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OPTIMAL CONTROL PROBLEMS GOVERNED BY

TRANSIENT CONVECTION-DIFFUSION EQUATIONS∗
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Abstract. In this paper, we investigate a posteriori error estimates of a control-constrained optimal control
problem governed by a time-dependent convection diffusion equation. The control constraints are handled by using
the primal-dual active set algorithm as a semi-smooth Newton method and by adding a Moreau-Yosida-type penalty
function to the cost functional. Residual-based error estimators are proposed for both approaches. The derived error
estimators are used as error indicators to guide the mesh refinements. A symmetric interior penalty Galerkin method
in space and a backward Euler method in time are applied in order to discretize the optimization problem. Numerical
results are presented, which illustrate the performance of the proposed error estimators.
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1. Introduction. Optimal control problems (OCPs) governed by convection diffusion
partial differential equations (PDEs) arise in environmental modeling, petroleum reservoir
simulation, and in many other engineering applications [12, 13, 39]. Efficient numerical
methods are essential for a successful application of such optimal control problems.

Several well-established techniques have been proposed to enhance stability and accuracy
of the optimal control problems governed by the steady convection diffusion equation, e.g., the
streamline upwind/Petrov Galerkin (SUPG) finite element method [11], the local projection
stabilization [5], the edge stabilization [27, 51], and discontinuous Galerkin methods [32,
52, 53, 54, 55]. However, only few papers are published so far for unsteady optimal control
problems governed by convection diffusion equations, e.g., the characteristic finite element
method [14, 15], the streamline upwind/Petrov Galerkin (SUPG) finite element method [30],
the local discontinuous Galerkin (LDG) method [57], the nonsymmetric interior penalty
Galerkin (NIPG) method [45], and the symmetric interior penalty Galerkin (SIPG) method [2].

Adaptive finite element approximations are particularly attractive for the solution of
optimal control problems governed by convection-dominated partial differential equations
since the solution of the governing state PDE or the solution of the associated adjoint PDE
may exhibit boundary and/or interior layers with small widths where their gradients change
rapidly. When layers are not properly resolved, standard finite element discretizations lead
to strong oscillations. One approach to improve the quality of a numerical solution is local
mesh refinement around the layers, thereby achieving a desired residual error bound with as
few degrees of freedom as possible. The literature in this area is huge, and we would like
to refer to [1, 38, 48] and the references therein for more details. Adaptive finite element
approximations use a posteriori error estimators or indicators to guide the mesh refinement
procedure. A posteriori error estimates are computable quantities in terms of the discrete
solutions without knowledge of the exact solutions. Only the area where the error estimator is
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large will be refined so that a higher density of vertices is distributed over the area where the
solutions are not well enough approximated. In this sense, the a posteriori error estimators
are essential in designing algorithms to generate a mesh equidistributing the computational
effort and optimizing the computation. The a posteriori error analysis of optimal control
problems governed by parabolic equations is discussed in, e.g., [16, 20, 35, 36, 46]. For
optimal control problems governed by time-dependent convection diffusion equations, the a
posteriori error analyses are investigated by using a characteristic finite element discretization
in [17] and by using edge stabilization in [56]. We also note that the error estimators proposed
in [21, 27] do not contain a contribution of the residual in the control equation since the
variational discretization concept proposed by Hinze [25] was used. The variational discrete
optimal control can be understood as a discrete object, which is automatically discretized
through a projection operator. Its structure depends on the discrete adjoint, the properties of
the orthogonal projection, the Riesz isomorphism, and the control operator. Moreover, the
numerical implementation of the variational discretization is not as straightforward as the full
discretization; see [26, Chapter 3]. Although the variational discretization has an advantage in
terms of accuracy, we believe it is still important to derive error estimates for the system with
explicit discretized control. We will consider the transfer of our approach to the case of the
variational control concept in a subsequent paper.

Here we investigate an a posteriori error analysis of optimal control problems governed by
transient convection diffusion equations using the discontinuous Galerkin method in space and
the backward Euler method in time. We apply a discontinuous Galerkin (DG) discretization
for convection-dominated optimal control problems due to its better convergence behavior,
local mass conservation, flexibility in approximating rough solutions on complicated meshes,
and mesh adaptation. We would like to refer to [4, 23, 42] for details of the discontinuous
Galerkin methods. For control-constrained optimal control problems, the resulting mapping
is no longer smooth and not easy to differentiate. One has to tackle the semi-smoothness
introduced by the box constrains either via the primal-dual active set method [6], which turns
out to be a non-smooth Newton method, or via a regularization term such as the Moreau-Yosida
regularization. Although the Moreau-Yosida regularization is a popular technique for optimal
control problems with state constraints (see, e.g., [21, 22, 29, 52]), it is also used to regularize
the control constraints in [40, 44]. For both strategies, we derive a posteriori error estimates
in the L2-norm for the control approximation with obstacle constraints. We need to mention
that here we are not concerned with controlling the error contribution stemming from the
regularization parameter. Therefore, we formally assume the Moreau-Yosida regularization
parameter to be fixed in advance as done in [21, 52]. Our aim is only to understand the
behavior of the a posteriori error estimate in connection with a Moreau-Yosida regularization.
Then, we derive the residual-based error estimates for the regularized optimization problem
up to the error involved by the Moreau-Yosida regularization. Further, by using L2-duality
techniques, some L2-norm a posteriori estimates for the state and adjoint approximations are
derived.

For time-dependent problems, adaptivity can be considered in both time and space. The
spatial adaptivity can vary in time since the regions where refinement is necessary move in
time. This feature of transient problems was successfully applied in [7, 19, 37, 49]. However,
when there is a strong transport phenomenon, the optimal spatial mesh varies dramatically with
time. Hence, there is a great need for space-time adaptivity. Such a general scheme requires
recursive adaptations of the whole space-time mesh. In some optimal control problems, there
exist two transport phenomena with opposite directions. This makes the computation of the
problem more complex. Therefore, we focus on space adaptivity and use a fixed time step for
the implicit Euler method in the analysis and in the numerical implementations.
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The rest of the paper is organized as follows: in the next section, we introduce control-
constrained optimal control problems governed by transient convection diffusion equations.
We apply the symmetric interior penalty Galerkin (SIPG) method for the diffusion and the
upwind discretization for the convection in order to discretize the optimization problem in
space. The primal-dual active set strategy as a semi-smooth Newton method is also introduced
to solve the optimality system. Some a posteriori error estimates for the primal-dual active set
approach are derived in Section 3. The other approach to solve the control-constrained optimal
control problem, the Moreau-Yosida regularization, is given in Section 4. Section 5 contains
the numerical experiments to illustrate the performance of the proposed error estimators.

2. Approximation schemes for the optimal control problem. In this section, we in-
troduce the discontinuous Galerkin finite element discretization in space and the backward
Euler discretization in time for the approximation of the distributed linear-quadratic optimal
control problems governed by unsteady convection diffusion PDEs.

We adopt the standard notations for Sobolev spaces on computational domains and their
norms. Ω and ΩU are bounded open sets in R2 with Lipschitz boundaries ∂Ω and ∂ΩU ,
respectively. Although adaptive finite element methods provide a real benefit on non-convex
domains, for example such with reentrant corners in practical applications, we assume that
Ω and ΩU are convex polygons for simplicity. The inner products in L2(ΩU ) and L2(Ω) are
denoted by (·, ·)U and (·, ·), respectively. Throughout the paper, C denotes a generic positive
constant, and a > b means that a ≤ C b for some positive constant C. Further, we consider
the Bochner spaces of functions mapping the time interval (0, T ) to a Banach space V in
which the norm ‖ · ‖V is defined. For r ≥ 1, we define

Lr(0, T ;V ) =

{
z : [0, T ]→ V measurable :

∫ T

0

‖z(·)‖rV dt <∞

}
with

‖z(·)‖Lr(0,T ;V ) =


(∫ T

0
‖z(·)‖rV dt

)1/r

, if 1 ≤ r <∞,
ess sup

t∈(0,T ]

‖z(·)‖V , if r =∞.

In this paper, we shall take the state space W = L2(0, T ;V ) with V = H1
0 (Ω) and the

control space X = L2(0, T ;L2(ΩU )). We are interested in the following distributed optimal
control problem governed by a transient convection diffusion equation:

min
u∈Uad⊆X

J(y, u) :=

∫ T

0

(1

2
‖y − yd‖2L2(Ω) +

α

2
‖u− ud‖2L2(ΩU )

)
dt,(2.1)

subject to

∂ty − ε∆y + β · ∇y = f +Bu, x ∈ Ω, t ∈ (0, T ],(2.2a)
y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],(2.2b)
y(x, 0) = y0(x), x ∈ Ω,(2.2c)

where the closed convex admissible set of control constraints is given by

Uad = {u ∈ X : ua ≤ u ≤ ub, a.e. in ΩU × (0, T ]}(2.3)

with the constant bounds ua ≤ ub. The function ud, called desired control, is a guideline
for the control; see, e.g., [10]. Note that this formulation also allows for the special (and
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most common) case ud = 0, i.e., there is no a priori information on the optimal control. B
is a linear continuous operator from L2(ΩU ) to L2(Ω) realizing the transition between ΩU
and Ω. Generally, ΩU can be a subset of Ω. In the special case ΩU = Ω, B = I is the identity
operator on L2(Ω).

