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Abstract: Monitoring variations in terrestrial water storage (TWS) is of great significance for the
management of water resources. However, it remains a challenge to continuously monitor TWS
variations using in situ observations and hydrological models because of a limited number of
gauge stations and the complicated spatial distribution characteristics of TWS. In contrast, the
Gravity Recovery and Climate Experiment (GRACE) could overcome the aforementioned restrictions,
providing a new reliable means of observing TWS variation. Thus, GRACE was employed to
investigate TWS variations in Northwest China (NWC) between April 2002 and March 2016. Unlike
previous studies, we focused on the interactions of multiple climatic and vegetational factors, and
their combined effects on TWS variation. In addition, we also analyzed the relationship between TWS
variations and socioeconomic water consumption. The results indicated that (i) TWS had obvious
seasonal variations in NWC, and showed significant decreasing trends in most parts of NWC at the
95% confidence level; (ii) decreasing sunshine duration and wind speed resulted in an increase in
TWS in Qinghai province, whereas the increasing air temperature, ameliorative vegetational coverage,
and excessive groundwater withdrawal jointly led to a decrease in TWS in the other provinces of
NWC; (iii) TWS variations in NWC had a good correlation with water storage variations in cascade
reservoirs of the upper Yellow River; and (iv) the overall interactions between multiple climatic and
vegetational factors were obvious, and the strong effects of some climatic and vegetational factors
could mask the weak influences of other factors in TWS variations in NWC. Hence, it is necessary
to focus on the interactions of multiple factors and their combined effects on TWS variations when
exploring the causes of TWS variations.

Keywords: GRACE; terrestrial water storage; Northwest China; cross-wavelet transformation;
Pearson correlation coefficient

1. Introduction

Terrestrial water storage (TWS), including surface water, groundwater, snow cover, and soil
moisture, not only plays an important role in the global hydrological cycle, but also provides abundant
freshwater resources for human society and the terrestrial ecological system [1–3]. With a changing
environment (climate change and human activities), TWS has obvious variations in many river basins
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and/or regions, which bring big challenges to local water resource management and utilization [3–5].
It is imperative to continually monitor TWS variations. However, it is impossible to do so using in situ
observations and hydrological models due to a limited number of gauge stations and the complicated
spatial distribution characteristics of TWS [6–8]. Accordingly, a more advanced technology is hoped to
effectively tackle this tricky issue.

To observe spatial and temporal changes of Earth’s gravity field, the National Aeronautics and
Space Administration (NASA) and the German Aerospace Center (DLR) jointly developed the Gravity
Recovery and Climate Experiment (GRACE) satellite mission [9]. Since the launch of the GRACE
satellite mission in March 2002, an increasing number of hydrologists realized that it could act as a
new effective tool for measuring TWS variations. GRACE could continuously measure TWS variations
through conversion of the gravitational field, breaking the limitations of spatial heterogeneity for TWS.
Furthermore, many recent research results showed that GRACE is able to provide reliable data for an
investigation of TWS in a large area on a monthly basis [10–14].

Until now, most studies were concerned with the spatiotemporal characteristics of TWS variations
based on GRACE, paying less attention to the causes of TWS variations [3]. To determine the
causes of TWS variations, some scholars investigated the relationships between TWS and climatic
and vegetational factors. Li et al. [15] found a good correlation between TWS and vegetational
coverage in western and central Europe during droughts, on the basis of a severe deficiency in TWS
harming vegetational growth to a large extent. Zhou et al. [16] suggested that TWS was dominated by
precipitation in the Poyang Lake basin. Deng and Chen [3] showed the effects of precipitation and
air temperature on TWS in Central Asia over the past decade. These studies substantially promoted
the causal analysis of TWS variations. However, most previous studies only showed a correlation
between GRACE-based TWS and one factor on a monthly basis without considering the combined
effects and the interactions of multiple factors. This probably generated some unreliable correlations,
maybe even misleading the causal analysis of TWS variations. For example, Deng and Chen [3] found
that monthly TWS and monthly average air temperature (AT) had an obviously positive correlation in
Xinjiang; however, they failed to clearly explain the effect of AT on TWS due to the combined effects of
air temperature, precipitation, and wind speed on TWS. In contrast, this study paid more attention to
the interactions of multiple factors and their combined effects on TWS variations.

Precipitation (P) and evapotranspiration (Et) directly influence TWS variation; however, it is
difficult to access actual Et in a large region. According to the Penman–Monteith equation [17,18], Et is
influenced by many climatic factors, such as sunshine duration (SD), air temperature (AT), and wind
speed (WS). In addition, vegetational growth also has important effects on Et [19]. The normalized
difference vegetation index (NDVI), an index for the greenness of vegetation, could characterize
vegetation growth [20]. Thus, multiple climatic and vegetational factors including P, SD, AT, WS, and
NDVI were adopted to account for TWS variations in this study.

In addition to climatic and vegetational factors, some studies also analyzed the relationship
between TWS variations and socioeconomic water consumption. Rodell et al. [21] suggested that
groundwater depletion was mainly attributable to irrigation in northwest India. Feng et al. [22]
believed that a decrease in TWS was caused by agricultural water consumption in North China.
Moreover, Deng and Chen [3] deemed that agricultural diversion and groundwater withdrawal were
primarily attributable to the decrease in TWS in Central Asia. Artificial reservoirs play a significant role
in utilizing and managing surface water resources [23]; however, few studies explore the relationship
between TWS changes and reservoir operation. In addition to discussing the effects of groundwater
withdrawals, this study also briefly analyzed the correlation between water storage variations in
reservoirs and TWS variations.

