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We study the Kitaev-Heisenberg-Γ-Γ′ model that describes the magnetism in strong spin-orbit coupled hon-
eycomb lattice Mott insulators. In strong [111] magnetic fields that bring the system into the fully polarized
paramagnetic phase, we find that the spin wave bands carry nontrivial Chern numbers over large regions of the
phase diagram implying the presence of chiral magnon edge states. In contrast to other topological magnon sys-
tems, the topological nontriviality of these systems results from the presence of magnon number non-conserving
terms in the Hamiltonian. Since the effects of interactions are suppressed by J/h, the validity of the single parti-
cle picture is tunable making paramagnetic phases particularly suitable for the exploration of this physics. Using
time dependent DMRG and interacting spin wave theory, we demonstrate the presence of the chiral edge mode
and its evolution with field.

There have been few ideas more fertile in recent condensed
matter physics than the notion that band structures in solids
may carry nontrivial topological indices which determine and
protect certain properties of the spectrum of the solid at in-
terfaces [1, 2]. The core idea, formulated in the context of
the integer quantum Hall effect, has led to a proliferation of
novel topological states of matter including topological insu-
lators protected by time reversal or by crystalline symmetries,
as well as Weyl and Dirac semi-metals [3, 4] many of which
have been realized in the laboratory. Analogues of this physics
have been explored in photonic crystals [5], in the mechani-
cal properties of metamaterials [6] and, even in atmospheric
physics [7].

The concepts underlying electronic topological insulators
have potentially very interesting ramifications for our under-
standing of magnetic materials. For example, sharp magnon
bands where they exist in two dimensional ordered magnets
may carry nonzero Chern number with the consequence that
there are topologically protected spin waves at the edge of the
system with a net chirality. A handful of models have been
proposed that realize such Chern bands [8–15]. There is ex-
perimental evidence that such models may be realized in real
materials [14, 16]. What has been lacking on the theoretical
side is a clear demonstration that the chiral edge states can be
robust to the presence of interactions between magnons.

In particular, one important feature that distinguishes elec-
tronic topological insulators from their bosonic analogues is
that, in the latter, interactions are more likely to play an im-
portant role possibly resulting in a breakdown of the single-
particle picture. In the case of the kagome ferromagnet
with Dzyaloshinskii-Moriya, it has been argued that magnon-
magnon interactions broaden the bulk bands on a scale com-
parable to the bulk gap so that the band topology cannot be
understood in terms of single magnons [17]. So the question
remains open whether any model can be found in which the
prediction of chiral edge modes in a magnonic band structure
survives in the strong coupling limit.

In this paper, we propose a novel route to realizing topolog-
ical magnon bands in systems of considerable current interest:
honeycomb magnets with a significant Kitaev exchange [18–

42] some of which may be proximate to quantum spin liq-
uid phases [35, 43]. The model we study has nonvanishing
anomalous (number non-conserving) terms in the quadratic
spin wave Hamiltonian and, in contrast to previous models
of topological magnons, it is these terms that are responsible
for opening up a gap in the spectrum leading to Chern bands.
In addition, we present evidence that the chiral surface states
that are present and topologically protected in linear spin wave
theory survive the presence of magnon-magnon interactions
and hence should be experimentally detectable in principle.
The key to accessing this is to field-tune the system into the
paramagnetic phase so that multi-magnon states are pushed to
energies much higher than the single magnon states. Our time
dependent density matrix renormalization group (DMRG) re-
sults provide a nonperturbative demonstration of the robust-
ness of the chiral edge mode

Model −We consider the Hamiltonian [30, 44]

H = J
∑
〈i, j〉

Si · S j

+
∑
〈i, j〉γ

{
2KSγ

i Sγ
j + Γ

(
Sα

i Sβ
j + Sβ

i Sα
j

)}
− h ·

∑
i

Si (1)

where the indices {α, β, γ} run over components {x, y, z} with
the γ component corresponding to one of the three types
of bond as indicated in Figure 1(a). Models with signifi-
cant K/J has been proposed to underlie the correlated mag-
netism observed in the effective spin one-half systems A2IrO3
(A=Na,Li) [24–26, 30, 32, 37, 44] and α-RuCl3 [29, 33, 35,
40, 45–47] following theoretical work that laid the basis for
the possibility of large compass-type interactions in such hon-
eycomb magnets [22, 23]. A fourth exchange coupling Γ′ is
allowed by symmetry [30, 44, 48]. We postpone discussion of
the effects of the Γ and Γ′ terms until later in the paper and fo-
cus, for now, on the remaining Hamiltonian. We parameterize
this Kitaev-Heisenberg model using angle ϑ so that J = cosϑ
and K = sinϑ.

From now on, we consider the case where the magnetic
field, of magnitude h, is applied parallel to [111] (Fig. 1).
For h greater than some threshold, the moments are fully
polarized in the field direction and we expand the moments
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FIG. 1. (a) The phase diagram of the Kitaev-Heisenberg model as
a function of ϑ and h/S as extracted from the spin wave spectrum.
The region of ordered phases is determined from the gap closure in
the spin wave spectrum while at the boundary of this region the cor-
responding ordering wavevector is indicated. The true semi-classical
phase diagram has small regions, away from the Kitaev points, sep-
arated from the paramagnetic phase by first order transitions and
above the threshold field shown here which are not captured using
our technique [34]. The rest of the phase diagram lies in the fully
polarized phase. The entirety of the polarized paramagnetic region
hosts topologically nontrivial magnons at the semiclassical level. In-
set: honeycomb lattice cluster with 24 sites. The different colored
bonds correspond to the three types of coupling in the Kitaev model
Sγ

i Sγ
j for γ = x (blue), y (green) and z (red) corresponding to the pro-

jections of the cubic axes onto the honeycomb plane. The [111] field
direction, indicated on the figure, is perpendicular to the plane. The
exact diagonalization results presented in this paper were obtained
for the Kitaev-Heisenberg model defined on this cluster. (b) This
panel shows the minimal gap between the spin wave modes. The
wavevector at which the gap is minimal is indicated by the color.

