
Loosely coherent searches for medium scale coherence lengths

Vladimir Dergachev1, 2, a

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstrasse 38, 30167 Hannover, Germany
2Leibniz Universität Hannover, D-30167 Hannover, Germany

The search for continuous gravitational waves demands computationally efficient algorithms that
can handle highly non-linear parameter spaces. Loosely coherent algorithms establish upper limits
and detect signals by analyzing families of templates as a single unit. We describe a new computa-
tionally efficient loosely coherent search intended for all-sky searches over medium scale coherence
lengths (3 – 300 hours).

I. INTRODUCTION

In this paper we describe a novel Loosely coherent al-
gorithm for detecting continuous almost monochromatic
signals. Such signals are searched for in data collected
by LIGO and Virgo gravitational wave interferometers.
The data under analysis typically spans several months
and searches [1–3] look for signals in the 20–2000 Hz fre-
quency band.

Carrying out an all-sky search in this data typically
requires several months of computation on large clus-
ters. Large numbers of outliers are produced in initial
stages due to imperfect data and must be dealt with in
subsequent analysis. A successful search must combine
efficient algorithms with top-notch technical implemen-
tation and excellent search execution.

In this paper we focus on the mathematical aspects of
the newly implemented Loosely coherent code. Such de-
scription eases reuse of the algorithm in other searches,
and can also serve as a reference for results papers using
the new algorithm. We present validation results of a
search pipeline built using this algorithm. A speed com-
parison to previous implementation shows more than 10x
speedup.

The Loosely coherent algorithms were introduced in [4],
as a general approach to signal detection based on explor-
ing regions of parameter space at once. This contrasts
with methods that focus on detecting a single template
[5] and then iterate over template banks. These meth-
ods were first applied to outlier followup and to searches
of small sky areas. The new loosely coherent algorithm
described in this paper has been developed to carry out
all-sky searches and to deal with scalability issues discov-
ered in applications of early loosely coherent methods.

The algorithm implementing optimal statistic depends
strongly on parameter space region morphology. For ex-
ample, if the family of potential signals is only described
by occupied bandwidth then the optimal statistic is a
filter extracting this bandwidth followed by a power de-
tector [4, 6]. On the other hand, long term drifts in the
bandwidth window can be accommodated by dynamic
programming algorithms which are fundamentally non-
linear [3, 7, 8].
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Some parameter spaces allow themselves to be split
into regions for independent analysis without compromis-
ing efficiency. Such regions can be labeled by a represen-
tative signal waveform which can then be considered as
a “thick” template. This situation occurs in all-sky anal-
ysis where signal modulations are bounded, and usually
no larger than 10−4 · f at high signal frequencies f .

For example, one can split the bandwidth into 1/8 Hz
bands which, effectively, creates a thick template bank.
In practice, the partition is usually much finer and is done
in all the search parameters. This is necessary to reduce
memory footprint of practical implementation.

The signal families describing potential continuous
gravitational wave signals generated by rotating neutron
stars are complex. Even in the case of an isolated neutron
star the incoming gravitational wave is expected to slowly
drift in frequency, which is usually approximated with a
linear term and sometimes quadratic term. By the time it
reaches the detector the signal undergoes strong Doppler
shifts from complex motion1 of the detector around Earth
rotation axis and along Earth orbit around the Sun Rel-
ativistic effects come into play and the signals can be
delayed due to gravitational field of Sun or other bodies
[9].

The first implementation [4, 10] of a Loosely coher-
ent algorithm computed power P [f ] as a function of fre-
quency f . The power function P [f ] is quadratic sum of
input data {at,f}:

P [f ] =
∑
t1,t2

at1,f+δf(t1)a
∗
t2,f+δf(t2)Kt1,t2,f (1)

Here t1 and t2 denote times of frequency bins {at,f} of
short Fourier transforms (SFTs) of the data acquired by
the detectors, f is the frequency of the desired signal,
δf(t) is the frequency shift of the signal received by the
detectors.

This initial implementation focused on kernels Kt1,t2,f

with non-zero entries in a narrow diagonal band |t1 −
t2| < T , where T depended on effective coherence length
(usually a constant fraction of T ) of the search. The

1 Exact computation of phase corrections requires transcendental
functions, see [9] for a computationally efficient approximation
by polynomials
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input data was phase-corrected so that transformed data
approximated a heterodyned signal that would have been
received in Solar System Barycenter (SSB) frame[4]. The
Lanzcos kernel was used that combined a low-pass filter
and a power detector.

This approach made sense because that Loosely coher-
ent algorithm was used for followup of outliers produced
by an algorithm that computed power in individual SFT
bins and required no phase corrections. The diagonal
band was initially very short and then increased in sub-
sequent stages.

However, as the width of diagonal band (and effective
coherence length) was increased the speedup techniques
would eventually become ineffective and the computa-
tional demands would scale quadratically with coherence
length even for a single template, due to summation over
two indices t1, t2. Thus the algorithm was only practi-
cal for short coherence lengths (of a small multiple of
SFT length) or when few templates would be searched
compared to previous stages, such as during followup of
outliers.

