This increase in intensity comes
at the cost that both CPA and OPCPA cannot produce arbitrarily long pulses, but
only ultrashort ones where the electric field oscillates only a few times. Still, the
most powerful lasers built so far, like Vulcan [Vulcan, website], Astra-Gemini [Astra-
Gemini, website], HERCULES [HERCULES, website], BELLA [BELLA, website],
and planned ones, such as ELI [ELI, website], HiPER [HiPER, website], APOL-
LON [APOLLON, website], and XCELS [XCELS, website], are based on either
CPA or OPCPA. Record intensities of about 1022 W/cm2 have been already re-
ported [Yanovsky et al., 2008], and intensities of the order of 1024 W/cm2 are
envisaged in future laser facilities [ELI, website; XCELS, website]. While traveling
through an electromagnetic field of this intensity, it is unlikely that an electron
will exchange only a few photons with the laser field itself [Ritus, 1985], and
perturbative calculations become quickly unpractical or meaningless. This regime
is often called the Strong-Field sector of QED, and its study is promising [Ehlotzky
et al., 2009; Di Piazza et al., 2012] for both theoretical reasons (experiments at this
extreme regime will advance our understanding of the electromagnetic interactions,
and could serve as a probe in the search of new physics beyond the Standard
Model [Kurilin, 1999; Gies et al., 2006; Gies, 2009; Mendonça, 2007; Döbrich and
Gies, 2010; Heinzl, Ilderton and Marklund, 2010; Villalba-Chávez et al., 2016]) and
technological reasons (by exploiting some processes of Strong-Field QED it could
be possible, for instance, to build gamma-ray sources of unprecedented intensity
and brilliance [Ridgers et al., 2013; Sarri et al., 2014; Yu et al., 2016; Gonoskov
et al., 2017; Bashinov et al., 2017; Gong et al., 2017, 2018; Liu et al., 2018]).

More quantitatively, the features of the interaction between a laser field, having
an amplitude E and angular frequency ω, and an electron (mass m and charge
e < 0) can be characterized by the value of the Lorentz- and gauge-invariant
parameter

ξ =
|e|E
ωmc

, (1.1)

where c is the speed of light. The parameter ξ has both a classical and a quantum
interpretation. Classically, we can interpret it as |e|Ec/ω, the work performed by
the laser field in one reduced laser wavelength (c/ω), in units of the electron’s
rest energy mc2; thus, for ξ larger than unity we can expect the electron, even if
initially at rest, to quickly reach relativistic energies while interacting with the
laser field. We can expect then relativity to play a role in the study of the motion
of the electron; this implies that the dynamics of the electron will have a nonlinear
dependence on the laser field’s amplitude, and qualitatively new effects can be
studied and measured. Moreover, by multiplying and dividing by ~, the reduced
Planck’s constant, we can also give a quantum interpretation to ξ as the work
performed by the laser field in one reduced Compton wavelength (λ̄C = ~/mc) of the
electron, |e|E~/mc, in units of the energy of the laser photons, ~ω; in this context,
ξ larger than one would hint at the fact that processes involving the exchange
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of multiple laser photons start becoming more important than ones involving a
single photon [Berestetskii et al., 1982; Ritus, 1985; Di Piazza et al., 2012]. At
optical frequencies, fields with a peak intensity of the order of 1018 W/cm2, which
are routinely available in laboratories, reach already the regime ξ ∼ 1.

While the parameter ξ tells us when relativistic or multiphoton effects start
becoming important, it would also be useful to have a similar parameter that
indicates when it is mandatory to use a quantum theory rather than a classical
one. In order to find this parameter, let us highlight the main differences between
Classical and Quantum Electrodynamics. The most striking one at first is that
while classical particles move along trajectories, in QED particles are excitations
of quantum fields, and it is not always possible to associate them with a single
trajectory in a meaningful way. Moreover, Classical Electrodynamics predicts
that accelerated charges emit radiation in a continuous fashion [Jackson, 1999],
and this radiation is usually calculated, via the Liénard-Wiechert potentials, as a
functional of the particles’ trajectory. This procedure is intrinsically plagued by a
fundamental problem: it completely neglects the back-reaction that the fields exert
on the charges, thus, since particles can emit radiation without any consequence
on their trajectories, energy conservation is violated. In QED, instead, this is not
a problem, because the electromagnetic radiation is quantized in photons, and
whenever a particle emits a photon it will also recoil, so the total energy and
momentum will be conserved. In particular, whereas the energy spectrum of the
radiation emitted classically can, in principle, extend to arbitrarily high energies,
in QED, because of energy-momentum conservation, there is an upper bound on
the energy of the photons that a particle can emit (i. e., at most a particle could
transform all of its kinetic energy into photons, but not more than that).

It can be shown [Baier et al., 1998] that for electrons having a well-definite value
of the momentum and relativistic energies ε the effects due to the quantization of
their motion are negligible with respect to the effects associated with recoil; the onset
of the latter kind of effects is controlled by a Lorentz- and gauge-invariant parameter
called χ. We will discuss this parameter in greater detail in Chapter 2; at this
point, suffice it to say that it is related to the ratio between the electric field that an
electron feels in its rest frame and the quantity Ecr = m2c3/~|e| ≈ 1.3× 1016 V/cm,
the so-called “critical field” (or “Schwinger field”) of QED [Sauter, 1931; Schwinger,
1951; Ritus, 1985; Di Piazza et al., 2012]. A constant and uniform electric field
of strength Ecr could give to an electron-positron pair an energy comparable to
its rest energy 2mc2 over a distance of the order of λ̄C ; pictorially, this energy
could bring into existence a virtual electron-positron pair, making the vacuum
unstable under decay into pairs [Schwinger, 1951]. The strongest laser fields that
are attainable in the laboratory as of today, and even the ones envisaged in the
near future, are orders of magnitude weaker than the critical field. However, even
if the peak electric field E of a laser is much weaker than Ecr (at optical frequencies,
a field so intense would have an intensity Icr ∼ 1029 W/cm2), an electron which is
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ultrarelativistic in the laboratory, counterpropagating with respect to the laser field,
would feel in its rest frame the field E multiplied by the electron’s relativistic γ
factor [Einstein, 1905; Jackson, 1999]. Electron beams with energies beyond several
GeVs have been already produced, both via conventional accelerators [Patrignani,
C. et al. (Particle Data Group), 2017] and laser-based ones [Leemans et al., 2014];
this amounts to γ > 104, so even with electric fields four orders of magnitude
weaker than Ecr it is still possible to test QED in the Strong-Field regime. In fact,
nonlinear effects of QED have been already probed in the presence of a relatively
weak laser (peak intensity smaller than 1018 W/cm2) by colliding it with a very
energetic (50 GeV) electron beam [Bamber et al., 1999].

The nonlinear regime of QED, characterized by non-negligible ξ, χ, or both, is
quite challenging to study; indeed, as we have previously mentioned, perturbative
corrections to the free states of the electron field and of the electromagnetic field
could be practically (or even theoretically) inapplicable. Still, overcoming the
difficulties inherent in nonlinear QED is an effort worth making: the rewards are
extremely interesting processes. For instance, the virtual electron-positron pairs
that populate the QED vacuum allow it to behave like a polarizable medium, making
it possible for many phenomena associated with electrodynamics in a nonlinear
or anisotropic medium to take place in it [Heisenberg and Euler, 1936; Klein and
Nigam, 1964; Baier and Breitenlohner, 1967; Adler et al., 1970; Bialynicka-Birula
and Bialynicki-Birula, 1970; Baier et al., 1987, 1996; Rozanov, 1998; Fedotov and
Narozhny, 2007; Di Piazza et al., 2007, 2008; Dinu et al., 2014; Karbstein and
Shaisultanov, 2015; Karbstein and Sundqvist, 2016; Bragin et al., 2017; Gies et al.,
2018]. In fact, in the QED vacuum it is possible for two photons to scatter via an
electron-positron loop and exchange momentum; this is in striking contrast with
one of the fundamental properties of the classical electromagnetic field, which is
that, because of the linearity of Maxwell’s equations with respect to both sources
and fields, different modes of the field are uncoupled. Experimental searches for the
signature of light-by-light scattering are being conducted [Della Valle et al., 2016],
and evidence for this process has already been found in heavy-ion collisions [ATLAS,
2017]. Since light-by-light scattering is a fourth-order process, its cross section
is suppressed and its direct detection very challenging. With increasingly strong
fields, it is possible to enhance the light-by-light scattering probability, making
it more accessible to experimental inquiries. For example, one could polarize the
vacuum in a geometrically nontrivial way with strong lasers, and build in this way
a realization of Young’s experiment where a photon interacts with “a matterless
double slit” entirely made of light [King et al., 2010]. This would make it possible
to measure light-by-light scattering via its characteristic diffraction pattern on a
screen; it is a very elegant way to exploit quantum interference in order to probe
Strong-Field QED, and perhaps there are other methods that make use of quantum
interference to test nonlinear effects in QED which are as fascinating as this, still
waiting to be discovered.
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The calculations of nonlinear QED can be significantly simplified if the laser
field can be thought of as a classical field [Skoromnik and Feranchuk, 2014] with
a plane-wave space-time stucture, i. e., its wave fronts are parallel planes. In this
case, it is possible to work in the so-called “Furry picture” [Furry, 1951], and take
into account the plane-wave laser field exactly. After doing this, one can study
the remaining part of the electromagnetic field, i. e., nonlaser photons, with a
perturbative series. This approximation can be applied to electrons interacting
with an intense laser pulse, even if the laser is focused down to the Rayleigh’s
diffraction limit, as long as the electron collides head-on with the laser field, close
to its focus, and if the transverse excursion of the electron is much smaller than
the laser waist size (this last condition is satisfied if ξmc2 is much smaller than the
electron’s energy in the laboratory frame [Landau and Lifshitz, 1975; Berestetskii
et al., 1982]). It is worth noticing that there has been a great deal of interest [Bagrov
et al., 1993; Baier et al., 1998; Wistisen, 2014; Di Piazza, 2014, 2015, 2017; Heinzl
and Ilderton, 2017a,b] in finding techniques suitable to the study of QED processes
happening in fields of more complex space-time structures that approximate better
the fields obtainable in the laboratory (i. e., focused beams).

In the Furry picture, the two lowest-order processes in a laser field that have
been studied the most are Nonlinear Breit-Wheeler Pair Production and Nonlinear
Single Compton Scattering (NSCS). This thesis is devoted to the study of NSCS,
where an electron traveling inside a laser field exchanges multiple photons with
the laser field itself, while also emitting a single, non-laser photon. NSCS has
been thoroughly studied in the literature; first in the presence of a monochromatic
plane wave, where it is possible to obtain most results analytically [Goldman, 1964;
Brown and Kibble, 1964; Nikishov and Ritus, 1964; Fried and Eberly, 1964; Ritus,
1985; Ivanov et al., 2004; Harvey et al., 2009; Corson et al., 2011; Wistisen, 2014],
and then, when due to CPA and OPCPA ultrashort pulses became of interest, the
NSCS rates were derived also in such background [Boca and Florescu, 2009; Heinzl,
Seipt and Kämpfer, 2010; Boca and Florescu, 2011; Mackenroth and Di Piazza,
2011; Seipt and Kämpfer, 2011; Boca and Florescu, 2011; Dinu et al., 2012; Boca
et al., 2012; Dinu, 2013; Krajewska et al., 2014; Titov et al., 2014; Angioi et al.,
2016].

The results that are presented in this thesis are motivated by the fact that,
with the notable exception of [Corson et al., 2011], in the study of Nonlinear
Single Compton Scattering the initial state of the electron has always been chosen
as a momentum eigenstate. Because of the uncertainty principle, this means
that the electron has always been considered as delocalized everywhere in space,
thus ignoring some possible finite-size effects. We relaxed this assumption, and
considered NSCS of electron wave packets. In principle, since the initial state is
then a superposition of different states, one could expect quantum interference
in the spectrum of the emitted radiation; as we will show, this does not happen
in a plane-wave if one considers only one electron in the initial state [Angioi
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et al., 2016]. Instead, when multiple particles are present in the initial state there
is indeed quantum interference in the emitted radiation [Angioi and Di Piazza,
2017], and in the regime of χ� 1 it can be compared with the interference that
classically is also expected when electrons follow accelerated trajectories that are
close to each other [Jackson, 1999; Klepikov, 1985]. In particular, we focused on the
coherence of the emitted radiation, i. e., we compared the total radiation emitted
by the system of charges taken as a whole with the radiation they would emit
individually; if the total emitted radiation at a certain frequency scales linearly
with the number of particles we will call it “fully incoherent radiation”, whereas
if the emitted radiation scales as the square of the number of particles we will
call it “fully coherent radiation”. We have found that the quantum and classical
emission spectra in general tend to agree up to a certain frequency, dependent on
the shape of the initial quantum state of the electrons; above that frequency, we
identified two effects (one of fully quantum origin, whereas the other one has a
classical counterpart) which suppress the total radiation emitted and cause the
emission to be incoherent.

It is worth noticing that currently adopted schemes for the study of plasmas (for
a great review on the topic, see [Gonoskov et al., 2015]) treat the electromagnetic
field modes in different ways, depending on their frequencies. If the frequency of a
mode is lower than a certain threshold, it is treated classically and its evolution
is given by the solution of Maxwell’s equations on a grid, with sources given by
the charges and currents in the plasma. In this frequency range, there is classical
interference in the radiation emitted by different charges; depending on the system
one is studying, and, more specifically, depending on the quantum state the studied
particles are in, classical mechanics could greatly overestimate the coherence of
the emitted radiation. On the other hand, when the frequency of a mode is
large enough, the emitted radiation is treated stochastically and each particle,
independently of the others, can emit photons at random times with a rate given
by QED, in the approximation that the rate is the same as if the particle were
traveling through a certain constant field (this approximation is not valid at lower
frequencies [Di Piazza et al., 2017]). This procedure implies that the particles emit
radiation in a completely incoherent way. Our results can be used to estimate
when the assumptions of full coherence/incoherence in the emitted radiation are
not fulfilled.

The dependence of the emitted radiation on the shape of the incoming wave
packet when multiple particles are present could be exploited in order to experimen-
tally test Nonlinear Single Compton Scattering at the level of quantum amplitudes.
In order to do this, in upcoming facilities, aside of the study of the interaction
between strong lasers and plasmas, one could perform complementary experiments
with pulses of electrons in a well-defined quantum state [Baum, 2013], and analyze
the radiation they emit and compare it to the classical prediction (which would take
into account coherent emission and interaction between particles, but they would be
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limited by the applicability range of classical mechanics), single-particle quantum
predictions (which fundamentally cannot take into account coherent emission and
interactions between different particles) and our QED calculations (which neglect
the interaction between particles, but are not classical and still take into account
coherent emission).

This thesis is organized as follows: in Chapter 2 we will review some basic
concepts of Classical and QED, with a focus on processes happening in a plane-wave
electromagnetic field background. Then, in Chapter 3, we will review the other
pillar upon which this thesis is built: numerical methods for the quadrature of
highly oscillatory integrals and Monte Carlo integration with importance sampling.
Both Chapter 2 and Chapter 3 do not contain any new result, and serve only as a
reference in order to make this thesis self-contained. In Chapter 4, we calculate the
spectrum emitted by an electron initially in a wave packet state. Chapter 5 builds
on this by showing the new features that can be expected when considering states
with many particles (and, in particular, we have chosen two study the paradigmatic
case where only two particles are present). Finally, in Chapter 6 we will draw some
conclusions about our work and give an outlook for future research.
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1.1 Units and Notation

In the rest of this thesis, we will use natural units, i. e., ~ = c = 1; moreover,
electromagnetic quantities will be expressed in Gaussian units (see Chapter 2), and
the metric tensor is gµν = gµν = diag(1,−1,−1,−1), and summation over repeated
indices is always assumed unless stated otherwise.

The electron charge e is negative and e2 = α ≈ 1/137
The conjugate of a complex number z will be given by z∗.
A position in spacetime will be indicated, with a slight abuse of notation, by

the four-vector xµ = (t, x, y, z) (where t is the time and the other coordinates are
spacelike). Other slight abuses of notation are present for the symbols e, i, α, β,
and γ; however, they are used in contexts where the meaning of such symbols is
immediately clear.

In order to make formulas more readable, point free notation for functions will
be used when deemed necessary.

For other four-vectors aµ it is understood that aµ = (a0,a) and aµ = (a0,a). The
product between two four-vectors aµ and bµ will often be expressed as (ab) = aµb

µ.
The slashed symbol on a four vector, /a, indicates its contraction with a Dirac

gamma matrix γµ (see Chapter 2), i. e./a = aµγ
µ.





Chapter 2

Charged Particles in Strong Fields

In this chapter we will review the theoretical background needed in order to derive
the results presented in Chapter 4 and Chapter 5; these topics are well-known, and
many textbooks are devoted to their study [Landau and Lifshitz, 1975; Berestetskii
et al., 1982; Jackson, 1999; Peskin and Schroeder, 1995]. Another good reference
for QED in the presence of a strong background is [Mackenroth, 2014].

In Section 2.1, we review some elements of Classical Electrodynamics, especially
the most relevant features of the motion of charges in plane-wave electromagnetic
fields, and the classical predictions relative to the electromagnetic radiation they
emit while moving. The Quantum treatment of the same problem, within the
framework of Strong-Field QED, is reviewed in Section 2.2.