in small fluctuations about this collinear state in Holstein-
Primakoff bosons [49]. The quadratic Hamiltonian that results
at order S is of the form HKH−LSW =

∑
k Υ
†

kM(k)Υk where

Υk =
(
ak bk a†

−k b†
−k

)T
with a and b bosons living on the two

different honeycomb sublattices. The 4×4 Hamiltonian M(k),
which is given explicitly in the Supplementary Material, takes
the form

M(k) =

(
A(k) B(k)
B†(k) AT (−k)

)
, (2)

where the A block contains the number conserving terms a†a
and B contains the number non-conserving terms a†a†. The
eigenproblem for this Hamiltonian, leading to two spin wave
branches ωαk for α = 1, 2, may be solved by performing a
bosonic Bogoliubov transformation.

The phase diagram of the J−K model is shown in Fig. 1(a)

indicating the fully polarized phase and regions of sponta-
neous magnetic order obtained by finding the couplings at
which magnons condense - the translational symmetry of
these phases is then determined by the condensation wavevec-
tor. The precise nature of the ordered states can be found in
Ref. 34.

Non-interacting Magnons. − We first focus on the anti-
ferromagnetic Kitaev point ϑ = π/2 (J = 0). The linear
spin wave dispersions along high symmetry lines are shown
in Fig. 6(a) for h/S = 6. For h/S > 4, the spectrum exhibits
both a nonzero gap to the lowest mode and a gap between the
modes. As h/S → 4 the lowest mode falls to zero across the
entire zone, corresponding to the onset of a classical spin liq-
uid regime, while the highest mode is completely gapped and
dispersive.

Since the two bands do not touch at ϑ = π/2, the Berry
curvature is everywhere well defined (see Supp. Mat. [48]).
The Chern numbers of the two bands at this coupling are ±1
for all h/S ≥ 4 implying the existence of chiral magnon edge
modes. Since the bulk topology is not altered by modifications
to the ground state in the vicinity of the boundary, we may il-
lustrate the phenomenon with a linear spin wave calculation
of the spectrum above the collinear spin state on a slab geom-
etry with zigzag boundaries parametrized by the momentum
along the translation invariant direction. Such a calculation
[48] reveals a pair of modes, each with a well-defined chiral-
ity, running between the bulk bands and with the weight of the
wavefunction of these interband modes concentrated at oppo-
site edges.

We may gain some insight into the mechanism that leads
to the topological magnon bands. The ϑ = 0 Hamiltonian
(K = 0) has only number conserving terms and the two
magnon bands meet at the K point. Inspection of the Hamilto-
nian M(k) shows that the A block contains the two couplings
only in the combination J + 2K

3 so the number non-conserving
terms of the B block must be responsible for the gap opening
between the bands in the magnon spectrum. These terms also
break an effective time reversal symmetry leading to the iden-
tification of the magnon bands with the topological insulator
class D [50].

The observation that the gap closes as 1/h at high fields
suggests that further insight may be gained by carrying out a
Schrieffer-Wolff transformation perturbatively in the anoma-
lous terms to obtain an effective Hamiltonian in the number-
conserving sector. One finds to second order that the nearest
neighbor coupling is renormalized and effective second neigh-
bor hopping terms are generated that are of the same form
as those arising from a bare second-neighbor Dzyaloshinskii-
Moriya exchange coupling. In short, at very high fields, the
spin wave spectrum of the Kitaev model reduces to that of the
honeycomb ferromagnet with second neighbor DM exchange
that is known from earlier work to exhibit Chern bands [11].

We now consider the entire J − K semiclassical paramag-
netic regime. The lower panel of Fig. 1(b) shows that the two
magnon bands touch at four distinct ϑ including ϑ = 0, π
and are otherwise gapped. Away from these lines in ϑ − h,
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FIG. 2. Dynamical correlation function S (k,ω) computed along high symmetry lines for h = 3 (S = 1/2) at the AFM Kitaev point ϑ = π/2.
The intensity scale is logarithmic from 5 × 10−3 to 1. (a) Linear spin wave theory, (b) nonlinear spin wave theory and (c) time dependent
DMRG all with gaussian broadening of the lines for purposes of presentation σω = 0.01. The overlaid points in (c) show single magnon states
obtained from 24 site ED with periodic boundary conditions.

the magnon bands are topologically nontrivial. We further
note [48] that the spin wave spectrum at some ϑ and field
(h − hth(ϑ))/S is identical to the spectrum at ϑ + π and
(h − hth(ϑ + π))/S where hth(ϑ) is the threshold field. The
band topology is preserved by the mapping so, for example,
the ferromagnetic Kitaev point with zero semiclassical thresh-
old field has Chern magnon bands following from results at
the ϑ = π/2 point.