Long coherence lengths were explored with Loosely
coherent algorithm designed for well-modeled signals
[11], which scaled to coherence lengths of more than
106 s. While longer coherence length generally results in
more sensitivity, the improvement in signal-to-noise ratio
(SNR) scales only as forth root of increase in coherence
length, while the size of parameter space scales as a forth
power or faster.

Even though Loosely coherent algorithm for well-
modeled signals was spending less than 1500 CPU cy-
cles per template (amortized over the entire computa-
tion) [11] the forth power scaling made searches of large
portions of the sky impractical on contemporary com-
puter clusters.

This paper describes how to construct Loosely coher-
ent algorithm for medium scale coherence lengths of 3 –
300 hours, assuming input data of 3600 s short Fourier
transforms (SFTs). The new algorithm is practical for
all-sky searches using several hours long coherence time
on contemporary computer clusters.

II. LOOSELY COHERENT SUM

In order to construct a practical algorithm we must
find an efficient way to compute the power sum in equa-
tion 1.

For long coherence length the power sum kernel
Kt1,t2,f must have a lot of non-zero terms making
straightforward summation impractical. A well-known
way [6] to speed up computation is to decompose total
power into the sum of squares of coherent combinations
of phase-corrected terms:

P [f ] =
∑
t1

|CS[t1, f ]|2 (2)

with coherent sums CS given by

CS[t1, f ] =
∑
t2

wt1t2e
iφ(t2)at2,f+δf(t2) (3)

The effective coherence length is then governed by the
number of terms in the coherent sum CS and the com-
putational load will scale linearly at this stage of the
computation.

Both weights wt1t2 and phase corrections φ(t2) vary
over parameter space, however variation of weights is
very gradual, so it makes sense to design our statistic
assuming weights can be constant and precomputed over
extended area. We will discuss weights in more detail in
the subsequent section.

Because we are only interested in the absolute value
of the coherent sum the variation of phase corrections
over parameter space reduces to a second order difference
operator:

φ(t, p1)−φ(t, p2) ∼ φ(t, p1)−φ(t0, p1)−φ(t, p2)+φ(t0, p2)
(4)

Here p1 and p2 are two locations in the parameter space,
t is some point of time for which we are interested in
a phase correction, and t0 is some fixed reference time,
such as a midpoint of data being used in a single coherent
sum. Because we are interested in power, the constant
phase correction φ(t0, p1)− φ(t0, p2) can be neglected.

The second order difference operator removes large
portion of nonlinearity from Barycentric corrections,
with the remainder described as relatively simple alge-
braic expression in functions of time and sky location [9].

Thus the differences are predictable based on local
data. One straightforward way to take advantage of this
is with an associative cache of previously computed co-
herent sums - if the expected phase differences are close
enough we can reuse already computed result.

A more sophisticated approach being considered for fu-
ture implementation is to use the explicit algebraic form
of the differences [9] to compute power sums over a wider
area on the sky. The algebraic form (or, at least, knowl-
edge of the Lipschitz constant) is also essential for ap-
plication of cubic algorithm [12], which performs global
optimization.

III. COHERENT SUM WEIGHTS

We now address the question of how to pick weights
when the noise level of underlying data at,f varies. Be-
cause the weights in the different coherent sums can (and
should be) chosen independently we will focus on a single
coherent sum at a time.

To simplify notation we focus on a specific frequency
f and introduce coherent sum elements zi which are
rescaled from at,f so that the signal contributes the same
amplitude and phase Aeiφ to each zi. The index i runs
over individual SFTs used in the coherent sum. Because
amplitude modulation needs to be backed out (discussed
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in the following section) the variance of noise component
of zi is expected to not be stationary.

We thus estimate power by computing absolute
squared value of the weighted coherent sum CS

P = P0 + |CS|2 = P0 +

∣∣∣∣∣
N∑
i=1

wizi

∣∣∣∣∣
2

(5)

where P0 denotes contribution of other coherent sums,
weights wi are real and non-negative, while the coherent
sum elements zi are usually complex numbers. Normal-
ization requires that the weights wi should sum to 1.

Let us assume that the noise in zi is uncorrelated. We
will now find the optimal set of weights wi that mini-
mizes U = Var |CS|2. This choice of the utility function
is somewhat arbitrary, but the variance works well for
common distributions like Gaussian or exponential and
is easy to compute. It is not appropriate for quantifying
spiky noise - this is best analyzed with other data quality
techniques. In our case, we are interested in the behavior
of the middle portion of the distribution.

Also, ideally, we should optimize the variance of the en-
tire power sum P , but this would introduce dependence
between weights of separate coherent sums when the co-
herent sums use overlapping stretches of data. In case
of no overlap the coherent sums can be assumed inde-
pendent and optimizing VarP is the same as separately
optimizing variance of each coherent sum.