Northwest China (NWC) is a typical arid and semi-arid region playing an important strategic role
in the social and economic development of China [24–26]. Since the implementation of the Belt and
Road initiative of China, this region faces an unprecedented new opportunity for development [27].
With rapid socioeconomic development, the water shortage problem became increasingly severe in
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NWC. To our knowledge, this study is the first study employing GRACE data to characterize TWS
variations in NWC. The results of this study are proposed to hopefully help the management of local
water resources in this region.

Two targets were established for this study. The first was to examine TWS variations in NWC,
and to identify the relationships between TWS and climate change, vegetational coverage, and
socioeconomic water consumption. The second was to show the interactions of multiple climatic and
vegetational factors, and their combined effects on TWS variations. The paper is organized as follows:
Section 2 describes the study area, data collection and processing, and two correlation analysis methods
for hydrological and meteorological time series; Section 3 describes the detailed TWS variations in
NWC, and an analysis of relationships between TWS and climate change, vegetational coverage, and
socioeconomic water consumption; Section 4 presents the major conclusions of this study.

2. Materials and Methods

2.1. Study Area

NWC, shown in Figure 1, includes the Shaanxi, Ningxia, Gansu, Qinghai, and Xinjiang provinces.
NWC is in the interior of China and is located far from oceans, having a total area of 3.11 million
km2. Its terrain is very complex, consisting of mountains, plateaus, basins, and plains. Among the
five provinces, the area of Xinjiang (1.66 million km2) is the largest, and the average elevation of
Qinghai (3000 m above sea level) is the highest. Most parts of NWC are mainly characterized by an
arid or semi-arid climate, and the annual average precipitation in Shaanxi (634 mm) and Xinjiang
(144 mm) are the maximum and minimum values, respectively. Overall, the ecosystem of NWC is
rather vulnerable, particularly in Xinjiang where 64% of the area is desertified land as of the end
of 2014 [28]. The upstream of the Yellow River flows through the Qinghai, Gansu, Ningxia, and
Shaanxi provinces. In the upper Yellow River, Longyangxia (LYX) and Liujiaxia (LJX) in the Qinghai
and Gansu provinces, respectively, are two large cascade reservoirs with a total storage capability of
30.4 billion m3 [29].

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 21 

 

variations in NWC. The results of this study are proposed to hopefully help the management of local 

water resources in this region. 

Two targets were established for this study. The first was to examine TWS variations in NWC, 

and to identify the relationships between TWS and climate change, vegetational coverage, and 

socioeconomic water consumption. The second was to show the interactions of multiple climatic and 

vegetational factors, and their combined effects on TWS variations. The paper is organized as follows: 

Section 2 describes the study area, data collection and processing, and two correlation analysis 

methods for hydrological and meteorological time series; Section 3 describes the detailed TWS 

variations in NWC, and an analysis of relationships between TWS and climate change, vegetational 

coverage, and socioeconomic water consumption; Section 4 presents the major conclusions of this 

study. 

2. Materials and Methods 

2.1. Study Area 

NWC, shown in Figure 1, includes the Shaanxi, Ningxia, Gansu, Qinghai, and Xinjiang 

provinces. NWC is in the interior of China and is located far from oceans, having a total area of 3.11 

million km2. Its terrain is very complex, consisting of mountains, plateaus, basins, and plains. Among 

the five provinces, the area of Xinjiang (1.66 million km2) is the largest, and the average elevation of 

Qinghai (3000 m above sea level) is the highest. Most parts of NWC are mainly characterized by an 

arid or semi-arid climate, and the annual average precipitation in Shaanxi (634 mm) and Xinjiang 

(144 mm) are the maximum and minimum values, respectively. Overall, the ecosystem of NWC is 

rather vulnerable, particularly in Xinjiang where 64% of the area is desertified land as of the end of 

2014 [28]. The upstream of the Yellow River flows through the Qinghai, Gansu, Ningxia, and Shaanxi 

provinces. In the upper Yellow River, Longyangxia (LYX) and Liujiaxia (LJX) in the Qinghai and 

Gansu provinces, respectively, are two large cascade reservoirs with a total storage capability of 30.4 

billion m3 [29]. 

 

Figure 1. Location of Northwest China (NWC), including meteorological stations and cascade 

reservoirs in the upstream of the Yellow River. Figure 1. Location of Northwest China (NWC), including meteorological stations and cascade reservoirs
in the upstream of the Yellow River.



Remote Sens. 2018, 10, 1163 4 of 22

2.2. Data Collection

Three Release-05 gravity-field solutions were obtained separately from three different data
processing centers: the University of Texas Center for Space Research (CSR; http://www.csr.utexas.
edu/grace/), the German Research Center for Geosciences (GFZ; http://isdc.gfz-potsdam.de/grace),
and the Jet Propulsion Laboratory (JPL; http://grace.jpl.nasa.gov/). The differences between the
solutions obtained from the JPL, CSR, and GFZ were used to infer the uncertainty in the Level-2
GRACE fields [30]. Three sets of monthly gravity-field time series of NWC were collected from April
2002 to March 2016, a total of 168 months (13 months with missing data). TWS includes surface water,
groundwater, snow cover, and soil moisture. Thus, to evaluate the products is challenging because of
the unavailability of a reference dataset (field measurements) for each component of TWS in the study
region. Nevertheless, numerous studies demonstrated the reliability of these datasets for monitoring
the variation in TWS worldwide on monthly, seasonal, and annual bases [21,22,31,32].