Finally, to make contact with materials, we observe that
in the full J − K − Γ − Γ′ nearest neighbor model of Eq. 1
and Ref. 48 in the fully polarized phase, the linear spin
wave Hamiltonian is related to the Kitaev-Heisenberg model
through a mapping of the parameters J → J − Γ, K → K + Γ

and h → h − 3ΓS so topological magnon bands are expected
to be present in Kitaev magnets in the paramagnetic regime at
least where spin wave interactions may be neglected.

Beyond Linear Spin Wave Theory. − By expanding in
Holstein-Primakoff bosons to order O(1/S 2), one finds three-
boson and four boson terms in the Hamiltonian. The former
arise in an expansion around the collinear ground state owing
to the anisotropic nature of the exchange. Both the three-body
and a set of four-body couplings violate particle number con-
servation and provide a mechanism for the magnons to acquire
a finite lifetime. Upon lowering the field the two magnon
states eventually overlap with the single magnon states so that
one to two magnon decay is kinematically allowed leading to
broadening of the single magnon modes. This process may
also lead to the destruction of the chiral edge mode if the
widths of the bulk bands or that of the edge mode become
comparable to the gap between the magnon bands.

To address the effect of interactions on the bulk spectrum
and chiral edge mode we extend the analysis of the previ-
ous section in three ways (i) perturbatively in the magnon-
magnon interactions to O(1/S 2) in spin wave theory (NL-
SWT) [51–55] and (ii) nonperturbatively using DMRG with
a matrix product operator based time evolution (DMRG +

tMPO) [56, 57] and (iii) with exact diagonalization (ED) of
the Hamiltonian on a 24 site cluster that preserves the lattice
symmetries.

First we examine the dynamical correlation function

S (k,ω) ≡
∑
α

S αα(k,ω) =
∑
α

∑
a,b

〈Sα
a (−k,−ω)Sα

b (k,ω)〉,

(3)
at the ϑ = π/2 point for various fields using LSWT, NLSWT
and DMRG+tMPO. For the latter, the calculations were per-
formed on infinite cylinders with a circumference of 8 sites
(Lx = 4) by a MPO based time evolution of the wavefunction
after a single spin flip is performed on the ground state wave-
function. Results at h = 3 are shown in Fig. 1(a)-(c). The
apparently well-defined. The upper mode has only a small
dispersion at this field and the continuum has a low intensity.
The gap closes only at h ≈ 1.25 (S = 1/2). The supplemen-
tary section shows corresponding plots for the ferromagnetic
Kitaev point, ϑ = 3π/2 [48].

To address the fate of the chiral edge modes that are topo-
logically protected within LSWT, we show DMRG+tMPO
and NLSWT results for a slab geometry with one periodic di-
rection and two open boundaries. Since the introduction of a
boundary destabilizes the fully polarized spin configuration in
the vicinity of the edge, LSWT and NLSWT results were ob-
tained by first solving for the non-collinear classical ground
state on the slab and perturbing about this solution. All re-
sults were obtained for a slab periodic in y with dimensions
Lx = 5 unit cells and length Ly = 71 for the DMRG chosen to
ensure that long enough times could be reached for the requi-
site energy resolution without entanglement spreading to the
y boundaries of the slab.

Fig. 3 illustrates dynamical correlations on the slab for the
different methods introduced above. The slab geometry is
shown in panel (e) and the different rows (a) to (c) show the k
dependent correlations on different lines through the slab in-
cluding the two edges. LSWT for this geometry [Fig. 3(left
column)] shows that the slab is thick enough for the chi-
ral edge modes (which have opposite directions for the two
edges) to be well resolved. Fig. 3 further shows that the chi-
ral edge modes survive in the full nonperturbative interacting
spin model (right) albeit with significant renormalization of
the bulk modes which is almost entirely captured by the inter-
acting spin wave calculation (middle). Panel (d) shows quan-
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FIG. 3. Dynamical correlation functions 〈Sx(−k, x,−ω)Sx(k, x,ω)〉
computed using DMRG+tMPO (right column) on a slab [illustrated
in panel (e)] of width Lx = 5 unit cells and length Ly = 71 and with
periodic boundary conditions imposed along y. The crystal momen-
tum along the translationally invariant direction is denoted by k and
x is the line number [indicated in (e)]. The DMRG+tMPO energy
resolution is ∆ω ≈ 0.03. For comparison, corresponding results are
shown for linear spin wave theory (left column) and O(S 0) nonlinear
spin wave theory (middle column). All calculations were performed
for ϑ = π/2 and h = 3. The plots in each row correspond to different
line numbers (from top to bottom x = 1, 5 and 9). The shading in
each figure indicates the bulk single magnon band widths with the
bulk band gap in between the shaded bands. The chiral modes at the
two boundaries x = 1 (top) and x = 9 (bottom) and their edge char-
acter can been seen through the reduction in the band gap intensity in
the middle of the slab x = 5 (middle) and in panel (d) which shows
the integrated intensity within the bulk band gap in different layers
on the slab. The velocities of the edge modes are opposite at the two
boundaries.

titatively that the intensity between the bulk bands is concen-
trated at the edges.

