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We propose a minimal model to study the real-time dynamics of a Z2 lattice gauge theory coupled to fermionic
matter in a cold atom quantum simulator setup. We show that dynamical correlators of the gauge fields can be
measured in experiments studying the time-evolution of two pairs of impurities, and suggest the protocol for
implementing the model in cold atom experiments. Further, we discuss a number of unexpected features found
in the integrable limit of the model, as well as its extensions to a non-integrable case. A potential experimental
implementation of our model in the latter regime would allow one to simulate strongly-interacting lattice gauge
theories beyond current capabilities of classical computers.

INTRODUCTION

Due to remarkable experimental advances offering un-
precedented control of isolated quantum systems, quantum
simulators are becoming a reality, allowing one to test theo-
retical models of strongly-interacting quantum systems in the
regimes beyond classical simulations. These recent experi-
mental breakthroughs have been witnessed in a wide range of
settings, including superconducting chips [1], photonic quan-
tum circuits [2], and most notably in experiments with cold
trapped ions [3], following early theoretical proposals, see
e.g. Ref. [4]. Here we will focus on cold atom quantum simu-
lator setups, such as recently used in the studies of many-body
localization phenomena in two dimensions [5].

An intriguing and natural application of quantum simula-
tors is in the studies of lattice gauge theories (LGT) [6–10],
and in particular in testing their dynamical properties. Gauge
theories play a central role in theoretical physics, from the
standard model of fundamental particles to the low-energy de-
scriptions of condensed matter systems. Important and well-
known examples are those which are used in theoretical mod-
els of quantum chromodynamics (QCD), quantum electrody-
namics (QED), as well as quantum spin liquids [11], and Ki-
taev’s toric code [12]. While models appearing in condensed
matter theory context are often lattice models, QCD and QED
are continuum theories. However, they have also been mod-
elled using LGT approaches [13, 14]. For example, a lattice
version of the Schwinger model, which is a famous toy model
of 1+1 dimensional QED [8, 15], has been recently simulated
in cold ion trap experiments [3].

Digital (discrete time) quantum simulations of LGT have
been so far restricted to one-dimensional systems because
of requirements on high fidelity and on the large number
of qubits in implementation of these simulations. Here, we
propose a minimal setting for simulating the dynamics of a
LGT with fermions in 2+1 dimensions. We suggest that our
model can be an ideal candidate for experimental implemen-
tations. First, we present a mapping of the model to free

fermions (which can be studied exactly), and therefore the
theory can be benchmarked against experiments. Via dual-
ity transformations we show that dynamical correlation func-
tions of the gauge fields can be directly mapped to local im-
purity quenches in the free-fermion system. Second, even
in the simple version of the model, where the free-fermion
mapping holds, the model shows novel phenomenology of
disorder-free localization [16–18]. Further, it can be tuned
away from this ‘integrable’ limit, where classical computa-
tion is no longer applicable. Third, measurements of correla-
tion functions can be implemented using current technology
in cold atomic gases [5], and we propose a simple protocol
based on Ramsey interferometry [19–22] in a cold atom set-
ting.

We note that there has been a large number of papers related
to quantum simulations of gauge theories, and we refer the
reader to Refs. [9, 10, 23] for more detailed information.

Z2 LATTICE GAUGE THEORY WITH FERMIONIC
MATTER

One of the goals in the field of quantum simulation is to
be able to test models of interacting quantum field theories,
including the ones used in QCD, and QED. In this paper we
suggest a lattice description of a version of a QED Hamilto-
nian with gauge fields coupled to fermions, and we focus on a
2+1D case, although the model can be studied in any dimen-
sions. The continuum version of the model reads (here h̃, K̃
are coupling constants, m the fermion mass, A the vector po-
tential, and E,B are the electric and magnetic field strengths)

Hcont =

∫
d2x[− 1

2m
ψ̄(p−A)2ψ + h̃(divE)2 + K̃B2].