We make the following assumptions for the functions and parameters in the optimal
control problem (2.1)–(2.3):

(i) The source function f , the desired state yd, and the desired control ud satisfy the
following regularity conditions:

f, yd ∈ L2(0, T ;L2(Ω)) and ud ∈ L2(0, T ;L2(ΩU )).

(ii) The initial condition is defined as y0(x) ∈ V = H1
0 (Ω).

(iii) β denotes a velocity field. It belongs to (W 1,∞(Ω))2 and satisfies the incompressibil-
ity condition, i.e.,∇ · β = 0. The diffusion parameter ε is also taken as 0 < ε� 1.

Using the assumptions defined above, the following result on the regularity of the state solution
can be stated.

PROPOSITION 2.1 ([34]). Under the assumptions defined above and for a given control
u ∈ L2(0, T ;L2(ΩU )), the state y satisfies the regularity condition

y ∈ H1(0, T ;L2(Ω)) ∩W

and the weak formulation

(∂ty, v) + a(y, v) = (f +Bu, v), ∀v ∈ V,
y(x, 0) = y0,

where the (bi)-linear forms are defined by

a(y, v) =

∫
Ω

(ε∇y · ∇v + β · ∇y v) dx, (f, v) =

∫
Ω

f v dx.

Then, the variational formulation corresponding to (2.1)–(2.3) can be written as

min
u∈Uad

J(y, u) :=

∫ T

0

(1

2
‖y − yd‖2L2(Ω) +

α

2
‖u− ud‖2L2(ΩU )

)
dt(2.4a)

subject to

(∂ty, v) + a(y, v) = (f +Bu, v), ∀v ∈ V, t ∈ (0, T ],(2.4b)
y(x, 0) = y0,(2.4c)

(y, u) ∈ H1(0, T ;L2(Ω)) ∩W × Uad.(2.4d)

It can be derived by standard techniques (see, e.g., [18] and [33]) that the control problem (2.4)
has a unique solution (y, u) and that (y, u) is the solution of (2.4) if and only if there exists an
adjoint p ∈ H1(0, T ;L2(Ω))∩W such that (y, u, p) satisfies the following optimality system
for t ∈ (0, T ]:

(∂ty, v) + a(y, v) = (f +Bu, v), ∀v ∈ V, y(x, 0) = y0,(2.5a)
−(∂tp, ψ) + a(ψ, p) = (y − yd, ψ), ∀ψ ∈ V, p(x, T ) = 0,(2.5b) ∫ T

0

(
α(u− ud) +B∗p,w − u

)
U
dt ≥ 0, ∀w ∈ Uad,(2.5c)
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where B∗ denotes the adjoint of B. From the second equation (2.5b), we deduce that the
adjoint p satisfies the following transient convection diffusion equation:

−∂tp− ε∆p− β · ∇p = y − yd, x ∈ Ω, t ∈ (0, T ],(2.6a)
p(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],(2.6b)
p(x, T ) = 0, x ∈ Ω.(2.6c)

The convection term in the adjoint equation (2.6) is the negative of the one in the state
equation (2.2). As a consequence, errors in the solution can potentially propagate in both
directions. Therefore, the numerical treatment of the state and adjoint systems together is
more delicate.

2.1. Discontinuous Galerkin (DG) scheme. In the following, we construct the discon-
tinuous Galerkin finite element scheme for the state equation (2.2).

Let {Th}h be a family of shape-regular simplicial triangulations of Ω. Each mesh Th
consists of closed triangles such that Ω =

⋃
K∈Th K holds. We assume that the mesh is

regular in the following sense: for different triangles Ki,Kj ∈ Th, i 6= j, the intersection
Ki ∩ Kj is either empty or a vertex or an edge, i.e., hanging nodes are not allowed. The
diameter of an element K and the length of an edge E are denoted by hK and hE , respectively.
Further, the maximum value of the element diameter is denoted by h = max

K∈Th
hK .

We split the set of all edges Eh into the set E0
h of interior edges and the set E∂h of boundary

edges so that Eh = E0
h ∪ E∂h . Let n denote the unit outward normal to ∂Ω. The inflow and

outflow parts of ∂Ω are denoted by Γ− and Γ+, respectively,

Γ− = {x ∈ ∂Ω : β(x) · n(x) < 0} , Γ+ = {x ∈ ∂Ω : β(x) · n(x) ≥ 0} .

Similarly, the inflow and outflow boundaries of an element K are defined by

∂K− = {x ∈ ∂K : β(x) · nK(x) < 0} , ∂K+ = {x ∈ ∂K : β(x) · nK(x) ≥ 0} ,

where nK is the unit normal vector on the boundary ∂K of an element K.
Let the edgeE be a common edge for two elementsK andKe. For a piecewise continuous

scalar function y, there are two traces of y along E, denoted by y|E from inside K and ye|E
from inside Ke. The jump and average of y across the edge E are defined by

[[y]] = y|EnK + ye|EnKe , {{y}} =
1

2

(
y|E + ye|E

)
.

Similarly, for a piecewise continuous vector field ∇y, the jump and average across an edge E
are given by

[[∇y]] = ∇y|E · nK +∇ye|E · nKe , {{∇y}} =
1

2

(
∇y|E +∇ye|E

)
.

For a boundary edge E ∈ K ∩ Γ, we set {{∇y}} = ∇y and [[y]] = yn, where n is the outward
normal unit vector on Γ. In this paper, we only consider discontinuous linear finite element
spaces to define the discrete spaces of the state and test functions

Vh =
{
y ∈ L2(Ω) : y |K∈ P1(K), ∀K ∈ Th

}
.

REMARK 2.2. When the state equation (2.2) contains nonhomogeneous Dirichlet bound-
ary conditions, the space of discrete states and the space of test functions can still be taken to
be the same due to the weak treatment of boundary conditions for DG methods.
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We now consider the discretization of the control variable. Let {T Uh }h be also a family
of shape-regular simplicial triangulations of ΩU such that ΩU =

⋃
KU∈T U

h
KU holds. For

Ki
U , K

j
U ∈ T Uh , i 6= j, the intersection Ki

U ∩K
j
U is either empty or a vertex or an edge. The

maximum diameter is defined by hU = max
KU∈T U

h

hKU
, where hKU

denotes the diameter of

an element KU . The discrete space of the control variable associated with {T Uh }h is also a
discontinuous linear finite element space

Sh =
{
u ∈ L2(ΩU ) : u |KU

∈ P1(KU ), ∀KU ∈ T Uh
}
.

Note that, given the reduced regularity of the control functions imposed by the control
constraints, natural candidates for discretizing the control space would be the piecewise
constant finite elements. Nevertheless, we use piecewise linear polynomials as is often done in
the literature [2, 5, 43], resulting in the optimal convergence rate h3/2

U in space for the control.
We can now give the DG discretizations of the state equation (2.2) in space for a fixed con-

trol u. The DG method proposed here is based on the upwind discretization of the convection
term and on the SIPG discretization of the diffusion term. Recall that in discontinuous Galerkin
methods we do not explicitly impose continuity constraints on the trial and test functions
across the element interfaces. As a consequence, weak formulations include jump terms across
interfaces, and penalty terms are typically added to control the jump terms. We refer to [4, 42]
for a rigorous derivation of the following (bi-)linear forms applied to yh ∈ H1(0, T ;Wh) for
a fixed control uh and ∀t ∈ (0, T ]:

(∂tyh, vh) + ah(yh, vh) = (f +Buh, vh), ∀vh ∈ Vh,

where

ah(y, v)

=
∑
K∈Th

∫
K

ε∇y · ∇v dx

−
∑
E∈Eh

∫
E

(
{{ε∇y}} · [[v]] + {{ε∇v}} · [[y]]

)
ds+

∑
E∈Eh

σε

hE

∫
E

[[y]] · [[v]] ds

+
∑
K∈Th

∫
K

β · ∇yv dx+
∑
K∈Th

∫
∂K−\Γ

β · n(ye − y)v ds−
∑
K∈Th

∫
∂K−∩Γ−

β · nyv ds

with the nonnegative real parameter σ being called the penalty parameter. We choose σ to be
sufficiently large, independent of the mesh size h, and the diffusion coefficient ε to ensure
the stability of the DG discretization. However, it depends on the order of the finite element
space and the position of the edge E. As a threshold, the value of the penalty parameter σ
on the boundary edges E ∈ E∂ is twice the one on the interior edges E ∈ E0 as described
in [42, Section 2.7.1]. Further, large penalty parameters decrease the jumps across element
interfaces, which can affect the numerical approximation. The DG approximation converges to
the continuous Galerkin approximation as the penalty parameter goes to infinity; see, e.g., [8]
for details.