Thermal Hall Effect. − The presence of a nontrivial Berry
curvature in the magnon bands implies the existence of a ther-
mal Hall signature provided that the Berry curvature is not odd
in momentum. The magnon thermal Hall effect has been in-
vestigated both theoretically and experimentally in a number
of magnets [9, 13, 58–64]. Earlier theoretical work has ex-
plored the thermal Hall response at low fields [65] in the Ki-

FIG. 4. Dimensionless thermal Hall conductivity κ̃xy/T as a function
of temperature at the ferromagnetic Kitaev point (S = 1/2), K = −1,
at fields h = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4 to be read in the
arrow direction. The inset shows the dispersions of the bands at h =

0.1. The color of the bands indicates the Berry curvature with the
scale corresponding to the color bar.

taev honeycomb model. Here we extend the analysis to Kitaev
systems in the high field regime. Fig. 4(b) shows the dimen-
sionless thermal Hall conductivity κ̃xy/T [48] as a function of
temperature and for various magnetic fields at ϑ = 3π/2. The
shape of the function κ̃xy/T can be understood as follows. As
a function of field, the magnon bands are gapped out resulting
in an exponential decrease in the thermal Hall signature in h.
The sign change in κ̃xy at low temperatures and fields reflects
the variation in the Berry curvature in momentum space - the
Berry curvature is positive in the vicinity of Γ in the lowest
band, this being is the maximally thermally occupied state at
very low temperatures, while it changes sign for larger mo-
menta. As T → ∞, κ̃xy saturates to a constant value. It will
be interesting to examine recent thermal Hall signatures in α-
RuCl3 in the light of these results [66].

Discussion. − The Hilbert space of a bosonic system en-
compasses an infinite tower of multiparticle excitations. In in-
sulating magnets, the single magnon sector is meaningful only
when the number non-conserving terms in the magnon Hamil-
tonian are suppressed, for example, by symmetry, in powers
of 1/S , or when there is a separation of energy scales between
the many-magnon states. It is the latter case that we have ad-
vocated for in this paper as a means of exploring topologically
protected magnon edge states. By field-tuning the magnet into
a paramagnetic phase, the single magnon branches are gapped
out and linewidths are suppressed. We have studied the con-
crete case of spin-orbit coupled honeycomb magnets with sig-
nificant K, J, Γ and Γ′ terms finding that the paramagnetic
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regime generically has Chern magnon bands with chiral edge
states. The topological nontriviality is enforced by the anoma-
lous terms in the quadratic Hamiltonian. We anticipate that
future experimental developments will facilitate direct mea-
surements of the edge states in such systems.
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SUPPLEMENTARY MATERIAL FOR ‘TOPOLOGICAL MAGNONS IN THE KITAEV HONEYCOMB MODEL AT HIGH
FIELDS’

SYMMETRY-ALLOWED EXCHANGE HAMILTONIAN

Here we will derive the symmetry allowed terms for the edge-shared octahedral compounds (see also Ref. 30 and 44). The
Ir4+ and Ru3+ in the center of oxygen octahedra forms a honeycomb lattice. Taking into account the octahedral environment, the
symmetry group of a single bond consists of the inversion, the two-fold rotation around the bond, and their composition, a mirror
plane which is perpendicular to the bond. The point group at the center of the hexagon is D3d, generated by the S 6 rotoreflection
(we note that S 3

6 is the inversion) and the mirror plane. The point group at the Ir site is D3, with a C3 threefold rotation and a C′2
rotation as generators.

First, let us consider the x bond in the geometry presented in Fig. 5. The inversion at the center of the bond exchanges the
two sites without affecting the spin components, Sα

1 ↔ Sα
2 . The C2 rotation does not exchange the sites; it acts only on the spin

components as Sx → −Sx [the Sα component of the spin is perpendicular to the α = x, y, z bond and, with the constraint that
the components form an orthogonal basis, there are eight possible choices of axis convention out of which we have chosen one
(Fig. 5)], Sy → −Sz, and Sz → −Sy. We can construct the following 4 invariants:

Sx
1Sx

2, (4)
Sy

1Sy
2 + Sz

1Sz
2 (5)

Sz
1Sy

2 + Sy
1Sz

2, (6)
Sx

1Sy
2 + Sx

1Sz
2 + Sy

1Sx
2 + Sz

1Sx
2. (7)

Adding them up with a suitable coefficients we arrive to

Hx = 2KSx
1Sx

2 + JS1 · S2 + Γ
(
Sz

1Sy
2 + Sy

1Sz
2

)
+ Γ′

(
Sx

1Sy
2 + Sx

1Sz
2 + Sy

1Sx
2 + Sz

1Sx
2

)
(8)

The inversion symmetry about the bond centers prevents DM interactions.
Next, we use the C3 rotation about site 1 to get the Hamiltonian for the y bond, as it cyclically exchanges the three spin

components, Sx → Sy → Sz → Sx, furthermore site 1 remains, and site 2 becomes site 3:

Hy = 2KSy
1Sy

3 + JS1 · S3 + Γ
(
Sx

1Sz
3 + Sz

1Sx
3

)
+ Γ′

(
Sy

1Sz
3 + Sy

1Sx
3 + Sz

1Sy
3 + Sx

1Sy
3

)
, (9)

and a similar form for theHz. This is the Hamiltonian first established in Refs. 22, 23, 30, and 44.
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4

3

2

1
x z

y

Sx

Sy

Sz

L1

L2

FIG. 5. Schematic of the lattice structure: the magnetic sites (black circles) in octahedral environment (magenta) form a honeycomb lattice. The
x (red bonds), y (blue), and z (green) Kitaev interactions are indicated. The spin components Sx, Sy, and Sz form an orthogonal bases, shown
on the right. L(1) and L(2) are the two components of rotated spins used to derive the spin wave Hamiltonian, when the L(3) is perpendicular to
the honeycomb plane and parallel to the external field direction [111]. The numbers 1,2,3, and 4 denote lattice sites used in the text.