(1)
Note a non-standard (divE)2, in other words the energy de-
pends only on the divergence of the electric field, but not on
the field strength, see also a discussion in [24].
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We discretise the model (1) by placing fermions on the sites
of a 2D square lattice and introduce a discrete Z2 vector po-
tential and electric field on the links in the standard way, see
e.g. [8–10, 24], and arrive at the discrete Z2 lattice gauge the-
ory version of Eq. (1),

Hlat = −J
∑
〈ij〉

σ̂zij f̂
†
i f̂j − h

∑
i

Âi −K
∑
p

B̂p, (2)

where h,K, J are coupling constants, f̂†i are spinless fermion
creation operators on sites i, σzij are the Pauli matrices defined
on the links between neighbouring i and j sites. The star Âi
and plaquette B̂p operators (which are well-known from the
context of the toric code), which live on the sites i and pla-
quettes p are correspondingly defined as

Âi =
∏
j:〈ij〉

σ̂xij , B̂p =
∏

plaquette p

σ̂z. (3)

The model Eq. (2) is a natural two-dimensional generaliza-
tion of the model studied by the authors in Ref. [18] in the
context of disorder-free localization. The latter localization
mechanism was later studied in the context of the 1D U(1)
lattice Schwinger model in Ref. [25]. In this work we focus
on dynamics of the gauge fields in the 2D case. One of the
central results of this work is a protocol for quantum simula-
tion of time-dependent gauge-field correlators after a quantum
quench. We are interested in measuring the connected spin
correlators

〈σ̂zjk(t)σ̂zlm(t)〉c = 〈σ̂zjk(t)σ̂zlm(t)〉 − 〈σ̂zjk(t)〉〈σ̂zlm(t)〉. (4)

DUALITY MAPPING TO FREE FERMIONS AND
DYNAMICAL CORRELATION FUNCTIONS

The model in Eq. (2) is the Kitaev Toric code with the ad-
ditional term describing dynamics of free spinless fermions
coupled to gauge fields via minimal coupling. Below we con-
sider a quantum quench from an initial state |Ψ〉 which is in-
variant under the application of all plaquette operators, i.e.
B̂p|Ψ〉 = |Ψ〉. Since these operators are conserved under dy-
namics we consider only the sector with eigenvalues Bp = 1
for every p. More general quenches can be studied in a similar
way, where one will have to take into account the disconnected
sectors labelled by Bp = ±1, see Refs. [18, 24] for more de-
tails. Up to a constant, the Hamiltonian of Eq. (2) for a fixed
sector takes the following form

Ĥ = −J
∑
〈ij〉

σ̂zij f̂
†
i f̂j − h

∑
i

Âi. (5)

In order to bring the model into a solvable form we intro-
duce a transformation of degrees of freedom. First, we per-
form a standard duality transformation for the spin degrees
of freedom, which is well-known in the context of the Ising
model,

τ̂zj = Âj , σ̂zjk = τ̂xj τ̂
x
k , (6)

where τ̂xi , τ̂
z
i are the Pauli matrices defined on the sites i of

the lattice. We can now identify conserved charges q̂j =

τ̂zj e
iπf̂†

j f̂j with the eigenvalues ±1, and introduce the follow-
ing transformations for the fermion operators ĉj = τ̂xj f̂j . The
τ̂ and the ĉ operators obey standard commutation relations.
The Hamiltonian commutes with the operators of conserved
charges [Ĥ, q̂j ] = 0, and the charges commute between them-
selves [q̂j , q̂k] = 0. In terms of these ĉ and τ̂ operators, the
Hamiltonian assumes the form (see [16–18, 24])

Ĥ = −J
∑
〈jk〉

ĉ†j ĉk + 2h
∑
j

q̂j(ĉ
†
j ĉj − 1/2). (7)

The model in Eq. (7) is a free-fermion model, and can be stud-
ied using standard techniques, which we outline below on the
example of a quantum quench problem. Note that the con-
served charges in this case will be defined by the initial state
of the system.

Quantum Quench Protocol

Below we focus on a quantum quench problem where the
spins and the fermions are prepared in some initial state, and
we will calculate the dynamics of spin-correlation functions at
time t after the quench. An interesting, and simple initial state
is given by a tensor product of the spins polarized along the
z-axis and fermions in a Slater determinant state at half-filling
|Ψ〉 = | ↑↑ · · ·〉 ⊗ |ψ〉. The fermion Slater determinant de-
scribes a Fermi-sea for the Hamiltonian ĤFS = −

∑
〈ij〉 f̂

†
i f̂j .