2.2. Primal-dual active set (PDAS) strategy. We explain our first approach to solve
the control-constrained optimal control problem (2.1)–(2.3), called the primal-dual active set
(PDAS) strategy introduced in [6]. We first define the semi-discrete approximation of the
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optimal control problem (2.4) as follows:

min
uh∈Uad

h

∫ T

0

(1

2

∑
K∈Th

‖yh − yd‖2L2(K) +
α

2

∑
KU∈T U

h

‖uh − ud‖2L2(KU )

)
dt,(2.7a)

subject to

(∂tyh, vh) + ah(yh, vh) = (f +Buh, vh), ∀vh ∈ Vh, t ∈ (0, T ],(2.7b)

yh(x, 0) = y0
h(x),(2.7c)

(yh, uh) ∈ H1(0, T ;Vh)× Uadh ,(2.7d)

where

Uadh =
{
uh ∈ L2(0, T ;Sh) : ua ≤ uh ≤ ub a.e. in ΩU × (0, T ]

}
(2.7e)

is a closed convex set in L2(0, T ;Sh). For the ease of exposition, we also assume the condition
Uadh ⊂ Uad ∩ L2(0, T ;Sh).

Let J(·) be a continuous functional in L2(Ω). In addition, there exists at least one
solution for the optimization problem (2.7) since the discrete state yh can be bounded
as done in [2, 45]. Then, it follows that the control problem (2.7) has a unique solution
(yh, uh) ∈ H1(0, T ;Vh)× Uadh (see, e.g., [33]) and that a pair (yh, uh) is the solution of (2.7)
if and only if there is an adjoint ph ∈ H1(0, T ;Vh) such that the triple (yh, uh, ph) satisfies
the following optimality system:

(∂tyh, vh) + ah(yh, vh) = (f +Buh, vh), ∀vh ∈ Vh,
yh(x, 0) = y0

h,

−(∂tph, ψh) + ah(ψh, ph) = (yh − yd, ψh), ∀ψh ∈ Vh,
ph(x, T ) = 0,∫ T

0

(α(uh − ud) +B∗ph, wh − uh)U dt ≥ 0, ∀wh ∈ Uadh .

We now consider fully-discrete approximations of the optimal control problem (2.1)–(2.3)
using the backward Euler scheme in time and the discontinuous Galerkin discretization in
space. Let NT be a positive integer. The discrete time interval Ī = [0, T ] is defined as

0 = t0 < t1 < · · · < tNT−1 < tNT
= T

with size kn = tn − tn−1, for n = 1, . . . , NT , and k = max
n=1,...,NT

kn. Then, the fully-discrete

approximation scheme of the semi-discrete problem (2.7) is

min
uh,n∈Uad

h,n

NT∑
n=1

kn

(
1

2

∑
K∈Th

‖yh,n − ydn‖2L2(K) +
α

2

∑
KU∈T U

h

‖uh,n − udn‖2L2(KU )

)
,(2.8a)

subject to (
yh,n − yh,n−1

kn
, v

)
+ ah(yh,n, v) = (fn +Buh,n, v), ∀v ∈ Vh,(2.8b)

yh,0(x, 0) = y0
h(x),(2.8c)
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where

Uadh,n = {uh,n ∈ Sh : ua ≤ uh,n ≤ ub a.e. in ΩU}, for n = 1, 2, . . . , NT .(2.8d)

The fully discretized state equation (2.8b) has a unique solution yh,n for each control variable
uh,n due to the boundedness of the solution; see [2, Lemma 6]. The cost functional (2.8a) is
also convex in yh,n and is strictly convex in uh,n. We then conclude that the fully discretized
control problem (2.8) has a unique solution (Yh,n, Uh,n) ∈ Vh × Uadh,n, n = 1, 2, . . . , NT ,
and (Yh,n, Uh,n), n = 1, 2, . . . , NT , is the solution of (2.8) if and only if there is an adjoint
Ph,n−1 ∈ Vh, i = 1, 2, . . . , NT , and (Yh,n, Uh,n, Ph,n−1) ∈ Vh × Uadh,n × Vh satisfies the
following optimality system [26, 47]:

(
Yh,n − Yh,n−1

kn
, v

)
+ ah(Yh,n, v) = (fn +BUh,n, v), ∀v ∈ Vh,

n = 1, 2, . . . , NT ,
(2.9a)

Yh,0 = y0
h,(

Ph,n−1 − Ph,n
kn

, q

)
+ ah(q, Ph,n−1) = (Yh,n − ydn, q), ∀q ∈ Vh,

n = NT , . . . , 2, 1,
(2.9b)

Ph,T = 0,(
α(Uh,n − udn) +B∗Ph,n−1,w − Uh,n

)
U
≥ 0,

∀w ∈ Uadh,n,
n = 1, 2, . . . , NT .

(2.9c)

In the direction of time, for n = 1, 2, . . . , NT , we define

Yh|(tn−1,tn] = ((tn − t)Yh,n−1 + (t− tn−1)Yh,n) /kn,

Ph|(tn−1,tn] = ((tn − t)Ph,n−1 + (t− tn−1)Ph,n) /kn,

Uh|(tn−1,tn] = Uh,n

as done in [36]. Let ŵ(x, t)|t∈(tn−1,tn] = w(x, tn) and w̃(x, t)|t∈(tn−1,tn] = w(x, tn−1) for
any function w ∈ C(0, T ;L2(Ω)). Then, the optimality system (2.9) can be restated as

(
∂Yh
∂t

, v

)
+ ah(Ŷh, v) = (f̂ +BUh, v), ∀v ∈ Vh, t ∈ (tn−1, tn],

n = 1, 2, . . . , NT ,
(2.10a)

Yh(x, 0) = y0
h(x),

−
(
∂Ph
∂t

, q

)
+ ah(q, P̃h) = (Ŷh − ŷd, q), ∀q ∈ Vh, t ∈ (tn−1, tn],

n = NT , . . . , 2, 1,
(2.10b)

Ph(x, T ) = 0,

(
α(Uh − ûd) +B∗P̃h,w − Uh

)
U
≥ 0, ∀w ∈ Uadh,n, t ∈ (tn−1, tn],

n = 1, 2, . . . , NT .
(2.10c)

We solve the optimality system (2.9) by using the primal-dual active set (PDAS) algorithm as
a semi-smooth Newton method [6]. To use this approach, we first need to define the active sets

An− =
⋃{

x ∈ KU : −B∗Ph,n−1 − α
(
ua − udn

)
< 0, ∀KU ∈ T Uh

}
,

An+ =
⋃{

x ∈ KU : −B∗Ph,n−1 − α
(
ub − udn

)
> 0, ∀KU ∈ T Uh

}
,
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and the inactive set In = T Uh \
(
An− ∪ An+

)
for each time step tn. For n = 1, 2, . . . , NT , the

discretized optimality system (2.9) is equivalent to

(M+ knK)Yn −MYn−1 = `(fn) +MBUn,(2.11a) (
M+ knKT

)
Pn−1 −MPn =MYn − `(ydn),(2.11b)

αMUUn − αχIn`(udn) +MUχIn−1B∗Pn−1 = αMU

(
χAn
−
ua + χAn

+
ub

)
,(2.11c)

whereK is the stiffness matrix corresponding to ah(·, ·) andM andMU are the mass matrices
on the domain Ω and ΩU , respectively. χAn

−
, χAn

+
, and χIn denote the characteristic functions

ofAn−,An+, and In, respectively. The characteristic functions correspond to vectors consisting
of 0 and 1. Also, `(z) =

∫
Ω
zv dx with v ∈ Vh. At each time step, we then apply the active

set algorithm described in Algorithm 1 for the iteration number m.

Algorithm 1 Active set algorithm.

Choose initial values for y(·,0), u(·,0), and p(·,0).
Set the active sets A(·,0)

− , A(·,0)
+ and inactive set I(·,0).

for m = 1, 2, . . . do
Solve (2.11) and update the active sets A(·,m)

− , A(·,m)
+ and the inactive set I(·,m) for all

time steps.
if A(·,m)

− = A(·,m+1)
− , A(·,m)

+ = A(·,m+1)
+ , and I(·,m) = I(·,m+1) then

STOP.
end if

end for

3. A posteriori error estimates. We analyse the a posteriori error estimates of the
optimal control problem governed by the transient convection diffusion equation discretized
by the symmetric interior penalty Galerkin scheme in space and the backward Euler scheme
in time. In general, the a posteriori error analysis of unsteady optimal control problems is
more complicated than the one of steady optimal control problems due to the fact that the
properties of the time variable and its discretization are quite different from those of the space
variables. Thus, different approaches are needed to handle the two groups of variables and
their interactions.