LINEAR SPIN WAVE THEORY

The honeycomb lattice is triangular Rmn =
(
m − (n/2),

√
3n/2

)
with a two site basis. We take the bonds to be

δx = (0, 1) ,

δy =

− √3
2

,−
1
2

 ,

δz =

 √3
2

,−
1
2

 ,

As outlined in the main text, we can define the following vector of the bosonic operators

Υk = (ak, bk, a†
−k, b†

−k) . (10)

Then the linear spin wave Hamiltonian can also be cast into the form

HLSW =
1
2

∑
k∈BZ

Υ
†

k · HLSW(k) · Υk (11)

For the Kitaev-Heisenberg model we find [34]

HKH−LSW(k) =

(
A(k) B(k)
B†(k) AT (−k)

)
(12)

where

A(k) =

 −3JS − 2KS + h
(
J + 2K

3

)
S

(
eik·δx + eik·δy + eik·δz

)(
J + 2K

3

)
S

(
e−ik·δx + e−ik·δy + e−ik·δz

)
−3JS − 2KS + h

 (13)

B(k) =

 0 2KS
3

(
eik·δx+

2πi
3 + eik·δy− 2πi

3 + eik·δz
)

2KS
3

(
e−ik·δx+

2πi
3 + e−ik·δy− 2πi

3 + e−ik·δz
)

0

 (14)
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(b)

FIG. 6. (a) Magnon dispersion relations along high symmetry lines, as marked in the upper panel, for three different fields h/S = 4, 5, 6 at the
isotropic AFM point ϑ = 0. Panel (b) shows the spin wave energies as a function of field at three high symmetry points, illustrating the linear
dependence of the lowermost mode at the Γ, K and M points.

In the main text, we parametrized the couplings using ϑ such that J = cosϑ and K = sinϑ.
It is convenient to introduce

γ0,k =
1
3

(e−ik·δx + e−ik·δy + e−ik·δz ), (15)

γ1,k =
1
3

(e−ik·δx−(2πi/3) + e−ik·δy+(2πi/3) + e−ik·δz ), (16)

γ2,k =
1
3

(e−ik·δx+(2πi/3) + e−ik·δy−(2πi/3) + e−ik·δz ), (17)

satisfying the relations γ∗0,k = γ0,−k, γ∗1,k = γ2,−k, and γ∗2,k = γ1,−k so that

A(k) = h
(

1 0
0 1

)
+ (3J + 2K)S

(
−1 γ∗0,k
γ0,k −1

)
, (18)

B(k) = 2KS
(

0 γ∗1,k
γ2,k 0

)
. (19)

Mapping ϑ→ ϑ + π

Under the mapping ϑ → ϑ + π, the couplings flip sign. There is a simple relationship between the spectra of the linear spin
wave Hamiltonian under this mapping when combined with a field redefinition h→ h − 6JS − 4KS , that preserves the diagonal
matrix elements, and k→ −k. This whole transformation can be undone by a unitary transformation of the form


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

It follows that, under the mapping, as measured from the threshold field the spectrum is left unchanged.
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The Role of the Γ and Γ′ Terms

The Γ and Γ′ terms are symmetric exchange couplings that are allowed by the symmetries of the honeycomb lattice as
discussed above.

For fully polarized moments in the [111] direction, the Γ and Γ′ couplings merely effect the following mapping on the J, K, h
model:

K → K + Γ − Γ′ , (20a)
J → J − Γ , (20b)
h→ h − 3ΓS − 6Γ′S . (20c)

In other words, all the results we obtained for the Kitaev-Heisenberg model can be extended to the JKΓΓ′ model using the
replacement rules above.

The canonical transformation

In this section, we examine the linear spin wave theory at high fields and systematically integrate out the number non-
conserving terms in powers of 1/h to obtain an effective hopping Hamiltonian for the magnons.

To proceed, we look for a canonical transformation

Heff = eWHe−W

= H + [W,H] +
1
2

[W, [W,H]] + · · · (21)

where the operatorW is chosen such that the transformation eliminates the magnon number non-conserving anomalous terms
to O(1/h) instead capturing their effect to this order in terms of a pure hopping Hamiltonian. This is achieved by choosing

W =
KS
h

∑
k∈BZ

(
γ∗1,ka†kb†

−k − γ1,kakb
−k

)
, (22)

or, in the matrix notation we used above (Eq. 11) for the linear spin wave Hamiltonian,

W(k) =
1

2h

(
0 B(k)

−B†(k) 0

)
. (23)

The effective Hamiltonian is then characterized by the

Aeff(k) = A(k) −
2K2S 2

h

(
γ∗1,kγ1,k 0

0 γ∗2,kγ2,k

)
, (24)

Beff(k) = −
K(3J+2K)S 2

h

(
γ0,kγ

∗
1,k + γ∗0,kγ2,k −2γ∗1,k
−2γ2,k γ0,kγ

∗
1,k + γ∗0,kγ2,k

)
, (25)

matrices. The canonical transformation generates an onsite correction and a second neighbor Dzyaloshinskii-Moriya term ∝
K2S 2/h in the Aeff(k). The anomalous term Beff(k) is 1/h and can be safely neglected in high fields, so the problem reduces to
the diagonalization of the Aeff(k) 2×2 matrix. The energies of the magnon excitations of the 4×4 and the effective 2×2 problem
are identical including the 1/h corrections.