Monthly P, SD, AT, and WS data (from January 1982 to March 2016) were collected from 192
meteorological stations (Figure 1) distributed across NWC, which could be downloaded from the
National Meteorological Information Center of China (http://data.cma.cn/). Remote sensing data
(MOD13C2 product) based on the moderate resolution imaging spectroradiometer (MODIS) sensors
aboard the Terra satellite were downloaded from the Land Processes Distributed Active Archive
Center (LP DAAC) of the National Aeronautics and Space Administration (https://lpdaac.usgs.gov/).
Data on the monthly variation in storage of the LYX and LJX reservoirs (from April 2002 to March
2016) were obtained from the water year books and water-resources bulletins for Yellow River, which
were released by the Yellow Conservancy Commission of the Ministry of Water Resources of China
(http://www.yellowriver.gov.cn/). In addition, the annual groundwater withdrawal data (from 2002
to 2015) were collected from the water-resources bulletins released by the respective departments
(http://www.sxmwr.gov.cn/; http://www.nxsl.gov.cn/; http://www.gssl.gov.cn/; http://www.qhsl.
gov.cn/; http://www.xjslt.gov.cn/) of the five provinces in NWC.

2.3. Data Processing

(1) TWS Data Processing

In this study, the average monthly gravity field (between January 2004 and December 2009)
was taken as the baseline of the monthly gravity-field time series (from April 2002 to March 2016),
i.e., a monthly gravity field anomaly was generated following the subtraction of the baseline from
the monthly gravity field. The missing monthly GRACE data between April 2002 and March 2016
were interpolated using the linear interpolation method. To eliminate the influence of noise, a Gauss
smoothing kernel [33] was introduced into the calculation of gravity-field anomalies, which was
expressed as an equivalent water height by the following equation [34]:

∆h(θ, λ) =
2aπρave

3ρwater

∞

∑
n=0

n

∑
m=0

2n + 1
1 + kn

Wn[∆Cnm cos(mλ) + ∆Snm sin(mλ)]Pnm(cos(θ)), (1)

where ∆h is the equivalent water height; θ is the colatitude; λ is the longitude; a is the equatorial
radius (6378 km); ρave is the mean density of the earth (5517 kg/m3); ρwater is the density of water
(1000 kg/m3); n is the degree of decomposition; m is the order; kn is the loading love number
of the nth degree; Wn denotes Gauss smoothing kernel related to the nth degree, calculated by
the recurrence formula W0 = 1, W1 = (1 + e − 2b)/(1 − e − 2b) − 1/b, Wn+1 = −(2n + 1)/b·Wn +
Wn−1, b = ln2/(1 − cos(r/a)); r is the filter radius; ∆Cnm and ∆Snm are the gravity spherical harmonic
coefficient and normalized Stokes coefficient residuals relative to the baseline, respectively; and Pnm

(cos(θ)) is the nth degree and the mth-order fully normalized Legendre function.
In Equation (1), the maximum value of the degree (nmax) and the filter radius (r) were two

significant parameters, which were neither too large nor too small. If nmax was greater than 60, a larger
error would result in the GRACE data [35]. If nmax was too small, the resolution of the gravity field
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would decrease. A large r could reduce the noise of the GRACE data; however, it probably resulted in
some additional errors when it exceeded a study area [36]. In this study, nmax = 60 and r = 300 km.
In addition, the C20 (degree 2, order 0) obtained from GRACE was replaced by the C20 from satellite
laser ranging (SLR), because the GRACE-C20 values had a larger uncertainty than those of the SLR-C20

values [37,38].
Monthly variations in land gravity fields are mainly caused by monthly TWS changes [39,40].

Hence, a monthly equivalent water height represents a monthly anomaly in TWS, herein named TWSA.
Based on the GRACE data from three centers (CSR, GFZ, and JPL), three sets of monthly TWSA time
series (from April 2002 to March 2016) for NWC were available to support this study. Because the
accuracy differences between three sets of time series were not clear, the cross-correlation coefficients
between them were adopted to calculate the weights of the data from the three centers as follows:

r(X, Y) =

n
∑

k=1
(Xk − Xa) · (Yk −Ya)√

n
∑

k=1
(Xk − Xa)

2

√
n
∑

k=1
(Yk −Ya)

2
; (2)

wi =

3
∑

j=1
rij

3
∑

i=1

3
∑

j=1
rij

; (3)

TWSA =
3

∑
i=1

wi · TWSAi, (4)

where r(X, Y) is the Pearson correlation coefficient between two time series, X and Y [41]; Xk and Yk
denote the kth sample values of X and Y, respectively; Xa and Ya represent the averages of X and Y,
respectively; n is the length of the two time series; wi is the data weight of the ith center (CSR, GFZ,
and JPL were separately numbered 1, 2, and 3); rij denotes the correlation coefficient between two
monthly TWSA time series from the ith and jth centers; TWSA is the weighted TWSA time series; and
TWSAi is the monthly TWSA time series from the ith center.

When obtaining monthly TWSA time series, the monthly TWS variation could be calculated as
shown below [42].

∆TWS(i) =
TWSA(i + 1)− TWSA(i− 1)

2
, (5)

where ∆TWS(i) is the TWS variation of the ith month, and TWSA(i + 1) is the TWSA of the
(i + 1)th month.

