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We make use of a Bayesian description of the neural network (NN) training for the calculation of the un-
certainties in the NN prediction. Having uncertainties on the NN prediction allows to have a quantitative
measure for trusting the NN outcome and comparing it with other methods. Within the Bayesian framework,
the uncertainties can be calculated under different approximations. The NN has been trained with the pur-
pose of inferring ion and electron temperature profile from measurements of a X-ray imaging diagnostic at
W7-X. The NN has been trained in such a way that it constitutes an approximation of a full Bayesian model
of the diagnostic, implemented within the Minerva framework. The network has been evaluated on measured
data and the uncertainties calculated under different approximations have been compared with each other,
finding that neglecting the noise on the NN input can lead to an underestimation of the error bar magnitude
in the range of 10% to 30%.

I. INTRODUCTION

In nuclear fusion research, neural networks (NNs) have
been used for tasks such as prediction of disruption
events from plasma parameters1 and for diagnostic data
analysis2. A special effort is often put in the develop-
ment of real time systems3. In most of the applications,
the output of the NN models are single ’best guess’ pre-
dictions, obtained with values of the adaptable parame-
ters found minimizing a given cost function. We believe
that, in order to have trust-worthy outcomes, uncertainty
should be taken into account and delivered as part of
the final predictions. In this paper we will describe and
make use of a Bayesian framework for the treatment of
uncertainties, where the neural network model is seen as
a Bayesian model and the training procedure is seen as
an inference problem4,5. Applications of such framework
are scarcely encountered, although it posits a principled
picture of neural network modelling. Its implementation
relies on the calculation of the second derivative of the
neural network’s cost function with respect to the net-
work weights, i.e. the Hessian matrix. This is an opera-
tion that scales with the square of the number of weights,
i.e. as O(W 2), where W is the number of weights. It is
therefore a computational expensive calculation. How-
ever, the Hessian matrix needs to be calculated only once
per training, as it is fixed at evaluation time, when the
network is evaluated on the measurements. In Section II
we will illustrate the salient points of the Bayesian NN
training from a theoretical point of view, describing three
different procedures for the calculation of the uncertain-
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ties: the first one is derived neglecting noise in the NN
input, the second one accounting for it, and the third
one making use of a sampling scheme based on a non
linear multi-Gaussian approximation. In Section III we
will describe the specific application of the method to X-
ray imaging crystal spectrometer (XICS) diagnostic data
at W7-X, where the NN has been trained for the infer-
ence of electron and ion temperature profiles from XICS
measurements. In Section IV we will compare the two
procedures where we either do take or do not take into
account the noise on the NN input, and we will show a
single illustrative example of uncertainty calculation with
the multi-Gaussian sampling procedure.

II. BAYESIAN NEURAL NETWORKS

We shall describe now the salient points of the
Bayesian perspective on NN training which will allow us
to calculate uncertainties in the prediction. The nota-
tion used here is mostly taken from5. The neural net-
work is conceived here as a function f , which maps a
generally multidimensional input vector x to a generally
multidimensional output vector y. The function f is also
parametrized with a set of free parameters or weights w,
whose values are adapted or learned during the training
procedure, so that it can be written that y = f(x,w). In
the specific case of this study, the input vector x would
be an XICS measurement, and y would be either an elec-
tron or ion temperature profile, Te or Ti respectively. In
the analytical treatment that follows, we shall assume
a one dimensional output y for the sake of clearer no-
tation. The generalization to multi-dimension output is
straightforward. According to the traditional view, the
NN training is the procedure employed to find a set of
weight values wMP that minimizes a given cost or loss
function L(w). In regression problems such function is
often chosen to be the sum-of-square error between the
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NN’s output y and the target training data t:

L(w) =

N∑
n=1

(yn − tn)2 + ν(w) (1)

where N is the number of training samples, n is an index
labelling the nth training sample, and ν(w) is a regular-
izing term which constrains the weight values to small
values. The regularization allows to find a NN function
which is smooth in w so that the generalization capabil-
ities of the network are enhanced5. The set of weight
values found is then used to make predictions at evalua-
tion time. Using this approach, the outcome of the NN
function is a single value estimate, given by f(x,wMP).

In the Bayesian framework of neural network training,
the NN model is conceived as a Bayesian model, where
the weights w are the free parameters, and the target
data of the training tn are the observed data. According
to Bayesian inference rules, a prior distribution P (w) is
assigned to the network weights before training, and a
likelihood function P (D|w) is assigned to the observed
data, where D ≡ (t1...tN) denotes the target data from
the training set. The training procedure is then an infer-
ence process on the network’s weights. We can then write
Bayes formula to express the posterior distribution of the
weights P (w|D) in terms of the prior and the likelihood
function:

P (w|D) =
P (D|w)P (w)

P (D)
(2)

where P (D) is a normalization factor, independent of the
weights, also known as the evidence. We have omitted the
conditioning on the training input data X ≡ (x1...xn) in
all the terms, for the sake of simpler notation. The full
outcome of the training, from the Bayesian point of view,
is then not only a single set of values of the network’s
weights, but the entire posterior distribution P (w|D).
At evaluation time, the spread of the distribution will
then correspond to a distribution of output, the predictive
distribution. We shall see how, under certain assumption
and approximations, we can get to an expression for the
predictive error bars.