We note in passing that the matrix corresponding to the commutator of operators [W,H] is

W · η · H − H · η ·W . (26)

Chern Number

The Aeff(k) we need to diagonalize can be expressed as

Aeff =d0(k)1 +
1
2

d(k) · σ , (27)
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where

d0(k) = h − (3J + 2K)S −
K2S 2

h

(
γ∗1,kγ1,k + γ∗2,kγ2,k

)
, (28)

and

d(k) =


(3J + 2K)S (γ∗0,k + γ0,k)
i(3J + 2K)S (γ∗0,k − γ0,k)
− 2K2S 2

h

(
γ∗1,kγ1,k − γ

∗
2,kγ2,k

)
 . (29)

The σ = (σx,σy,σz) is a vector of the Pauli matrices, so the d(k) acts as a fictitious magnetic field in the Brillouin zone. At each
k we have the eigenvalues

ω±(k) = d0(k) ±
1
2

d(k) , (30)

where d(k) = |d(k)|. Each of these eigenvalues forms a band in the Brillouin zone, with the spacing between the bands given by
d(k). The two bands can only touch when |d(k)| = 0, which happens if K = 0 or 3J + 2K = 0.

The Berry curvature for the 2 × 2 problem is given by

F xy
± (k) = ±

i
2

d(k)
d(k)3 ·

(
∂d(k)
∂ky

×
∂d(k)
∂kx

)
(31)

= ±
i
2

d̂(k)·
(
∂d̂(k)
∂ky

×
∂d̂(k)
∂kx

)
, (32)

where d̂(k) = d(k)/d(k) is a unit vector. The Chern number of the band ± is then

C± =
1

2πi

∫
BZ

dkxdky F xy
± = ±Ns , (33)

where Ns measures the number of skyrmions (topological defects) in the d field, as it follows from Eq. (32).
In the case of the Kitaev-Heisenberg model, introducing the notation

uc(k) = cos k·(δz−δy) + cos k·(δx−δz) + cos k·(δy−δx),
us(k) = sin k·(δz−δy) + sin k·(δz−δy) + sin k·(δz−δy), (34)

the expressions in the Berry curvature, Eq. (31), are

d·
(
∂d
∂ky
×
∂d
∂kx

)
= −

4(3J+2K)2K2S 4

27h

[
(3−uc(k))2−u2

s(k)
]

, (35)

d2 =
4
9

(3J+2K)2S 2(3 + 2uc(k)) +
16
27

K4

h2 u2
s(k). (36)

The triple product, Eq. (35), is negative semidefinite in the whole Brillouin zone (it is 0 for k = 0). The Chern number is
therefore always finite, apart from the cases when K = 0 (the Heisenberg model), and when 3J + 2K = 0. In large fields, the
F xy
± (k) is strongly peaked at the K points, the corners of the hexagonal Brillouin zone.

Thermal Hall conductivity

In this section, we apply the expression for thermal conductivity

κxy =
1
β

∑
n=±

∫
BZ

d2 k c2(ρn)
F xy

n (k)
i

, (37)

derived by Matsumoto et al. [59], to the case of the Kitaev model. β = 1/T is the inverse temperature and

ρn =
1

eωnβ − 1
,

c2(ρ) =

∫ ρ

0
dt ln2(1 + t−1) . (38)
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Since the upper and lower bands have Berry curvatures with opposite signs, F xy
+ (k) = −F xy

− (k), the expression for the thermal
Hall effect simplifies to

κxy =

∫
BZ

d2 k
c2(ρ+) − c2(ρ−)

β

d(k)
d(k)3 ·

(
∂d(k)
∂ky

×
∂d(k)
∂kx

)
. (39)

Since in large magnetic field the band dispersions and splittings are much smaller than the gap between the bands and the ground
state, ω+ − ω− � d0, we expand Eq. (39) in d/d0:

c2(ρ+) − c2(ρ−) =

∫ ρ+

ρ−

dt ln2(1 + t−1),

≈ (ρ+ − ρ−) (d0β)2 , (40)

where the difference of Bose occupation numbers is

ρ+ − ρ− = −
dβ

2 sinh2( d0β
2 )

+ O
(
d3

)
, (41)

so that

1
β

[
c2(ρ+) − c2(ρ−)

]
≈ −

(d0β)2

2 sinh2( d0β
2 )

d . (42)

Eventually, we get the following simple expression for the thermal Hall conductivity:

κxy = R(d0β)κxy
∞ , (43)

where

R(x) =

(
x

2 sinh x
2

)2

(44)

and

κ
xy
∞ =

∫
BZ

d2 k
2

d(k)2 d(k) ·
(
∂d(k)
∂kx

×
∂d(k)
∂ky

)
,

= 16π
S 2K2

h
ln

cK2S
h|3J + 2K|

+ · · · (45)

in the leading order in 1/h, where c is a constant of order unity. The temperature dependence stems purely from R(d0β). At
low temperatures, the temperature dependence is thermally activated, while at high temperatures R → 1 and the conductivity
saturates, with κxy

∞ being the high temperature value.
In Fig. 4 in the main text, we show the low temperature thermal Hall conductivity as computed from Eq. 37.

NON-LINEAR SPIN-WAVE THEORY

In this section we outline the calculation of the dynamical structure factor in non-linear spin-wave theory. The starting point
is the Holstein-Primakoff expansion [67], organized in powers of 1/S (factoring out the overall S 2 scaling). Linear spin wave
theory appears when truncating to O(1/S ). To go to O(1/S 2), one must consider the effects of magnon-magnon interactions,
including three- and four-body terms in the Holstein-Primakoff bosons (magnons).