(2) Climatic Data Processing

For a province in NWC, its monthly climatic time series (from January 1982 to March 2016) was
calculated using the Thiessen polygon method as follows [43]:

M =
1
l

l

∑
i=1

Mi
fi
F

, (6)

where M is the climatic factor (P, SD, AT, and WS) value of a province, l is the total number of
meteorological stations in the province, fi denotes the Thiessen polygon area controlled by the ith
station, and F is the total area of the province.

Specifically, the procedures of the Thiessen polygon method are described below.
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(i) Connect the meteorological stations in NWC with straight lines, creating a Delaunay triangulation.
(ii) Determine three perpendicular bisectors and a circumcenter for each triangle in the Delaunay

triangulation, thus forming many polygons which take perpendicular bisectors and/or the
outline of NWC as boundaries.

(iii) Each polygon is controlled by one meteorological station, where the measured climatic factor
values represent those over the whole polygon.

(iv) Calculate the climatic factor values over a province according to Equation (6).

The Thiessen polygon method assumes that the climatic factors change linearly between two adjacent
meteorological stations. The method is widely used in areas where meteorological stations are not
uniformly distributed [43].

(3) NDVI Data Processing

The monthly remote sensing data (from January 1982 to March 2016) were adopted from a
MOD13C2 product with a spatial resolution of 0.05 degrees. The remote sensing data were translated
into NDVI data by means of the ENVI software [44]. The NDVI data of a province in NWC was the
weighted mean value of all gridded NDVI data in the province. Specifically, the weight of each grid
was equal to the ratio of overlapping area between the grid and the province to the area of province.

2.4. Cross-Wavelet Transformation

The cross-wavelet transformation (CWT) is able to present the correlation between two time series
in both time and frequency domains, combined with the wavelet transformation and cross-spectrum
analysis [45]. The CWT is often used to explore the correlations between two annual hydrological and
climatic time series [46]. In this study, a CWT based on a Morlet wavelet [47] was mainly employed to
investigate resonant periods between the monthly TWSA time series and the monthly climatic and
vegetational factor time series.

During the CWT process, Wn
X(L) and Wn

Y(L) separately denoted the continuous wavelet
transformations of two time series, X and Y, respectively, where n is the length of two time series, and
L is the time lag. The CWT between X and Y is expressed as Wn

XY(L) = Wn
X(L)·Wn

Y*(L), where Wn
Y*(L)

is the complex conjugation of Wn
Y(L). The power spectrum of the wavelet is defined as |Wn

XY(L)|,
which reflects the correlation degree between X and Y. The Fourier transformation power spectrum
(Pk) of red noise was calculated using the following equation [48]:

Pk =
1− b2

1 + b2 − 2b cos(2πk/N)
, k = 1, 2, . . . , N/2. (7)

Here, b is the autoregressive coefficient of order 1 for a red-noise time series, and N denotes the
length of the red-noise time series.

Supposing that the expectation spectra of the two time series, X and Y, are Pk
X and Pk

Y,
the distribution of the cross-wavelet power spectrum [49] is expressed as follows:

D(

∣∣∣∣Wn
X(L)Wn

Y∗(L)
σXσY

∣∣∣∣ < p) =
Zν(p)

ν

√
Pk

XPk
Y, (8)

where σX and σY denote the standard deviations of the two time series, X and Y, respectively; Zν(p) is
the confidence level corresponding to the probability p for a probability distribution function by the
square root of two χ2 distributions; and ν is the freedom degree.

In Equation (8), if the left-hand value is larger than the upper limit of the power spectrum of red
noise under the significance level, α, it is thought that the correlation between X and Y is significant.
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2.5. Pearson Correlation Coefficient Test

The Pearson correlation coefficient (PCC) denotes a certain dependency relationship between two
time series, X and Y, including the direction and degree of correlation. The PCC in Equation (2) is a
traditional and effective statistic for correlation analysis. Its plus/minus sign and absolute value reflect
the direction and degree of correlation between two time series, respectively. If X and Y are stationary,
a statistic is built as follows [50]:

t =
r√

(1− r2)/(n− 2)
, (9)

where t is the statistic following a Student’s t-distribution with a degree of freedom, n − 2; r is the PCC
between two time series; and n is the length of the two time series.

When the significance of r is tested, the null hypothesis is that r is equal to zero, i.e., the two time
series have no correlation. At the significance level, α, the null hypothesis is rejected if the absolute
value of t is larger than tα/2.

In reality, a time series may be non-stationary, which could reduce the effectiveness of the PCC.
In addition, the periodic components in both time series probably lead to a false correlation. Thus,
the resonant periodic components and their respective trend components are removed from X and Y
before analyzing their correlation. Specifically, it is assumed that X and Y have significant resonant
periods, and their separate periodic components are XP and YP, respectively. In addition, both X-XP

and Y-YP have separate, overall linear trend components, XT and YT, respectively. The PPC between
X-XP-XT and Y-YP-YT is r’ with the statistic t’. If |t’| is larger than tα/2, X and Y have a significant
correlation depending on r’; otherwise, it is insufficient to determine the correlation between X and Y
based on r’.