In order to avoid over-estimation and hence derive a sharp estimator for the control, at
each time level tn, n = 1, 2, . . . , NT , we divide ΩU as follows:

Ωn,aU = {x ∈ ΩU : (B∗Ph)(x, tn−1) > α(ud(x, tn)− ua), Uh,n = ua},(3.1a)

Ωn,a+
U = {x ∈ ΩU : (B∗Ph)(x, tn−1) > α(ud(x, tn)− ua), Uh,n > ua},(3.1b)

Ωn,bU = {x ∈ ΩU : (B∗Ph)(x, tn−1) < α(ud(x, tn)− ub), Uh,n = ub},(3.1c)

Ωn,b−U = {x ∈ ΩU : (B∗Ph)(x, tn−1) < α(ud(x, tn)− ub), Uh,n < ub},(3.1d)

Ωn,0U = {x ∈ ΩU : α(ud(x, tn)− ub) ≤ (B∗Ph)(x, tn−1) ≤ α(ud(x, tn)− ua)}.(3.1e)

It is clear that the intersection of the above sets is empty, i.e., Ωn,iU ∩ Ωn,jU = ∅, for i 6= j,
i, j ∈ {0, a, a+, b, b−}, and

ΩU = Ωn,0U ∪ Ωn,aU ∪ Ωn,a+
U ∪ Ωn,bU ∪ Ωn,b−U .
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To simplify the notation, set

Ωn,∗U = Ωn,0U ∪ Ωn,a+
U ∪ Ωn,b−U .

In the following lemma, we derive an estimate for the control variable by making a connection
with the adjoint variable.

LEMMA 3.1. Let (y, u, p) and (Yh, Uh, Ph) be the solutions of (2.5) and (2.10), respec-
tively. Then, we have the following estimate

‖u− Uh‖2L2(0,T ;L2(ΩU )) ≤ C
(
η2
u + ‖P̃h − p(Uh)‖2L2(0,T ;L2(Ω))

)
,

where

η2
u =

NT∑
n=1

tn∫
tn−1

∫
Ωn,∗

U

(
α(Uh − ûd) +B∗P̃h

)2
dx dt+ ‖α(ud − ûd)‖2L2(0,T ;L2(ΩU )),

and the auxiliary solutions, i.e., y(Uh), p(Uh) ∈ H1(0, T ;L2(Ω))∩W , are defined as follows:

(
∂

∂t
y(Uh), w

)
+ a(y(Uh), w) = (f +BUh, w), ∀w ∈ V,

y(Uh)(x, t)|∂Ω = 0, y(Uh)(x, 0) = y0(x), x ∈ Ω,

(3.2a)

−
(
∂

∂t
p(Uh), q

)
+ a(q, p(Uh)) = (y(Uh)− yd, q), ∀q ∈ V,

p(Uh)(x, t)|∂Ω = 0, p(Uh)(x, T ) = 0, x ∈ Ω.

(3.2b)

Proof. The inequality (2.5c) gives us

α‖u− Uh‖2L2(0,T ;L2(ΩU ))

=

∫ T

0

(αu, u− Uh)U dt−
∫ T

0

(αUh, u− Uh)U dt

≤
∫ T

0

(αud −B∗p, u− Uh)U dt−
∫ T

0

(αUh, u− Uh)U dt

=

∫ T

0

(
α(Uh − ûd) +B∗P̃h, Uh − u

)
U
dt︸ ︷︷ ︸

M1

+

∫ T

0

(
α(ud − ûd), u− Uh

)
U
dt︸ ︷︷ ︸

M2

+

∫ T

0

(
B∗(P̃h − p(Uh)), u− Uh

)
U
dt︸ ︷︷ ︸

M3

+

∫ T

0

(
B∗(p(Uh)− p), u− Uh

)
U
dt︸ ︷︷ ︸

M4

.

(3.3)

We first derive an estimate of M1 for any t ∈ (ti−1, ti],(
α(Uh − ûd) +B∗P̃h, Uh − u

)
U

=

∫
Ωn,∗

U

(
α(Uh − ûd) +B∗P̃h

)(
Uh − u

)
dx

+

∫
Ωn,a

U ∪Ωn,b
U

(
α(Uh − ûd) +B∗P̃h

)(
Uh − u

)
dx.

(3.4)
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By the definitions of Ωn,aU and Ωn,bU in (3.1), we have∫
Ωn,a

U ∪Ωn,b
U

(
α(Uh − ûd) +B∗P̃h

)
)
(
Uh − u

)
dx

=

∫
Ωn,a

U

(
α(ua − ûd) +B∗P̃h

)︸ ︷︷ ︸
>0

(
ua − u

)︸ ︷︷ ︸
≤0

dx

+

∫
Ωn,b

U

(
α(ub − ûd) +B∗P̃h

)︸ ︷︷ ︸
<0

(
ub − u

)︸ ︷︷ ︸
≥0

dx ≤ 0.

(3.5)

Then, with the help of (3.4), (3.5), and Young’s inequality with the parameter γ > 0, we obtain

M1 ≤
∫ T

0

(
α(Uh − ûd) +B∗P̃h, Uh − u

)
Ωn,∗

U

dt

≤ 1

2γ
η2
u +

γ

2
‖u− Uh‖2L2(0,T ;L2(ΩU )).

(3.6)

Next, we estimate M2 and M3 by invoking again Young’s inequality with the parameter γ > 0,

M2 =

∫ T

0

(
α(ud − ûd), u− Uh

)
U
dt

≤ 1

2γ
‖α(ud − ûd)‖2L2(0,T ;L2(ΩU )) +

γ

2
‖u− Uh‖2L2(0,T ;L2(ΩU )),

(3.7)

M3 =

∫ T

0

(B∗(P̃h − p(Uh)), u− Uh)U dt

≤ 1

2γ

∫ T

0

‖B∗(P̃h − p(Uh))‖2L2(ΩU ) dt+
γ

2

∫ T

0

‖u− Uh‖2L2(ΩU ) dt

≤ 1

2γ
‖P̃h − p(Uh)‖2L2(0,T ;L2(Ω)) +

γ

2
‖u− Uh‖2L2(0,T ;L2(ΩU )).

(3.8)

Finally, the auxiliary equations in (3.2) yield

M4 =

∫ T

0

(
p(Uh)− p,B(u− Uh)

)
dt

=

∫ T

0

(
∂t(y − y(Uh)), p(Uh)− p

)
dt+

∫ T

0

(
a(y − y(Uh), p(Uh)− p)

)
dt

=

∫ T

0

(
∂t(y − y(Uh)), p(Uh)− p

)
dt+

∫ T

0

(
∂t(p(Uh)− p), y − y(Uh)

)
dt

+

∫ T

0

(
y(Uh)− y, y − y(Uh)

)
dt.

An application of integration by parts on the time derivatives using that
(
y − y(Uh)

)
|t=0 = 0

and
(
p(Uh)− p

)
|t=T = 0 yields

(3.9) M4 =

∫ T

0

(
y(Uh)− y, y − y(Uh)

)
dt ≤ 0.
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By inserting the estimates (3.6)–(3.9) of M1 −M4 into (3.3) and setting the arbitrary positive
constant γ = α/2, we obtain the desired result.

Before deriving error estimates for the state and adjoint equations, we need the following
results for the Lagrange interpolation operator Πh and the trace inequality.

LEMMA 3.2 ([9]). Let Πh be the standard Lagrange interpolation operator. Form = 0, 1,
q > 1, and v ∈W 2,q(Ω), there exists a positive constant C such that

|v −Πhv|Wm,q(Ω) ≤ Ch2−m|v|W 2,q(Ω).

LEMMA 3.3 ([31]). For all v ∈W 1,q(Ω), 1 ≤ q <∞,

‖v‖W 0,q(∂K) ≤ C
(
h
−1/q
K ‖v‖W 0,q(K) + h

1−1/q
K |v|W 1,q(K)

)
.

Moreover, we have the following inequalities, derived in [3],

‖v‖2L2(E) ≤ Ch
−1
E ‖v‖

2
L2(K), ‖nE · ∇v‖2L2(E) ≤ Ch

−1
E ‖∇v‖

2
L2(K),

where the constant C depends on the shape regularity of the mesh. Then, the above inequalities
yield the following estimation

(3.10)
∑
E∈Eh

|hE |‖{{∇v}}‖2L2(E) ≤ C
∑
K∈Th

‖∇v‖2L2(K), ∀v ∈ Vh.

We finally introduce the following stability results derived in [28] for the convection diffusion
equations.

