Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva

MPG-Autoren
/persons/resource/persons84766

Verasztó,  C
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273029

Ueda,  N
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273014

Bezares-Calderón,  LA
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273031

Panzera,  A
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273025

Williams,  EA
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273022

Shahidi,  R
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons85269

Jékely,  G
Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Verasztó, C., Ueda, N., Bezares-Calderón, L., Panzera, A., Williams, E., Shahidi, R., et al. (2017). Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva. eLife, 6: e26000. doi:10.7554/eLife.26000.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-14B3-D
Zusammenfassung
Ciliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.