For brevity, r and r’ were named original PCC and filtered PCC, respectively. It is assumed that m
factors (X1, X2, . . . , Xm) jointly influence a factor (Y). Furthermore, ri (i = 1, 2, . . . , m) and r’i are the
original and filtered PCCs between the Xi and Y time series. According to the (positive or negative)
sign of r*·r’i and the value of |r’i|, the effects of different factors (X1, X2, . . . , Xm) on Y could be
ranked. If r*r’j > 0 and r*r’k < 0 (j, k = 1, 2, . . . , m), the effect of Xj on Y is larger than that of Xk. If r*r’j
and r*r’k have the same sign and |r’j| > |r’k|, the effect of Xj on Y is larger than that of Xk; otherwise,
the effect of Xj on Y is smaller than that of Xk.

3. Results and Discussion

3.1. Data Weights of the Three Centers

Figure 2 shows the correlations of monthly TWSA time series measured by the three centers (CSR,
GFZ, and JPL). All correlation coefficients were greater than 0.7, indicating that the TWSA data of NWC
measured by the three centers were highly consistent. The correlation between CSR and GFZ was the
highest, while the correlation between GFZ and JPL was the lowest. In addition, the correlations of
the three centers decreased from east to west in NWC, which probably resulted from the increase in
gravity-field inversion error related to the increases in regional size and topographic complexity in
this direction [51]. Based on the correlations, the data weights of the three centers were calculated, and
are presented in Table 1, thus obtaining the monthly weighted TWSA time series of NWC.
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Table 1. Weights of monthly the Gravity Recovery and Climate Experiment (GRACE) data released by
the three centers from April 2002 to March 2016.

Province CSR GFZ JPL

Shaanxi 0.335 0.333 0.333
Ningxia 0.335 0.334 0.331
Gansu 0.337 0.332 0.331

Qinghai 0.341 0.332 0.327
Xinjiang 0.344 0.331 0.326

Note: CSR denotes the University of Texas Center for Space Research; GFZ denotes the German Research Center for
Geosciences; and JPL denotes the Jet Propulsion Laboratory.

3.2. TWS Variations in the NWC

Figure 3 shows the intra-annual variations in TWS in the five provinces of NWC. It can be seen
that the TWS showed distinct seasonal variations, and TWS variations in Xinjiang province were
quite different from those in the other four provinces. In the Shaanxi, Ningxia, Gansu, and Qinghai
provinces, TWS increased from April to September, and basically decreased from September to April.
In the Xinjiang province, TWS decreased from April to October, and increased from October to April.
Yang and Chen [12] found that TWS reached maximum and minimum values in April and October,
respectively, in the Central Xinjiang province, which is consistent with the changing characteristics of
TWS in the Xinjiang province in this study.

Using a Mann–Kendall test [52], the trends in Figure 4a show that TWS in Qinghai had a significant
trend, with an increasing rate of 1.47 mm/a in Figure 4b, while TWS in the other four provinces
(Shaanxi, Ningxia, Gansu, and Xinjiang) obviously decreased. Figure 4b shows the linear rates of TWS
in the five provinces. Specifically, ranking the rates of TWS decrease from fastest to slowest yields
Shaanxi (−2.88 mm/a), Ningxia (−2.78 mm/a), Gansu (−1.7 mm/a), and Xinjiang (−1.24 mm/a).
According to the available literature [3,12,53–55], TWS had a significant decline in the Xinjiang province,
particularly in the Tianshan Mountains and surrounding areas. TWS had an obvious increase at the
intersection between Tibet and the Xinjiang and Qinghai provinces. TWS notably decreased in the
Shaanxi and Ningxia provinces between 2003 and 2013. In addition, TWS also obviously decreased in
the North Gansu province from 2003 to 2012.
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Figure 4. Trends of monthly TWSA time series in NWC from April 2002 to March 2016: (a) significance
test results of the overall trends; Z is the statistic of the trend of a time series, and Z_ub and Z_lb
separately denote the upper and lower bounds of non-significant trends under the significance level,
α = 0.05; (b) linear trend rates of TWS in the five provinces of NWC.
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3.3. Correlations between TWS and Climatic and Vegetational Factors

CWT was utilized to analyze the correlations between ∆TWS and climatic and vegetational factors
in NWC. For brevity, Figure 5 only shows the CWTs between the monthly ∆TWS and P series in the
Xinjiang province of NWC. The main information of the cross-wavelet power spectrum, like that in
Figure 5a, could be described as follows: (1) the influencing cone of the wavelet, namely the area
surrounded by the fine arc, is set to avoid the boundary effect and the false information outside the
cone; (2) the area surrounded by the thick real line denotes the cross-wavelet power spectrum passing
the test of standard spectrum of red noise under the significance level, α = 0.05; (3) the numbers on the
right of the color bar represent the relative power spectrum values (dimensionless value); (4) darker
red corresponding to a bigger spectrum value denotes a more significant resonant period (RP), while
darker blue corresponding to a smaller spectrum value indicates a less significant RP; and (5) the
arrow represents the phase relationship between factor 1 (such as precipitation) and factor 2 (such as
∆TWS). Specifically, “→” denotes that the variations of factors 2 and 1 are synchronous, “↓” indicates
that the variation of factor 2 lags behind that of factor 1 with one-fourth of an RP, “←” implies that the
variation of factor 2 lags behind that of factor 1 with half of an RP, and “↑” shows that the variation of
factor 2 lags behind that of factor 1 with three-fourths of an RP. Additional information about wavelet
cross spectra was given by Herrera et al. [56].