2.1 Classical Electrodynamics

Classical Electrodynamics is a theory that describes the interaction between charged
particles and electromagnetic fields in the regime where quantum effects can
be neglected, so that both the electric field E and the magnetic field B are
vector-valued functions over the spacetime and particles (or particle densities)
evolve according to classical equations. The differential equations that govern the
electromagnetic field are called Maxwell’s Equations; in natural units, they can be
written as

∇ ·E = 4πρ (2.1)
∇ ·B = 0 (2.2)

∇×E = −∂B
∂t

(2.3)

∇×B =
∂E

∂t
+ 4πj, (2.4)

11
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where ρ is the charge density and j is the current density. In vacuum, where ρ = 0
and j = 0, they assume a remarkably symmetric form. Each of the Maxwell’s
equations expresses a fundamental property of the electromagnetic field, respectively
the Gauss’ theorem for the electric field, the non-existence of magnetic monopoles,
Faraday’s law of induction, and Ampère’s law.

Maxwell’s equations are typically solved by introducing two functions of space
and time: the electrostatic potential Φ, which is a scalar function, and the vector
potential A. These two functions are such that

E = −∇Φ− ∂A

∂t
(2.5)

B = ∇×A. (2.6)

Notice that Eq. (2.5) and Eq. (2.6) do not uniquely define Φ and A; in fact, if Φ
and A satisfy Eqs. (2.5) and (2.6) so does any potential Φ′ and A′ given by the
transformation

Φ′ = Φ(x)− ∂Λ

∂t
(2.7)

A′ = A+ ∇Λ, (2.8)

where Λ is a generic twice-differentiable function of space and time. This implies
that a given configuration of the electromagnetic field can be represented not only
by one pair of potentials (Φ,A), but by a whole class of them. This symmetry is
called a gauge symmetry.

Maxwell’s Equations and the way they transform when performing a change of
reference frame were of fundamental importance in the development of special rela-
tivity [Einstein, 1905]; in fact, they transform well under Lorentz Transformations,
and they can be written in an explicitly covariant fashion as

∂αF
αβ = 4πjβ, (2.9)

ιαβγ∂αFβγ = 0, (2.10)

where jµ = (ρ, j) is the four-current, ιαβγ is the Levi-Civita tensor, and F µν is
the electromagnetic field tensor; Eq. (2.10) is automatically satisfied if F µν is
antisymmetric and, by introducing the four-potential Aµ(x) = (Φ(x),A(x)), we can
see that with Fµν = ∂µAν − ∂νAµ Eqs. (2.9) and (2.10) are equivalent to Eqs. (2.1)
to (2.4).

Another equation of fundamental importance in Classical Electrodynamics is
the equation that describes the force an electromagnetic field exerts on a charged
particle, the so-called Lorentz force [Jackson, 1999; Berestetskii et al., 1982]. Rela-
tivistically, Lorentz force is a four-force (i. e., it is equal to the derivative of the
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four-momentum of a particle with respect to the particle’s proper time); for an
electron, is given by [Landau and Lifshitz, 1975]:

dpµ(s)

ds
=

e

m
F µν(s)pν(s), (2.11)

where s is the proper time of the electron.

2.1.1 Electron in a Plane Wave: Trajectory and Emitted Radiation

All the processes studied in this thesis take place in vacuum solutions of Maxwell’s
equations with plane-wave symmetry, i. e., solutions that depend only on one phase
η = xµk

µ, where kµ = ω(1,n) is a constant four-vector, n is a unit vector and ω is
a frequency [Landau and Lifshitz, 1975]. For definiteness, let us choose a reference
frame where k lies along the positive z axis; then η = ω(t − z) = ωφ, where we
introduced the light-cone coordinate φ = t− z. The coordinate φ, together with
T = (t+ z)/2, x, and y, form a so-called light-cone basis, and as we will see it is a
natural coordinate system to use for plane waves.

Let us focus on linearly polarized plane waves, i. e., electromagnetic fields given
by the four-potential

AµL(φ) = Aµ ψL(φ); (2.12)

in this parametrization of AµL(φ), the shape function ψL(φ), with modulus always
smaller than one, encodes the spatiotemporal variation of the vector potential,
and Aµ = (0,−mξ/e, 0, 0) is a constant amplitude which gives us a purely spatial
polarization vector εµ directed along the x axis. With these particular choices we
have fixed the gauge; in particular, the Lorentz gauge condition

∂µAµL(φ) = 0 (2.13)

is satisfied, and this implies that k ·A = k · ε = 0.
The dynamics of an electron moving in the field given by the vector potential of

Eq. (2.12) can be calculated via Eq. (2.11). In some special cases, such as in plane
wave backgrounds, it is possible to solve exactly equations related to Eq. (2.11) that
take into account the action of the electron’s field on the electron itself [Di Piazza,
2008]. The force resulting from the electron’s self interaction is called radiation
reaction, and although it is a topic of great interest (see [Di Piazza et al., 2012] and
references therein), we will not touch it in this thesis, and we will assume that the
electron is not affected by its own field in classical calculations. This assumption is
well-justified, as Landau and Lifshitz have shown in [Landau and Lifshitz, 1975],
when the frequency ω and the typical value F of the components of the external
electromagnetic field satisfy

αω � m, F � Fcr
α
, (2.14)
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where Fcr = m2/|e| is the critical field of QED that we mentioned in Chapter 1.
If we neglect the field generated by the electron itself in the total electromagnetic

tensor F µν (i. e., F µν = ∂µAνL−∂νAµL is given only by the laser field) it is possible to
solve Eq. (2.11) exactly. In particular, let us consider an electron counterpropagating
with respect to the plane wave (i. e., with initial momentum p = (0, 0,−p) and
p > 0); it is clear in this case that the electric force will act only on the x-
component of pµ (see the definition of A). Moreover, the magnetic force will never
have any nonzero y-component since the magnetic field is always parallel to the y
axis. As a result of how the electromagnetic forces act, the motion of an electron
counterpropagating with respect to a laser field is confined to a plane parallel to
the xz plane.

In the non-counterpropagating case, this is not true anymore, but in any case
we can solve Eq. (2.11) to find the trajectory of the electron r(t) and its velocity
at every time β(t). A moving electron is a source for the electromagnetic field, and
via the Liénard-Wiechert potentials [Jackson, 1999; Landau and Lifshitz, 1975] it
is possible to write the energy (differential in frequency ω′ and solid angle Ω′) it
radiates away as

dE

dω′dΩ′
=
e2ω′2

4π2

∣∣∣∣∫ +∞

−∞
dtn× (n× β(t)) eiω

′(t−n · r(t))

∣∣∣∣2 . (2.15)

It is possible to write Eq. (2.15) in a covariant way by introducing the electron’s
“trajectory” in momentum pµ(t) and the emitted photon’s wave four-vector k′µ; in
particular, in the case of a plane wave, since the four-momentum of the electron
and its position depend only on the plane wave’s phase and (p(η)k) is a constant
of motion we can write [Mackenroth, 2014]

dE

dω′dΩ′
=
e2ω′2

4π2

∣∣∣∣∫ +∞

−∞
dη

pµ(η)

(kp0)
ei(kr(η))

∣∣∣∣2 , (2.16)

where we indicated with pµ0 the four-momentum of the electron asymptotically in
the past. We report here that the four-momentum of an electron as a function of the
plane wave phase can be calculated from Eq. (2.11) and it is equal to [Berestetskii
et al., 1982]:

pµ(φ) = pµ0 − eAµL(φ) + e
(p′jAL(φ))

(kp0)
kµ − e2

2

A2
L(φ)

(kp0)
kµ. (2.17)

The trajectory of the electron can be obtained by integrating Eq. (2.17); depending
on the shape of ψL(φ), this integral can be evaluated analytically.

2.2 Quantum Electrodynamics

As mentioned in Chapter 1, if an electron of momentum pµ feels in its rest frame
an electric field Erf with strength comparable to Ecr = m2/|e|, the effects due to



2.2 Quantum Electrodynamics 15

Strong-Field QED become non negligible. It is possible to formulate this condition
in an explicitly covariant way via the Lorenz- and gauge-invariant parameter

χ =
|e|
√
|(Fµνpν)2|
m3

, (2.18)

which reduces to Erf/Ecr in the rest frame of the electron. Thus, when χ ∼ 1 it
is not possible to consider quantum effects as a small perturbation to classical
mechanics, and this can be quite problematic if also ξ > 1, because multiphoton
effects become increasingly important.

In order to derive how the electromagnetic field couples to particles such as
electrons, i. e., fermions, let us consider the Dirac Lagrangian for an electron:

LD = ψ̄
(
i/∂ −m

)
ψ, (2.19)

where ψ(x) is the spinor field operator, ψ̄ is its conjugate, and /∂ = γµ∂µ (the
components of γµ are Dirac’s matrices) [Peskin and Schroeder, 1995]. If we apply
the Euler-Lagrange equations to LD, we can obtain the Dirac equation for ψ (and
its conjugate for ψ̄). Since physical quantities such as probabilities and currents
are invariant under the local transformation

ψ(x) −→ eiqΛ(x)ψ(x) (2.20)

ψ̄(x) −→ ψ̄(x)e−iqΛ(x) (2.21)

(this is called a U(1) gauge transformation), one could ask himself whether also LD
is invariant or, at least, whether it changes by a total derivative with respect to
time. Indeed, it is possible to show that, due to the transformation properties of
the term

ψ̄(x)∂µψ(x)→ ψ̄(x)e−iqΛ(x)∂µe
iqΛ(x)ψ(x) = ψ̄(x)(∂µ + iq(∂µΛ(x)))ψ(x), (2.22)

the Dirac Lagrangian LD is not invariant under a gauge transformation: it trans-
forms as

LD −→ LD + iq(∂µΛ)ψ̄ψ. (2.23)

In order to make LD gauge-invariant, we could introduce new terms to it that will
add to the total Lagrangian, once transformed, a term −iq(∂µΛ)ψ̄ψ; in this way,
the sum of LD and of the new terms will indeed be gauge-invariant.

Let us introduce a vector field, Aµ(x), and minimally couple it to LD; this
means that we need to replace the derivative ∂µ appearing in Eq. (2.19) with Dµ =
∂µ + iqAµ(x) (in an equivalent way, we could regard this operation as an addition
to the Lagrangian of an interaction term proportional to Aµψ̄γµψ). Suppose also
that the field Aµ(x) transforms into A′µ(x) under a gauge transformation. Then,
after a few elementary steps, one obtains

ψ̄(x) /Dψ(x)→ ψ̄(x)∂µψ(x) + iqψ̄(x)γµ
[
(∂µΛ(x)) + A′µ(x)

]
ψ(x), (2.24)
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and so if we want a gauge-invariant Lagrangian the field Aµ must transform as
Aµ → A′µ = Aµ + (∂µΛ), that is, as the four-vector potential of the electromagnetic
field. In fact, it is easy to see that with the above-sketched procedure, we have
derived the Lagrangian of the electromagnetic field coupled to fermions.

The starting point of QED is, in fact, the Lagrangian we just derived. For
clarity, let us write it down explicitly:

LQED = ψ̄
(
i /D −m

)
ψ − 1

16π
FµνF

µν , (2.25)

where
Dµ(x) = ∂µ + ieAµ(x) (2.26)

is the so-called covariant derivative; it is the term ieAµ(x) in it that couples the
electromagnetic field to the Dirac field.

2.2.1 Furry Picture and Volkov States

As mentioned in Chapter 1, if the coupling term in LQED cannot be considered as
a small perturbation to the free fields anymore, the usual perturbative approach to
QED is doomed to failure; this can happen, for instance, when electrons propagate
through a laser field with ξ & 1.

Arguably, the most widely adopted tool to circumvent this issue in Strong-field
physics is the “Furry Picture” [Furry, 1951]. It is based on the observation that
an intense electromagnetic field such as, for instance, a laser beam or an atomic
nucleus, can be regarded as a classical source. Then, the electromagnetic field can
be split into two parts: the intense field, which is considered as an external classical
field, unaffected by the dynamics of the rest of the system, and a quantized part.
For the four-potential, this implies

Aµ(x) = AµExt(x) + AµQ(x), (2.27)

where AµExt(x) is the four-potential of the external field (and is a classical function)
and AµQ(x) is a quantum field (operator-valued distribution). After splitting Aµ(x)
in this way, the covariant derivative appearing in LQED can be written as

Dµ(x) = D̃µ(x) + ieAµQ(x), (2.28)

where
D̃µ(x) = ∂µ + ieAµExt(x). (2.29)

The terms of LQED which contain the fermion field can then be split as

ψ̄
(
i /̃D −m

)
ψ − eψ̄AµExtψ = L0 + Lint. (2.30)
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If one is able to solve the field equations induced by L0, one can perform a unitary
transformation on the states and operators of the theory analogous to what is
done in the interaction picture, and treat as a small interaction not the whole
interaction −eψ̄Aµψ, but only −eψ̄AµExtψ. For a strong laser field, these two terms
are radically different, because whereas the first one scales as ∼ eξ, the second one
does not depend explicitly on ξ.

There is a technical difference with respect to the interaction picture because the
Hamiltonian that gives the free evolution of states is time-dependent (see [Fradkin
et al., 1991] for more details).

The equation that governs the modes of the fermion field in the Furry picture is
nothing but the Dirac equation in the presence of an external electromagnetic field.
This equation can be solved analytically if the profile of the field is simple enough
to allow it. In other cases, it could still be possible to solve the Dirac equation via
approximate methods [Di Piazza, 2014; Heinzl and Ilderton, 2017a].

In case the external field can be considered as a plane-wave, it is indeed possible
to solve the Dirac equation with such a background; the solutions of this equation
are the Volkov states [Volkov, 1935]:

Ψp,σ(x) =

[
1 +

e

2(kp)
/k /AL(η)

]
up,σ e

−ipx−i
∫ η
−∞

[
e

(kp)
(pAL(η′))− e2

2(kp)
A2
L(η′)

]
dη′
, (2.31)

where up,σ is a positive-energy spinor solution of the free Dirac equation, i. e.,

(/p−m)up,σ = 0, (2.32)

while up,σup,σ = 2m, and up,σ = u†p,σγ
0. The Volkov state Ψp,σ(x) is characterized

by the four-momentum pµ = (ε,p) and by the spin quantum number σ at t →
−∞. Technically, the states in Eq. (2.31) are just the so-called Volkov in-states,
although Volkov out-state only differ from the in-ones by a phase independent of
the coordinates. The Volkov states are normalized as∫

d3xΨ†p′,σ′(x)Ψp,σ(x) = (2π)3 (2ε) δ(p− p′) δσ,σ′ . (2.33)

It is convenient to write Volkov states in terms of a complete set of matrices (the
so-called Ritus matrices [Ritus, 1985]), defined as

Ep(x) =

[
1 +

e

2(kp)
/k /AL(η)

]
e
−ipx−i

∫ η
−∞

[
e

(kp)
(pAL(η′))− e2

2(kp)
A2
L(η′)

]
dη′
, (2.34)

in this way, we can write Volkov states simply as

Ψp,σ(x) = Ep(x)up,σ. (2.35)

In Chapter 4 and Chapter 5, we will show how perturbative calculations with
Volkov states are typically done, in the context of Nonlinear Single Compton
Scattering.





Chapter 3

Numerical Methods

As we have mentioned in Chapter 1, the recent increase in the peak intensi-
ties of laser fields is essentially due to CPA [Strickland and Mourou, 1985] and
OPCPA [Piskarskas et al., 1986]. Because both these techniques can produce
only ultrashort laser pulses, the calculations of Strong-Field QED processes with
such pulses as a background have to take into account the pulses’ finite temporal
duration. This poses some challenges because, as we will see in Chapter 4 and
Chapter 5, in order to calculate Nonlinear Single Compton Scattering rates it is
necessary to evaluate some integrals that contain the shape function of the laser.
The situation is analogous for other processes, such as Nonlinear Breit-Wheeler Pair
production. For specific shape functions it is possible to evaluate these integrals
analytically, whereas in general this is not possible and it is necessary to perform the
integration numerically. This can be a nontrivial task, because the above-mentioned
integrals are typically strongly oscillating, and widely adopted quadrature methods
(e. g. Simpson’s rule) become less and less accurate as the frequency of oscillation
of the integrand increases. In Section 3.1, we will review Filon’s method [Filon,
1930], a quadrature scheme that instead is increasingly accurate with increasing
frequency of the oscillation of the integrand.

Another tool that will be useful in the following chapters is Monte Carlo
integration. This is because we will study the total energy (differential only in
frequency) radiated by one electron in a wave packet state (Chapter 4) or by a
two-electron wave packet (Chapter 5); in order to do so, we have to integrate the
emission probability not only with respect to the direction of the emitted photon
(which amounts to an integration over two polar angles), but also with respect
to the initial momentum (or momenta) of the electron (or electrons). For such
high-dimensional integrals, grid-based methods become increasingly less efficient,
and Monte Carlo techniques are a natural choice. In Section 3.2 we will give an
elementary explanation of how to perform an integral via Monte Carlo Integration,
and also discuss a technique, Importance Sampling, that we used to speed up the
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convergence of the integral.