LEMMA 3.4 ([28]). Assume that Ω is a convex domain. Let φ and ψ be the solutions of
the dual (forward and backward) problems (3.11) and (3.12), respectively. Then, for given
F ∈ L2(0, T ;L2(Ω)),

‖v‖L∞(0,T ;L2(Ω)) > ‖F‖L2(0,T ;L2(Ω)),

‖∇v‖L2(0,T ;L2(Ω)) > ‖F‖L2(0,T ;L2(Ω)),

‖∆v‖L2(0,T ;L2(Ω)) > ‖F‖L2(0,T ;L2(Ω)),

‖vt‖L2(0,T ;L2(Ω)) > ‖F‖L2(0,T ;L2(Ω)),

where v ∈ {φ, ψ} satisfies

φt − ε∆φ+ β · ∇φ = F, (x, t) ∈ Ω× (0, T ],(3.11a)
φ(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],(3.11b)
φ(x, 0) = 0, x ∈ Ω(3.11c)

or

−ψt − ε∆ψ − β · ∇ψ = F, (x, t) ∈ Ω× (0, T ],(3.12a)
ψ(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],(3.12b)
ψ(x, 0) = 0, x ∈ Ω.(3.12c)

Now, we turn to an estimation of the error ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)).
LEMMA 3.5. Let (y, u, p) and (Yh, Uh, Ph) be the solutions of (2.5) and (2.10), respec-

tively. The auxiliary solutions y(Uh) and p(Uh) are defined by the system (3.2). Assume that
Ω is a convex domain. Then,

‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)) ≤ C

(
‖Yh − y(Uh)‖2L2(0,T ;L2(Ω)) +

7∑
i=1

η2
i

)
,
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where

η2
1 =

∫ T

0

∑
K∈Th

h4
K

∫
K

(
Ŷh − ŷd +

∂Ph
∂t

+ ε∆P̃h + βh · ∇P̃h
)2

dx dt,

η2
2 =

∫ T

0

∑
E∈Eh

h3
E

∫
E

[[
ε∇P̃h

]]2
ds dt,

η2
3 = ‖Yh − Ŷh‖2L2(0,T ;L2(Ω)) + ‖ŷd − yd‖2L2(0,T ;L2(Ω)),

η2
4 =

∫ T

0

∑
E∈Eh

hE

∫
E

[[
P̃h

]]2
ds dt,

η2
5 =

∫ T

0

∫
Ω

(
|ε∇(Ph − P̃h)|2 + |β · ∇(Ph − P̃h)|2

)
dx dt,

η2
6 =

∫ T

0

∑
K∈Th

∫
∂K+\Γ

h3
E

(
β · nE

[[
P̃h

]])2

ds dt

+

∫ T

0

∑
K∈Th

∫
∂K+∩Γ+

h3
E

(
β · nEP̃h

)2
ds dt,

η2
7 =

∫ T

0

∑
E∈Eh

h3
E

∫
E

((
ε+ β · nE

)
[[Ph]]

)2

ds dt.

Proof. Let φ be solution of (3.11) with F = Ph − p(Uh). Let φI = Πhφ be the Lagrange
interpolation of φ defined as in Lemma 3.2. Then, by using the adjoint equation (2.10b), the
auxiliary equation (3.2), and the dual problem (3.11), we obtain

‖Ph − p(Uh)‖2L2(0,T ;L2(Ω))

=

∫ T

0

(Ph − p(Uh), F ) dt

=

∫ T

0

(Ph − p(Uh), φt − ε∆φ+ β · ∇φ) dt

=

∫ T

0

(
−
( ∂
∂t

(Ph − p(Uh)), φ
)

+ a(φ, Ph − p(Uh))

)
dt

+

∫ T

0

∑
K∈Th

∫
∂K

ε (p(Uh)− Ph)
(
∇φ · n

)
ds dt

=

∫ T

0

(
−
( ∂
∂t

(Ph − p(Uh)), φ− φI
)

+ a(φ− φI , P̃h − p(Uh))

)
dt

+

∫ T

0

(
−
( ∂
∂t

(Ph − p(Uh)), φI

)
+ a(φI , P̃h − p(Uh)) + a(φ, Ph − P̃h)

)
dt

+

∫ T

0

∑
K∈Th

∫
∂K

ε (p(Uh)− Ph)
(
∇φ · n

)
ds dt

=

∫ T

0

((
− ∂Ph

∂t
− y(Uh) + yd, φ− φI

)
+ a(φ, P̃h)

)
dt
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+

∫ T

0

∑
K∈Th

∫
∂K

ε (p(Uh)− Ph)
(
∇φ · n

)
ds dt

+

∫ T

0

(
− ah(φI , P̃h) + (Ŷh − ŷd, φI)− (y(Uh)− yd, φI) + a(φ, Ph − P̃h)

)
dt.

Integrating by parts, we obtain

‖Ph − p(Uh)‖2L2(0,T ;L2(Ω))

(3.13)

=

∫ T

0

(
−∂Ph
∂t
− ε∆P̃h − β · ∇P̃h − Ŷh + ŷd, φ− φI

)
dt︸ ︷︷ ︸

I1

+

∫ T

0

∑
K∈Th

∫
∂K

(ε∇P̃h · n)(φ− φI) ds dt︸ ︷︷ ︸
I2

+

∫ T

0

(
Ŷh − y(Uh) + yd − ŷd, φ

)
dt︸ ︷︷ ︸

I3

+

∫ T

0

∑
E∈Eh

∫
E

({{
ε∇P̃h

}}
· [[φI ]] + {{ε∇φI}} ·

[[
P̃h

]])
ds dt

︸ ︷︷ ︸
I4

−
∫ T

0

∑
E∈Eh

εσ

hE

∫
E

[[
P̃h

]]
[[φI ]] ds dt

︸ ︷︷ ︸
I5

+

∫ T

0

∫
Ω

(
ε∇(Ph − P̃h)∇φ− β · ∇(Ph − P̃h)φ

)
dx dt︸ ︷︷ ︸

I6

+

∫ T

0

( ∑
K∈Th

∫
∂K+\Γ

β · n(P̃h − P̃ eh)φI ds+
∑
K∈Th

∫
∂K+∩Γ+

β · nP̃hφI ds
)
dt

︸ ︷︷ ︸
I7

+

∫ T

0

∑
K∈Th

∫
∂K

(β · n)Phφ ds dt︸ ︷︷ ︸
I8

+

∫ T

0

∑
K∈Th

∫
∂K

ε (p(Uh)− Ph)
(
∇φ · n

)
ds dt︸ ︷︷ ︸

I9

.

We now estimate the terms on the right-hand side of (3.13) term by term. To estimate the
first term on the right-hand side of (3.13), we use Lemma 3.2 and Lemma 3.4 with Young’s
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inequality such that

I1 ≤ C(γ)

∫ T

0

∑
K∈Th

h4
K

∫
K

(
Ŷh − ŷd +

∂Ph
∂t

+ ε∆P̃h + β · ∇P̃h
)2

dx dt

+ Cγ

∫ T

0

|φ|2H2(Ω) dt

≤ C(γ) η2
1 + Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)).

(3.14)

Next, if we rewrite I2 in terms of the jump of∇P̃h and use Lemmas 3.2–3.4, we obtain

I2 =

∫ T

0

∑
E∈Eh

∫
E

[[
ε∇P̃h

]]
(φ− φI) ds dt

≤ C(γ)

∫ T

0

∑
E∈Eh

h3
E

∫
E

[[
ε∇P̃h

]]2
ds dt+ Cγ

∫ T

0

|φ|2H2(Ω) dt

≤ C(γ) η2
2 + Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)).

(3.15)

Then, Lemma 3.4, Young’s inequality, and the triangle inequality give us

I3 ≤ C(γ)
(
‖Ŷh − y(Uh)‖2L2(0,T ;L2(Ω)) + ‖ŷd − yd‖2L2(0,T ;L2(Ω))

)
+ Cγ ‖φ‖2L2(0,T ;L2(Ω))

≤ C(γ)
(
η2

3 + ‖Yh − y(Uh)‖2L2(0,T ;L2(Ω))

)
+ Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)).

(3.16)

Similarly, using Young’s inequality, the triangle inequality with respect to φI , Lemma 3.3,
Lemma 3.4, and the inequality in (3.10), we obtain

I4 ≤ C(γ)
(
η2

2 + η2
4

)
+ Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)),(3.17)

I5 ≤ C(γ) η2
4 + Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)),(3.18)

I6 ≤ C(γ)

∫ T

0

∫
Ω

(
|ε∇(Ph − P̃h)|2 + |β · ∇(Ph − P̃h)|2

)
dx dt(3.19)

+ Cγ

∫ T

0

(
‖∇φ‖2L2(Ω) + ‖φ‖2L2(Ω)

)
dt

≤ C(γ) η2
5 + Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)),(3.20)

I7 ≤ C(γ) η2
6 + Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)).(3.21)

Finally, rewriting I8 and I9 in terms of the jump operator and using Lemma 3.3 and Lemma 3.4
with [[p(Uh)]] = 0, we have

(3.22) I8 + I9 ≤ C(γ) η2
7 + Cγ ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω)).

By inserting (3.14)–(3.22) into (3.13) with γ being small enough, the desired result is obtained.