We compute

U = Var |CS|2 = Var

(
N∑

i,j=1

wiwjziz̄j

)
=

=
N∑
i=1

w4
iVar |zi|2+

+4
N∑

1=i<j

w2
iw

2
j

(
E(<zi)2 E(<zj)2 + E(=zi)2 E(=zj)2+

+2E(<zi=zi)E(<zj=zj)− (< (E zi E z̄j))2
)

(6)
Let us consider the situation of background noise

with no signal. In this case the phases would be ran-
domly distributed and we can assume E<zi = E=zi =
E<zi=zi = 0. Also randomness of phases implies
E(<zi)2 = E(=zi)2 = E |zi|2/2. Thus

Ubg =
N∑
i=1

w4
iVar |zi|2 + 2

N∑
1=i<j

w2
iw

2
j E |zi|2 E |zj |2 (7)

If zi are Gaussian then |zi|2 is exponentially distributed

and Var |zi|2 =
(
E |zi|2

)2
. Thus

UGauss bg =
N∑
i=1

w4
i

(
E |zi|2

)2
+ 2

N∑
1=i<j

w2
iw

2
j E |zi|2 E |zj |2 =

=

(
N∑
i=1

w2
i E |zi|2

)2

(8)

Thus for a Gaussian zi with randomly distributed
phases minimizing U is equivalent to minimizing
N∑
i=1

w2
i E |zi|2. The optimum is easily found:

wi =
1

N
1

E |zi|2
=

1

N
1√

Var |zi|2
(9)

Here N is a suitable normalizing factor.

IV. POLARIZATION ANALYSIS

We will now derive explicit formulas for loosely coher-
ent power sums.

Let us assume that the incoming gravitational wave
signal is a monochromatic wave represented as [5]

h+ = A+ cos(ωt+ φ) cos(ε)−A× sin(ωt+ φ) sin(ε)
h× = A+ cos(ωt+ φ) sin(ε) +A× sin(ωt+ φ) cos(ε)

(10)
where ε = 2ψ describes orientation of the pulsar, φ is the
initial signal phase, ω = 2πf is the pulsar gravitational
wave frequency and A+ = h0(1 + cos2(ι))/2 and A× =
h0 cos(ι) are amplitudes.

The signal received by the detector is described by

s(t) = F+(t)h+ + F×(t)h× (11)

where F+(t) and F×(t) are time-varying amplitude re-
sponse variables of the detector.

The input data consists of short Fourier transforms
with coherence length small enough that one can assume
that F+(t) and F×(t) do not vary significantly.

The frequency bin at,f of the SFT taken at time t can
thus be described as

at,f = nt,f + F+(t)(A+e
iΦ(t) cos(ε) +A×ie

iΦ(t) sin(ε))+
+F×(t)(A+e

iΦ(t) sin(ε)−A×ieiΦ(t) cos(ε)) =
= nt,f + h0e

iΦ(t) (F+(t)w′1 + F×(t)w′2)
(12)

where nt,f is the detector noise. The variables w′1 and
w′2 are complex amplitude parameters [11], they satisfy√

|w′1 + iw′2|+
√
|w′1 − iw′2| = 1 (13)

The coherent power sum computed over SFTs taken
at times t1, . . . tN is

PS =
∣∣∣∑N

i=1 wiati,fie
−iΦ(ti)/ (F+(ti)w

′
1 + F×(ti)w

′
2)
∣∣∣2

(14)
where we used

zi = ati,fie
−iΦ(ti)/ (F+(ti)w

′
1 + F×(ti)w

′
2) (15)

The division by amplitude response of the detector ef-
fectively increases noise level of SFTs at time of unfavor-
able orientation. Thus we expect the optimal weights to
deweight these terms.
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Assuming nti,fi are Gaussian the optimal weights com-
puted in the previous section are:

wi = |F+(ti)w
′
1 + F×(ti)w

′
2|

2
/E |nti,fi |

2
(16)

The normalizing factor is

N =

n∑
i=1

wi (17)

And thus the optimal power sum is

PS =
1

N 2

∣∣∣∣∣
N∑
i=1

ati,fie
−iΦ(ti)

F+(ti)w̄
′
1 + F×(ti)w̄

′
2

E |nti,fi |
2

∣∣∣∣∣
2

(18)
The normalizing factor can be expressed as

N =
(∑N

i=1 F+(ti)
2/E |nti,fi |

2
)
|w′1|

2
+

+
(∑N

i=1 F×(ti)
2/E |nti,fi |

2
)
|w′2|

2
+

+2
(∑N

i=1 F×(ti)F+(ti)/E |nti,fi |
2
)
<
(
w′1w

′
2

)
(19)

Let us define two intermediate coherent sums CS+ and
CS×:

CS+ =
∑N
i=1 ati,fie

−iΦ(ti)F+(ti)/E |nti,fi |
2

CS× =
∑N
i=1 ati,fie

−iΦ(ti)F×(ti)/E |nti,fi |
2 (20)

Then the power sum is expressed as

PS = 1
N 2

(
|CS+|2|w′1|2 + |CS×|2|w′2|2+

+2<
(
CS+CS×w

′
2w̄
′
1

)) (21)

or

PS = 1
N 2

(
|CS+|2|w′1|2 + |CS×|2|w′2|2+

+2<
(
CS+CS×

)
< (w′1w̄

′
2) + 2=

(
CS+CS×

)
= (w′1w̄

′
2)
)

(22)
We see that the power sum is a rational function of coef-
ficients w′1 and w′2. This allows to postpone substitution
of these coefficients until after summation is performed.
In a typical search the parameters w′1 and w′2 should be
sampled on a grid containing hundreds of points in or-
der to minimize power loss, thus there is great advantage
that only 7 separate sums (4 for the numerator and 3 for
the normalizing factor N ) need to be accumulated before
substitution.