Without eliminating periodic and trend components, as shown in Figure 5a, monthly ∆TWS
and P had a significant resonant period of 12 months. The ∆TWS value was negatively correlated
with P as a whole, but monthly ∆TWS and P had a positive relationship according to the terrestrial
water budget equation. In the Xinjiang province, the multi-year average ratio of P to potential Et
was less than 0.1 [57]; thus, the negative correlation between ∆TWS and Et was far stronger than the
positive correlation between ∆TWS and P. As shown in Figure 5b, the negative correlation between
∆TWS and P was greatly weakened, while the positive correlation was enhanced after removing their
periodic and trend components. In NWC, monthly ∆TWS and climatic and vegetational factors had a
significant resonant period of 12 months, based on the CWT analysis. To obtain reliable correlations, it
was necessary to reduce the periodic and trend components before analyzing a correlation between
the two factors on a monthly basis.

Overall, correlations between the climatic and vegetational factors were noteworthy, as shown in
Table 2. In NWC, the negative correlations were significant between monthly P and monthly SD, AT,
and NDVI. Monthly SD had significant positive correlations with monthly AT and NDVI. Monthly AT
showed significant positive correlations with monthly NDVI. Monthly WS had no stable correlations
with the other four factors. In the Shaanxi, Ningxia, Gansu, and Qinghai provinces, monthly WS had
negative correlations with monthly P, and showed positive correlations with monthly SD, AT, and
NDVI. However, monthly WS showed a significant positive correlation with monthly P and negative
correlations with monthly SD, AT, and NDVI in the Xinjiang province. The significant correlations
showed strong interactions between these factors, which could disturb the independent effects of some
factors on ∆TWS to a certain extent.
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Vegetational coverage was influenced by multiple climatic factors, particularly P, SD, and
AT [58,59]. On a monthly scale, the increase of P led to the decreases of SD and AT, which hindered
the normal growth process of vegetation, although soil moisture was replenished by P. Thus, the
negative correlations between monthly P and NDVI were reasonable in the five northwest provinces.
Nevertheless, the vegetational coverage conditions generally had a good positive correlation with
antecedent P in an area; for example, Gessner et al. [60] found vegetational coverage was sensitive to P
anomalies of the previous one to three months in Central Asia.

Wind speed has multiple effects on the transport of water vapor [61,62]. On one hand, wind
can transport water vapor away from a region, improving regional Et. On the other hand, wind
can also transport abundant water vapor to a region, promoting regional P. Thus, WS usually had
complicated relationships with other climatic and vegetational variables because of its multiple effects
on the transport of water vapor. In particular, Xinjiang is far from oceans, and its P is mainly supplied
by water vapor from the North Atlantic Ocean and the Indian Ocean [63,64]. Thus, a higher WS
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could result in more water vapor being transported to Xinjiang, which explains the significant positive
correlation between P and WS in this region to a certain extent.

Table 2. Pearson correlation coefficients (PCCs) between monthly climatic (precipitation (P), sunshine
duration (SD), air temperature (AT), and wind speed (WS)) and vegetational (normalized difference
vegetation index (NDVI)) factor time series in Northwest China (NWC) between January 1982 and
March 2016.

Factors in Pair PCC Shaanxi Ningxia Gansu Qinghai Xinjiang

P and SD
r 0.10 0.26 0.33 0.07 0.60
r’ −0.60 −0.50 −0.55 −0.77 −0.60

P and AT
r 0.77 0.73 0.83 0.89 0.72
r’ −0.33 −0.26 −0.29 −0.12 −0.21

P and WS
r −0.18 0.06 0.01 0.04 0.55
r’ −0.29 −0.13 −0.09 −0.09 0.23

P and NDVI
r 0.77 0.78 0.87 0.90 0.74
r’ −0.19 −0.20 −0.21 −0.34 −0.14

SD and AT
r 0.56 0.66 0.65 0.36 0.94
r’ 0.45 0.32 0.39 0.17 0.26

SD and WS
r 0.48 0.34 0.32 0.24 0.76
r’ 0.36 0.05 0.03 0.14 −0.36

SD and NDVI
r 0.50 0.51 0.54 0.19 0.84
r’ 0.37 0.33 0.40 0.45 0.28

AT and WS
r 0.13 0.27 0.20 0.18 0.76
r’ 0.23 0.17 0.07 0.16 −0.15

AT and NDVI
r 0.94 0.87 0.91 0.86 0.89
r’ 0.12 0.10 0.15 0.19 0.10

WS and NDVI
r −0.04 0.03 −0.05 −0.12 0.54
r’ 0.11 0.01 0.09 0.10 −0.07

Note: r’ is the filtered PPC between the two factor time series, achieved by removing the periodic and trend
components; bold data are significant values under the significance level, α = 0.05.

Monthly ∆TWS had different correlations with the five climatic and vegetational factors based on
the values of r’, as shown in Table 3. In the Shaanxi, Ningxia, Gansu, and Qinghai provinces, monthly
∆TWS had significant positive correlations with P, and presented obvious negative correlations with
SD, AT, and NDVI. Monthly ∆TWS had non-significant negative correlations with WS in the Shaanxi,
Ningxia, and Gansu provinces; furthermore, monthly ∆TWS showed a significant negative correlation
with WS in the Qinghai province. In the four provinces, all PCCs between monthly ∆TWS and
monthly SD, AT, WS, and NDVI changed from positive to negative after removing periodic and
trend components; however, PCCs between monthly ∆TWS and P remained positive. This indicated
that monthly P had the strongest effects on ∆TWS in the four provinces. In the Xinjiang province,
monthly ∆TWS showed non-significant positive correlations with monthly P and WS, while having
non-significant negative correlations with monthly SD, AT, and NDVI. However, monthly ∆TWS and
monthly SD, AT, and NDVI had strong negative correlations in the Xinjiang province according to the
values of r, which implied similarly prominent effects of the three factors on ∆TWS in this region.
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Table 3. PCCs between monthly variations in terrestrial water storage (∆TWS) and monthly climatic
(P, SD, AT, and WS) and monthly vegetational (NDVI) factor time series in NWC from May 2002 to
February 2016.