Next, we need to find an estimate for ‖Yh − y(Uh)‖L2(0,T ;L2(Ω)).
LEMMA 3.6. Let (y, u, p) and (Yh, Uh, Ph) be the solutions of (2.5) and (2.10), respec-

tively. The auxiliary solutions y(Uh) and p(Uh) are defined by the system (3.2). Assume that
Ω is a convex domain, then,

‖Yh − y(Uh)‖2L2(0,T ;L2(Ω)) ≤ C
15∑
i=8

η2
i ,
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where

η2
8 =

∫ T

0

∑
K∈Th

h4
K

∫
K

(
f̂h −BUh −

∂Yh
∂t

+ ε∆Ŷh − βh · ∇Ŷh
)2

dx dt,

η2
9 =

∫ T

0

∑
E∈Eh

h3
E

∫
E

[[
ε∇Ŷh

]]2
ds dt,

η2
10 =

∫ T

0

∑
E∈Eh

hE

∫
E

[[
Ŷh

]]2
ds dt,

η2
11 =

∫ T

0

∑
K∈Th

∫
∂K−\Γ

h3
E

(
β · nE

[[
Ŷh

]])2

ds dt

+

∫ T

0

∑
K∈Th

∫
∂K−∩Γ−

h3
E

(
β · nE Ŷh

)2
ds dt,

η2
12 = ‖f̂ − f‖2L2(0,T ;L2(Ω)) + ‖P̃h − Ph‖2L2(0,T ;L2(Ω)),

η2
13 =

∫ T

0

∫
Ω

(
|ε∇(Yh − Ŷh)|2 + |β · ∇(Yh − Ŷh)|2

)
dx dt,

η2
14 = ‖Yh(x, 0)− y0(x)‖2L2(Ω),

η2
15 =

∫ T

0

∑
E∈Eh

h3
E

∫
E

((
ε+ β · nE

)
[[Yh]]

)2

ds dt.

Proof. Similar as before, let ψ be the solution of (3.12) with F = Yh − y(Uh). Let
ψI = Πhψ be the Lagrange interpolation of ψ defined as in Lemma 3.2. Then, we conclude
from (2.10a), (3.2), and (3.12) that

‖Yh − y(Uh)‖2L2(0,T ;L2(Ω))

=

∫ T

0

(Yh − y(Uh), F ) dt =

∫ T

0

(Yh − y(Uh),−ψt − ε∆ψ − β · ∇ψ) dt

=

∫ T

0

(
∂Yh
∂t
− ε∆Ŷh + β · ∇Ŷh − f̂h −BUh, ψ − ψI

)
dt

+

∫ T

0

∑
K∈Th

∫
∂K

(
ε∇Ŷh · n

)
(ψ − ψI) ds dt

+

∫ T

0

∑
E∈Eh

∫
E

(
{{ε∇ψI}} ·

[[
Ŷh

]]
+
{{
ε∇Ŷh

}}
· [[ψI ]]

)
ds dt

−
∫ T

0

∑
E∈Eh

εσ

hE

∫
E

[[
Ŷh

]]
[[ψI ]] ds dt−

∫ T

0

∑
K∈Th

∫
∂K−\Γ

(β · n)(Ŷ eh − Ŷh)ψI ds dt

+

∫ T

0

∑
K∈Th

∫
∂K−∩Γ−

(β · n)ŶhψI ds dt

+

∫ T

0

(f̂h − f, ψ) dt+

∫ T

0

a(Yh − Ŷh, ψ) dt+
(
(Yh − y(Uh))(x, 0), ψ(x, 0)

)
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+

∫ T

0

∑
K∈Th

∫
∂K

(
y(Uh)− Yh

) (
ε(∇ψ · n) +

(
β · n

)
ψ
)
.

Applying the same arguments as done in (3.14)–(3.22), the desired result is obtained.
From Lemmas 3.1, 3.5, and 3.6, the following a posteriori error estimate is derived.
THEOREM 3.7. Let (y, u, p) and (Yh, Uh, Ph) be the solutions of (2.5) and (2.10),

respectively. The auxiliary solutions y(Uh) and p(Uh) are defined by the system (3.2). Assume
that Ω is a convex domain. Then,

‖u− Uh‖2L2(0,T ;L2(ΩU )) + ‖y − Yh‖2L2(0,T ;L2(Ω)) + ‖p− Ph‖2L2(0,T ;L2(Ω))

≤ C

(
η2
u +

15∑
i=1

η2
i

)
.

(3.23)

Proof. It follows from (2.5) and (3.2) that

‖y(Uh)− y‖2L2(0,T ;L2(Ω)) ≤ C ‖u− Uh‖
2
L2(0,T ;L2(ΩU )),(3.24a)

‖p(Uh)− p‖2L2(0,T ;L2(Ω)) ≤ C ‖y(Uh)− y‖2L2(0,T ;L2(Ω)).(3.24b)

Lemma 3.1, 3.5, and 3.6 yield

‖u− Uh‖2L2(0,T ;L2(ΩU )) ≤ C
(
η2
u + ‖P̃h − p(Uh)‖2L2(0,T ;L2(Ω))

)
≤ C

(
η2
u + ‖P̃h − Ph‖2L2(0,T ;L2(Ω)) + ‖Ph − p(Uh)‖2L2(0,T ;L2(Ω))

)
≤ C

(
η2
u +

15∑
i=1

η2
i

)
.

(3.25)

Then, the desired result is obtained by applying the triangle inequality and using the inequalities
(3.24)–(3.25) with Lemmas 3.1, 3.5, and 3.6.

4. Moreau-Yosida regularization. Moreau-Yosida regularization is a popular technique
for optimal control problems with state constraints. Some recent progress in this area has been
summarised in [21, 22, 29, 52] and the references cited therein. However, it also provides
challenges for the control-constrained case; see, e.g., [40, 44].

We penalize the control constraint, i.e., ua ≤ u ≤ ub, with a Moreau-Yosida-based
regularization by modifying the objective functional J(y, u) in (2.1). Now, we wish to solve
the following problem:

min

∫ T

0

(1

2
‖y − yd‖2L2(Ω) +

α

2
‖u− ud‖2L2(ΩU )

)
dt

+
1

2δ

∫ T

0

(
‖max{0, u− ub}‖2L2(ΩU ) + ‖min{0, u− ua}‖2L2(ΩU )

)
dt,

(4.1)

subject to

∂ty − ε∆y + β · ∇y = f +Bu, x ∈ Ω, t ∈ (0, T ],

y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

y(x, 0) = y0(x), x ∈ Ω,
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where δ is the Moreau-Yosida regularization parameter. The min- and max-expressions in the
regularized objective functional arise from regularizing the indicator function corresponding
to the set of admissible controls.

The unconstrained optimal control problem (4.1) has a unique solution (y, u) ∈W ×X
if and only if there is an adjoint p ∈W such that (y, u, p) satisfies the following system for
t ∈ (0, T ]:

(∂ty, v) + a(y, v) = (f +Bu, v), ∀v ∈ V,(4.2a)
y(x, 0) = y0,

−∂tp, ψ) + a(ψ, p) = (y − yd, ψ), ∀ψ ∈ V,(4.2b)
p(x, T ) = 0,∫ T

0

(
α(u− ud) +B∗p+ σ

)
dt = 0,(4.2c)

where σ = 1
δ

(
max{0, u − ub} + min{0, u − ua}

)
. Then, the fully discretized optimality

system of the regularized optimal control problem (4.1) is written as(
Yh,n − Yh,n−1

kn
, v

)
+ ah(Yh,n, v) = (fn +BUh,n, v), ∀v ∈ Vh,

n = 1, 2, . . . , NT ,
(4.3a)

Yh,0 = y0
h,(

Ph,n−1 − Ph,n
kn

, q

)
+ ah(q, Ph,n−1) = (Yh,n − ydn, q), ∀q ∈ Vh,

n = NT , . . . , 2, 1,
(4.3b)

Ph,T = 0,

α(Uh,n − udn) +B∗Ph,n−1 + σh,n = 0, n = 1, 2, . . . , NT ,(4.3c)

where σh,n = 1
δ

(
max{0, Uh,n − ub}+ min{0, Uh,n − ua}

)
. As in the previous section, we

restate the optimality system (4.3) as follows:(
∂Yh
∂t

, v

)
+ ah(Ŷh, v) = (f̂h +BUh, v), ∀v ∈ Vh, t ∈ (tn−1, tn],

n = 1, 2, . . . , NT ,
(4.4a)

Yh(x, 0) = y0
h(x),(

∂Ph
∂t

, q

)
+ ah(q, P̃h) = (Ŷh − ŷd, q), ∀q ∈ Vh, t ∈ (tn−1, tn],

n = NT , . . . , 2, 1,
(4.4b)

Ph(x, T ) = 0,

α(Uh − ûd) +B∗P̃h + σ̂h = 0, t ∈ (tn−1, tn], n = 1, 2, . . . , NT(4.4c)

with σ̂h = 1
δ

(
max{0, Uh − ub}+ min{0, Uh − ua}

)
.