In terms of the charges q̂ and the fermions ĉ these initial states
take the form

|Ψ〉 =
1√

2N−1

∑′

{qi}=±1

|q1q2 · · · qN 〉 ⊗ |ψ〉, (8)

where the primed sum is over all charge configurations {qi}
such that

∏
all q̂j = (−1)Nf , where Nf =

∑
i f̂
†
i f̂i is the

fermion filling, see Refs. [16–18] for more details.
Let us now discuss the calculation of the dynamical cor-

relators. The simplest component of the connected spin-spin
correlator is the average the local magnetisation

〈σ̂zjk(t)〉 = 〈Ψ|eiĤtτ̂xj τ̂xk e−iĤt|Ψ〉. (9)

In order to simplify notation we introduce a Hamiltonian for
a fixed configuration of charges {qi} = ±1,

Ĥ(q) = −J
∑
〈jk〉

ĉ†j ĉk + 2h
∑
j

qj(ĉ
†
j ĉj − 1/2), (10)

together with the short hand notation Ĥjk(q) for the Hamil-
tonian having the sign of qj , qk flipped relative to Ĥ(q), then
the magnetization at time t after a quench is given by the fol-
lowing correlator

〈σ̂zjk(t)〉 =
1

2N−1

∑′

{qi}=±1

〈ψ|eiĤjk(q)te−iĤ(q)t|ψ〉. (11)
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Figure 1. Schematic picture of the proposed experimental setup.
Fermions (purple balls) are confined in an optical lattice (blue sur-
face) with nearest-neighbour hopping between lattice sites described
by the Hamiltonian Eq. (7). The fermions experience a binary po-
tential set by charges {qi} = ±1, except at particular sites where
we put spin-1/2 impurities (yellow). Impurity spins are localized
in separately controlled much deeper wells, and generate an exter-
nal potential on these sites, with the sign of the potential for spin
up/down impurities being positive/negative correspondingly. To cal-
culate spin correlators, corresponding to gauge-field correlators, one
has to control four impurity spins, with pairs of spins located on the
sites sharing the bond associated with the gauge spins. The correla-
tors are then calculated using the Loschmidt echo protocol, defined
in the main text, which involves a π/2-rotation and measurement of
the impurity spins.

This has the form of binary disorder-averaged Loschmidt
echo, where the charges q̂ at sites j, k having opposite signs
in the forward and backward time-evolution. Repeating the
same arguments we obtain the expression for the connected
spin-correlator at time t after the quench

〈σ̂zjk(t)σ̂zlm(t)〉 =
1

2N−1

∑′

{qi}=±1

〈ψ|eiĤjklm(q)te−iĤ(q)t|ψ〉,

(12)
where one has to exchange signs of four charges at sites
denoted by jklm between forward and backward evolution.
Eq. (12) is one of the central new results of this work. The dy-
namical correlation function of the gauge field directly corre-
spond to a local quantum quench of a (free) fermionic Hamil-
tonian. In the following section we discuss how the latter can
be efficiently simulated in a cold atom setup.

The Loschmidt echo appearing in these expressions can be
efficiently computed numerically using fermion determinants.
For example, for the expression Eq. (11) these take the form

〈ψ|eiĤjk(q)te−iĤ(q)t|ψ〉 = det[V †U†jk(q)U(q)V ], (13)

where U(q) = e−iH(q)t is the exponential of the matrixH(q),
and similarly for Ujk(q) and Hjk(q), and V is a rectangular
matrix which has as its columns the N/2 filled eigenvectors
of the Hamiltonian ĤFS = −

∑
〈ij〉 f̂

†
i f̂j . The determinants

for the two-point correlators (12) take a similar form but with
Hjklm(q) instead of Hjk(q).

QUANTUM SIMULATION AND EXPERIMENTAL SETUP

A schematic picture for the experimental setup that we pro-
pose is shown in Fig. 1. We consider a square optical lattice
with fermions prepared in a Fermi-sea at half-filling. At time
t = 0 we abruptly turn-on a binary disorder potential – sim-
ilar to the quantum gas microscope set up used in Ref. [5] –
and we also add two or four impurity spins which control the
potential in order to obtain the Loschmidt echo [20–22]. The
impurities should be localized by an external trapping poten-
tial, and one has to chose these impurity spins such that the
lattice fermions should interact strongly with one of the two
spin states | ↑j〉 and weakly with the other | ↓j〉, effectively
turning on/off the potential for the fermions on the impurity
site.