The dynamical structure factor at O(1/S 2) requires the computation of the magnon Green’s function as well as several higher
order dynamical correlation functions. It is useful to consider three distinct pieces: the transverse-transverse part which involves
only the magnon Green’s function, G(k,ω), the transverse-longitudinal parts which involve three-magnon correlation functions
and the longitudinal-longitudinal parts which involve four-magnon correlation functions [54]. While the transverse-transverse
part has O(1/S ) contributions, the other two parts appear first at O(1/S 2). We note that the Green’s function also appears in
the transverse-longitudinal part of the dynamical structure factor, while the longitudinal-longitudinal part involves only the free
magnon Green’s function at leading order [54].
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Typically, the transverse-longitudinal and longitudinal-longitudinal parts are small relative to the leading transverse-transverse
contributions. The central ingredient is then (retarded) magnon Green’s function [51]

G(k,ω) =
[
(ω + i0+)η −M(k) − ΣM(k,ω)

]−1 , (46)

where M(k) is the linear magnon dispersion matrix (see Eq. (2) of the main text) and η = diag(+1,−1) is due to the bosonic
Bogobiulov transformation [51]. The self-energy, ΣM(k,ω), appears due to the magnon-magnon interactions and can be evalu-
ated perturbatively in powers of 1/S , starting from the solution of the linear spin-wave problem encoded in M(k). This Green’s
function and the self-energy are both matrices with sublattice indices and have both normal and anomalous contributions [51, 52].

We identify two distinct types of contributions to the self-energy: static (frequency independent) and dynamic (frequency
dependent). The static contributions arise from Hartree-Fock-like diagrams involving the four-magnon interactions as well as
(in principle) tadpole-like diagrams arising from the three-magnon interaction. The dynamic contributions arise purely from
the three-magnon interactions. In addition to renormalizing the one-magnon spectrum they are also responsible for magnon
decay [52, 53], possibly endowing the one-magnon states with finite lifetimes.

The Holstein-Primakoff expansion is formally controlled in 1/S , and is thus a systematic approximation scheme when S � 1.
Alternatively, it can be viewed as an expansion in the magnon density ρ ≡ 〈a†a〉 /(2S ), and is controlled in the limit, ρ � 1.
For arbitrary S this limit can be reached systematically through the application of a large magnetic field. For small S or for
small fields however its validity is more limited. Carried to order O(1/S 2) two key issues are apparent: (a) it is confined by the
classical phase boundaries and (b) the two-magnon spectrum does not reflect the renormalization of the one-magnon spectrum
due to interactions. While one could alleviate some of these issues by proceeding to higher order in 1/S , the technical complexity
of such calculations is prohibitive both computationally and analytically.

Instead, we adopt a self-consistent approach, allowing the static part the Green’s function to renormalize the linear spin-wave
dispersion. Specifically, we introduce a renormalization

G(k,ω) =
[
(ω + i0+)η −Meff(k) − (ΣMeff

(k,ω) − δM(k))
]−1 , (47)

where Meff(k) ≡ M(k)+δM(k) and we take (formally) δM(k) ∼ O(1/S 2). Note that the self-energy is evaluated using the energies
and eigenvectors associated with renormalized free problem, Meff(k), not the original M(k). The renormalization, δM(k), is then
chosen to cancel the static, Hartree-Fock-like contributions to the self-energy. This procedure does not not strictly include only
O(1/S 2) contributions and is thus in some sense uncontrolled. However, using such an approach we can account for some of
the change in the one-magnon energies due to interactions in the free problem, as well as access regions of the phase diagram
outside the usual classical phase boundaries, without having to go to higher order in 1/S .

Applied to the problem at hand, for the bulk case we assume the system is in the fully field polarized state with the magnetic
moments aligned with the applied [111] field. Due to the anisotropic Kitaev exchange, even in this colinear state there are both
three- and four-magnon interactions. The three-magnon interactions generically induce spontaneous decay of the one-magnon
excitations when they overlap with the two-magnon continuum [55].

Our implementation considers a finite system of size N = 2L2. We first solve for δM(k) for each wave-vector through self-
consistent iteration (terminating when the maximum change in the correction is . 10−8). In the classically allowed regions we
can initialize the iteration trivially with δM(k) = 0. However, to access the critical field hc = 2 for K = +1, we begin with
small chemical potential δM(k) = µ1 where µ ∼ 0.1 to avoid the classical instability (the final result is independent of the choice
of µ). Once Meff(k) is determined for each wave-vector, we then compute ΣMeff

(k,ω) on a fine grid in frequency, including a
small width 0+ → 10−3 to resolve any singularities. Performing the inversion in Eq. (47) numerically (including again a small
width), we then obtain G(k,ω) which determines the dominant transverse-transverse part of the dynamical structure factor. The
remaining free Green’s functions and sums involved in the remaining parts [54] are evaluated similarly. The results in the main
text show the full dynamical structure factor S (k,ω) (as given in Eq. (3) of the main text) including the transverse-transverse,
transverse-longitudinal and longitudinal-longitudinal contributions.