3.1 Evaluation of Univariate Highly Oscillating Integrals

For nonoscillating integrands f(x), a typical way to obtain quadrature formulae
is given by the Newton-Cotes rules [Press et al., 2007], which can be derived by
requiring that an integral should be approximated by the following weighted sum

I ′ =

∫ b′

a′
dx′f(x′) ≈

N∑
i=0

w′if(x′i), (3.1)

where the x′is are N + 1 equispaced points in [a′, b′] ⊂ R, with x′0 = a′ and x′N = b′.
The weights w′i appearing in Eq. (3.1) are then found by imposing that Eq. (3.1) is
exact for polynomials of degree N ; this condition implies a system of N equations
that can be solved for w′i. From this procedure, if we choose N = 1 we obtain
the trapezoidal rule, while for N = 2 we can find another widely adopted method
for numerical integration: Simpson’s rule [Press et al., 2007]. All the rules that
can be found with the method we illustrated are equivalent to approximating
f(x′) with the only polynomial p(x′) of degree N which has the same value of
f(x′) on the points x′i (i. e., f(x′i) = p(x′i) for every i = 0, . . . , N), and using as
an approximation to I ′ the integral of p(x′) on [a′, b′] (which can be computed
analytically). In many circumstances, applying directly Newton-Cotes rules with a
high N , which is equivalent to approximating the whole function on [a′, b′] with
a high-order polynomial, yields unsatisfactory results; this is because of Runge’s
phenomenon [Runge, 1901]. In order to avoid the problems associated with high-
order polynomial interpolations at equispaced points it is possible to divide [a′, b′] in
many subintervals and use in each of them a simpler Newton-Cotes scheme, e. g., the
trapezoidal rule or Simpson’s rule. Alternatively, one can relax the assumption that
the x′is are equispaced, and expand f on a basis of Chebyshev polynomials [Press
et al., 2007].

For oscillating integrals of the kind we will need to compute in Chapter 4 and
Chapter 5, i. e., ∫ b̃

ã

dx f̃(x)eiω̃g̃(x), (3.2)

even if |g̃(x)| < 1, the error associated with Newton-Cotes schemes increases with ω̃.
In order to have sufficient accuracy one needs to divide [a′, b′] into an unacceptably
large number of subintervals. However, we will see that, since in our calculations
g̃(x) will always be strictly monotone, it is possible via a change of variables to
transform the integral in Eq. (3.2) into

I =

∫ b

a

dx f(x)eiωx, (3.3)
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where f(x) is smooth and not highly oscillating. Then a simple way to calculate
I numerically is the so-called Filon’s method [Filon, 1930]. It is equivalent to
partitioning the interval [a, b] in many subintervals where f(x) (and not the whole
integrand, f(x)eiωx, as in the Newton-Cotes’ formulae) can be approximated well
by a second-order polynomial, and then one is left with the integral of a second-
order polynomial multiplied by eiωx, which can be performed analytically. For
definiteness, let us partition [a, b] in 2M + 3 equispaced points xk, where x0 = a,
and x2M+2 = b. Then, we can write

I =
M∑
i=0

∫ x2i+2

x2i

dx f(x)eiωx. (3.4)

Let us focus our attention now to each of the M + 1 integrals of Eq. (3.4); as we
mentioned above, it would often be a bad choice just to use Eq. (3.1), because
this would be equivalent to approximating, in this case, the oscillating function
f(x)eiωx with a polynomial. A better choice is given by∫ x2i+2

x2i

dx f(x)eiωx ≈ w2if(x2i) + w2i+1f(x2i+1) + w2i+2f(x2i+2), (3.5)

and also here, as one does for Newton-Cotes formulae, in order to find the weights
w appearing in Eq. (3.5) we require that Eq. (3.5) is exact for functions f(x) which
are polynomials of second degree. This means that in each subinterval [x2i, x2i+2]
we could integrate the monomials 1, x, and x2, and Eq. (3.5) needs to be exact.
Thus, if we introduce the moments

Ji,j =

∫ x2i+2

x2i

dx xjeiωx, (3.6)

the following set of equations has to hold:

Ji,0 = w2i + w2i+1 + w2i+2, (3.7)
Ji,1 = w2ix2i + w2i+1x2i+1 + w2i+2x2i+2, (3.8)
Ji,2 = w2ix

2
2i + w2i+1x

2
2i+1 + w2i+2x

2
2i+2. (3.9)

By introducing h as the spacing between successive points xk and xk+1 (i. e.,
h = (x2i+1− x2i) = (x2i+2− x2i)/2 for every i = 0, . . . ,M) we find that the weights
are given by

w2i =
1

2h2
[Ji,2 + Ji,0x2i+1x2i+2 − (x2i+1 + x2i+2)Ji,1] , (3.10)

w2i+1 = − 1

2h2
(2Ji,2 + 2Ji,0x2ix2i+2 − 4x2i+1Ji,1) , (3.11)

w2i+2 =
1

2h2
[Ji,2 + Ji,0x2ix2i+1 − (x2i + x2i+1)Ji,1] . (3.12)

(3.13)
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One can then evaluate analytically the moments defined in Eq. (3.6) and obtain

Ji,0 =

∫ x2i+2

x2i

dxeiωx =
eiωx2i+2 − eiωx2i

iω
(3.14)

Ji,1 =

∫ x2i+2

x2i

dxxeiωx =
eiωx2i+2 − eiωx2i

ω2
+
eiωx2i+2x2i+2 − eiωx2ix2i

iω
(3.15)

Ji,2 =

∫ x2i+2

x2i

dxx2eiωx = −2
eiωx2i+2 − eiωx2i

iω3
+ 2

eiωx2i+2x2i+2 − eiωx2ix2i

ω2

+ 2
eiωx2i+2x2

2i+2 − eiωx2ix2
2i

iω
; (3.16)

these expressions allow us to calculate explicitly the values of the weights. After the
long but straightforward procedure of substituting everything back into Eq. (3.5),
we find∫ x2i+2

x2i

dx f(x)eiωx ≈ h
[
iαFilon(Θ)

(
f2ie

iωx2i − f2i+2e
iωx2i+2

)
+
βFilon(Θ)

2

(
f2ie

iωx2i + f2i+2e
iωx2i+2

)
+ γFilon(Θ)f2i+1e

iωx2i+1

]
, (3.17)

where, for the sake of a simpler notation, we indicated with fk the value of f at
the point xk (i. e., fk = f(xk)) and we introduced the parameters

Θ = hω, (3.18)

αFilon(Θ) =
1

Θ
+

sin 2Θ

2Θ2
− 2 sin2 Θ

Θ3
(3.19)

βFilon(Θ) = 2

(
1 + cos2 Θ

Θ2
− sin 2Θ

Θ3

)
, (3.20)

γFilon(Θ) = 4

(
−cos Θ

Θ2
+

sin Θ

Θ3

)
. (3.21)

If we now insert Eq. (3.17) into Eq. (3.4) and perform the sum over i, we obtain
Filon’s formula for the quadrature of univariate highly oscillating integrals:∫ b

a

dx f(x)eiωx ≈ h

{
iαFilon(Θ)

(
f0e

iωx0 − f2M+2e
iωx2M+2

)
+ βFilon(Θ)

[
M+1∑
i=0

(
f2ie

iωx2i
)
− 1

2

(
f0e

iωx0 + f2M+2e
iωx2M+2

)]

+ γFilon(Θ)
M∑
i=0

f2i+1e
iωx2i+1

}
. (3.22)
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The error associated with this procedure is of the order of h4. It is possible to
show that in the limit of Θ→ 0 Eq. (3.22) reduces to Simpson’s rule applied to the
integrand f(x)eiωx. However, notice that, because of how αFilon, βFilon, and γFilon

are defined, for Θ� 1 there can be significant numerical errors due to cancellation.
This means that, depending on the value of ω, one has to use either Filon’s method
or Simpson’s rule.

3.2 Monte Carlo Integration

In deterministic numerical quadrature techniques, the integration domain is divided
in many elementary subdomains where the integrand is sufficiently regular (i. e.,
it can be approximated well by a low-order polynomial). Then, the value of the
integrand is readily calculated by summing over all the contributions coming from
the different subdomains.

In practice, deterministic methods are not always viable; this is because of
the so-called “Curse of dimensionality” [Bellman, 1961]. In fact, methods that
work on an equispaced grid with N points in one dimension can be extended in d
dimensions by forming a d-dimensional grid, consisting of Nd points. Notice that the
exponential scaling of the number of points with d already hints at some practical
problem in doing computations with a potentially very large grid. Moreover, for
the sake of definiteness, let us consider the one-dimensional trapezoidal rule and
its extension to d-dimensions. With the trapezoidal rule in one dimension, we can
integrate numerically twice-differentiable functions with an error that scales as
1/N2. If we extend it to a d-dimensional grid, it can be shown that the error scales
as 1/N2/d; for large d this is a very slow scaling, and it can render calculations
impossible even with modern computers.

With Monte Carlo methods [Metropolis et al., 1953; Caflisch, 1998], it is possible
to do much better. The main idea behind Monte Carlo techniques of integration is
to sample the integrand at N random points of the domain, instead of sampling it
on some grid chosen deterministically, and estimate the value of the integral via
these random samples of the integrand. The Law of Large Numbers [Taylor, 1998]
guarantees that the deviation of this estimate with respect to the true value of the
integral will decrease as 1/

√
N , regardless of the dimensionality of the integration

domain. Although this asymptotic behavior of the integral is not optimal for
integrals in few dimensions, it is much better than deterministic methods in high
dimensions (with the notable exception of methods based on sparse grids [Smolyak,
1963; Bungartz and Griebel, 2004]).
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3.2.1 Uniform Sampling

Let us evaluate a one-dimensional integral via arguably the simplest Monte Carlo
technique: uniform sampling. Consider the integral

I =

∫ b

a

f(x) dx, (3.23)

where [a, b] ⊂ R and f is a continuous function. By multiplying and dividing by
the size of the interval, (b− a), we obtain

I = (b− a)

∫ b
a
f(x) dx

(b− a)
= (b− a)〈f〉, (3.24)

where 〈f〉 is the mean value of f over the interval [a, b]. It is possible to calculate 〈f〉
with the aid of the Law of Large Numbers [Taylor, 1998]; this theorem in the present
context implies that if x1, . . . , xN are random variables uniformly distributed on
[a, b], then the average value 〈f〉 on [a, b] can also be calculated as

〈f〉 = lim
N→∞

1

N

N∑
i=1

f(xi). (3.25)

In practice, one cannot evaluate the infinite sum in Eq. (3.25), and so it has to be
truncated at some finite N , i. e., what one can actually calculate in a finite time is

〈fN〉 =
1

N

N∑
i=1

f(xi). (3.26)

An estimator for the error associated with this procedure is the so-called “standard
deviation of the mean”; that is, if the variance of f on the interval [a, b] is σ2

f =
〈f 2〉 − 〈f〉2, where

〈f 2〉 =

∫ b
a
f(x)2dx

(b− a)
, (3.27)

then the standard deviation associated to 〈f〉 is

σ〈f〉 =
σf√
N
. (3.28)

The quantity σf depends on the shape of the function f on the interval [a, b];
however, by increasing N , we can reduce the standard deviation of the mean, thus
rendering arbitrarily unlikely that the truncated average 〈fN〉 deviates much from
the true value of 〈f〉.
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In conclusion, with the Monte Carlo technique, the integral I can be calculated
as

I ≈ (b− a)

N

N∑
i=1

f(xi), (3.29)

with an associated statistical error (b−a)σf/
√
N . Notice that this procedure can be

extended trivially to multi-dimensional integration domains. In particular, whereas
when extending to multiple dimensions integration rules derived in one dimension
the error decreases much more slowly with N with respect to the one-dimensional
case, with Monte Carlo integration the statistical error is always asymptotically
decreasing as 1/

√
N for any dimension. This is, as mentioned at the beginning of

this section, quite a bad scaling in one dimension (even the trapezoid rule can do
much better), but one of the best and simplest methods to use in many dimensions.

3.2.2 Importance Sampling

In order to reduce the error associated with the Monte Carlo integration, there are
several strategies; one of them is the so-called “Importance Sampling” [Caflisch,
1998]. The idea behind it is that in order to reduce the variance of the mean σ〈f〉,
aside from increasing N , one can also try to reduce σf . For instance, in Section 3.2.1
we sampled uniformly the domain of f ; thus, regions where f varies only a little
are sampled as densely as regions where f varies significantly; it is intuitively clear
that this is not an optimal strategy, and, by improving the sampling procedure, it
could be possible to reduce σf .

Let us consider a probability density g(x) on [a, b]; trivially, by multiplying and
dividing the integrand by the probability density function g(x) (normalized to one),
we can write the integral in Eq. (3.25)) as

I =

∫ b

a

f(x)

g(x)
g(x)dx. (3.30)

The integral I, as written in Eq. (3.30), can be interpreted as the expectation value
of f(x)/g(x) over the probability density function g(x), i. e., 〈f/g〉g. This quantity
can be calculated as

〈f/g〉g = lim
N→∞

1

N

N∑
i=1

f(xi)/g(xi), (3.31)

where the random variables x1, . . . , xN are distributed according to g(x). Also in
this case, one can truncate the sum in Eq. (3.31) at a finite N ; the estimator for
the deviation of the result of this procedure from the true value of 〈f/g〉 is given by

σ〈f/g〉 =
σf/g√
N
, (3.32)
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where σ2
f/g is the variance of the random variable f(xi)/g(xi) (the same for every

i). If σ2
f/g < σ2

f , it is clear that, even for the same number of samples N , the value
of the integral calculated with importance sampling will (on average) deviate less
from the true value of the integral with respect to the same calculation done with
uniform sampling.

If one chooses a uniform probability density function on [a, b] as g(x), it is
trivial to show that one obtains again the results of Section 3.2.1, as it is also trivial
to show that if g(x) = f(x) this variance is zero. This last point should not be
surprising, because if f(x) = g(x) it means that f is a probability density function
on [a, b], thus its integral on the interval [a, b] is normalized to one, and one does not
need numerical integration schemes at all to know this. An appropriate choice of
g(x) can improve the accuracy of the result calculated via Monte Carlo Integration
without introducing a significant overhead on computation time [Caflisch, 1998],
provided that generating random numbers with a probability density function given
by g(x) is not much more expensive than to generate them uniformly distributed.
The choice of a good g(x) for importance sampling can be guided by the shape of
the integrand; in Chapter 4 and Chapter 5 we will need to calculate expectation
values over Gaussian wave packets, thus the choice of the Gaussian function that
appears in the integrand as a prefactor in that case will be the most natural choice.



Chapter 4

Nonlinear Compton Scattering of an
Electron Wave Packet

In this chapter we will show explicitly how to calculate the emission rates of
Nonlinear Single Compton Scattering for an electron initially in a wave packet
state; by doing this, we will also obtain the emission rates for electrons initially
in a Volkov state as a particular case. We will then study how the emission rates
depend on the shape of the wave packet and, by performing analytic calculations
on the simpler case when the laser field is assumed monochromatic, derive some
characteristic parameters that determine how the emitted radiation depends on the
momentum of the electron. Moreover, we will plot some radiation spectra (either
fully differential with respect to the emitted photon’s energy and direction, or with
one of these two quantities integrated out).

These results have already been published, and this chapter is adapted from [An-
gioi et al., 2016].

4.1 Theory

As we mentioned in Chapter 1, Nonlinear Single Compton Scattering is a process
in which an electron scatters with an intense electromagnetic field and, while
exchanging multiple photons with the laser, it emits a nonlaser photon. In the com-
putation of Nonlinear Ningle Compton Scattering rates, perturbative approaches
with respect to the laser field can quickly become impractical, when a sufficiently
strong incoming electromagnetic field is considered Di Piazza et al. [2012]. This
happens when the incoming laser field is such that ξ & 1. The laser fields which
reach these intensities consist of an enormous number of coherent photons; this
makes it possible [Berestetskii et al., 1982] to neglect the quantum nature of the
laser field and to treat it as a classical background electromagnetic field. Thus, we
can perform our calculations in the Furry picture (see Chapter 2) and split the

27
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electromagnetic field four-vector potential into two parts: a classical part, that
accounts for the intense laser field, and a quantized part, that accounts for all
the other excitations of the electromagnetic field (i. e., the radiation emitted by
the electron). After that, the electron-positron field is quantized by taking into
account exactly the background laser field, and if we approximate the laser field as
a plane wave, a convenient basis of states will be given by Volkov states [Volkov,
1935; Berestetskii et al., 1982].

Figure 4.1 Representation of the reference frame we have chosen for the calculation of
NSCS rates.