The first step in the application of such method, is the
choice of the prior distribution P (w) and the likelihood
function P (D|w). We shall assume for both of them
Normal distributions. The reason behind this choice is
that it allows making the analytical progress required to
derive a mathematical expression for the error bars of the
network’s output. In this way, we will also recover results
very well known and established under the traditional
view of NN training. In the general case of a multi-layer
neural network, we shall choose a prior of the form:

P (w) ∝ exp

(
−1

2

∑
k

αk‖w‖2k

)
(3)

where αk ≡ 1/σ2
k and σ2

k denotes the variance of the
distribution for the weights at the neural network’s layer
k. Concerning the likelihood function P (D|w), we shall
use an expression of the form:

P (D|w) ∝ exp

(
−β

2

N∑
n=1

(yn − tn)2

)
(4)

where β ≡ 1/σ2
D and σ2

D denotes the variance of the
noise in the training target data, i.e. the spread of the
distribution of the target variables, for a given, fixed in-
put vector. We can now use Bayes formula to find an
expression for the posterior distribution of the weights.
If we are interested in a single value solution, we can
look for the weight values that maximize the posterior.
This is equivalent to minimizing the negative logarithm
of Equation 2, ln(P (w|D)) ≡ −S(w), which, substitut-
ing the expressions in Equation 3 and Equation 4, can be
written as:

S(w) =
β

2

N∑
n=1

(yn − tn)2 +
1

2

L∑
k=1

Nk∑
i=1

αkw
2
k,i (5)

where L is the number of layers in the network, i is an
index labelling the weights at layer k and Nk is the num-
ber of weights at layer k. Notice that we have omitted
terms that do not depend on w, specifically no contri-
bution from the evidence term of Bayes formula appears
in this equation, since they would not have any effect in
the minimization of S(w) with respect to the weights.
The expression in Equation 5 resembles closely the one
in Equation 1. Indeed, this is how the Bayesian point of
view and the traditional one comes together. The first
term on the right-hand side of Equation 1 comes into
Equation 5 as the choice of the Gaussian noise model
on the target training data, while the second one, the
regularizing term, appears here as a consequence of the
Gaussian prior on the networks weights. In particular,
we notice that the particular choice of the squared norm
of the weight vector has led to a regularizing term well
known in the neural network field as L2 regularization or
weight decay : it has the effect of constraining the weights
to small values with the consequence of improving the
generalization of the network mapping, as described in5.

An analytical expression for the full posterior P (w|D)
can be found taking a Gaussian approximation of it
around wMP

4, where wMP is set of weight values found
minimizing Equation 5. This approximation is also
known as the Laplace approximation, and it leads to:

P (w|D) ≈ exp

(
−S(wMP)− 1

2
∆wTA∆w

)
(6)

where ∆w = w−wMP and A = ∇∇SMP = β∇∇EMP +∑
k αkI is the Hessian matrix of the error function in
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Equation 5, calculated with respect to the weights and

evaluated at wMP, and EMP = 1
2

∑N
n=1(yn − tn)2 is the

sum-of-square errors term evaluated at wMP, and I is
the identity matrix. We see therefore that A has two
contributions, the first one coming from the choice of
the likelihood function, controlled by the parameter β
and the second one coming from the choice of the prior
distribution of the weights, controlled by the parameters
αk. This allows us now to calculate the distribution of the
network outputs, when a new, unseen, input vector x is
provided to the trained network, at evaluation time. It is
obtained by marginalization over the network’s weights:

P (t|x, D) =

∫
P (t|x,w)P (w|D) dw (7)

where we have now explicitly included in the notation the
dependence on the new input vector x. The distribution
P (t|x,w), which is evaluated at fixed value of the weight
vector, is given by the noise model on the target data, as
in Equation 4. After some manipulation, we get to the
final expression:

P (t|x, D) =
1

(2πσ′2t )1/2
exp

(
− (t− yMP)2

2σ′2t

)
(8)

where:

σ′2t =
1

β
+ gTA−1g (9)

where g ≡ ∇wy|wMP
. The distribution of the network’s

output is then given by a Gaussian distribution, centered
at the network prediction obtained with weights wMP

and with standard deviation given by Equation 9. The
contribution to the predictive error has two components:
one arising from the noise on the target data, controlled
by β, and one arising from the posterior width, controlled
by A. Equation 9 corresponds to the first procedure to
calculate uncertainties.