Factors in Pair PCC Shaanxi Ningxia Gansu Qinghai Xinjiang

∆TWS and P
r 0.55 0.55 0.53 0.58 −0.49
r’ 0.31 0.37 0.32 0.31 0.11

∆TWS and SD
r 0.20 0.22 0.38 0.09 −0.71
r’ −0.31 −0.30 −0.15 −0.17 −0.14

∆TWS and AT
r 0.55 0.46 0.51 0.50 −0.74
r’ −0.18 −0.19 −0.16 −0.16 −0.13

∆TWS and WS
r 0.13 0.24 0.31 0.31 −0.45
r’ −0.14 −0.07 −0.11 −0.18 0.10

∆TWS and NDVI
r 0.52 0.50 0.52 0.48 −0.77
r’ −0.29 −0.17 −0.28 −0.26 −0.11

Note: r’ is the filtered PPC between the two factor time series, achieved by removing the periodic and trend
components; bold data are significant values under the significance level, α = 0.05.

Strong effects of one factor were also able to disturb the influences of the weaker factors on
∆TWS in NWC. In the Shaanxi, Ningxia, Gansu, and Qinghai provinces, the effects of P completely
overshadowed the influences of SD, AT, WS, and NDVI. Conversely, the effect of P was thoroughly
overshadowed in the Xinjiang province, where the annual average P (144 mm) was far less than that of
the other four provinces Shaanxi (634 mm), Ningxia (275 mm), Gansu (295 mm), and Qinghai (356 mm)
from 1982 to 2015. Deng and Chen [3] found that monthly TWS and P had a significant positive
correlation in Southern Xinjiang, and showed a negative correlation in Northern Xinjiang. It was
noted that the P in Northern Xinjiang obviously exceeded that in Southern Xinjiang [65]. In addition,
Deng and Chen [3] found that monthly TWS and AT had significant positive correlations in most parts
of Xinjiang, which was probably a result of disturbances in their periodic and trend components.

3.4. Effects of Climate and Vegetation Changes on TWS Variations

As shown in Figure 6, climatic and vegetational factors had different trends in the five provinces
of NWC from 1982 to 2015. Annual AT and NDVI had significant increasing trends in the Shaanxi,
Ningxia, and Gansu provinces. Wang et al. [66] also found that vegetation cover had a notable
improvement in NWC from 1981 to 2013. Annual SD and WS obviously decreased, while annual AT
notably increased in the Qinghai province. Annual P and AT showed significant increasing tendencies
in the Xinjiang province, and Deng and Chen [3] detected the same trends of AT and P in the Xinjiang
province during recent decades.

Table 4 shows the effects of climatic (P, SD, AT, and WS) and vegetational (NDVI) factors on TWS
in the five provinces of NWC. In the Shaanxi, Ningxia, and Gansu provinces, increasing AT and NDVI
jointly resulted in decreases in TWS, because the other factors had no significant trends. In the Qinghai
province, the decreases in SD and WS jointly caused an increase in TWS, because the increasing AT
had a weaker negative influence on TWS than SD and WS. In the Xinjiang province, the increase in
AT resulted in a decrease in TWS, because the negative effect of increasing AT was stronger than the
positive effect of increasing P.
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Figure 6. Significance tests of the trends of annual climatic (precipitation (P), sunshine duration (SD),
air temperature (AT), and wind speed (WS)) and vegetational (normalized difference vegetation index
(NDVI)) factor time series in NWC from 1982 to 2015. (Z is the statistic of the trend of a time series,
and Z_ub and Z_lb separately denote the upper and lower bounds of non-significant trends under the
significance level, α = 0.05.).
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Table 4. Analysis of climatic (P, SD, AT, and WS) and vegetational (NDVI) factor effects on TWS in the
five provinces in NWC.

Climatic and Vegetational Factors Shaanxi Ningxia Gansu Qinghai Xinjiang

P +1 * +1 * +1 * +1 * +4↑
SD −2 * −2 * −4 * −4↓ −1 *
AT −4↑ −3↑ −3↑ −5↑ −2↑
WS −5 * −5 * −5 * −3↓ +5 *

NDVI −3↑ −4↑ −2↑ −2 * −3 *

Note: + and − denote positive and negative effects on TWS, respectively; numbers represent the ranking of effects
according to r and r’ in Table 3; and *, ↑, and ↓ separately denote non-significant, significantly positive, and
significantly negative trends, respectively, based on the results in Figure 6.

The significance trends of climatic and vegetational factors changed the hydrological pattern
in NWC. In particular, potential evapotranspiration significantly decreased in the western area
of NWC because of the decrease in annual WS, while it increased in the eastern area of NWC
because of the increase in AT [67]. The increasing AT accelerated the melting of glaciers and snow
cover in Xinjiang, leading to a decrease in TWS in the Tianshan Mountains and an increase in
TWS in Southern Xinjiang [3,68]. Long-term vegetation restoration reduced soil water storage on
the Loess Plateau [69,70]. In addition, vegetation transpiration apparently increased groundwater
evapotranspiration in the arid inland river basins of NWC [71].