For convenience we list some common expressions of
w′1 and w′2 in terms of more conventional parameters ι
and ε [3, 13–16]:

w′1 = 1+cos2(ι)
2 cos(ε) + i cos(ι) sin(ε)

w′2 = 1+cos2(ι)
2 sin(ε)− i cos(ι) cos(ε)

|w′1|2 = 1+2 cos2(ι)+cos4(ι)
4 cos2(ε) + cos2(ι) sin2(ε)

|w′2|2 = 1+2 cos2(ι)+cos4(ι)
4 sin2(ε) + cos2(ι) cos2(ε)

<
(
w′1w

′
2

)
= sin4(ι)

4 sin(ε) cos(ε)

=
(
w′1w

′
2

)
= 1+cos2(ι)

2 cos(ι)

(23)

V. ESTIMATION OF INPUT DATA

So far we have assumed that the source signal is bin-
centered in the input SFT data at,f . In practice, this is
usually not so. Thus the ideal, bin-centered value needs
to be estimated from discretely sampled frequency bins
of input SFTs.

To limit contamination from exceedingly steep detec-
tor artifacts these SFTs are computed using Hann win-
dow which minimizes spectral leakage. We thus need to
compute which frequency bins of Hann-windowed SFTs
contain putative signal and then devise a linear filter that
would estimate signal amplitude in a fractional bin.

In effect, the linear filter thus adds weighted summa-
tion of neighboring frequency bins to the quadratic power
sum PS. In practice, it is more efficient to compute the
estimated fractional frequency bins on discrete grid and
then look them up as needed.

A. Hann response function

Consider the function

X(t) = Ae2πift (24)

We compute Hann windowed frequency spectrum in
bins n

t1−t0 :

Fn = 1√
2π

1
t1−t0

t1∫
t0

X(t)

(
1− cos

(
2π

t− t0
t1 − t0

))
e−

2πin(t−t0)
t1−t0 dt

= 1√
2π
Ae2πif(t0+t1)/2e−πin · sin(πδ)

πδ(1−δ2)

(25)
where δ = f(t1 − t0)− n.
This is an entire holomorphic function of δ which de-

cays as δ−3 on the real axis.
Figure 1 shows the plot of Fn without the exponential

phase factors. One observes that for practical purposes
the function vanishes for |δ| > 3. Indeed, maximum over
bins n with |δ| > 3 divided by the value in the bin closest
to the injected frequency (and thus with largest Fn) is
below 0.01. Power is even more tightly constrained with
99.97% of it occurring in the interval |δ| < 2 (see figure
2).

B. Matched filter estimation of signals at fractional
frequency bins

Suppose we have M observations yi that are linear
combinations of signal of unknown strength and noise:

yi = Aai + ξi (26)

here A is the (unknown) amplitude of our signal, ai are
known and ξi is the measurement noise.
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FIG. 1. Amplitude of SFT bin for a test signal mismatched

by δ. This is a plot of 1√
2π

sin(πδ)

πδ(1−δ2) , excluding exponential

phase factors.
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FIG. 2. Integral of |Fn|2, normalized to unity at +∞. This
shows total power in SFT bins below f + δ away from test
signal frequency f .

The goal is to find linear combination Ã =
∑
i βiyi

with the best signal to noise ratio.

We have:

Ã = A
∑
i

βiai +
∑
i

βiξi (27)

SNR = A

∑
i βiai√∑

i,j βiβj〈ξi, ξj〉
(28)

Maximizing SNR is equivalent to minimizing∑
i,j βiβj〈ξi, ξj〉 while keeping

∑
i βiai constant.

Using method of Lagrange multipliers one easily ob-
tains: ∑

j

〈ξi, ξj〉βj = λai (29)

where λ is an arbitrary, but fixed constant.
Which leads to the well known result:

~β = λR−1~a (30)

where R = |〈ξi, ξj〉|i,j . It is usually convenient to pick

λ =
(
~aTR−1~a

)−1
- this ensures that a unit signal returns

unit response.
For spectrum of Hann windowed signal

ξi = −1

2
ζi−1 + ζi −

1

2
ζi+1 (31)

where ζi are independent identically distributed Gaussian
variables with zero mean. Thus we can assume

Rij =


3
2 i = j
−1 |i− j| = 1
1
4 |i− j| = 2
0 otherwise

(32)

It is instructive to compute R and its inverse for the
cases of 5 and 7 SFT bins. For 5 sample points

R =
1

4


6 −4 1 0 0
−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 6 −4
0 0 1 −4 6

 (33)

R−1 =
1

7


15 20 18 12 5
20 40 40 28 12
18 40 52 40 18
12 28 40 40 20
5 12 18 20 15

 (34)

For 7 sample points

R =
1

4



6 −4 1 0 0 0 0
−4 6 −4 1 0 0 0
1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0
0 0 1 −4 6 −4 1
0 0 0 1 −4 6 −4
0 0 0 0 1 −4 6


(35)
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R−1 =
1

135



336 504 540 480 360 216 84
504 1071 1260 1170 900 549 216
540 1260 1800 1800 1440 900 360
480 1170 1800 2100 1800 1170 480
360 900 1440 1800 1800 1260 540
216 549 900 1170 1260 1071 504
84 216 360 480 540 504 336


(36)

This procedure can be used for windows other than
Hann, simply by updating matrices R. However, the
number of terms and size of the matrices are minimized
for Hann-windowed data.