So far, we have neglected uncertainties in the neural
network input. This is of course not ideal when the in-
put is a measured quantity with noise, as it is in our
application. It can be shown6 that an expression for the
predictive error, which includes noise on the input, is
given by:

σ2
t = σ′2t + σ2

xh
Th (10)

where h ≡ ∇xy|xv
, xv is the input vector, and σ2

x is
the variance of the noise of the input vector, here as-
sumed to be Gaussian. Equation 10 corresponds to the
second procedure to calculate uncertainties. Three main
assumptions that have been done to get to Equation 10:
the posterior distribution of the weights has been ap-
proximated with a Gaussian distribution around wMP,

the network function y(x;w) has been approximated by
its linear expansion around wMP and xv in the calcula-
tion of σ′t and σt, respectively. Moreover, the Laplace ap-
proximation of the weight’s posterior is only valid around
wMP. However, several minima of the cost function are
likely to exist and they can be found training the net-
work with different initial values of the weights. The
single-Gaussian approximation so far described does not
take them into account. In order to account for them,
it is possible to approximate the posterior of the weights
by a sum of Gaussians, each one centered on each of
the minima5. This can be accomplished by training a
committee of networks, where each member is trained
with different initialization values, and carrying out the
Laplace approximation of the posterior for each of them.
The overall posterior is then given by:

P (w|D) =
∑
i

P (w|mi, D)P (mi|D) (11)

where P (mi|D) is the a priori distribution of the minima
mi, and P (w|mi, D) is the posterior distribution of the
weights corresponding to the local minima mi, which can
be approximated with the Laplace approximation. The
predictive distribution can still be written as in Equa-
tion 7, where now the second term on the right-hand
side is obtained from Equation 11. Assuming P (mi|D)
to be uniform, we can obtain the uncertainties for a multi-
Gaussian approximation of the posterior distribution in
the following way: (i) we train a number of NNs with
different weight initialization, corresponding to the NN
functions fi, (ii) for each of them, we calculate the pos-
terior of the weights under the Laplace approximation,
(iii) we obtain samples from the predictive distribution
by randomly choosing one member of the committee, say
member i, then, sampling a set of weight values, wi

MP,
and an input vector x∗, from the weight posterior and
the input noise model respectively, and calculating the
corresponding NN output: yi = fi(w

i
MP,x

∗). The whole
procedure is repeated a number of times equal to the de-
sired number of samples. The advantage of this sampling
procedure to the estimation of the uncertainties is that
it doesn’t make use of the assumption of linearity of the
NN function around wMP and the input vector x. It is
therefore more accurate. However, it requires large com-
putational time, and it is therefore not suitable in those
applications where the execution time is a concern. This
is our third procedure for calculating uncertainties, and
we will refer to it as multi-Gaussian sampling scheme.

III. APPLICATION TO XICS DIAGNOSTIC DATA AT
W7-X

A. The XICS diagnostic at W7-X

The XICS diagnostic at W7-X is equipped with a
spherical bent crystal to image X-ray emission of Ar im-
purities. The emission is then collected on a CCD de-
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tector. The diagnostic layout and initial measurements
during the first operational phase at W7-X have been de-
scribed in7–11. The collected images have spatial resolu-
tion along vertical dimension, corresponding to different
lines of sight, and wavelength resolution along the hori-
zontal one. The wavelength range is 3.94 - 4.0 Å for He-
like Ar spectra. From the measured data is then possible
to reconstruct ion and electron temperature profiles. The
ion temperature affects the Doppler broadening of the
spectral lines, whereas the electron temperature affects
the relative intensities. Given the electron density pro-
file ne, the impurity density profiles can be obtained8,12.
A forward model of the diagnostic7 has been developed
within the Minerva Bayesian modeling framework13, and
it is used for the inference of the plasma profiles of inter-
est.

B. Neural networks as approximate Bayesian models

In the XICS Bayesian model, a prior distribution is
assigned to the free parameters, in this case tempera-
ture, electron and impurity density profiles, and likeli-
hood function is assigned to the measured data. A neu-
ral network has been trained with the goal to approx-
imate the full model Bayesian inference. The training
scheme is described in detail in14. The training set is ob-
tained sampling from the joint distribution of the model
P (T, I) = P (I|T )P (T ): a set of free parameters is sam-
pled from the prior distribution P (T ), and subsequently
synthetic data are sampled from the likelihood function
P (I|T ). The distribution P (I|T ) represents the noise
model on the XICS measurements, which is given by a
Gaussian distribution with mean and variance given by
the forward model predicted photon counts. When sam-
pling from the priors, all ne, Te, Ti, and impurity density
profiles were free to vary, but only the Ti and Te pro-
files were used as target of the network’s training. The
set of sampled synthetic images constitutes the network’s
input during training. Note that such a training set is
made exclusively of data synthesized with the Bayesian
model. The profiles are expressed with respect to the
effective radius, defined as ρeff =

√
ψ/ψLCFS where ψ

is the magnetic flux and ψLCFS is the flux at the last
closed flux surface. It is worth to emphasize that, be-
cause of training on a given fixed model, any systematic
deviation introduced by the specific choice of the model
would be reflected in the network’s inversions.

