Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Multi-Particle Effects in Strong-Field Quantum Electrodynamics

MPG-Autoren
/persons/resource/persons134890

Angioi,  Alessandro
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Angioi_Thesis_Final.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Angioi, A. (2018). Multi-Particle Effects in Strong-Field Quantum Electrodynamics. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-FD19-7
Zusammenfassung
In this work we study Nonlinear Compton Scattering, one of the most fundamental processes of Quantum Electrodynamics in a strong electromagnetic field background. One can imagine Nonlinear Compton Scattering as a process where a free electron scatters with a laser field, and while doing so it generates radiation. With the imminent inauguration of some Petawatt laser facilities, Nonlinear Compton Scattering will be routinely tested, especially in order to understand the dynamics of plasmas interacting with strong fields. Despite its promising applications, this process has always been studied for single particles with a well-defined initial momentum. We will show which effects arise when initially one or multiple electrons are in a wave packet state; in particular, we will be interested in which modifications are brought about by quantum effects, and which instead have a classical explanation. Moreover, in the multi-particle case, we will focus on the coherence of the emitted radiation, and calculate how quantum effects limit the frequencies at which the radiation can be coherent even at a regime typically associated with Classical Electrodynamics.