The optimality system (4.3) of the Moreau-Yosida approach leads to the following linear
system for n = 1, . . . , NT :

(M+ knK)Yn −MYn−1 = `(fn) +MBUn,(4.5a) (
knKT +M

)
Pn−1 −MPn =MYn − `(ydn),(4.5b) (

αMU +
1

δ
χAn
MUχAn

)
Un − α`(udn) +MUB

∗Pn−1

=
1

δ

(
χAa

n
MUχAa

n
ua + χAb

n
MUχAb

n
ua

)
,

(4.5c)
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where

Aan =
⋃
{x ∈ KU : Uh − ua < 0, KU ∈ T Uh },

Abn =
⋃
{x ∈ KU : Uh − ub > 0, KU ∈ T Uh },

An = Aan ∪ Abn.

We combine the Moreau-Yosida regularization approach with a semi-smooth Newton
solver. For a fixed regularization parameter we develop a residual-based a posteriori error
estimate. We note that in this work we are not interested in the error involved by the regular-
ization. Our main aim is to understand the behavior of the error estimate in connection with
the Moreau-Yosida regularization of the control constraints. Now, we derive an a posteriori
error estimate for the Moreau-Yosida-regularized optimization problem (4.1) up to the error
contribution stemming from the regularization.

LEMMA 4.1. Let (y, u, p) and (Yh, Uh, Ph) be the solutions of (4.2) and (4.4), respec-
tively. Then, we have the following estimate

‖u− Uh‖2L2(0,T ;L2(ΩU )) ≤ C
(

(ηMu )2 + ‖P̃h − p(Uh)‖2L2(0,T ;L2(Ω))

+ ‖σ̂h − σ‖2L2(0,T ;L2(Ω))

)
,

(4.6)

where(
ηMu
)2

=

NT∑
n=1

tn∫
tn−1

∫
ΩU

(
α(Uh − ûd) +B∗P̃h +

1

δ

(
χAa

n
(Uh − ua) + χAb

n
(Uh − ub)

))2

dxdt

+ ‖α(ud − ûd)‖2L2(0,T ;L2(ΩU ))

and the auxiliary functions, i.e., y(Uh) and p(Uh), are defined as in (3.2).
Proof. By using the inequalities (4.2c), (4.3c), and (4.4c), we obtain

α‖u− Uh‖2L2(0,T ;L2(ΩU ))

=

∫ T

0

(
αud −B∗p− σ, u− Uh

)
U
dt−

∫ T

0

(αUh, u− Uh)U dt

=

∫ T

0

(
α(Uh − ûd) +B∗P̃h + σ̂h, Uh − u

)
U
dt︸ ︷︷ ︸

M1

+

∫ T

0

(σ̂h − σ, u− Uh)U dt︸ ︷︷ ︸
M2

+

∫ T

0

(
B∗(P̃h − p(Uh)), u− Uh

)
U
dt︸ ︷︷ ︸

M3

+

∫ T

0

(
B∗(p(Uh)− p), u− Uh

)
U
dt︸ ︷︷ ︸

M4

+

∫ T

0

(
α(ud − ûd), u− Uh

)
U
dt︸ ︷︷ ︸

M5

.

Then, by following the procedure in Lemma 3.1, we can derive the desired result in (4.6).
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Similarly, we have the following a posteriori error estimate for the regularized optimization
problem (4.1) from Lemma 3.5, 3.6, and 4.1.

THEOREM 4.2. Let (y, u, p) and (Yh, Uh, Ph) be the solutions of (2.5) and (4.4), respec-
tively. The auxiliary solutions y(Uh) and p(Uh) are defined in the system (3.2). Assume that
Ω is a convex domain, then,

‖u− Uh‖2L2(0,T ;L2(ΩU )) + ‖y − Yh‖2L2(0,T ;L2(Ω)) + ‖p− Ph‖2L2(0,T ;L2(Ω))

≤ C

(
(ηMu )2 +

15∑
i=1

η2
i + ‖σ̂h − σ‖2L2(0,T ;L2(Ω))

)
.

(4.7)

5. Numerical Implementation. In this section, we present some numerical results to
demonstrate the performance of the estimators proposed in Sections 3 and 4. The initial guess
for the control variable is equal to zero for all discretization levels in Algorithm 1. The penalty
parameter within SIPG is chosen as σ = 6 on the interior edges and 12 on the boundary edges
as taken in [42]. The Moreau-Yosida regularization parameter δ is equal to 10−6. We use
uniform time steps, and the time-step size is k = 1/50. Further, we take Ω = ΩU and B = I .
Our adaptive strategy is briefly described in Algorithm 2.

Algorithm 2 Adaptive Algorithm.
(Input) Given an initial mesh partition Th, a refinement parameter θ, and a tolerance parame-

ter Tol.
Step 1. (Solve) Solve the optimality system (2.11) obtained by the primal-dual active set

(PDAS) algorithm on the current mesh or the optimality system (4.5) obtained by the
Moreau-Yosida regularization.

Step 2. (Estimate) Calculate the local error indicators on each element K, and then sum
them over the whole space-time domain.

Step 3. (Mark) The edges and elements for the refinement are specified by using the a
posteriori error indicator and by choosing subsetsMK ⊂ Th such that the following
bulk criterion is satisfied for the given marking parameter θ:

θ
∑
K∈Th

(ηK)2 ≤
∑

K∈MK

(ηK)2,

where
∑

K∈Th
(ηK)2 is corresponding to the total error indicator in (3.23) for the PDAS

approach and in (4.7) for the Moreau-Yosida regularization, respectively.
Step 4. (Refine) The marked elements are refined by longest edge bisection, where the

elements of the marked edges are refined by bisection.
Step 5. Return to Step 1 on the new mesh to update the solutions, until the error estimators

are less than the given tolerance value Tol.

5.1. Example 1. We first consider the following example given in [17] of the transport
of a rotating Gaussian pulse with only a lower bound, i.e., ua = 0. Fu et al. use this example
in their analysis of the norm-residual-based estimator in combination with a characteristic
finite element approximation. The problem data are given by

Ω = [−0.5, 0.5]2, T = 1, ε = 10−4, β = (−x2, x1)T , and α = 1.
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FIG. 5.1. Example 5.1: The adaptively refined meshes for different values of (x0, y0), i.e., left: (-0.25, 0),
middle: (0, 0), right: (0.25,0.25), at t = 1 using the primal-dual active set strategy. The number of refinement steps
and vertices are (9,4224), (10,3615), and (9,4728) (from left to right) with an adaptive parameter θ = 0.35.

The corresponding analytical solutions are given by

y(x, t) =
2σ2

0

2σ2
0 + 4tε

exp

(
− (x̄1 − x0)2 + (x̄2 − y0)2

2σ2
0 + 4tε

)
,

p(x, t) = 0,

z(x, t) =

{
1/2, x1 + x2 > 0,
0, x1 + x2 ≤ 0,

ud(x, t) = sin(πt/2) sin(πx1) sin(πx2) + z(x, t),

u(x, t) = max
(

0, ud −
p

α

)
,

with a varying center point (x0, y0), the standard deviation σ2
0 = 0.0447, and

x̄1 = x1 cos(t) + x2 sin(t), x̄2 = x2 cos(t) − x1 sin(t). The source f and the desired state
functions are taken as f = −u and yd = y, respectively.

The optimal control problem exhibits a strong jump (discontinuity) introduced by the
desired control ud(x, t). Figure 5.1 shows that a high density of vertices are distributed along
x1 + x2 = 0. By using the a posteriori error indicators of the control variable, we pick out the
discontinuity caused by the desired control ud(x, t) and construct an adaptive mesh to obtain
a better accuracy for the control with an adaptive parameter θ = 0.35.

As the state y exhibits a different regularity, we make experiments for different values
of the center point such as (x0, y0) ∈ {(−0.25, 0), (0, 0), (0.25, 0.25)}. For all cases, we
obtain a higher density of vertices in the neighborhood of (x̄1, x̄2) = (x0, y0) as is observed
in Figure 5.1. Table 5.1 provides the percentage of each component of the total estimator
obtained by the PDAS approach for (x0, y0) = (0, 0) in each adaptive step. We observe that
the refinement process is dominated by the contribution of the control, including the desired
control ud(x, t).

Figure 5.2 displays the summation of the L2(0, T ;L2(Ω))-errors for each time step for
the state, adjoint, and control variables at (x0, y0) = (0, 0), obtained using the primal-dual
active set strategy and the Moreau-Yosida regularization. For both approaches, the errors on
adaptively refined meshes are decreasing faster than the errors on uniformly refined meshes.
Although we do not present any theoretical results, the numerical results show that the Moreau-
Yosida approach better captures the properties of the control compared to the PDAS approach
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TABLE 5.1
Example 5.1: The contributions of each components of the error estimator obtained by the PDAS approach for

(x0, y0) = (0, 0) in terms of percentage in each adaptive step.