We assume that the incoming laser field is described by the linearly-polarized
plane-wave four-vector potential

AµL(η) = Aµ ψL(η). (4.1)

Here, Aµ = (0,A) is a constant four-vector, the direction of A defines the laser’s
polarization and its amplitude A = E/ω is related to the peak laser’s intensity
I as I = ω2A2/4π = E2/4π, and ψL(η) is a function of the laser phase η = (kx)
describing the shape of the plane wave and such that |ψL(η)| ∼ |dψL(η)/dη| ≤ 1.
It is convenient to use a frame of reference in which one of the spatial axes is
directed along k, and another one is directed along the same direction as A. For a
depiction of the frame of reference we have chosen in our calculations, see Fig. 4.1.
Thereby, we have η = ω(t− z) = ωφ, where φ = t− z. It is also useful to introduce
a coordinate T = (t+z)/2, linearly independent of φ, x and y, and the quantities φ,
T , x and y provide the so-called light-cone coordinates of the space-time point xµ.
The factor of 1/2 in the definition of T is arbitrary and we have included it in order
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for the Jacobian of the transformation from Cartesian coordinates to light-cone
ones to be unity. In the following, we will define the − (minus) contravariant
component of any four-vector aµ to be a− = a0 − a3.

In the expression of Aµ(η) we have introduced the shape function ψL(η) in order
to model short laser pulses; a typically chosen [Mackenroth and Di Piazza, 2011]
shape function ψL(η) for this purpose is (see Fig. 4.2)

ψL(η) =

{
sin4

(
η

2nC

)
sin(η + η0) if η ∈ [0, 2πnC ],

0 otherwise.
(4.2)

In this parametrization of the laser field we have introduced the parameters nC , the
number of cycles contained in the laser pulse, and η0, the carrier-envelope phase
(CEP) of the laser pulse. In all numerical calculations in the following, we will

-1

-0.5

0

0.5

1

0 π 2π 3π 4π

ψ
(η
)

η

η0 = 0

η0 = π/2

Figure 4.2 The function ψL(η) for a two-cycle laser pulse (nC = 2) and two choices of
the carrier-envelope phase η0. The solid curve corresponds to η0 = 0, while the dotted
one corresponds to η0 = π/2.

chose η0 = 0, nc = 2, and ω = 1.55 eV.
As previously mentioned, it is convenient to describe the initial and final

quantum state of the electron in a basis of the solutions of the Dirac equation
in the presence of the background field AµL(η), i. e., in a basis of Volkov states;
in order to make this chapter self-contained, we report here their definition (see
Section 2.2.1 for more details on Volkov states):

Ψp,σ(x) =

[
1 +

e

2(kp)
/k /AL(η)

]
up,σ e

−ipx−i
∫ η
−∞

[
e

(kp)
(pAL(η′))− e2

2(kp)
A2
L(η′)

]
dη′
, (4.3)
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As we have mentioned above, in our calculations for the NSCS rates we assume
that the initial state of the electron is a wave packet made of a superposition of
Volkov states with different momenta and a given spin number σ:

Φσ(x) =

∫
d3p

(2π)3(2ε)
ρ(p) Ψp,σ(x). (4.4)

Here, ρ(p) is a complex-valued scalar weighting function; in order for the state
Φσ(x) to be normalized to unity, ρ(p) needs to be normalized in a covariant way as∫

d3p

(2π)3(2ε)
|ρ(p)|2 = 1. (4.5)

The leading order S-matrix element relative to the process of the emission of a
photon, with wave four-vector k′µ = (ω′,k′) and polarization four-vector ε′µl , by an
electron in the initial state Φσ(x) is given by

Sfi = −ie
√

4π

∫
d4x

d3p

(2π)3(2ε)
ρ(p) Ψp′,σ′(x) /ε′∗l e

ik′x Ψp,σ(x). (4.6)

We notice that among the space-time coordinates the integrand in Eq. (4.6) depends
non-trivially only on φ, while on the other three space-time coordinates we have
integrals that evaluate to three delta functions. It is thus possible [Mackenroth and
Di Piazza, 2011] to write Sfi in the form

Sfi = −ie
√

4π (2π)3

∫
d3p

(2π)3(2ε)
ρ(p) (up′,σ′Mfiup,σ) δ(−,x,y) (p− k′ − p′) ; (4.7)

here, δ(−,x,y) (p− k′ − p′) is a three dimensional Dirac delta that ensures the conser-
vation of the three contravariant components −, x and y of the total four-momentum
and

Mfi = /ε′∗l f0 + e

(
/A/k/ε′∗l
2(kp′)

+
/ε′∗l /k /A
2(kp)

)
f1 −

e2A2(kε′∗l )/k

2(kp)(kp′)
f2, (4.8)

fj =

∫ +∞

−∞
dη ψj(η)ei

∫ η
−∞ dη′ [αψL(η′)+βψ2

L(η′)+γ]. (4.9)

In Eq. (4.9) we have introduced the three parameters [Mackenroth and Di Piazza,
2011; Mackenroth, 2014]

α = e

[
(p′A)

(kp′)
− (pA)

(kp)

]
, (4.10)

β = −e
2A2

2

(k′k)

(kp)(kp′)
, (4.11)

γ =
(pk′)

(p′k)
. (4.12)
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The integrals fj cannot in general be calculated analytically. Moreover, for
ξ � 1, the integrands of the fjs become increasingly oscillating (notice how they
depend on Aµ ). However, it can be shown [Mackenroth, 2014] that for every η′ it
is

αψL(η′) + βψ2
L(η′) + γ > 0; (4.13)

this implies that the definite integral over η′ appearing in Eq. (4.9) is monotonically
increasing with η. Thus, with a change of variables we can transform the exponent
of e in Eq. (4.9) into a linear function, and the integral will have the same form as
the one in Eq. (3.3), and this means it can be integrated numerically with Filon’s
method (see Section 3.1). Notice also that, even if the integral f0 does not appear
immediately convergent, it can be related to f1 and f2; in fact, via integration by
parts, it can be proven that

γf0 = − (αf1 + βf2) . (4.14)

It is worth mentioning that Eq. (4.14) can be interpreted as a manifestation of
gauge invariance [Ilderton, 2011]. Thus, it is needed only to calculate numerically
only the two oscillating integrals f1 and f2; f0 can be calculated via Eq. (4.14).

In order to compute emission rates, it is necessary to calculate the square
modulus of Sfi:

|Sfi|2 = 4πe2

∫
d3p

(2ε)

d3p̃

(2ε̃)
ρ∗(p̃) ρ(p) (up′,σ′Mfiup̃,σ)∗ (up′,σ′Mfiup,σ)

× δ(−,x,y) (p− k′ − p′) δ(−,x,y) (p̃− k′ − p′) . (4.15)

The integrations in Eq. (4.15) are along the components of p and p̃ in Cartesian
coordinates, while one of the delta functions in Eq. (4.15) is expressed in terms of
light-cone coordinates. An easy way to perform these integrations is to change the
measure for each momentum integration from dpxdpydpz = d2p⊥dpz to d2p⊥dp−;
the Jacobian of this transformation is ε/p−. Thus one can start from Eq. (4.15),
change the integration measure to d2p⊥dp−d2p̃⊥dp̃−, perform the integrations in p̃
(that are just integrations of delta functions), and change back the measure to d3p;
this gives

|Sfi|2 = 4πe2

∫
d3p

(2ε)(2p−)
|ρ(p)|2 |up′,σ′Mfiup,σ|2 δ(−,x,y) (p− k′ − p′) . (4.16)

The unpolarized emission rate is obtained by integrating |Sfi|2 over the electron’s
final momentum and on the wave-vector of the emitted photon, and by summing
over the final electron spin and photon polarization, and averaging on the initial
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electron spin [Peskin and Schroeder, 1995; Berestetskii et al., 1982]:

dW =
d3k

(2π)3(2ω′)

∫
d3p′

(2π)3(2ε′)

d3p

(2ε)(2p−)

4πe2 |ρ(p)|2 δ(−,x,y) (p− k′ − p′) 1

2

∑
σ, σ′, l

|up′,σ′Mfiup,σ|2. (4.17)

The integral on d3p′ can be readily evaluated with the same change of integration
measure previously mentioned. By transforming the integral over k′ in spherical
coordinates (d3k′ = ω′2dω′dΩ′) and remembering that the emission rate and the
energy emission rate are related by dE = ω′dW , it is possible to write the angular
differential emission rate as

dE

dω′dΩ′
=

∫
d3p

(2π)3(2ε)
|ρ(p)|2 e2ω′2

2(4π)2p−q−

∑
σ, σ′, l

|uq,σ′Mfiup,σ|2, (4.18)

where qµ is a four vector such that q− = p− − k′,−, qx,y = px,y − k′x,y and q+ =
(q0+q3)/2 = (m2+q2

x+q2
y)/2q

− (q2 = m2). The sum of the quantities |uq,σ′Mfiup,σ|2
over the spins of the electron and polarization states of the photon can be evaluated
explicitly with the aid of trace technology. We do not show that tedious calculation
here, but in Appendix A we will derive a more general technique which will be
useful for the calculation of NSCS rates when two electrons are interacting with
the laser field; the rates for a single electron will then be presented as a special case.
The remaining 3D integral over the momentum p can be evaluated numerically
via the Monte Carlo Integration technique discussed in Section 3.2; in particular,
we can see that the integrand contains a probability distribution function |ρ(p)|2,
which we can exploit, via importance sampling (see Section 3.2.2), in order to have
faster convergence of the numerical calculation.

Equation (4.18) can be easily identified as the incoherent average, weighted
by the modulus squared of ρ(p), of the well-known expression for the differential
spectrum of Nonlinear Single Compton Scattering for an electron with definite
initial four-momentum pµ and final four-momentum qµ [Boca and Florescu, 2009;
Mackenroth, 2014; Mackenroth and Di Piazza, 2011; Seipt and Kämpfer, 2011]

dEp
dω′ dΩ′

=
e2ω′2

2(4π)2 p− q−

∑
σ, σ′,l

|uq,σ′Mfi up,σ|2 . (4.19)

Thus, there are no quantum interference effects between initial states of the electron
having different values of the momentum. The physical reason behind the absence
of interference is that, in principle, by measuring the final state of the electron
and of the emitted photon one can retrieve the initial momentum of the electron,
and so the initial state of the electron amongst the ones contained in the initial
superposition.



4.2 Electron Wave Packets with Normally Distributed Longitudinal Momentum 33

The results we presented so far allow us to state that, as far as one is interested
in nonlinear single Compton scattering rates, the state of the initial electron can be
described equivalently either with a superposition of states like the one in Eq. (4.4)
or as a statistical mixture

ρ̂σ =

∫
d3p

(2π)3(2ε)
|ρ(p)|2 |Ψp,σ〉〈Ψp,σ| (4.20)

where the weighting function ρ(p) is the same of Eq. (4.4) and Ψp,σ(x) = 〈x|Ψp,σ〉.

4.2 Electron Wave Packets with Normally Distributed Lon-
gitudinal Momentum

After describing the theory for arbitrary superpositions of Volkov states (for a
given spin quantum number), in this section and in Section 4.3 we will make an
explicit choice of ρ(p). Let the initial state of the electron be a superposition of
states with momenta always directed almost in the opposite direction of the laser
wave-vector k; this means, for the choice of the frame of reference we adopted
in Section 4.1, that the momenta p are all directed almost along the negative z
direction. In particular, we assume that the distribution of the momenta is a triple
Gaussian distribution, with average momentum p = (0, 0, pz), with pz < 0, and
with variance σ2

pT
along the x and y direction and σ2

pz along the z-direction; thus
the initial wave packet is given by

Φσ(x) =

∫
d3p

(2π)3

1

σpT
4

√
σ2
pz(2π)3

e
− (pz−pz)

2

4σ2pz e
− p

2
x+p

2
y

4σ2pT Ψp,σ(x). (4.21)

In the present section the transverse variance σ2
pT

is assumed to be sufficiently
small, so that all transverse momenta (px, py) in Eq. (4.18) can be set equal to
zero. Thus, the electron effectively always collides head-on with the laser beam.

In order to understand the modifications brought about by the electron being
described by the wave packet in Eq. (4.21), we show in Fig. 4.3 the emission
spectrum in the forward (negative z) direction for an incoming electron with definite
momentum with components px = py = 0, and pz = −4.2 GeV (electron beams with
this energy can be even be produced via all-optical setups, see [Malka et al., 2008;
Leemans et al., 2014]) interacting with a laser of intensity I ≈ 4.3× 1020 W/cm2.
The above parameters correspond to ξ = 10 and χ ≈ 0.50. As one can see from
Fig. 4.3, the spectra in the regime of |pz| � m and ξ � 1 exhibit a large number
of narrow peaks, and this is typical for differential NSCS rates [Mackenroth and
Di Piazza, 2011; Mackenroth, 2014]. The position of the peaks depends on the
momentum of the electron; in particular, from Fig. 4.4 one can deduce that, as
the electron’s initial momentum increases in modulus, these peaks will be shifted
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Figure 4.3 Energy emission spectrum along the negative z-direction for an incoming
electron with definite initial momentum p = (0, 0,−4.2 GeV) interacting with a laser of
intensity I ≈ 4.3× 1020 W/cm2.

towards higher frequencies. These shifts depend on the position of the peaks itself,
i. e., different peaks are shifted by a different amount, when changing pz. More
specifically, by changing pz of the same amount, the higher peak frequencies will
be shifted more than the lower ones. The above results can be easily explained
as a result of the Doppler effect. For the sake of simplicity, let us consider here
the idealized case of a monochromatic laser field (with laser photon energy ω), and
calculate in this simpler case how the emission frequencies are shifted as a function
of pz. In the monochromatic case, in fact, the frequency of the nth harmonic
emission along the negative z direction is given by [Ritus, 1985]

ω′n =
n(pk)

(pn′) +
(
n+ m2ξ2

4(pk)

)
(kn′)

=
nω (ε− pz)2

m2
(

1 + ξ2

2

)
+ 2nω(ε− pz)

=
ζn

1 + 2ζn
(ε− pz),

(4.22)
where n′µ = (1,k′/ω′) (in our frame of reference, n′µ = (1, 0, 0,−1) and where we
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Figure 4.4 Change of the emission spectrum for an electron with definite initial
momentum (0, 0, pz) as a function of |pz| (Fig. 4.3 corresponds to a section of the upper
part of this figure for pz = −4.2 GeV). In the range considered, the position of the peaks
increases linearly with pz, albeit with different slopes depending on the position of the
peak. Some of these slopes were computed numerically and are shown in the bottom
part of the plot (blue dots), together with the same quantity computed analytically for a
monochromatic pulse (red continuous line).
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have introduced the dimensionless parameter

ζn =
nω(ε− pz)
m2
(

1 + ξ2

2

) . (4.23)

By means of a first-order expansion with respect to a shift in momentum ∆pz, we
can estimate the relative shift of the emission frequencies when slightly changing
the value of pz:

∆ω′n
ω′n

=
1

ω′n

∂ω′n
∂pz

∆pz = −2
1 + ζn
1 + 2ζn

∆pz
ε
. (4.24)

In the case of an ultrarelativistic electron, and in the relevant regime ξ � 1, it is
ε ≈ |pz| and ζn ≈ 2nχ/ξ3, such that we obtain

∆ω′n
∆|pz|

≈ 4
ζn(1 + ζn)

(1 + 2ζn)2
. (4.25)

As it can be easily shown, the quantity ∆ω′n/∆|pz| increases monotonically with
the harmonic number, in agreement with the findings in Fig. 4.4.

Notice that Eq. (4.25) is valid only for a monochromatic laser field, whereas
we are interested here in the case of short pulses, i. e., pulses also characterized by
a certain spread ∆ω around a central angular frequency ω. It is thus interesting
to compare the relative shift due to an uncertainty of pz to the one due to an
indeterminacy on the value of ω. In analogy to what we have discussed for Eq. (4.24),
one can derive a similar relation, for a variation ∆ω of the laser angular frequency.
By adding the resulting expression to Eq. (4.24) and by assuming again that
|p̄z| � m and ξ � 1, it is possible to obtain the first-order relative variation of ω′n
with respect to the relative variations of ω and pz as:

∆ω′n
ω′n
≈ 1

1 + 2ζn

∆ω

ω
+ 2

1 + ζn
1 + 2ζn

∆|pz|
|pz|

. (4.26)

Since ζn > 0 it is clear that for comparable relative variations in ω and pz, the
induced shift due to the spread in the incoming electron momentum is larger. From
the aforementioned properties of the emitted photon’s spectrum of a monochromatic
initial electron we can infer the final spectrum when the state Φσ(x) of Eq. (4.4) is
considered, since the emission spectrum resulting from that state, as it was shown
above, is a weighted average of monochromatic emission spectra with different pz.
The sharp peaks present in the spectrum for a fixed value of pz will be differently
shifted and will tend to fill the valleys present in the spectrum relative to another
value of pz; when averaging many of these spectra, the net effect is a smoothing of
the final spectrum.