The coefficients ai can be obtained from the formula
25, however, if we are only interested in computing power
|Ã|2 we can discard the common phase factor depending
on f and simplify the formula to

ak = (−1)k
1√
2π
· sin(πδ)

πδ(1− δ2)
(37)

where δ = f(t1 − t0)− k

VI. DYNAMIC PROGRAMMING METHODS

Search over parameters which cause long-term fre-
quency drift can be made more efficient by use of dy-
namic programming methods such as Viterbi algorithm
[3, 7, 8].

In the simplest implementation, the input data is bro-
ken into K chunks. Signal power for a set of frequency
bins is computed in each chunk. The power is then ac-
cumulated progressively from first to last chunk and at
each accumulation stage the power in a frequency bin is
replaced by maximum power over a set nearby bins [3].

For example, one can take the maximum over the 3
nearby bins including the central bin. This would allow
the frequency path to deviate by as much as K − 1 bins.
The bin set need not be contiguous or symmetric - this
can serve to accommodate large periodic modulation or
spindowns.

One issue that arises in practice is that the maxi-
mum needs to be taken over power and thus one would
need to substitute polarization coefficients into the power
sum. When the grid of sampled polarization is not care-
fully controlled the amount of computation can be large
enough to be comparable (or even dominate) the compu-
tation of the loosely coherent sum.

As common to a dynamic programming algorithm the
memory requirements for efficient computation can be
large as well.

Ideally, the maximum should be computed at the
power sum level before substituting polarization coeffi-
cients. However, the exact implementation is difficult
because the maximum of two quadratic forms or two ra-
tional functions is in general a piecewise rational function.

This difficulty could be overcome by replacing the
piecewise function with a rational function that majo-
rates it - i.e. yields power greater than what would be
produced by the exact computation. This gives up some
sensitivity for an increase in computational efficiency.

VII. IMPLEMENTATION TESTING

A. Execution speed

Algorithmic improvements tend to have the largest im-
pact on software performance. This is because code op-
timization usually speeds up a section of the code by at
most few hundred percent and the speedup is constant
over computation scale. In some situations, such opti-
mization loses with scale as limited hardware features
are exhausted when scaling parameter is increased.

In contrast, an algorithm with smaller power of scaling
parameter in asymptotic running time will gain perfor-
mance with increase in the scaling parameter.

However, sometimes computational hardware is not
suitable for a particular algorithm. For example, contem-
porary CPUs typically do not have dedicated instructions
for modular arithmetic, or vector based sorting primi-
tives.

In addition, an actual search has to deal with large
numbers of outliers, limited storage and other issues af-
fecting algorithm suitability.

This makes quantitative comparison of algorithms
rather tricky. Ideally, we would want the implementa-
tion of each algorithm to be done in the best way possible
and the execution conditions to mimic actual search. It
seems reasonable to allow optimizing compilers to rear-
range code, but, strictly speaking, this changes the algo-
rithm.

To illustrate that the algorithm described in this pa-
per is suitable for contemporary computing hardware we
present a comparison with previous loosely coherent im-
plementation. Due to caveats discussed above one should
not take this as an actual measure of a speedup in a real
search.

Both algorithms were compiled into the same exe-
cutable using gcc 6.3.0 compiler and used exactly the
same optimization flags. They were both run on O1
1800 s Hann-windowed SFTs and analyzed the same fre-
quency range 200-200.125 Hz. The execution node had
ample memory and 32 simultaneously executing threads
on Intel Xeon E5-2620 processors.

To save execution time the analysis was restricted to
0.5 rad disk around Right Ascension 0 and declination 0.

The results are shown in table I. The previous loosely
coherent code refers to the loosely coherent implementa-
tion used in [2, 3, 10]. The column for the new loosely
coherent code refers to the implementation of the algo-
rithm described in this paper.

The previous loosely coherent code used phase toler-
ance as a parameter and a Lanzcos window for the kernel.
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Parameter Previous loosely coherent code New loosely coherent code

Coherence length (s) ∼ 14400 14400
Phase tolerance (rad) π/8 NA
Data load time (s) 82 87
Total running time (s) 2579 285
Inner loop time (s) 2497 198
Upper limit 4.25e-25 3.75e-25

TABLE I. Execution speed

Execution speed of loosely coherent algorithms. The new implementation is faster and uses the data more efficiently
producing smaller upper limits.

Because of this, the coherence length is only approximate
as the SFTs that took part in the coherent sum were com-
bined with different weights and the window tails covered
43200 seconds of data.