3.5. Connections between TWS Variations and Socioeconomic Water Consumption

Notably, socioeconomic water consumption (surface water and groundwater consumption)
always has direct links with changes in TWS [72]. Based on abundant data on well levels
and GRACE-based TWS data, many scholars investigated spatiotemporal variations of regional
groundwater [73–76]. Nevertheless, it is beyond the scope of this study to examine the linkage
between the temporal evolution of groundwater storage and groundwater withdrawal, given the
challenge of deriving groundwater storage constrained by in situ observations in the study region.
This study investigated the relationships between monthly TWS variations and reservoir operation
and groundwater withdrawal in NWC.

As shown in Table 5, ∆TWS in the Shaanxi, Ningxia, Gansu, and Qinghai provinces had significant
positive correlations with monthly water storage variation in the cascade reservoirs (LYX and LJX) of
the upper Yellow River. Thus, the water storage variation of cascade reservoirs could influence ∆TWS
in the four provinces. In addition, the correlation coefficients gradually decreased from east to west
in NWC. In Figure 7, in addition to Shaanxi, annual water withdrawals from the Yellow River also
decreased in this geographical direction. A reasonable explanation was that the downstream water
demands influenced the water storage variation of both cascade reservoirs, and further influenced
∆TWS in the three provinces. Though the water withdrawal in Shaanxi was not the largest, the water
withdrawals of Gansu and Ningxia probably supply Shaanxi in the form of groundwater, indirectly
causing a good correlation between water storage variation in the two cascade reservoirs and ∆TWS in
Shaanxi [77].

Table 5. Correlations between monthly ∆TWS in the four northwest provinces and the monthly water
storage variation of cascade reservoirs at the upper Yellow river between May 2002 and February 2016.

Province Shaanxi Ningxia Gansu Qinghai

r’ 0.40 0.37 0.33 0.16

Note: bold data are significant values under the significance level, α = 0.05.
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Figure 7. Annual water withdrawals of the four provinces from the Yellow River between 2002
and 2015.

As shown in Figure 8, the annual groundwater withdrawal of Xinjiang province had an obvious
increasing trend, while the annual groundwater withdrawals of the other four northwest provinces
of NWC had no noticeable trends. Groundwater exploitations are often conducted in the Shaanxi,
Ningxia, Gansu, and Xinjiang provinces because of large socioeconomic water demands in these
regions [78,79]. As shown in Figure 8, the ranking of the annual average groundwater withdrawals
from largest to smallest was Shaanxi (16.3 mm), Ningxia (8.2 mm), Gansu (6.0 mm), Xinjiang (5.0 mm),
and Qinghai (0.8 mm), which was consistent with the ranking of decreasing TWS shown in Figure 4b.
However, this is not a mere coincidence, as considerable amounts of groundwater are converted into
surface water during groundwater withdrawal activities, thereby promoting actual Et and reducing
groundwater storage in a province, even under the same climatic and vegetational conditions [80].

In NWC, agricultural irrigation remains the largest source of water usage, accounting for over 70%
of total water consumption [79,81]. Irrigation consumes substantial amounts of groundwater every
year, leading to severe decreases in groundwater tables in many irrigated farming areas worldwide [82,
83]. The groundwater depth gradually increased with the growing number of irrigation wells on the
Guanzhong Plain of the Shaanxi province from 1977 to 2010 [84]. The groundwater table significantly
declined in the Dunhuang oasis of the Gansu province from 1987 to 2007 because of increased pumping
for irrigation [85]. The groundwater levels obviously decreased in the Tarim River basin of the Xinjiang
province with the expansion of irrigation between 2004 and 2010 [3]. With increasing AT, irrigation
probably consumed more groundwater in some irrigated areas, thus resulting in a further reduction of
TWS in NWC.
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4. Conclusions

This study investigated GRACE-based TWS variations in NWC between April 2002 and March
2016, including seasonal and trend variations. Furthermore, the relationships between TWS variations
and climatic and vegetational factors, as well as socioeconomic water consumption, were analyzed.
The major conclusions are as follows:

(1) TWS showed distinct seasonal variations and a significant decreasing tendency in NWC as a
whole. In particular, TWS obviously decreased in the Shaanxi, Ningxia, Gansu, and Xinjiang
provinces, while TWS notably increased in the Qinghai province. Increases in AT and NDVI
were the main causes of the decreases in TWS in the Shaanxi, Ningxia, and Gansu provinces.
The decreases in SD and WS resulted in an increase in TWS in the Qinghai province, while the
decrease in TWS was caused by the obvious increase in AT in the Xinjiang province.

(2) The interactions of climatic and vegetational factors were significant, and strong effects of some
factors could weaken the influences of other factors on TWS variations in NWC. In particular, the
negative effects of SD, AT, and NDVI jointly masked the positive effects of P and WS on TWS in
the Xinjiang province, whereas the positive effect of P masked the negative effects of the other
factors on TWS in the other provinces in NWC. Accordingly, we should emphasize the analysis
of the interactions and combined effects of multiple effects on TWS variations in a region.

(3) TWS in the Shaanxi, Ningxia, Gansu, and Qinghai provinces had good correlations with the
variation in water storage in the cascade reservoirs of the upstream of the Yellow River, and the
correlation coefficients gradually decreased from east to west in NWC. In addition, increasing AT
could promote actual Et when more groundwater is converted into surface water in irrigated
areas, thus resulting in a further reduction in TWS in NWC.
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