Moreover, we have already mentioned the fact that the shift induced by the
spread in the electron momentum is larger for higher emission frequencies. Thus,
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the portion of the spectrum that will be smoothed earlier, i. e., even for relatively
small values of σpz , is that at high frequencies of the emitted photon. Indeed, this is
the result we obtain in Fig. 4.5, where the final photon energy spectrum for different
values of σpz is plotted (the numerical parameters are the same as in Fig. 4.3 and
the average value of the initial momentum of the electron is p̄ = (0, 0,−4.2 GeV)).
We have chosen values of the standard deviation σpz equal to 0.5%, 1% or 5% of the
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Figure 4.5 Emission spectra along the negative z-direction for an electron wave packet
with p̄ = (0, 0,−4.2 GeV) interacting with a laser pulse of peak intensity I ≈ 4.3 ×
1020 W/cm2 for different values of the spread of the longitudinal momentum.

incoming momentum, corresponding to 21 MeV, 42 MeV or 210 MeV, respectively.
Even when the relative indeterminacy on the momentum is only 0.5%, we can see
that the height of the highest peaks is reduced by a factor of about two, and all
the oscillatory features at ω′ & 1 GeV are completely washed out (see Fig. 4.3 and
Fig. 4.5). For larger values of σpz , these effects are even more evident also for the
lowest part of the spectrum. Concerning the choice of σpz and in general of the
properties of the wave packet Φσ(x) a comment is in order. In fact, in general,
the state Φσ(x) describes a single electron. The properties of the corresponding
wave packet depend on how the electron is produced and accelerated [Baum, 2013],
and are in principle different from, for example, the corresponding properties of an
electron bunch. However, in our case, as we have seen, the spectra for the state
Φσ(x) coincide with those obtained by considering a corresponding electron bunch
with an average electron number equal to unity. In this respect, the values of the
momentum spreads are chosen according to the features of electron beams, which
can be obtained presently experimentally [Leemans et al., 2014].
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4.3 Multivariate Gaussian Wave Packets

We now turn our attention to the experimentally more realistic situation of an
electron wave packet that can also have non-zero components of the transverse
momentum. Our choice for the initial state is as in Eq. (4.21) but this time the
variance σ2

pT
is assumed not to be small. Also in this case, as we did in Section 4.2,

we will first consider how the spectrum of electrons initially in a Volkov state in
a monochromatic field is modified as a function of the components of the initial
momentum. Then, starting from those considerations, we will focus onto the case
of an electron wave packet in a short laser pulse.

In order to understand how the emission spectrum is altered by the possibly
non-zero value of the transverse components of the initial momentum, we show
how the harmonic frequencies along the negative z-direction are shifted as the
transverse momentum pT =

√
p2
x + p2

y varies. We can thus proceed in analogy
to the derivation of Eq. (4.25). The starting point is the initial form of ω′n in
Eq. (4.22), which can be rewritten in the more convenient form

ω′n =
nω (ε− pz)2

m2
(

1 + ξ2

2

)
+ p2

T + 2nω(ε− pz)
, (4.27)

showing the explicit dependence also on p2
T (remember that now also the energy ε

depends on p2
T ). By expanding ω′n around pT = 0 we obtain

∆ω′n
ω′n

=
1− (ε/nω − 1)ζn

1 + 2ζn

∆p2
T

ε(ε− pz)
, (4.28)

where all the energies are calculated at pT = 0. This equation shows that again
the relative shift depends on the harmonic number n. In a typical scenario where
ε ≈ |pz| and ξ � 1, the same approximations as in Section 4.2 can be applied. The
result for ∆ω′n reads

∆ω′n = ζn
1 + ζn − εχ/ξ3ω

(1 + 2ζn)2

∆p2
T

ε
, (4.29)

with ζn given in Eq. (4.23), which in the current approximations (ε ≈ |pz|, ξ � 1)
is approximately equal to nχ/ξ3. Equation (4.29) shows that an important role
is played by the parameter µ = εχ/ξ3ω. If we want to consider the quantum
regime where χ ∼ 1, which for ξ ∼ 102 means that electron energies in the GeV-
range are required, we can safely assume that µ � 1. Moreover, for ζn � 1 the
emission spectrum is suppressed [Ritus, 1985] such that we can conveniently further
approximate the expression for ∆ω′n as

∆ω′n = − εχ

ξ3ω

ζn
(1 + 2ζn)2

∆p2
T

ε
. (4.30)
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From this expression we could expect as ∆p2
T increases a negative shift of the

harmonics, which becomes less pronounced at ζn � 1 (low harmonics) and at
ζn � 1 (high harmonics). This is confirmed by Fig. 4.6, where we calculated for
some values of n how the curves ω′n = ω′n(pT ) depend on pT , with the numerical
parameters: pz = −4.2 GeV and I ≈ 1.1 × 1020 W/cm2 (ξ = 5, χ ≈ 0.25, and
µ ≈ 5.4× 106).
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Figure 4.6 Shift of the emission frequencies ω′n along the negative z-direction for
different values of n as a function of pT (vertical axis). The numerical parameters are
pz = −4.2 GeV and I ≈ 1.1× 1020 W/cm2.

A typical collection of monochromatic emission spectra along the forward
direction is shown in Fig. 4.7, where the electron has initially pz = −4.2 GeV and
either py = 0 or px = 0 (we recall that px (py) is the component of the momentum
along the direction of the electric (magnetic) field of the laser), and is interacting
with a short laser pulse with I ≈ 1.1 × 1020 W/cm2 (ξ = 5, χ ≈ 0.25). Apart
from exhibiting the already mentioned shift of the peak frequencies as one of the
transverse components varies, we also observe that by varying py by about 1-2
electron masses the spectrum is significantly suppressed. The reason is that the
observation direction is the forward direction and that the angular emission range
of the electron along the magnetic field of the laser is of about m/ε, whereas
along the electric field of the laser, the electron emits up to angles of the order of
mξ/ε [Mackenroth, 2014]. This is also the reason why the top panel of Fig. 4.7
shows that the values of px for which the emission is not negligible extends beyond
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Figure 4.7 Emission spectra in the negative z-direction for electrons having initially
pz = −4.2 GeV and either py = 0 or px = 0, after the interaction with a short laser pulse
with I ≈ 1.1× 1020 W/cm2.

the plotted range. The large oscillations in the emitted intensity between successive
peaks when varying px (top part of Fig. 4.7) are also worth noticing: we can expect
these oscillations to have an important effect when averaging many spectra, even
for σpT � mξ.

The above observations are confirmed by numerical calculations. In Fig. 4.8
(Fig. 4.9), we show the effects on the spectrum of the emitted photon along the
negative z direction (or, in Fig. 4.9, along a direction that lies on the xz-plane,
the laser polarization-propagation plane, and forms an angle θ = mξ/2ε̄ with the
negative z-axis, where ε̄ is the average initial electron energy) of having either
σpT 6= 0 or σpz 6= 0, or both σpT and σpz different from zero (in the first two cases
σpz and σpT , respectively, are considered to be sufficiently small in order for their
effects to be neglected, as explained below Eq. (4.21)).

In the numerical spectra in Fig. 4.8 and Fig. 4.9, the average initial momentum
of the electron is p̄ = (0, 0,−4.2 GeV), and the indeterminacy on the transverse
components is σpT = 3 × 10−4 |p̄|, while the one on the z-component is σpz =
6× 10−2 |p̄| (these parameters for the electron beam are compatible with those in
[Leemans et al., 2014]). The intensity of the laser field is I ≈ 1.1× 1020 W/cm2

(ξ = 5, χ = χ̄ ≈ 0.25 as calculated from the average electron momentum).
In Fig. 4.8 and Fig. 4.9 one can see that for the chosen values of the parameters
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Figure 4.8 Energy emission spectrum in the negative z-direction, for some different initial
electron states. Here, p̄ = (0, 0,−4.2 GeV), σpT = 3× 10−4 |p̄|, and σpz = 6× 10−2 |p̄|.
The intensity of the laser field is I ≈ 1.1× 1020 W/cm2.

σpT and σpz , the most dramatic alteration of the spectrum is due to the transverse
momentum spread of the electron beam, even though its value is orders of magnitude
smaller than the spread on pz. In fact, the effect due to σpT 6= 0 is so dominant
that switching on also the longitudinal spread σpz has no observable effect on the
emitted spectrum (the dotted red curve is on top of the short-dashed orange one
in both Fig. 4.8 and Fig. 4.9). As a result, the finer structures in the spectra are
washed out and, in this respect, in order to at least partially observe them one
should experimentally render the incoming electron beam as collimated as possible.

We also show in Fig. 4.10 the energy emission along a direction that lies on
the laser polarization plane and forms an angle mξ/2ε̄ with the negative z-axis for
χ = χ̄ ≈ 0.85 (the parameters used for Fig. 4.10 are the same of Fig. 4.9, except
that I ≈ 1.2 × 1021 W/cm2 corresponding to ξ = 17); the qualitative behavior
for nonzero values of σpz and σpT is the the same as the one previously discussed.
We should emphasize that, as we have already mentioned in the discussion below
Eq. (4.30), the larger effect due to the transverse momentum uncertainty is also
related to the fact that the considered spectra refer to some specific observation
directions. In fact, if we integrate with respect to the emission angles the spectrum
corresponding to the numerical parameters in Fig. 4.10, we obtain the results in



42 Chapter 4 Nonlinear Compton Scattering of an Electron Wave Packet

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5

d
2
E

d
ω
′ d

Ω
′[

10
4

sr
−
1
]

ω′ [GeV]

Definite momentum
σpz 6= 0
σpT 6= 0

σpz , σpT 6= 0

Figure 4.9 Energy emission spectrum on a direction in the xz-plane forming an angle
θ = mξ/2ε̄ with the negative z-axis, for some different initial electron states. The
numerical parameters are the same as in Fig. 4.8.

Fig. 4.11; they show that the total emitted energy as a function of ω′ changes
only at frequencies ω′ ≈ ε̄ = 4.2 GeV and that it is almost not affected by the
momentum spreading of the incoming wave packet. The higher rates observed at
these frequencies in the case of a wave packet with σpz 6= 0 (see inset of Fig. 4.11)
can be explained by the fact that, although the various components of the initial
wave packet have energies almost centered symmetrically around ε̄, the nonlinearity
of the emission with respect to the energy of the incoming electron makes it
possible for the higher energy components to slightly skew the average emitted
energy towards a higher value.

In order to analyze the properties of the emitted radiation in the spatial domain,
one can integrate dE/dω′ dΩ′ with respect to ω′ and obtain the total energy emitted
along each direction. A typical result of this procedure is shown in Fig. 4.12. On
the right panel is plotted the energy emitted per steradian by an electron in a
Gaussian wave packet (the numerical parameters are the same as in Fig. 4.10).
The left panel shows the same quantity, but calculated for an electron in a Volkov
state with a definite momentum given by the p̄ of the above-mentioned Gaussian
wave packet. In Fig. 4.12 the polar angle θ and the azimuthal angle ϕ are indicated
assuming the negative z-axis as polar axis. As mentioned above, when the electron
is initially in a Volkov state, and the laser is linearly polarized, the angular aperture
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Figure 4.10 Energy emission spectrum for an electron wave packet in the quantum
regime (χ ≈ 0.85), in the direction that lies on the laser polarization plane and forms
an angle mξ/2ε̄ with the negative z-axis. The numerical parameters are the same as in
Fig. 4.8, except that I ≈ 1.2× 1021 W/cm2.

of the emitted radiation is mξ/ε (m/ε) along the polarization (magnetic-field)
direction, which is confirmed by the the left panel in Fig. 4.12. The emission in
the case of a multivariate Gaussian wave packet, in the right panel of Fig. 4.12,
extends over a broader region and is thus less intense, in the regime where σpT
and σpz are much smaller than |p̄z| � m. In fact, at ξ � 1, if σpT � |p̄z| and
σpz � |p̄z|, the total energy emitted when the electron is either in a Volkov state or
in a Gaussian wave packet is almost the same (see Fig. 4.11). Then, as the region
of emission becomes broader, the radiation intensity in the Gaussian wave packet
case decreases. We briefly notice here that this effect might be also exploited in
principle as a diagnostic tool of the momentum spreading of the electron beam,
provided that the laser parameters like its intensity are known with sufficiently
high accuracy.

4.4 Summary

In the present chapter we have studied Nonlinear Single Compton Scattering by an
incoming electron described by a wave packet of Volkov states. We have obtained
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Figure 4.11 Distribution of the total emitted energy by an electron in a Volkov state
or in a Gaussian wave packet as a function of the frequency of the emitted photon. All
the numerical parameters for this figure are the same as in Fig. 4.10.

Figure 4.12 Angular distribution of the total energy emitted by an electron in a Volkov
state (left) or in a Gaussian superposition of them (right) after interacting with a strong
laser field. The numerical parameters used here are the same as in Fig. 4.10.
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that the conservation of energy and momentum forbids interference effects among
different momentum components of the wave packet, even if the electron is originally
in a superposition of Volkov states. This means that an incoming electron wave
packet can be equivalently described in this respect as a superposition of states or
as a statistical mixture. The net effect of having a wave packet as initial electron
state is a lowering and a smoothing of the angular resolved emission spectrum
for an electron in a state with definite momentum; this effect tends to be more
pronounced than the non-monochromaticity of the laser pulse (at comparable
relative uncertainties in the electron and in the laser-photon energy). Furthermore,
for realistic values of the parameters of the electron wave packet as compared
with those available experimentally for electron beams, the transverse momentum
spread, even if orders of magnitude smaller than the longitudinal one, dominates the
alterations in the shape of the emission spectrum at a fixed observation direction.
We have also observed that there is a broadening of the angular emission region in
the case of an electron wave packet with respect to the case of a monoenergetic
electron. The above mentioned effects vanish almost completely if we integrate the
spectra over the observation directions.





Chapter 5

Nonlinear Compton Scattering of a
Two-Electron Wave Packet

One of the main results presented in Chapter 4 is that when a single electron
scatters with a laser field, even if it is in a wave packet state there cannot be effects
due to quantum interference in the NSCS photon spectra. The main reason behind
this is that the conservation laws enforced by the three delta functions of Eq. (4.7),
together with the on-shell conditions, made it possible (in principle) measure the
initial state of the electron by measuring its final state and the emitted photon;
since there are not multiple pathways between the initial state and the final one,
quantum interference cannot fundamentally take place. In this chapter we will
show that in general it is not possible to apply the same argument when multiple
electrons are interacting with the laser field. For the sake of definiteness, we will
consider the paradigmatic case where only two electrons are present in the initial
state; all the new phenomena we will show are captured in this setup, and can be
easily generalized to the more general case of many incoming electrons.

This chapter is an extended version of [Angioi and Di Piazza, 2017], a manuscript
that has been submitted to a peer-reviewed journal.

5.1 Quantum Spectrum of the Emitted Radiation

As in Section 4.1, we will assume that the laser field can be approximated by a
linearly-polarized plane-wave; thus, it is described by the four-vector potential
AµL(φ) = (0,Aµ

L(φ)) = AµψL(φ), where ψL(φ) is a smooth function with compact
support and φ = (nx), with nµ = kµ/ω. We assume that the plane wave propagates
along the positive z direction (nµ = (1, 0, 0, 1)) and that it is polarized along the x
direction (Aµ = (0,−E/ω, 0, 0)). For the sake of definiteness, we set φ = 0 as the
initial light-cone “time” and thus assume that ψL(φ) = 0 for φ ≤ 0. We also choose
the initial two-electron state as being characterized by two definite spin quantum

47
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numbers sj (j ∈ {1, 2}) and having the form

|Ψ〉 =
1√
N

∫
d3p1

(2π)3
√

2ε1

d3p2

(2π)3
√

2ε2

ρ1(p1) ρ2(p2) a†s2(p2)a†s1(p1)|0〉; (5.1)

Here, N is a normalization factor such that 〈Ψ|Ψ〉 = 1, the operator a†sj(pj)

creates an electron with momentum pj (energy εj =
√
m2 + p2

j) and spin quantum
number sj, ρj(pj) is an arbitrary square-integrable complex-valued function whose
modulus square describes the initial momentum distribution of the corresponding
electron wave packet, and |0〉 is the free vacuum state. From the anti-commutation
relations {as(p), a†s′(p

′)} = (2π)3δ(3)(p− p′) δss′ [Peskin and Schroeder, 1995], the
normalization factor N turns out to have the form N = Nd − δs1s2Ne, with

Nd =

∫
d3p1

(2π)32ε1

d3p2

(2π)32ε2

|ρ1(p1)|2|ρ2(p2)|2, (5.2)

Ne =

∫
d3p1

(2π)32ε1

d3p2

(2π)32ε2

ρ∗1(p1)ρ2(p1)ρ∗2(p2)ρ1(p2). (5.3)

Notice that N is always positive; this is trivial to show if s1 6= s2, whereas if s1 = s2

one has that the difference of the integrands in Eq. (5.2) and Eq. (5.3) can be
written as

1

2

(
|ρ1(p1)|2 |ρ2(p2)|2 − ρ(1)∗(p1) ρ2(p1) ρ(2)∗(p2) ρ1(p2)

− ρ(1)∗(p2) ρ2(p2) ρ(2)∗(p1) ρ1(p1) + |ρ1(p2)|2 |ρ2(p1)|2
)

=
1

2
|ρ1(p1)ρ2(p2)− ρ1(p2)ρ2(p1)|2 ≥ 0, (5.4)

where in Eq. (5.4) we performed a “doubling” of each of the integrands in Eq. (5.2)
and Eq. (5.3), and performed the substitution p1 ↔ p2.