IV. RESULTS

Two convolutional neural network14,15 (CNN), each
one with two convolutional layers C1 and C2, followed
by one hidden fully connected layer M1 and the out-
put layer M2, have been trained on the inference of Ti
and Te profiles respectively. The training has been car-
ried out in the Bayesian scheme described in section II.

The values of β = 10 and αk = (αC1=68.00, αC2=58.33,
αM1=576.67, αM2=5.83) were used. The Hessian ma-
trix A has been calculated in the diagonal approxima-
tion. The error bars calculated with Equation 9 and
Equation 10 have been compared with each other and
the results are shown in Figure 1 and Figure 2. In
Figure 1 the average relative uncertainty 〈σrel〉 calcu-
lated accounting and without accounting for the noise on
the input, according to 〈σt,rel〉 ≡ 〈σt(ρeff)/T (ρeff)〉 and
〈σ′t,rel〉 ≡ 〈σ′t(ρeff)/T (ρeff)〉 respectively, is shown for each
spatial location of both profiles. The average has been
calculated from data collected across 15 plasma shots of
the first operational campaign at W7-X. In the case of
Te profiles, it is found that 〈σt,rel〉 ≈ 0.2 for ρeff < 0.4,
and 0.3 < 〈σt,rel〉 < 0.4 for ρeff > 0.5. In the case of Ti

profiles, instead, the quantity 〈σt,rel〉 shows less variation
across the different locations, assuming mostly values ap-
proximately equal to 0.1. The difference between 〈σt,rel〉
and 〈σ′t,rel〉 reflects what also emerges from Figure 2 and
that we will comment in the next paragraph: the two
quantities mostly diverge at the positions corresponding
to the plasma core and towards the edge. In Figure 2 it
is shown the distribution of the contribution of the in-
put noise term relative to the total error bar magnitude,
calculated as ∆σrel(ρeff) ≡ (σt(ρeff) − σ′t(ρeff))/σt(ρeff),
for each spatial location of the Te and Ti profiles. The
distribution has been computed from the same data used
for Figure 1. The orange line connects the mean of each
distribution. In the case of the Te profile (left), it is found
that for a significant proportion of the analyzed data the
input noise contribution accounts for more than 10%, and
mostly less than 20%, of the total error bar magnitude,
especially in the positions corresponding to the core and
towards the edge, ρeff < 0.2 and ρeff > 0.7. In the case of
the Ti profiles, instead, it is found in a significant num-
ber of cases that the same noise source accounts for more
than 20% of the total error, again mainly in the posi-
tions corresponding to the core and towards the edge of
the plasma, ρeff < 0.2 and ρeff > 0.6. The input un-
certainties are, therefore, in general not negligible. The
purpose of Figure 3 is to illustrate the result of the sam-
pling procedure described at the end of Section II. The
network’s inversion has been applied on a single mea-
sured data point for illustrative purposes. The network’s
input has been obtained averaging over a 500 ms range.
The bundle of grey lines is made of 1000 samples ob-
tained sampling from the multi-Gaussian approximation
of the network’s weights, accounting also for the noise
on the input. The orange line shows the network’s pre-
diction and corresponding error bar calculated with the
single-Gaussian approximation, Equation 10. The error
bars show a 2σt deviation. The sampling scheme based
on the multi-Gaussian approximation is a more accurate
method to calculate uncertainties, which comes at the
price of larger computational time: it is therefore suit-
able in NN applications where execution time is not a
concern.
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FIG. 1. The average value of the relative uncertainty calculated with (orange bars) and without (green bars) input noise
contribution for both Te (left) and Ti (right) profiles, as found from data collected across different experiments.

FIG. 2. The distribution of the contribution of the input noise term relative to the total error bar magnitude calculated across
data point from different plasma shots for each spatial location in the Te (left) and Ti (right) profiles. The orange line connects
the mean of the distribution at each position.

FIG. 3. The neural network prediction and uncertainties calculated in the case of the multi-Gaussian sampling procedure (grey
lines), and the single-Gaussian approximation (orange line), for both Te (left) and Ti (right) profiles.
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