For the case with open boundaries we consider systems of N = 2LW sites where W = 5, following the same strategy to
evaluate the dynamical structure factor as in the bulk case . The main modification necessary arises at the classical level from
the presence of open boundaries. Since the spins at the boundaries have fewer neighbors than those in the bulk, the classical
ground state is no longer uniform, with the moment direction deviating from [111] as one approaches the edges. Due to the lower
symmetry, the static tadpole diagrams are non-zero and are included in the self-consistent iteration described above. The presence
of these diagrams implies that the one-magnon expectation values do not vanish and thus there is finite O(1/S 2) correction to the
canting of the moments away from [111]. In addition, due to the imposition of open boundaries, the classical critical field is also
lowered, with hc < 2 for K = +1. As for the bulk case, the results in the main text show the layer-resolved dynamical structure
factor, including the transverse-transverse, transverse-longitudinal and longitudinal contributions. To compare directly with the
DMRG results, the definition of the layer-dependent structure factor only includes S xx(k,ω), as described in Fig. 3 of the main
text.
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FIG. 7. Dynamical structure factor at the antiferromagnetic Kitaev point ϑ = π/2 at fields h = 2, 3, 4 from top to bottom. The h = 3 figure
appears also in the main text. The intensity scale is logarithmic from 5× 10−3 to 1. At each field, results are shown for linear spin wave theory
(left), nonlinear spin wave theory (middle) and time dependent DMRG (right). The red points in the right-hand plots are exact diagonalization
results for the symmetric 24 site cluster.

BULK DYNAMICAL STRUCTURE FACTORS

Fig. 7 shows the dynamical structure factors for h = 2, 3, 4 at the antiferromagnetic Kitaev point using linear spin wave theory,
interacting spin wave theory to 1/S 2 and time dependent DMRG along high symmetry lines. The results for h = 3 are shown
in the main text. Linear spin wave theory disagrees significantly at all these fields - the bandwidth is overestimated - while
interacting spin wave theory to 1/S 2 agrees very well at h = 3 and h = 4 with the DMRG. At h = 2 the lowest magnon band is a
flat band at zero energy (the calculation here is actually for h = 2 + ε) while the fully polarized state is stable in the interacting
spin wave calculation. However, at h = 2 the 1/S 2 and DMRG calculations are mutually inconsistent in both the single magnons
and the higher energy continuum scattering. Exact diagonalization results for the 24 site hexagonal cluster in the single magnon
sector agree very well with the DMRG.

A similarly organized set of figures are shown for the ferromagnetic Kitaev point at h = 1, 2. While linear spin wave theory has
the symmetry explained in Section , matching the spectra at the ferromagnetic and antiferromagnetic Kitaev points, this mapping
breaks down in the presence of interactions and, indeed, the ϑ = π/2 and 3π/2 results are dramatically different. In particular,
a multiparticle continuum visibly overlaps the upper single magnon bands in the DMRG causing considerable broadening. This
is partially captured within interacting spin wave theory.

We draw the attention of the reader to the high intensity broad and nearly flat intensity visible at h = 2 in the DMRG around
ω = 3 (panel 7(c) in the top row). This feature of the multimagnon intensity persists to higher fields. The precise nature of this
object is a question that we leave for future work.
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FIG. 8. Dynamical structure factor at the ferromagnetic Kitaev point ϑ = 3π/2 at fields h = 1, 2 from top to bottom. The intensity scale is
logarithmic from 5 × 10−3 to 1. At each field, results are shown for linear spin wave theory (left), nonlinear spin wave theory (middle) and
time dependent DMRG (right).

DYNAMICAL CORRELATIONS IN THE SLAB GEOMETRY

Here we report further slab geometry results for the dynamical correlations as computed using linear spin wave theory, inter-
acting spin wave theory and time dependent DMRG. The slab is described in the main text and illustrated at the bottom of Fig. 3
there.

Fig. 9 shows results at the antiferromagnetic Kitaev point at h = 2 (top) and h = 4 (bottom). The case of h = 3 is given in
the main text. At h = 4 the finite size progenitor of the chiral mode on the semi-infinite slab is clearly visible in panel (a)(left)
running between the bulk bands with highest intensity to the left of that panel. The principal result of including interactions is a
narrowing of the bandwidth: the same mode being visible in (b) and (c). The middle of the slab has visible but lower intensity
between those bands that persist into the bulk geometry. The lower set of panels again show the chiral mode - this time on the
right of each panel. At h = 2, interactions play a much larger role because the lower threshold to two magnon states begins
within the upper single magnon bands. The result is that there is considerable broadening of the upper single magnon modes.
Nevertheless, the edge state appears to survive the presence of interactions.

The symmetry between noninteracting magnon spectra in the bulk under ϑ → ϑ + π ceases to hold on the slab geometry
because the presence of an edge causes the ground states to be affected by the change in the coupling. We find that the chiral
edge mode on the open geometry is not as clearly visible in the ferromagnetic Kitaev model as it is in the antiferromagnetic
case. In Fig. 10 the chiral mode appears as inter-bulk band intensity in panel (a) with the same sign of the velocity as in (a) of
Fig. 9. At h = 2, interactions bring about a fairly mild renormalization of the bands while, at h = 1, the multimagnon continua
are clearly visible. The upper bulk single magnon modes are destroyed through coupling to these additional states while the
whole block of single magnon states is pushed to lower energies. Despite this dramatic effect of interactions, once again, the
edge mode appears to survive.
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FIG. 9. Dynamical correlations on a slab geometry at the antiferromagnetic Kitaev point ϑ = π/2 at fields h = 2, 4 from top to bottom. At each
field, results are shown for linear spin wave theory (left), nonlinear spin wave theory (middle) and time dependent DMRG (right).
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FIG. 10. Dynamical correlations on a slab geometry at the ferromagnetic Kitaev point ϑ = π/2 at fields h = 2, 4 from top to bottom. At each
field, results are shown for linear spin wave theory (left), nonlinear spin wave theory (middle) and time dependent DMRG (right).