The coherence length for the new algorithm is better
defined, with distance between start of SFTs limited to
14400 s. Note that because of Hann-windowing the coher-
ent sum made use of data points more than 16000 s apart
but with progressively smaller weights near the ends of
the window.

In addition, both codes used real data with duty cycle
less than 100 %. Thus some coherent sums simply did
not have enough data to fill the entire coherence sum.

The upper limit quoted in the table is the worst-case
upper limit on all points searched in the grid. The worst-
case is typically reached for linear polarizations which
introduce strong modulation on SFT weights with ap-
proximately 12 hour period. This further decreases effec-
tive coherence length, but the effect is similar for both
algorithms.

The data load time describes the time to load all the
input time and to perform initialization of all data struc-
tures. Total running time describes actual wall-clock
time for each code. In the actual application the work
load is usually sized to be much larger than input time.

The inner loop time is the difference between total run-
ning time and data load time. It includes the time spent
running loosely coherent algorithms as well as the time
spent in post-processing their results. The postprocess-
ing algorithm was the same in both instances.

We observe more than 10x improvement in running
time, while the upper limit is smaller by 12 %. We note
that if the phase tolerance parameter was further re-
duced for the previous loosely coherent code the upper
limit would improve, but the running time will greatly
increase.

B. Validation

In this section, we describe validation of the software
pipeline implemented using medium scale Loosely coher-
ent algorithm using Monte-Carlo injections. This demon-
strates that the Loosely coherent algorithm can be imple-
mented on contemporary hardware and it is practical for

searches of disks on the sky. Upcoming papers will de-
scribe search results.

Stage Coherence length (hours) Minimum SNR

0 8 6
1 12 6.5
2 16 7
3 24 8
4 36 9
5 48 11
6 72 13

TABLE II. Simulation parameters

Parameters of 6-stage pipeline used for simulations. Stage 6
outliers are subjected to consistency check between

interferometers.
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FIG. 3. Established upper limit versus injection strength.

The analysis pipeline follows the method described in
[2, 3]. The practical implementation is a pipeline that
progressively increases coherence length (Table II). Each
stage, except the last, identifies templates with large up-
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FIG. 4. Fraction of injections that had a nearby outlier at the
end of the 6-stage pipeline. The X-axis of this figure shows
ratio of injection strain to the no-injection upper limit. The
Y-axis shows percentage of correctly detected injections. This
meant that the injection had to have an outlier nearby that
passed all analysis stages. The horizontal green line is drawn
at 95% level.

per limits and SNR and writes their parameters to file.
These templates are excluded from computation of stage-
specific aggregate quantities such as maximum upper
limit and SNR. The followup stage analyses templates
from the file produced by previous stage.

At the last stage the analysis is done twice - using co-
herent combination of interferometers and also separately
for each interferometer. All outliers are written into the
file. The threshold for outlier SNR from individual in-
terferometers is set at 6. A consistency check is applied,
requiring outliers from coherent combination of interfer-
ometers to match outliers from individual interferometers
in frequency, sky and spindown.

The pipeline was tested with software injections into
O1 data [17] from Advanced LIGO interferometers [18].
The O1 run occurred between September 12, 2015 and
January 19, 2016.

The injections were done randomly into the range of
975-1500 Hz into a disk on the sky of radius 0.06 rad
(3.43◦) centered on Right Ascension 4.65 rad (266.42◦)
and declination −0.46 rad (−26.35◦). The disk was cho-
sen to cover the center of our galaxy. The spindown
of the injections was logarithmically distributed between
−5.7× 10−12 and −1.8× 10−10.

The upper limits are computed as a maximum of up-
per limits from every stage. Figure 3 shows results of
simulation covering range 975-1500 Hz, where injections
were performed into a region near galactic center. The

95% confidence level upper limits are correctly estab-
lished, with most points above the red diagonal line. The
three outlier points and the scatter of high upper limits
for small injection strengths are due to detector artifacts
[2, 3].

Figure 4 shows detection efficiency of the pipeline. The
X-axis of this figure shows ratio of injection strain to the
no-injection upper limit. This upper limit is established
in a small sky area (disk with 0.02 rad radius) around the
injection location by the first stage of the pipeline. In a
real search the upper limits are computed as a maximum
over larger parameter space, which would shift the X-axis
to the right.

The Y-axis of figure 4 shows fraction of injections that
had a nearby outlier. This outlier had to have an SNR of
at least 13, be within 15µHz of true injection frequency
and within 1.5× 10−11 Hz/s of true injection spindown.

In addition, nearby outliers had to be no further than
6.5× 10−4 · (1 kHz/f) in ecliptic distance, defined as the
distance between outlier location and true injection lo-
cation after projection onto the ecliptic plane. Here f is
the outlier frequency.

Because high-SNR outliers are passed to subsequent
stages we retain ability to make detection below the up-
per limit established by the first stage. Thus the effective
coherence length of the pipeline is larger than the length
defined by the first stage.

VIII. ALGORITHM DESIGN AND CHOICE OF
HARDWARE ARCHITECTURE.

The reader might wonder what would the ideal com-
puter architecture be for the algorithm described in the
paper2. Before answering this question it is useful to
review contemporary computer architectures.