As shown above, the correlators that we are interested in
can be mapped to the measurement of the Loschmidt echo.
We prescribe an implementation of this measurement using
Ramsey interferometry, which we describe below. Further de-
tails on experimental implementations can be found in [19–
22]. The impurity spins in the up state interact with the
fermions via a local interaction, while the spins in down states
and the fermions are decoupled. Now we introduce a com-
posite two state system, which we will call a control spin. In
the measurement of the average local magnetisation the con-
trol spin affects two nearest-neighbour charges, i.e. | ⇓ 〉 ↔
| ↓j↓k〉, | ⇑ 〉 ↔ | ↑j↑k〉, and in the measurement of two point
correlators we need two pairs of impurity spins (as shown in
Fig. 1), i.e., | ⇓ 〉 ↔ | ↓j↓k↓l↓m〉, | ⇑ 〉 ↔ | ↑j↑k↑l↑m〉. Us-
ing the average local magnetisation as a specific example, the
measurement protocol is the following:

Initialise: The system is initialised in the state |ψ〉 with
fermions forming a half-filled Fermi-sea for the Hamil-
tonian ĤFS = −

∑
〈ij〉 f̂

†
i f̂j , and the control spin is pre-

pared in the state |⇓ 〉.

π/2 pulse: We perform a π/2 pulse on the control spin such
the state of the fermions and control spins becomes
|Ψ〉 = |⇑〉+|⇓〉√

2
⊗ |ψ〉.

Evolve: We let the system evolve, so that its state at time t is
given by

|Ψ(t)〉 =
1√
2

[e−iĤ(q)t|⇓ 〉⊗|ψ〉+e−iĤjk(q)t|⇑ 〉⊗|ψ〉].

(14)

π/2 pulse: At time t we perform the reverse π/2 pulse on the
control spin so that we can perform a measurement in
the original basis of impurity spins.

Measure: We measure the z-component of the control spin,
which gives

〈Ŝz〉 = Re〈ψ|eiĤjk(q)te−iĤ(q)t|ψ〉. (15)
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Figure 2. Absolute value of the connected spin-spin correlator |〈σ̂z
b (t)σ̂

z
0(t)〉c| for different spatial cuts across the system as a function of

time and separation between the spin σ̂z
b and the spin σ̂z

0 . Results are shown for two different values of h/J = 0.7, 2. The horizontal and
diagonal cuts across the lattice are shown in Figs. 3. The blue dashed line indicates the time slice that is shown in Fig. 3. The white dashed
line corresponds to the the light-cone propagation with velocity v = 2J .

This procedure must be repeated for different disorder realisa-
tions and the result averaged over these measurements. In the
case of the two-point correlator the control spin corresponds
to two pairs of impurities which amounts to replacing Ĥjk(q)

by Ĥjklm(q). From our calculations we find that it is suffi-
cient to average over a small subset of random binary disorder
realisations. Because these spin correlators must be real, this
procedure amounts precisely to the calculations we wish to
perform in Eq. (4).

NUMERICAL RESULTS

Here we present some numerical results for a 15×14 square
lattice for h/J = 0.7, 2 where we used averaging over 1000
disorder realisations. In Fig. 2 we show the time dependence
of the connected two-point spin correlator (4) as a function of
separation between two spins along the horizontal and diago-
nal cuts indicated by dashed lines in Fig. 3. Two main features
common to all four figures are the linear light-cone spreading
and the eventual decay of all spatial correlations.

The spreading of correlations is linear in all cases and has
velocity v = 2J , which is the maximal group velocity of the
fermions. This light-cone regime is short-lived due to the
overall decay of the correlations. A notable difference be-
tween the horizontal and diagonal cuts is that the correlations
between the neighbouring spins along the diagonal grow im-
mediately, leading to a slightly offset light-cone. This can be
appreciated by looking at Fig. 3 where one can see that these
two spins belong to the same star operator and thus the corre-
lations begin to grow after the quench with the rate set by h/J ,
as shown in Fig. 4. Difference appears when we increase h,
where we see that the peaks in the correlations become much
sharper along the light-cone, which is followed by decaying
oscillations. The spatial pattern of correlations also changes
as shown for a time slice Jt = 1.7 in Fig. 3. The extent of the
spreading is bigger for smaller h/J . Further, for small values

of h/J one can notice the asymmetry due to the fact that the
central bond is vertical and we don’t have 90 degree rotational
symmetry, whereas for h = 2J this asymmetry seems to be
smaller.