If c†l′(k
′) is the operator which creates a photon with momentum k′ (energy

ω′ =
√
k′2) and polarization εµl′ , the final state in NSCS has the form

|Ψ′〉 =
√

8ω′ε′1ε
′
2 c
†
l′(k

′)a†s′2
(p′2)a†s′1

(p′1)|0〉, (5.5)

with ε′j =
√
m2 + p′ 2j . In order to take into account exactly the effects of the

plane wave on the electrons’ dynamics, we work in the Furry picture [Furry, 1951;
Berestetskii et al., 1982], where the Dirac field ψ(x) is expanded with respect to
fermion states “dressed” by the classical background plane wave, which are known as
Volkov states [Furry, 1951; Berestetskii et al., 1982; Ritus, 1985]. The leading-order
S-matrix element S of NSCS reads

S = −ie
∫

d4x〈Ψ′|ψ̄(x)γµψ(x)Aµ(x)|Ψ〉, (5.6)
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where Aµ(x) is the quantized part of the electromagnetic field. Here, we neglect the
interaction between the electrons as their dynamics is predominantly determined
by the intense plane wave.

The calculation of S is straightforward because the corresponding Feynman
diagrams are composed of two disconnected pieces (see Fig. 5.1). At this order of
perturbation theory, in fact, only one of the two electrons emits a photon; and by
applying Wick’s theorem [Peskin and Schroeder, 1995] to Eq. (5.6), we can see that
the only terms different from 0 are those where ψ(x) is contracted with a creation
operator (a†s(p)) to its right, whereas ψ̄(x) is contracted with an annihilation
operator (a†s(p)) to its left (and Aµ can only be contracted with the cλ′(k′) on its
left). This gives rise to four terms; by expanding ψ(x) in a basis of Volkov states
Ψps(x) = Ep(x)ups, where Ep(x) is a Ritus matrix (see Section 2.2.1), we can write
them (omitting the x dependencies of the Ψ functions) as

S = −ie
√

2π

√
4ε′1ε

′
2

(2π)3
√
N

∫
d3p1√

2ε1

d3p2√
2ε2

d4x ρ1(p1) ρ2(p2)[
Ψ̄p′1s

′
1
/ε∗k′λ′e

ik′xΨp1s1√
4ε′1ε1

δ(p′2 − p2)δs′2s2 +
Ψ̄p′2s

′
2
/ε∗k′λ′e

ik′xΨp2s2√
4ε′2ε2

δ(p′1 − p1)δs′1s1

−Ψ̄p′1s
′
1
/ε∗k′λ′e

ik′xΨp2s2√
4ε′1ε2

δ(p′2 − p1)δs′2s1 −
Ψ̄p′2s

′
2
/ε∗k′λ′e

ik′xΨp1s1√
4ε′2ε1

δ(p′1 − p2)δs′1s2

]
.

(5.7)

Now, the orthogonality of Volkov states [Ritus, 1985; Boca and Florescu, 2011]
yields a three-dimensional Dirac (Kronecker) delta-function between the initial
and the final momentum (spin) of non-emitting electrons. Instead, since the plane
wave depends on the spacetime coordinates only via φ = t − z, the amplitudes
involving the photon emission include a three-dimensional Dirac delta-function,
which enforces the conservation of the transverse (⊥) components (x- and y-
components) and of the minus (−) component (time- minus z-component) of the
four-momenta of the involved particles (see Chapter 4). We exploit the altogether
six Dirac delta-functions to carry out the six integrals in the initial wave-packet

Figure 5.1 Leading-order Feynman diagrams of NSCS by two electrons. The double
lines indicate Volkov states and the symbol {p′1 ↔ p′2, s

′
1 ↔ s′2} indicates the exchange

diagrams.
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|Ψ〉 (see Eq. (5.1)). More explicitly, we can write [Ritus, 1985; Mackenroth, 2014]∫
d4x Ψ̄p′s′/ε

∗
k′λ′e

ik′xΨps = (2π)3 δ(−,x,y)(p− p′ − k′) (ūp′s′Mp′pups) , (5.8)

where Mp′p is

Mp′p = /ε′∗λ′f0(p′, p) + e

(
/A/k/ε′∗λ′
2(kp′)

+
/ε′∗λ′/k /A
2(kp)

)
f1(p′, p)− e2A2(kε′∗λ′)/k

2(kp)(kp′)
f2(p′, p). (5.9)

Thus, it is convenient to introduce the two on-shell four-momenta qµj (q2
j = m2)

such that qj,⊥ = p′j,⊥ + k′⊥ and qj,− = p′j,− + k′−, i.e.,

qµj = p′µj + k′µ − (k′p′j)

p′j,− + k′−
nµ. (5.10)

The amplitude S can then be written then as

S = −ie
√

2π√
N

{ 1

2q−1
ρ1(q1) ρ2(p′2)

(
ūp′1s′1Mp′1q1

uq1s1
)
δs′2s2

+
1

2q−2
ρ1(p′1) ρ2(q2)

(
ūp′2s′2Mp′2q2

uq2s2
)
δs′1s1

− 1

2q−1
ρ1(p′2) ρ2(q1)

(
ūp′1s′1Mp′1q1

uq1s2
)
δs′2s1

− 1

2q−2
ρ1(q2) ρ2(p′1)

(
ūp′2s′2Mp′2q2

uq2s1
)
δs′1s2

}
; (5.11)

it is possible to write the S-matrix more compactly in the form S = S12 − S21,
where

S12 = −ie
√

4π

N
[
ρ1(q1)ρ2(p′2)δs′2s2

Ms′1l
′,s1(p

′
1, k
′; q1)

2q1,−

+ρ1(p′1)ρ2(q2)δs′1s1
Ms′2l

′,s2(p
′
2, k
′; q2)

2q2,−

] (5.12)

and where S21 can be obtained from S12 by substituting p′1 ↔ p′2,q1 ↔ q2, and
s′1 ↔ s′2. Notice that Eq. (5.12) allows us to interpret S12 as a weighted sum of
the reduced amplitudes Ms′l′,s(p

′, k′; p) characteristic of NSCS by a single electron
(with definite initial four-momentum pµ and spin quantum number s, final four-
momentum p′µ and spin quantum number s′). Moreover, if we were considering
the emission by two distinguishable particles, the only term that would be present
in the S-matrix would be S12

Let us calculate the emitted photon energy spectrum dEQ/dω
′ averaged (summed)

with respect to all initial (final) discrete quantum numbers. Since we also integrate
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over the final electrons momenta, in order to avoid double-counting, we divide the
final result by two; thus we find

dEQ
dω′

=
ω′ 2

8

∑
sj ,s′j ,l

′

∫
dΩ′

(2π)32

d3p′1
(2π)32ε′1

d3p′2
(2π)32ε′2

|S|2, (5.13)

where Ω′ denotes the solid angle corresponding to n′ = k′/ω′. Note that if the
electrons were distinguishable, the energy emission spectrum would have the same
form as in Eq. (5.13), with the replacement |S|2 → 2(N /Nd)|S12|2.

There is a subtle difficulty in the explicit calculation of Eq. (5.13). Remember
that in the calculation of the modulus squared of the NSCS S-matrix for one
electron, as we have shown in Chapter 4, one needs only to calculate products of
the reduced amplitudes of the form

(ūp′s′Mp′pups)
∗ (ūp′s′Mp′pups), (5.14)

and we can cast these products in the language of traces by exploiting the identity∑
s

upsūps = (/p+m). (5.15)

For two electrons, the above mentioned technique is not sufficient anymore, because
in Eq. (5.13) there are terms of the form

(ūp′1s′1Mp′1p1
up1s1)

∗ (ūp′2s′2Mp′2p2
up2s2), (5.16)

with in general p′1 6= p′2 and p1 6= p2. We will not show here the technique we
derived in order to compute products like the one in Eq. (5.16), but it is reported
in Appendix A.

In order to investigate the coherence properties of the emitted radiation, in the
following we chose to consider the paradigmatic case in which the two electron
wave packets in position space differ only by a translation by a vector r′, i.e.,
ρ2(p2) = ρ1(p2) exp(−ip2 · r′), such that |ρ1(p)|2 = |ρ2(p)|2. Also, without loss of
generality we choose the function ρ1(p1) to be real and we denote it as ρ(p1).

However, before we calculate the quantum spectrum dEQ/dω
′, it is interesting

to calculate also the classical prediction for the emitted radiation. Naively, one
would expect that when χ� 1, these two predictions should coincide as it happens
for the single-particle spectra; as we will see, this is not correct.

5.2 Classical Spectrum of the Emitted Radiation

Let us study the classically radiated energy (differential only with respect to the
emitted frequency) dEC/dω′ emitted by two electrons in a plane wave. Intuitively, it
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is clear that in the total radiation emitted by two charges there will be interference
effects: because of the superposition principle, the total electromagnetic field they
emit is the sum of the field emitted by each particle. However, if they move along
sufficiently close trajectories, they will emit radiation “in phase”, thus interference
will lead to an enhancement of the energy radiated. In this section, we will try to
find a formula which will help us estimate when (i. e., at which frequencies) one has
this coherent enhancement of the radiation. Since we will want to compare this
prediction with the calculations of Section 5.1, in the derivation of this formula
we will restrict ourselves to the case of interest where the two electrons have
very similar (but not exactly equal) initial momenta (ultrarelativistic and mostly
counterpropagating with respect to the laser field) and they start at some distance
one with respect to the other.

From the Liénard–Wiechert potentials, one can prove [Jackson, 1999; Baier
et al., 1998] that the classically radiated energy dEC/dω′ for the above-mentioned
system is given by the formula

dEC
dω′

=
e2ω′ 2

4π2

∫
dΩ′

∣∣∣∣∣
2∑
j=1

∫
dφ
p′µj (φ)

p′j,−
eiω
′Φj(φ)

∣∣∣∣∣
2

. (5.17)

Here, for the sake of notational convenience in relation with the quantum case,
we have indicated as p′µj (φ) = (ε′j(φ),p′j(φ)) (i. e., with primed quantities) the
electrons’ four-momenta in the plane wave. The analytic expression of p′µj (φ) is
given by [Berestetskii et al., 1982]

p′µj (φ) = p′µj − eAµL(φ) + e
(p′jAL(φ))

p′j,−
nµ − e2

2

A2
L(φ)

p′j,−
nµ, (5.18)

with initial (at t = 0) four-momenta p′µj = (ε′j,p
′
j). Notice that when the laser field

is not present, i. e., at times when AµL(φ) = 0, we have p′µj (φ) = p′µj .
If we choose to label with j = 1 the electron which first enters the plane wave,

and by setting the origin of the coordinate system at the corresponding entering
point, the initial positions of the electrons are r′1 = 0 and r′2 = r′, with r′z > 0 (this
is guaranteed by the fact that the electron “2” enters the laser after the first, and
the laser propagates along the positive z axis). The quantity Φj(φ) in Eq. (5.17)
thus reads

Φj(φ) =

∫ φ

0

dφ′
(n′p′j(φ

′))

p′j,−
+

[
(n′p′j)

p′j,−
n− n′

]
· r′j, (5.19)

with n′µ = k′µ/ω′ = (1,n′). The extra term[
(n′p′2)

p′2,−
n− n′

]
· r′ (5.20)
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in the phase associated with the second electron, not present in the phase of the
first, is due to the fact that the second electron needs to propagate for a certain
distance before it reaches the laser. Notice that we can write the two phases also as

Φj(φ) = Φj(0) + n′−

∫ φ

0

dφ′[m2 + P ′ 2j,⊥(φ′)]/2p′ 2j,−, (5.21)

where P ′j,⊥(φ) = P ′j,⊥−eAL,⊥(φ), with P ′j,⊥ = p′j,⊥−p′j,−n′⊥/n′−. Now, by indicating
as ϕT a measure of the total laser phase ωφT where the electrons experience the
strong field, an order-of-magnitude condition for the emitted radiation to be coherent
is obtained by requiring that ω′∆Φ(φT ) . π/5 1, with ∆Φ(φT ) = |Φ2(φT )−Φ1(φT )|
(the absolute value of the variation of an arbitrary quantity f is indicated here and
below as ∆f). Now, we assume that the electrons have initial momenta (energies)
of the same order of magnitude p′ (ε′), and that are ultrarelativistic and initially
counterpropagating with respect to the laser field (p′−/2 ≈ ε′ � m). By summing
the moduli of all contributions to ∆Φ(φT ), the above condition provides an upper
limit ω′C on the frequencies which are emitted coherently given by

ω′C =
2πω

5n′−ϕT

[
∆P ′ 2⊥
4ε′ 2

+
∆ε′

ε′
m2 + P ′ 2⊥

2ε′ 2
+

2ω∆Φ(0)

n′−ϕT

]−1

, (5.22)

where P ′ 2⊥ is the average value of P ′ 2⊥ (φ) over φT . It is physically clear that the
larger the interaction time is and the larger the differences in the electrons’ initial
positions/momenta/energies are, the lower will be the highest frequency that can
be emitted coherently.

Having in mind the quantum case where the electrons’ momenta distributions
are given by ρ2(p′1) and ρ2(p′2), we consider now a classical ensemble of pairs of
electrons, each pair being characterized by the electrons’ initial positions r′1 = 0
and r′2 = r′ and initial (and final) momenta p′j distributed as ρ2(p′1) and ρ2(p′2).
The corresponding average classical energy spectrum 〈dEC/dω′〉 is given by〈

dEC
dω′

〉
=

∫
d3p′1

(2π)32ε′1

d3p′2
(2π)32ε′2

ρ2(p′1)ρ2(p′2)

Nd
dEC
dω′

. (5.23)

It is important to observe that this expression can also be obtained from the
quantum spectrum dEQ/dω

′ in Eq. (5.13) by neglecting the photon recoil in ρ(qj),
i.e., by approximating ρ(qj) ≈ ρ(p′j), but by keeping linear corrections due to the
recoil in the phase of ρ2(q2). This, in fact, allows to reproduce the term Φ2(0)
from the difference q2 − p′2 according to Eq. (5.10) after neglecting higher-than-
linear recoil terms in it. On the one hand, this observation indicates that when

1This condition is obtained starting from the prototype function g(θ) = |1 + exp(iθ)|2 and by
stating that it shows a “coherent” behavior for θ < θ∗, where θ∗ is such that |g(θ∗)− 4|/4 = 0.1,
i.e. θ∗ ≈ π/5
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the photon recoil is negligible, the classical constraint in Eq. (5.22) also applies
quantum mechanically. On the other hand, however, we will show below that the
differences in the coherence properties of classical and quantum radiation precisely
arise from the fact that the classical theory ignores the recoil in ρ(qj).

5.3 Quantum Restriction to Coherent Emission

In fact, turning now to the quantum case, it is intuitively clear, as we have also
ascertained in the numerical example below, that the electrons’ indistinguishability
does not play a significant role here. Indeed, the exchange terms become important
only when the two electrons have very similar final momenta (and the same final
spin), which corresponds to a negligibly small region of the available final phase
space. Thus, in order to study coherence effects, we focus on the interference
term in |S12|2, which is proportional to the product ρ(q1)ρ(p

′
1)ρ(p

′
2)ρ(q2) (see

Eq. (5.12)). In analogy with the classical case, we indicate as p′ the average
momentum of both electron distributions, corresponding to the on-shell four-
momentum p′µ = (ε′,p′) = (

√
m2 + p′ 2,p′), and as σp′ the three-dimensional

width. As it is clear from Eq. (5.10), the difference between the momenta p′j and
qj is due to the photon recoil. Thus, if the latter is so large that |p′j,i − qj,i| � σp′i
for any i ∈ {x, y, z}, the interference term will be suppressed because the functions
ρ(qj) = ρ(qj(p

′
j)) (see Eq. (5.10)) and ρ(p′j) cannot be both significantly different

from zero for the same p′j.
An invariant parameter χ̃(k′) characterizing the quantum coherence of the emit-

ted radiation with four-momentum k′µ can be defined by introducing the average
〈〈 · 〉〉 with respect to the distribution ρ2(p′)/N0, with N0 =

∫
d3p′(2π)−3ρ2(p′)/2ε′:

χ̃(k′) =
√
k′µT−1

µν k
′ ν , (5.24)

where (T−1)µν is the inverse of the positive-definite, symmetric covariance tensor

T µν = 〈〈p′µp′ ν〉〉 − 〈〈p′µ〉〉〈〈p′ ν〉. (5.25)

The matrix T µν can be diagonalized by means of a Lorentz transformation Λ?

[Blättel et al., 1989]. If the resulting diagonal matrix T ? = Λ?TΛ? t reads T ? µν =
diag(Σ2

ε′ ,Σ
2
p′x
,Σ2

p′y
,Σ2

pz), then Σ2
ε′ and Σ2

p′i
are the variances of the energy and of the

i-th component of the momentum distribution in that frame. Thus, it is

χ̃(k′) =

√
ω′ ? 2

Σ2
ε′

+
k′ ? 2
x

Σ2
p′x

+
k′ ? 2
y

Σ2
p′y

+
k′ ? 2
z

Σ2
p′z

, (5.26)

and if χ̃(k′) < 1 the coherence of the radiation with k′µ is not deteriorated by
quantum effects.
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The additional quantum restriction to the coherent emission of radiation is
qualitatively different from the classical one and it can be related to the particles’
“kinematic” indistinguishability. In fact, depending on the width of the electron
wave packets, even a perfect knowledge of the final momenta of the two electrons
and of the emitted photon combined with the momentum conservation laws does not
allow to know with certainty which electron has emitted the photon. In this respect,
different momentum components of the two-electron wave packet |Ψ〉 constructively
interfere enhancing the radiation probability. This is in striking contrast with the
case of an incoming single electron, where, indeed, the conservation laws allow to
determine the initial momentum of the electron once the final electron and photon
momenta are known, implying that the emission spectrum is given by the incoherent
sum of the emissions spectra corresponding to each momentum component of the
wave packet [Corson et al., 2011; Angioi et al., 2016].