A. Contemporary and historical computer
architecture.

Figure 5 lists several notable central processing unit
(CPU) families. Let us briefly comment on each.

The column on the right lists CPUs that were widely
available for extended time:

• Zilog Z80 evolved from an earlier 8080 CPU by
Intel. Implementing 16-bit instructions set, Z80
availability and ease of programming made it pop-
ular with both industrial and amateur users. The
CPUs are still manufactured today for the embed-
ded market.

• m68000 or m68k family was produced by Motorola.
This processor was used in early Apple computers

2 We thank the anonymous referee for posing this question.
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Programming complexity

Adoption for general purpose computing

Zilog Z80
m68000
PDP
VAX
RISC
ARM
Alpha
PowerPC
x86, x64
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FIG. 5. An overview of CPU architectures. We contrast well-
known ubiquitous architectures such as Z80 and x64 with ex-
otic systems such as i960 and Cell. In the text we argue that
GPUs have more in common with these exotic systems and
are slowly changing to look more like AVX512 units.

and mini-workstations such as Sun or NeXT sys-
tems.

• PDP and VAX were very popular series of mini-
computers produced by DEC systems. The ease of
programming using PDP-11 instructions had large
influence on subsequent systems.

• RISC, ARM, Sparc, Alpha and PowerPC were im-
plementation of reduced instruction set computing
(RISC) paradigm. They featured small, easy to un-
derstand instruction sets that were easy to use and
write optimizing compilers for.

• x86 and x64 are 32-bit and 64-bit families of CPUs
produced by Intel and AMD. Most contemporary
computing clusters use these CPUs.

The column on the left lists CPUs with innovative ap-
proaches to computing that had limited success:

• Transputer was designed to be used in clusters of
identical units. The instruction set was designed to
support Occam computer language, with later ports
of more common languages like C or Fortran.

• i960 was attempt by Intel to build a CPU with
larger and more complicated instructions, but sim-
plified hardware.

• Java machines were designed to facilitate a safer
programming environment. A complimentary Java

language is widely used today, with programs run-
ning in software emulation of Java hardware plat-
form.

• Lisp machines were designed to run Lisp pro-
grams and featured support for many Lisp features,
including garbage collection.

• Transmeta was a company that produced CPUs
with very long instructions (VLIW) which were
only meant to be used by Transmeta-developed
just-in-time compiler to emulate other architec-
tures, in particular x86. These CPUs initially fea-
tured much lower power consumption than com-
petitors.

• Itanium was a 64-bit VLIW CPU produced by In-
tel. It required a special compiler to properly sched-
ule instructions so that they would not try to use
incomplete results of previous calculations. The
introduction of much simpler x64 architecture by
AMD have superseded Itanium.

• Cell microprocessor combines a PowerPC core
with multiple special purpose cores. The special
purpose cores lack branch prediction and cannot
access main memory directly, instead relying on a
cache-like local memory.

From the point of view of algorithm design the com-
puting platforms in the right column are all equivalent -
the same code can be compiled for any of them.

The left column on the other hand presents a trap -
one can invest a lot of time to take advantage of spe-
cial hardware, but by the time the code is finished more
conventional hardware might catch up. The special pur-
pose hardware might change in the next version requiring
extensive code modification, or a complete algorithm re-
design.

Of greater concern are algorithm limitations imposed
by the special hardware - you might run faster for the
particular computation performed, but you might not be
able to use more advanced algorithms suitable only for
general purpose CPUs.

Right now, there are three main choices in computer
clusters: regular CPUs with vector units, graphical pro-
cessing units (GPUs) and Xeon Phi.

Xeon Phi from Intel was the first commercial prod-
uct to implement AVX512 instruction set. Similar to
Cell it contained rather weak integer CPU cores, coupled
with high-performance vector unit that could perform
operations on 16 single-precision or 8 double-precision
numbers at a time. Unlike Cell, the memory access was
unified which greatly simplified programming. Program-
matically it acted like a conventional CPU with a top-
notch vector unit. Still, making use of full computational
performance required careful programming to overcome
weakness of in-order integer core and the need for manual
prefetching when using non-trivial data layouts.
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As of now GPU-like Xeon Phis have been discontinued,
in favor of integrating AVX512 vector units into modern
CPUs. The compatibility was preserved, so that the code
developed for original Xeon Phis is suitable (with a re-
compile) for new CPUs.

Newer Intel CPUs that implement AVX512 instruction
set have more powerful integer cores, making it easier to
keep vector units busy and reducing the need for explicit
prefetching. Because the vector unit and the integer core
share the same cache it is possible to implement algo-
rithms where the vector instructions depend dynamically
on computed data.

Graphical processing units (GPUs) evolved from fixed-
function computer graphics units. The original applica-
tion of 3d graphics required lots of identical operations
with little (if any) reuse of computed data. For example,
in a 3d visualization applications the CPU would upload
a stream of graphical commands to the GPU which would
perform computations and store the result in the frame
buffer that is displayed on the monitor. When the next
frame has completed computing the contents of the frame
buffer are not needed anymore and are discarded.