While for an exact simulation of the gauge field we would
need to average over all possible configurations of the poten-
tial generated by the conserved charges, in order to obtain ac-
curate results we require only a tiny fraction of configurations.
For h/J = 0.7, we see that the results have the correct sym-
metry and there is very little noise (due to finite number of
disorder realizations). On the other hand, for h/J = 2 there
seem to be more-pronounced non-physical correlations, most
notably appearing as a stripe in Figs. 2(c-d) at around Jt = 1,
which is responsible for partially obscuring the light-cone.
We can also see a faint non-uniform random background in
Fig. 3(b). In order to minimise these artefacts one has to use
a larger number of disorder realisations. Despite these issues,
qualitatively good results can be obtained with as few as 50
disorder configurations as shown in Fig. 4 for the nearest-
neighbour correlators along diagonal cut. With a very small
number of samples one can extract a number of qualitative

(a) Slice h = 0.7J (b) Slice h = 2J

0

0.005

0.01

0.015

Figure 3. Spatially resolved absolute value of the connected spin-
spin correlator |〈σ̂z

b (t)σ̂
z
0(t)〉c|. The spin σ̂z

0 resides on the central
bond and σ̂z

b is taken on the other bonds of the 15×14 lattice for Jt =
1.7 and h/J = 0.7, 2. Superimposed is the lattice (black) where
fermions reside. The dynamics along the horizontal and diagonal
cuts indicated by dashed lines are shown in Fig. 2.
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Figure 4. Comparison of the nearest-neighbour correlator
〈σ̂z

b (t)σ̂
z
0(t)〉c along the diagonal cut indicated in Fig. 3 for different

number of disorder realisations, h/J = 2. (Blue line) 1000 disor-
der realisations, (Red line) 50 disorder realisations. (Inset) Absolute
value of the difference between the results for 50 and 1000 disorder
realizations.

features such as sharp growth of correlations and the decay-
ing oscillations.

DISCUSSION

We have presented a minimal 2D model of a Z2 lattice
gauge theory coupled to fermionic matter and outlined an ex-
perimental protocol for measuring time-dependent gauge field
correlation functions. We believe that this protocol should be
accessible with current experimental technology. In experi-
ments with cold atoms in optical lattices, such as discussed in
Ref. [5], relatively large 2D systems have already been sim-
ulated, and the protocol that we propose is designed to re-
quire minimal extra complications. Using a duality mapping
to free-fermions we are able to perform efficient numerical
computations which should allow one to quantitatively com-
pare theory and experiment. Some clear features of dynamical
correlations, such as the light-cone spreading and the decay of
the correlations at long times should be directly accessible to
experimental measurements.

We anticipate a number of possible practical issues regard-
ing the difference between the experimental setup and our
model, which should not be very difficult to account for.
These may include an actual realization of the binary poten-
tial, the shape of a trapping potential for fermions, or realiza-
tion of the coupling to impurity spins. All of these features can
be easily implemented in our theoretical calculations. Further,
one can access relatively large system sizes in numerical cal-
culations, which would allow one to look at the scaling in the
system size and the number of disorder realisations.

While the dynamics of the model in Eq. (5) can be effi-
ciently simulated on a classical computer, the model offers
a number of generalisations which turn it into a strongly-
interacting quantum model. Specifically, one can add to the
Hamiltonian additional terms which will be still commuting

with the charges. This means that the mapping and experi-
mental protocol presented above are still valid. For example,
one can add nearest-neighbour density interactions between
fermions

∑
〈jk〉 n̂j n̂k which have the same form in the origi-

nal and the dual representation. In the 1D case the model maps
onto an XXZ spin chain with binary disorder potential, real-
izing the minimal model of MBL behaviour. While there is
no such mapping in 2D, the physics of MBL may be relevant
in this case as well. One can also generalise our model us-
ing spin-1/2 fermions. In this case our model can be identified
with the slave-spin description of the Hubbard model [26, 27],
but without Gauss’ law imposed. With the addition of interac-
tions, classical computations can only access very small sys-
tem sizes in two dimensions (with some exceptions). How-
ever, in experiment, these generalisations are not expected to
present significant extra difficulties.

To conclude, our model offers an ideal setting for simulat-
ing LGT dynamics in two-dimensions in the regimes beyond
classical computation capabilities, with the important feature
of a well defined free-fermion limit which provides theoretical
results in a non-trivial setting.
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