5.4 Numerical Examples

Below, we show by means of a numerical example that the quantum restriction to the
coherence of the emission can be essentially more restrictive than the classical one
even in the striking case where the average quantum parameter χ′ = (kp′)E/mωEcr
of the two wave packets is much smaller than unity. To do this we compare in
Fig. 5.2 the full quantum spectrum dEQ/dω

′ from Eq. (5.13) (solid black line)
with the classical spectrum 〈dEC/dω′〉 from Eq. (5.23) (dash-dotted red line). In
order to calculate these spectra, we used Filon’s rule (see Section 3.1) for the highly
oscillating part of the integrals and used Monte Carlo Integration with importance
sampling (see Section 3.2) for the remaining integrals over the electrons’ momenta
and emitted photon’s direction.

Since the distributions of the momenta of the two electrons are the same, the
two single-particle spectra are identical and do not depend strongly on the shape
of ρ(p) (Section 4.3). Thus, as references to discuss coherence effects, we also
show these single-electron spectra multiplied by two and by four. Concerning the
electrons, we have set the function ρ2(p′j)/2ε

′
j to be a normalized Gaussian function,

with average momentum p′ = (0, 0,−10MeV), transverse standard deviation
σp′⊥ = σp′x = σp′y = 31 eV, (corresponding to a spatial delocalization of 20 nm)
and longitudinal standard deviation σp′‖ = σp′z = 0.62 eV (spatial delocalization
of 1 µm). The wave packets are translated with respect to one another by r′ =
(10−2, 10−2, 10−3) eV−1 ≈ (12, 12, 1) nm. Concerning the plane wave, we have
set ω = 1.55 eV, I = 1.01 × 1020 W/cm2, and ψL(φ) = sin4(ωφ/4) sin(ωφ) for
0 ≤ ωφ ≤ 4π and zero elsewhere. With these parameters χ′ ≈ 0.002, thus the
classical and the quantum single-particle spectra differential only with respect to
ω′ do not depend strongly on σp′ [Angioi et al., 2016].

Fig. 5.2 shows that the classical spectrum (dash-dotted red line) is coherent
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Figure 5.2 Emitted energy spectra for the numerical parameters given in the text. The
solid black line shows the quantum spectrum dEQ/dω

′ and the dash-dotted red line
shows the classical spectrum 〈dEC/dω′〉. As reference, the corresponding single-electron
spectrum multiplied by two (dashed green line) and by four (dotted blue line) are also
shown.

up to a given frequency, that can be calculated with Eq. (5.22); for this estimate
we choose n′ ∼ −(mξ/2ε′, 0, 1), with ξ = |e|E/mω = 5, as a typical observation
direction where the average radiated energy is large [Mackenroth and Di Piazza,
2011]. We estimate the variations ∆p′⊥ and ∆ε′ ≈ ∆p′‖ entering Eq. (5.22) as
the standard deviations σp′⊥ and σp′‖ , respectively, of the differences between the
components of the two random variables p′1 and p′2. By also estimating ϕT ∼ 2π
as the effective phase where the laser field is strong, we find from Eq. (5.22)
that ω′C ≈ 278 eV (red vertical line), in good agreement with Fig. 5.2, accounting
for the simplicity of the analytical model. The quantum spectrum (solid black
line) is incoherent over the whole range shown in Fig. 5.2 because, by estimating
|k′⊥| ∼ ω′mξ/ε′, we obtain that ω′Q ∼ min{σp′⊥ε′/mξ, σp′‖}, which corresponds to
ω′Q = σp′‖ = 0.62 eV. Thus, even if classical arguments would predict coherent
emission until ω′C , the lower bound ω′Q given by quantum mechanics, being orders
of magnitude smaller, dominates.

In Fig. 5.3 we provide a compact visualization of the interplay between the
classical and quantum limits on coherent emission. In order to show all the effects
we mentioned in a single graph without changing multiple numerical parameters, we
have fixed them at the same values of Fig. 5.2, except that p′ = (0, 0,−100MeV),
σp′⊥ = 1 keV, I = 1.2× 1021 W/cm2 (χ′ ≈ 0.02), r′ = (0, 10−4, 10−7) eV−1, and σp′‖
is varying in each panel. We have ensured that the spectra in Fig. 5.3, with the
exception of the classical spectra, where oscillations due to classical interference
may appear, do not change significantly with r′ as long as |r′ ·σp′ | � 1.

The values of ω′Q, calculated in the same way as Fig. 5.2, and of ω′C , estimated
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Figure 5.3 Emitted energy spectra for different values of σp′‖ ; as this parameter varies, the
interplay between ω′Q and ω′C determines the maximum frequency for coherent emission.
The meaning of each line is the same as Fig. 5.2, and the vertical black line which shows
ω′Q
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via Eq. 5.22, are in reasonable agreement with the numerical results. In particular,
it is interesting to observe that the quantum limit dominates in panels a)-c), where
ω′C > ω′Q, and the classical limit takes over in panel d) where ω′C < ω′Q, where it
applies to both the classical and the quantum spectrum.

The properties of single-electron pulses with energies of the order of 100 keV and
attosecond duration are already being exploited experimentally in order to perform
high-precision microscopy (see [Baum, 2013; Kealhofer et al., 2016; Morimoto
and Baum, 2018b,a]), and control schemes for electrons of MeV energy have been
demonstrated recently [Curry et al., 2018]. Moreover, recent theoretical studies
indicate the feasibility of generating arbitrarily-delayed single-electron wave packets
with GeV energies [Krajewska et al., 2017]. The extension of these techniques to
few-electron beams seems possible, for instance by combining two single-electron
pulses with the methods of [Kealhofer et al., 2016; Morimoto and Baum, 2018a]
or via an ultracold gas source [Claessens et al., 2005; van der Geer et al., 2009;
Franssen et al., 2017], where the electrons are already highly correlated from the
beginning. Our results suggest that the development of similar techniques at
higher energies would have important applications also in fundamental strong-field
physics. By reversing the argument, we can also say that the NSCS spectra as
calculated here can be exploited, provided a detailed knowledge of the laser pulse,
as a diagnostic tool for two- or few-electron high-energy pulses.

5.5 Effect of Coulomb Repulsion

In the calculations of this section, we neglected the effect of the Coulomb interaction
between the two electrons. On the one hand, this is a very good approximation
when the electrons are inside the laser field, due to the overwhelming force due to
the latter. On the other hand, however, the close proximity of the two charges
could in principle render the Coulomb interaction non-negligible when the charges
have not entered the laser field yet.

In order to estimate the strength of Coulomb interaction, since in the considered
setup the electrons move along the same direction with the same average energy,
one can start by evaluating the expectation value of the Coulomb force in the frame
of reference where the electrons are on average at rest. In this frame of reference,
the longitudinal indeterminacy of the electrons in position space σ̃‖ is dilated by
the average Lorentz gamma factor γ with respect to the longitudinal indeterminacy
in the lab frame σ‖ = 1/2σp′‖ , thus:

σ̃‖ =
γ

2σp′‖
. (5.27)

Moreover, also the longitudinal displacement between the two wave packets in the
average rest frame r′‖ is dilated: r̃′‖ = γr′‖. Instead, the transverse displacement
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and indeterminacy are not affected by the Lorentz boost, thus σ̃⊥ = 1/2σp′⊥ and
r̃′⊥ = r′⊥.

We assume the electrons’ wave packets to be Gaussian as in the main text such
that the average value of the Coulomb force between the two electrons is given by

〈F̃C〉 = α

∫
d3r1d3r2

(2π)3σ̃2
‖σ̃

4
⊥

r1 − r2

|r1 − r2|3
e
−∑3

l=1

r21,l+(r2,l−r
′
l)
2

2σ̃2
l , (5.28)

where α = e2 ≈ 1/137 is the fine-structure constant. The integrals in Eq. 5.28
can be transformed into a simple one-dimensional integral (see Appendix B); for
the parameters corresponding to Fig. 2, we obtain that |〈F̃C〉| ≈ 3 × 10−3 eV2.
The repulsive force is thus completely negligible with respect to the peak electric
force that the laser field exerts on an electron in the same frame (|e|Ẽ ∼ mωγξ =
1.6 × 108 eV2). The same conclusion can be drawn for the numerical example
corresponding to Fig. 5.3. Although this implies that the interaction between the
electrons is negligible with respect to their interaction with the laser field, the
interaction between the electrons before they enter the laser field could push them
so far apart that there would be no interference in their radiation, neither classically
nor quantum mechanically.

In order to determine the length scale at which this can occur, we can estimate
after how much time t̃ in the average rest frame two electrons, initially at rest at a
distance d̃ from each other, are at a distance, e.g., of 1.1d̃, when being accelerated
by a constant repulsive force |〈F̃C〉|. Simple non-relativistic kinematics implies

that t̃ ∼
√
md̃/10|〈F̃C〉|. In the laboratory frame, t̃ is dilated by a factor γ and

during this time the two electrons propagate along the longitudinal direction over
a distance l‖ ∼ γt̃. By estimating d̃ ∼ r̃′, we obtain that for the parameters used
for Fig. 2, l‖ ∼ 3mm and the experimental results, e.g., in [Cole et al., 2018] show
that distances between the electron source and a strong laser field much smaller
than 300 µm are achieved. However, in the case of the second numerical example
reported in Fig. 3, a similar estimation provides l‖ equal to 80 µm for the panel a)
(which is still acceptable), equal to 8 µm for the panel b), equal to 3 µm for the
panel c), and, finally, equal to 2 µm for the panel d). Notice that while with the
parameters of Fig. 2 and Fig. 3 the longitudinal component of the force F̃C,‖ is
typically many orders of magnitude smaller than each of the transverse components,
in the panels c) and d) it is actually of the same order of magnitude. This still
implies that the parallel displacement between the electrons d̃‖ ∼ r̃′‖ increases by
10% after a propagation in the laboratory frame of 3 µm for panel c), but for panel
d) this happens already after 0.6 µm.

Finally, we observe that it is possible, via Ehrenfest’s theorem, to relate this
classical estimate to the evolution of the wave packets; thus, even quantum mechan-
ically, if the wave packets drift in the laboratory a distance shorter than l, Coulomb
repulsion will not change significantly the distance between their centroids. In
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order to be sure that Coulomb repulsion does not change significantly the quantum
states we are considering, thus a more careful analysis dependent on the experiment
is needed.

5.6 Summary

In conclusion, we have shown that in the process of emission of radiation by a system
of two electrons, classical predictions can significantly differ from the quantum
ones even when the typical quantum nonlinearity parameter of the system is much
smaller than unity. In fact, a qualitative new limit arises quantum mechanically
on the frequencies which can be emitted coherently as compared to classical
electrodynamics. We have shown that this limit depends on the ratio between the
photon recoil and the width of the electron wave packets in momentum space.



Chapter 6

Conclusions and Outlook

In summary, we found that if an electron is in a wave packet state, the spectrum of
the radiation it emits while colliding with an electromagnetic plane wave is quite
different with respect to the case where it is in a Volkov state (i. e., a state with
definite initial momentum); this is not due to quantum interference [Corson and
Peatross, 2011; Angioi et al., 2016]. In fact, as we have shown in Chapter 4, the
emission of a single-electron wave packet is nothing but a weighted average of the
emission spectra of each of its components. The effects due to the uncertainty of
the electron’s initial momentum dominate the ones due to the indetermination of
the electromagnetic pulse’s frequency (due to its finiteness in time), when the two
relative uncertainties are comparable.

Whereas there can be significant differences in spectra which are completely
differential with respect to the emitted photon’s wave-vector, by integrating over
the emitted photon’s direction these differences disappear, provided that the
indeterminacy on the initial momentum is small with respect to the average initial
momentum.

For initial states consisting of multiple electrons, the situation is radically
different [Angioi and Di Piazza, 2017]. In fact, if the initial state satisfies a set of
conditions we found (see Chapter 5), the energy radiated at some frequencies does
not scale linearly with the number of particles, but with its square. This scaling is
expected also classically when some charged particles move along sufficiently close
trajectories [Klepikov, 1985; Jackson, 1999]; quantum effects due to interference
can, however, suppress the radiation at frequencies where classically one would
expect coherent emission.

The description of multi-electron initial states of Nonlinear Single Compton
Scattering as localized wave packets is essential if one wants to recover the coherent
scaling of the radiation that accelerated particles emit classically [Klepikov, 1985;
Jackson, 1999; Angioi and Di Piazza, 2017].

As stated above, our results rely on the assumption that the laser field is a plane
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wave; in fact, even in the case of a single electron, whereas in a plane wave to each
final state of NSCS corresponds uniquely one initial state, for more complicated
spatio-temporal profiles of the laser pulse this is not true anymore and there can be
quantum interference effects. The study of processes in focused fields is challenging
since the Dirac equation cannot be solved in such backgrounds; however, thanks to
recent developments in this area [Di Piazza, 2014; Heinzl and Ilderton, 2017a], the
effect that a focused field has on NSCS by electron wave packets can be calculated.
To this day, the question of how a focused field could alter emission spectra of
wave packets remains still largely unexplored, and would constitute a natural
continuation of the results we presented in this thesis.

Another topic that demands further inspection is the generation of electron
pulses that would make it possible to measure experimentally the spectra we have
shown in Chapter 5. The coherent electron pulses which are currently used in
microscopy [Baum, 2013; Kealhofer et al., 2016; Morimoto and Baum, 2018b,a])
have nonrelativistic energies, but control schemes for electrons of MeV energy with
Terahertz radiation have been realized experimentally [Curry et al., 2018] and they
could be a significant tool for the measurement of NSCS at the level of quantum
amplitudes.



Appendix A

Explicit Evaluation of NSCS Reduced
Amplitudes

The reduced amplitudes of NSCS (ūp′s′Mp′pups), appearing in Chapter 4 and
Chapter 5, are seldom calculated directly; it is typically more convenient to
compute their modulus square via trace technology. In this appendix we will show
how to compute directly the amplitudes also via traces; in order to do so, one could
write upsūp′s′ as

upsūp′s′ = apsp′s′1 + bµpsp′s′γµ + icµpsp′s′γµγ
5 + dµνpsp′s′σµν + epsp′s′γ

5, (A.1)

where σµν = i[γµ, γν ]/2, the coefficients {a, bµ, cµ, dµν , e}µ=0...4,ν<µ are arbitrary
(pseudo-)scalars, (pseudo-)vectors and dµνpsp′s′ can be chosen as a totally antisym-
metric tensor. In Eq. (A.1) we wrote upsūp′s′ in a complete basis

{Hi}i=1...16 = {1, γµ, iγµγ5, σµν , γ5}µ=1...4,ν<µ (A.2)

normalized in the following way:

Trace[HiHj] = ±4δij ∀i, j ∈ {1, . . . , 16}, (A.3)

where the plus sign holds ∀i, j with the only exception of {σ01, σ02, σ03}, for which

Trace[σµνσρσ] = 4(gµρgνσ − gµσgνρ). (A.4)

The coefficients for the expansion of a generic matrix Θ on the basis {Hi}i are
given by

a =
1

4
Trace[Θ1], bµ =

1

4
Trace[Θ γµ], cµ =

1

4
Trace[Θ iγµγ5],

dµν =
1

8
Trace[Θσµν ], e =

1

4
Trace[Θ γ5]. (A.5)
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From Eq. (A.5), we find that Mp′p can be written in this basis as

Mp′p =

{
ε′∗λ′ µ f0(p′, p) +

e(k(p+ p′))

2(kp)(kp′)
[(kε′∗λ′)Aµ − (Aε′∗λ′)kµ] f1(p′, p)

− e2A2(kε′∗λ′)

2(kp)(kp′)
kµ f2(p′, p)

}
γµ

+

{
− e(kk′)

2(kp)(kp′)
ιµνρσAνkρ(ε

′∗
λ′)σ f1(p′, p)

}
iγµγ

5

= Λµ
pp′γµ + ∆µ

pp′iγµγ
5, (A.6)

where ιµνρσ is the Levi-Civita symbol (ι0123 = 1). Since the basis of matrices we
have chosen is orthogonal, in order to calculate bilinear products between M and
two Dirac spinors (one at M ’s right, the other on its left) the only coefficients we
need from the expansion of Eq. A.1 are bµpsp′s′ and c

µ
psp′s′ . By writing the spinors in

Dirac’s representation, after a long but straightforward calculation, we can derive
the following formulas:

b0
psp′s′ =

1

4

√
(εp′ +m)(εp +m) φ(s′)†

[
1 +

pp′ + iσ(p′ × p)

(εp′ +m)(εp +m)

]
φ(s) (A.7)

bpsp′s′ =
1

4

√
(εp′ +m)(εp +m) φ(s′)†

[
p+ ip× σ

(εp +m)
+
p′ − ip′ × σ

(εp′ +m)

]
φ(s) (A.8)

c0
psp′s′ =

i

4

√
(εp′ +m)(εp +m) φ(s′)†

[
σp

(εp +m)
+

σp′

(εp′ +m)

]
φ(s) (A.9)

cpsp′s′ =
i

4

√
(εp′ +m)(εp +m) φ(s′)†

[
σ +

(σp)p′ + (σp′)p+ i(p× p′)− (p′p)σ

(εp′ +m)(εp +m)

]
φ(s)

(A.10)

where σ = (σ1, σ2, σ3) are the Pauli matrices and the ith component of p× σ is
ιijkpjσk. We were never able to find the expressions for bµpsp′s′ and cµpsp′s′ in the
literature.