The GPUs typically lack an equivalent of integer core
that can run a for loop generating instructions for the
vector unit. Instead, a driver program running on the
computer the GPU is attached to generates a stream of
instruction packets that are stored into the buffer. The
instruction packets are then streamed to the GPU via
PCI Express bus.

The driver program can check for completion of com-
putation by reading a single register value. Because these
accesses occur over PCI Express bus the latency is hun-
dreds of nanoseconds large. Thus, even if all data used
for computation is stored in the GPU-local memory, one
incurs a large latency to alter instruction stream based
on computed data.

The origin in computer graphics where many indepen-
dent pixels need to be rendered favoured GPU architec-
ture with large numbers of isolated computational units.
Because of this the GPUs are structured to perform many
identical operations on data streams that are completely
independent of each other. Due to the expectation of
little data reuse when rendering real-time graphics, one
usually has to manually manage cache coherence.

The origins in computer graphics also manifest in non-
unified address space. For example, NVidia GPUs can
access main memory accessible by CPU, texture memory,
frame buffer memory, internal memory used for tempo-
rary storage, etc. While some GPUs (such as made by
AMD) have public documentation describing instruction
set and hardware features, others do not (NVidia).

Thus the architecture of contemporary GPUs combines
the worst features of i960, Itanium, Cell and Transmeta.
Unlike i9603, GPUs have a firm foothold in graphics ac-

3 We note that a notable application of i960 platform was as a

celerator market, which provides resources for further de-
velopment.

The evolution of GPUs so far tended to shed features
rooted in fixed-function graphics accelerator functional-
ity and add support for wider variety of algorithms and
simplified programming. For example, AMD “Applica-
tion procession units” have evolved from merely combin-
ing CPU and GPU in the same package to share virtual
address spaces and provide cache coherence. They also
feature tighter coupling than provided by PCI Express
bus.

The experience of Transmeta showed that dynamically
generated stream of instructions can be more computa-
tionally efficient than a static program because it can
take advantage of optimizations that are impossible to
predict at compilation time.

We would expect therefore that the future GPUs will
look more like Xeon Phi/AVX512 units with progres-
sively tighter integration between CPU and GPU core al-
lowing instruction streams to be dynamically generated.

AVX512 will likely add additional instructions imple-
menting reduced precision arithmetic to accommodate
artificial intelligence applications (some 16-bit instruc-
tions are expected to appear in Ice Lake chips from In-
tel).

B. Algorithm design strategies

The overview of computer architectures suggests the
following broad guidelines:

• Wide floating point vector instructions are here
to stay and computationally intensive algorithms
should be designed to take advantage of them. The
algorithms described in this paper were tested to
work well with 8-wide AVX and 16-wide AVX512
instruction sets. We do not see any obstacles to
taking advantage of 32-wide instructions.

• Successful application of GPU and APU computa-
tional hardware requires substantially static float-
ing point instruction streams operating on large
numbers of independent inputs. The algorithms
described in this paper, with the exception of asso-
ciative cache, are suitable for this provided a large
amount of memory is available to store interme-
diate results. In such a situation the computa-
tion speed is often limited by memory bandwidth.
Preliminary tests suggest that realistic analysis re-
quires at least several gigabytes of graphics memory
local to the GPU.

• We expect GPUs and APUs to evolve by acquir-
ing features that bring them closer to conventional

graphics processor of NeXT workstations where it run PostScript
interpreter that would render directly to the screen.
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CPU architectures. Simultaneously, CPUs will
have to compete with computational throughput
of GPUs and APUs. Thus we recommend to use
GPUs and APUs only when they provide large com-
putational gains that cannot be offset by algorithm
improvement.

The algorithms described in this paper have been suc-
cessfully implemented on general purpose CPUs. The
implementation code is structured to take advantage of
vector processing units, without substantial increase in
code complexity due to the use of vectorizing compilers
(both gcc and Intel icc compiler have provided good
results).

The algorithm itself is suitable for contemporary GPUs
with at least several gigabytes of memory, however this
comes with substantial burden in code complexity. While
periodically we reexamine suitability of GPUs for large
scale searches, for now we focus attention on achieving
speed improvements through algorithm design first, and
wait for GPUs and APUs to evolve to simplify program-
ming and to converge with Xeon Phi-like general purpose
CPUs.

In actual usage our implementation needs at least 2 GB
of memory per execution thread. This relatively large
memory requirement is due to combination of memory
demand by associative caches and dynamic programming
code. Thus the ideal hardware would favor faster cores
with wider vector units. Hyper-threading - presenting
more hardware execution threads to increase instruction
parallelism - is usually counterproductive to well-tuned
codes as it increases memory requirements. The use
of associative caches benefits from CPUs with shorter
pipelines and smaller penalties for mispredicted branches
or memory accesses.

IX. CONCLUSIONS

We have described a new Loosely coherent algorithm
for medium scale coherence lengths. Simulations of a full
pipeline incorporating this algorithm have been demon-
strated on O1 data [17, 19] from Advanced LIGO inter-
ferometers [18].

Compared with previous implementation, more than
10x improvement in computational speed has been ob-
served.

The new pipeline allows all-sky loosely coherent anal-
ysis for the first time, extending reach of wide-parameter
searches for continuous gravitational wave signals.
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