A.1 Polarization sums

We turn now to the problem of calculating bilinear products of the form

(ūp′1s′1Mp′1q1
uq1s1)

∗ (ūp′2s′2Mp′2q2
uq2s2) (A.11)

and, in particular, how to calculate sums over the polarization of the emitted photon.
Starting from the relation

∑
λ′ ε
∗µ
λ′ ε

ν
λ′ = −gµν , we will now calculate the tensor
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products of the form ΛµΛ∗µ
′ , Λµ∆∗µ

′ , and ∆µ∆∗µ
′ (we don’t calculate explicitly

∆µΛ∗µ
′ since it is just the complex conjugate of Λµ∆∗µ

′).
Let us begin with∑
λ′

∆µ
q1p′1

∆∗µ
′

q2p′2
=

= − e(kk′)

2(kq1)(kp′1)

e(kk′)

2(kq2)(kp′2)
ιµνρσιµ

′ν′ρ′σ′gσσ′AνkρAν′kρ′ f1(p′1, q1)f ∗1 (p′2, q2);

(A.12)

From the property of the Levi-Civita symbol under contractions with the metric

ιµνρσιµ
′ν′ρ′σ′gσσ′ =

= gµρ
′
gµ
′ρgνν

′−gµµ′gνν′gρρ′−gµν′gµ′ρgνρ′−gµρ′gµ′νgν′ρ+gµµ
′
gνρ

′
gν
′ρ+gµν

′
gµ
′νgρρ

′

(A.13)

and from the fact that (Ak) = 0 and k2 = 0 we find that in the previous equation
only the first term is important, so that

ιµνρσιµ
′ν′ρ′σAνkρAν′kρ′ = kµkµ

′
A2, (A.14)

thus finally∑
λ′

∆µ
q1p′1

∆∗µ
′

q2p′2
= − e(kk′)

2(kq1)(kp′1)

e(kk′)

2(kq2)(kp′2)
kµkµ

′
A2 f1(p′1, q1)f ∗1 (p′2, q2). (A.15)

From this relation we also see that, regardless of the initial and final momenta,
∆µ∆∗µ = 0 (this comes from k2 = 0).

Another quantity we need is∑
λ′

Λµ
q1p′1

∆∗µ
′

q2p′2
=

= − e(kk′)

2(kq2)(kp′2)
f ∗1 (p′2, q2){

ιµµ
′ν′ρ′Aν′kρ′ f0(p′1, q1) +

e(k(q1 + p′1))

2(kq1)(kp′1)
ιµ
′ν′ρ′σ′Aν′kρ′(kσ′A

µ − Aσ′kµ) f1(p′1, q1)

− e2A2

2(kq1)(kp′1)
ιµ
′ν′ρ′σ′Aν′kρ′kσ′k

µ f2(p′1, q1)
}
,

(A.16)

and since for any four-vector wµ

ιµνρσwµwν = −ινµρσwνwµ = −ιµνρσwµwν , ⇒ ιµνρσwµwν = 0 (A.17)
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we see that in Eq. A.16 only the first term in curly brackets gives a nonzero
contribution, and so

∑
λ′

Λµ
q1p′1

∆∗µ
′

q2p′2
= − e(kk′)

2(kq2)(kp′2)
ιµµ

′ν′ρ′Aν′kρ′ f0(p′1, q1)f ∗1 (p′2, q2), (A.18)

and of course, regardless of the momenta,∑
λ′

Λµ∆∗µ = 0. (A.19)

For convenience, we also write

∑
λ′

∆µ
q1p′1

Λ∗µ
′

q2p′2
=
∑
λ′

(
Λµ′

q2p′2
∆∗µq1p′1

)∗
=

e(kk′)

2(kq1)(kp′1)
ιµµ

′ν′ρ′Aν′kρ′ f
∗
0 (p′2, q2)f1(p′1, q1).

(A.20)
Finally, we evaluate the last term:

∑
λ′

Λµ
q1p′1

Λ∗µ
′

q2p′2
=

= −
{
f0(p′1, q1)[

gµµ
′
f ∗0 (p′2, q2) +

e(k(q2 + p′2))

2(kq2)(kp′2)
2k[µAµ

′] f ∗1 (p′2, q2)− e2A2

2(kq2)(kp′2)
kµkµ

′
f ∗2 (p′2, q2)

]
+
e(k(q1 + p′1))

2(kq1)(kp′1)
f1(p′1, q1)

[
−2k[µAµ

′]f ∗0 (p′2, q2) +
e(k(q2 + p′2))

2(kq2)(kp′2)
A2 kµkµ

′
f ∗1 (p′2, q2)

]
− e2A2

2(kq1)(kp′1)
kµkµ

′
f2(p′1, q1)f ∗0 (p′2, q2)

}
, (A.21)

where we introduced the shorthand notation k[µAµ
′] = (kµAµ

′ − kµ′Aµ)/2. From
the last expression, it is also clear that∑

λ′

Λµ
q1p′1

Λ∗µ
′

q2p′2
gµµ′ = −4f0(p′1, q1)f ∗0 (p′2, q2). (A.22)

Notice that while the other sums we calculated had some definite symmetry under
the exchange of the two free indexes µ and µ′, the right-hand side of Eq. A.21
is neither symmetric nor antisymmetric. Let us write it again, but by explicitly
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splitting the symmetric part and the antisymmetric part:

∑
λ′

Λµ
q1p′1

Λ∗µ
′

q2p′2
=

{[
e2A2

2(kq2)(kp′2)
f0(p′1, q1)f ∗2 (p′2, q2)+

e2A2

2(kq1)(kp′1)
f2(p′1, q1)f ∗0 (p′2, q2)

−e(k(q1 + p′1))

2(kq1)(kp′1)

e(k(q2 + p′2))

2(kq2)(kp′2)
A2 f1(p′1, q1)f ∗1 (p′2, q2)

]
kµkµ

′−f0(p′1, q1)f ∗0 (p′2, q2)gµµ
′

}

+

{[
e(k(q1 + p′1))

(kq1)(kp′1)
f1(p′1, q1)f ∗0 (p′2, q2)− e(k(q2 + p′2))

(kq2)(kp′2)
f0(p′1, q1)f ∗1 (p′2, q2)

]
k[µAµ

′]

}
.

(A.23)

A.2 Single-Electron Reduced Probability

When p′1 = p′2 ≡ p′ and q1 = q2 ≡ p, the bilinear products we have been calculating
are known in the literature, and can be derived via trace technology. They give the
square modulus of the reduced transition amplitude for Nonlinear Single Compton
Scattering, and they are equal to

∑
λ′s′s

|ūp′s′Mups|2 =

= −8

{[
e2A2

2

(
(pk)

(p′k)
+

(p′k)

(pk)

)
−eα
γ

(kk′)

(
(Ap)

kp
− (Ap′)

kp′

)
−α

2

γ2

(
(pp′)− 2m2

) ]
|f1|2

−
[
αβ

γ2

(
(pp′)− 2m2

)
− α

γ

e2A2

2
− eβ

2γ
(kk′)

(
(Ap)

kp
− (Ap′)

kp′

)]
(f ∗1 f2 + f1f

∗
2 )

+

[
β

γ
e2A2 − β2

γ2

(
(pp′)− 2m2

)]
|f2|2

}
. (A.24)

All the terms that one obtains with the previously described polarization sum
procedure have to reduce to the ones in Eq. (A.24). In the basis we have chosen,∑

λ′s′s |ūp′s′Mups|2 =
∑

λ′s′s|4(bpsp′s′Λpp′) + 4(cpsp′s′∆pp′)|2, so proving that this
relation gives the same result as Eq. A.24 is only a matter of contracting the tensors∑

λ′ Λ
µ
pp′Λ

∗µ′
pp′ ,

∑
λ′ Λ

µ
pp′∆

∗µ′
pp′ ,

∑
λ′ ∆

µ
pp′Λ

∗µ′
pp′ , and

∑
λ′ ∆

µ
pp′∆

∗µ′
pp′ with the appropriate

(pseudo)four-vectors. Moreover, in Eq. A.24 f0 is not present, and this is because it
has been written in terms of f1 and f2, according to the formula f0 = −(αf1+βf2)/γ.
Let us start with

∑
λ′s′s(bpsp′s′Λpp′)(Λ

∗
pp′b
∗
psp′s′); in order to calculate it we need the
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following three quantities:∑
s′s

(bpsp′s′k)(b∗psp′s′k) =
∑
s′s

1

16
kµkν(ūp′s′γ

µups)(ūpsγ
νup′s′) =

(kp)(kp′)

2
, (A.25)

∑
s′s

(bpsp′s′b
∗
psp′s′) =

∑
s′s

1

16
gµν(ūp′s′γ

µups)(ūpsγ
νup′s′) = −1

2

[
(p′p)− 2m2

]
,

(A.26)∑
s′s

bµpsp′s′b
ν ∗
psp′s′k[µAν] = 0. (A.27)

And so we can obtain∑
λ′s′s

(bpsp′s′Λpp′)(Λ
∗
pp′b
∗
psp′s′) ={[

− e2A2

4

(
α

γ
(f1f

∗
2 + f ∗1 f2) + 2

β

γ
|f2|2

)
+
e2A2

8

(
(pk)

(p′k)
+

(p′k)

(pk)
+ 2

)
|f1|2

]

+
1

2

[
(p′p)− 2m2

](α2

γ2
|f1|2 +

αβ

γ2
(f1f

∗
2 + f ∗1 f2) +

β2

γ2
|f2|2

)}
. (A.28)

For the term
∑

λ′s′s(cpsp′s′∆pp′)(∆
∗
pp′c
∗
psp′s′) we need to calculate only one contrac-

tion1

∑
s′s

(cpsp′s′k)(c∗psp′s′k) =
∑
s′s

1

16
kµkν

[
ūp′s′(iγ

µγ5)ups
] [
ūps(−iγνγ5)up′s′

]
=

(kp)(kp′)

2
, (A.30)

(notice that it is the same as Eq. A.25), and so

∑
λ′s′s

(cpsp′s′∆pp′)(∆
∗
pp′c
∗
psp′s′) = −e

2A2

8

(
(pk)

(p′k)
+

(p′k)

(pk)
− 2

)
|f1|2. (A.31)

Finally, for
∑

λ′s′s(bpsp′s′Λpp′)(∆
∗
pp′c
∗
psp′s′), by noting that∑

s′s

bαpsp′s′c
β ∗
psp′s′ = −p′γpδιγαδβ/4 (A.32)

1Notice that

4cµ∗psp′s′ = (ūp′s′(iγ
µγ5)ups)

∗ = u†ps(−iγ5(γµ)†)γ0up′s′ = ūps(−iγµγ5)up′s′ (A.29)
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we can calculate∑
s′s

ιµµ
′ν′ρ′gµαgµ′β b

α
psp′s′c

β ∗
psp′s′ = −ι

µµ′ν′ρ′ιαβδγ

4
gµαgµ′βp

′
γpδ =

p′γpδ

2
(gν

′δgρ
′γ−gν′γgρ′δ),

(A.33)
where we used ιµµ′ν′ρ′ιαβδγgµαgµ′β = −2(gν

′δgρ
′γ − gν′γgρ′δ) (in order to check this

relation, especially whether it has correct sign, one can start from Eq. A.13) and
so we get∑

λ′s′s

(bpsp′s′Λpp′)(∆
∗
pp′c
∗
psp′s′) =

e(kk′)

4

(
(Ap)

kp
− (Ap′)

kp′

)(
α

γ
|f1|2 +

β

γ
f ∗1 f2

)
.

(A.34)
If we sum all the expressions we found, without forgetting that there is also another
term that is the complex conjugate of Eq. A.34, we can recover the correct formula
stated in Eq. A.24.





Appendix B

Coulomb Integral with Gaussian Wave
Packets

In Section 5.5, in order to estimate the effect of Coulomb repulsion between two
electrons, each in a Gaussian wave packet state, translated one with respect to the
other by a constant vector r′, we had to calculate the expectation value

〈F̃C〉 =
e2

(2π)3σ2
‖σ

4
⊥

∫
d3r1d3r2

r1 − r2

|r1 − r2|3
e
−

r21,⊥+(r2,⊥−r′⊥)2

2σ2⊥ e
−
r2
1,‖+(r2,‖−r

′
‖)

2

2σ2‖ . (B.1)

After a variable transformation (with Jacobian equal to unity)

u =
r1 + r2

2
, v = r1 − r2, (B.2)

the numerators of the exponents of the Gaussians can be written as

r2
1,j + (r2,j − r′j)2 = 2(u2

j − ujr′j) +
v2
j

2
+ vjr

′
j + r′2j . (B.3)

Thus, the integral in Eq. (B.1) splits in two parts: a 3D integral over u and another
3D integral over v; The first one can be evaluated analytically, as

∫
d3u e

−u2
⊥−u⊥ · r′⊥

σ2⊥ e
−
u2‖−u‖ · r′‖

σ2‖ =
√
π3σ2

⊥σ‖e

r′2⊥
4σ2⊥

+
r′2‖
4σ2‖ . (B.4)

The remaining integral is more involved; let us write it as

I = e
− r′2⊥

4σ2⊥
−
r′2‖
4σ2‖

∫
d3v

v

v3
e
− (v⊥+r′⊥)2

4σ2⊥
−

(v‖+r
′
‖)

2

4σ2‖ (B.5)
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(here we used v2j
2

+ vjr
′
j + r′2j = (vj + r′j)

2/2 + r′2j /2). Notice that

v

v3
= −∇1

v
, (B.6)

and that the function 1/v has the following integral representation:

1

v
=

2√
π

∫ ∞
0

ds e−v
2s2 . (B.7)

The integral I now has the form∫
d3v (∇f)g =

∫
d3v∇(fg)−

∫
d3v f(∇g). (B.8)

The integral
∫

d3v∇(fg) can be transformed into a surface integral, and since fg
becomes exponentially small as v →∞ (and, in particular, since it decays faster
than 1/v2) the value of this integral is zero. This implies that we can write I as

I =
2e
− r′2⊥

4σ2⊥
−
r′2‖
4σ2‖

√
π

∫ ∞
0

ds

∫
d3v

(
−(v⊥ + r′⊥)

2σ2
⊥

,−
(v‖ + r′‖)

2σ2
‖

)

e
− (v⊥+r′⊥)2

4σ2⊥
−s2v2

⊥
e
−

(v‖+r
′
‖)

2

4σ2‖
−s2v2‖

. (B.9)

By adding and subtracting to the integrand the quantity

2e
− r′2⊥

4σ2⊥
−
r′2‖
4σ2‖

√
π

2s2
(
v⊥, v‖

)
e
− (v⊥+r′⊥)2

4σ2⊥
−s2v2

⊥
e
−

(v‖+r
′
‖)

2

4σ2‖
−s2v2‖

(B.10)

one can see that one part of the integral is again a surface term. The other reads

I =
2e
− r′2⊥

4σ2⊥
−
r′2‖
4σ2‖

√
π

∫ ∞
0

ds

∫
d3v 2s2

(
v⊥, v‖

)
e
− (v⊥+r′⊥)2

4σ2⊥
−s2v2

⊥
e
−

(v‖+r
′
‖)

2

4σ2‖
−s2v2‖

. (B.11)

A few manipulations to the exponents of the Gaussians lead to

(vj + r′j)
2

4σ2
j

+ s2v2
j = Aj

(
vj +

r′j
4σ2

jAj

)2

− r′2j
(4σ2

jAj)
2

+
r′2j
4σ2

j

, (B.12)

where we introduced
Aj =

1

4σ2
j

+ s2 (B.13)
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(notice that 4σ2
jAj = 1+4σ2

j s
2). One then arrives to this simple form of the integral

in v:

I =
4e
− r′2⊥

2σ2⊥
−
r′2‖
2σ2‖

√
π

∫ ∞
0

ds s2e

∑3
j=1

r′2j
(1+4σ2

j
s2)2

∫
d3v

(
v⊥, v‖

)
e
−∑3

j=1 Aj

(
vj+

r′j
4σ2
j
Aj

)2

. (B.14)

By remembering the elementary Gaussian integrals∫ +∞

−∞
dx e−a(x−µ)2 =

√
π

a
(B.15)

and ∫ +∞

−∞
dx xe−a(x−µ)2 =

√
π

a
µ (B.16)

we can perform all the integrals over v and finally arrive at

I = −4πe
− r′2⊥

2σ2⊥
−
r′2‖
2σ2‖

∫ ∞
0

ds
s2e

∑3
j=1

r′2j
(1+4σ2

j
s2)2

A⊥
√
A‖

(
r′⊥

1 + 4σ2
⊥s

2
,

r′‖
1 + 4σ2

‖s
2

)
; (B.17)

this form of the integral is particularly easy to integrate numerically since the
integrand is a smooth function free of singularities and decaying at infinity as s3.
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