1 2 3 4 5 6 7 8 9 10
ηu 55.08 69.18 69.45 73.62 75.75 78.47 78.77 78.18 78.55 77.45
η1 0.401 0.198 0.183 0.094 0.080 0.026 0.016 0.007 0.004 0.002
η2 0.007 0.004 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000
η3 0.291 0.328 0.358 0.365 0.402 0.322 0.296 0.262 0.258 0.258
η4 9.317 3.614 3.308 2.031 1.254 0.678 0.472 0.279 0.153 0.096
η5 0.378 0.430 0.521 0.615 0.738 0.581 0.505 0.423 0.355 0.277
η6 0.036 0.018 0.017 0.010 0.009 0.003 0.002 0.001 0.000 0.000
η7 0.104 0.051 0.047 0.025 0.021 0.008 0.005 0.002 0.001 0.001
η8 1.585 1.455 1.288 0.750 0.617 0.312 0.185 0.071 0.049 0.025
η9 0.023 0.016 0.009 0.010 0.007 0.006 0.005 0.005 0.003 0.003
η10 22.25 17.32 17.32 13.06 9.906 7.037 5.515 4.283 2.959 2.373
η11 0.235 0.186 0.174 0.112 0.113 0.055 0.027 0.010 0.007 0.004
η12 1.747 2.420 2.804 3.672 4.662 5.691 7.107 9.177 10.97 13.11
η13 1.364 1.837 2.338 3.470 4.842 5.393 5.967 6.207 5.889 5.689
η14 6.862 2.667 1.895 1.982 1.762 1.340 1.083 1.075 0.787 0.712
η15 0.320 0.281 0.296 0.190 0.173 0.075 0.048 0.019 0.012 0.007
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FIG. 5.2. Example 5.1: The global errors of the state, adjoint, and control in the L2(0, T ;L2(Ω))-norm with
(x0, y0) = (0, 0).
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FIG. 5.3. Example 5.1: The convergence behavior for the a posteriori error estimate obtained by the PDAS
approach for (x0, y0) = (0, 0).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADAPTIVE DG APPROXIMATION OF UNSTEADY OCPS 429

FIG. 5.4. Example 5.1: The computed state (left) and control (right) on an adaptively refined mesh with 3,618
vertices by using the Moreau-Yosida regularization for (x0, y0) = (0, 0) at t = 1 after 10 refinement steps.

FIG. 5.5. Example 5.1: The GMRES iterations for three different refinement levels. A block-triangular
preconditioner was used, and the stopping criterion is set to 10−4 for the relative preconditioned residual.

as indicated in Figure 5.2. This observation shows that a further understanding is required. We
display the performance of the indicator obtained by the PDAS approach for (x0, y0) = (0, 0)
in each adaptive step in Figure 5.3. In the left plot of Figure 5.3, we plot the L2-error and the
value of the estimator in (3.23) against the number of vertices in each refinement step. The
middle plot in Figure 5.3 displays the ratio of the estimator and the L2-error. On the other
hand, the right one in Figure 5.3 shows that the control variable dominates the refinement
process as can be seen from Table 5.1. Figure 5.4 displays the computed solutions on an
adaptively refined mesh with 3,618 vertices by using the Moreau-Yosida regularization for
(x0, y0) = (0, 0) at t = 1 after 10 refinement steps.

Additionally, our approach is also amendable by efficient preconditioning strategies such
as the ones given in [40, 41], where an iterative method of Krylov subspace-type is combined
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FIG. 5.6. Example 5.2: The adaptively refined mesh with 4.417 vertices at t = 0.5 after 6 refinement steps with
θ = 0.55 by using the primal-dual active set strategy.

with efficient and robust Schur complement approaches. Figure 5.5 displays the iteration
numbers of GMRES with a block-triangular preconditioner for three consecutive stages of
refinement and the associated systems within the Newton method. In Figure 5.5, each line
corresponds to a nonlinear iteration.

5.2. Example 2. We set up our second example according to

Ω = [−1, 1]2, T = 0.5, ε = 10−5, and β = (2, 3)T , and α = 0.1.

The source function f and the desired state yd are computed by using the following analytical
solutions:

y(x, t) = 16 sin(πt)x1(1− x1)x2(1− x2)

×

(
1

2
+

1

π
arctan

[
2√
ε

(
1

16
−
(
x1 −

1

2

)2

−
(
x2 −

1

2

)2
)])

,

p(x, t) = 0,

ud(x, t) = sin(πt) sin(
π

2
x1) sin(

π

2
x2),

u(x, t) = max
(

0,min
(

0.5, ud −
p

α

))
.

The optimal state exhibits an interior layer depending on the diffusion parameter ε. Also,
it involves a hump changing its height in the course of the time. Figure 5.6 indicates a high
density of vertices being distributed along the interior layer and the contact set. It again
demonstrates that the proposed error indicators work well.

The global L2(0, T ;L2(Ω))-errors of the state, adjoint, and the control variables, obtained
using both approaches, are given in Figure 5.7. We here only present the results of the primal-
dual active set strategy on the uniform meshes for the state and adjoint since the results for
both approaches are quite similar.

The performance of the indicator obtained by the PDAS approach in each adaptive step is
displayed in Figure 5.8. Although the effectivity index is not close to one as in the previous
example, it does not oscillate after a few iterations. The right plot in Figure 5.8 and Table 5.2
show that the refinement process is dominated by the contribution of the state.
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FIG. 5.7. Example 5.2: The global errors of the state, adjoint, and control in the L2(0, T ;L2(Ω))-norm.
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FIG. 5.8. Example 5.2: The convergence behavior for the a posteriori error estimate obtained by the PDAS
approach.

TABLE 5.2
Example 5.2: The contributions of each components of the error estimator obtained by the PDAS approach in

terms of percentage in each adaptive step.

1 2 3 4 5 6
ηu 1.342 2.290 3.434 3.825 3.634 3.538
η1 0.621 0.476 0.247 0.100 0.027 0.013
η2 0.000 0.000 0.000 0.000 0.000 0.000
η3 0.262 0.528 1.004 1.282 1.349 1.393
η4 0.447 0.577 0.435 0.245 0.094 0.053
η5 0.170 0.359 0.437 0.380 0.271 0.177
η6 0.055 0.065 0.038 0.016 0.005 0.002
η7 0.166 0.163 0.091 0.038 0.011 0.005
η8 62.59 43.21 19.85 7.733 3.078 1.029
η9 0.001 0.001 0.001 0.001 0.001 0.000
η10 12.38 14.93 14.80 12.28 8.507 5.150
η11 0.235 0.186 2.433 1.267 0.490 0.199
η12 8.231 17.48 32.99 41.19 44.67 46.05
η13 3.055 9.160 21.22 30.15 37.21 42.14
η14 0.000 0.000 0.000 0.000 0.000 0.000
η15 6.690 5.914 3.024 1.495 0.656 0.242
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6. Conclusions. We discuss optimal control problems governed by transient convection
diffusion equations, discretized by the symmetric interior penalty Galerkin (SIPG) method
in space and the backward Euler method in time. In order to handle control constraints,
we apply the primal-dual active set strategy and a Moreau-Yosida-based regularization. For
both approaches, we propose error estimators to guide the mesh refinement. Numerical
results show that a substantial amount of computational work can be saved by using efficient
adaptive meshes for both approaches. In addition, we observe that although an additional error
arises by the regularization of the box constraints, the Moreau-Yosida technique captures the
errors of the control better than the PDAS strategy for both numerical examples. However,
this observation requires a careful theoretical investigation. In this work we have tried to
understand the behavior of the a posteriori error estimate in connection with a Moreau-Yosida
regularization by fixing the regularization parameter. The aim of balancing the errors arising
from the discretization and the Moreau-Yosida regularization can be carried out combining
techniques from [24] and [50]. Further, instead of a fixed time, the adaptivity both in time and
space will be addressed in future work for transient optimal control problems with suitable
computation techniques.

Acknowledgments. The authors would like to express their sincere thanks to the referees
for their most valuable suggestions.

REFERENCES

[1] M. AINSWORTH AND J. T. ODEN, A Posteriori Error Estimation in Finite Element Analysis, Wiley, New
York, 2000.

[2] T. AKMAN, H. YÜCEL, AND B. KARASÖZEN, A priori error analysis of the upwind symmetric interior
penalty Galerkin (SIPG) method for the optimal control problems governed by unsteady convection
diffusion equations, Comput. Optim. Appl., 57 (2014), pp. 703–729.

[3] D. N. ARNOLD, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal.,
19 (1982), pp. 742–760.

[4] D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, Unified analysis of discontinuous Galerkin
methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779.

[5] R. BECKER AND B. VEXLER, Optimal control of the convection-diffusion equation using stabilized finite
element methods, Numer. Math., 106 (2007), pp. 349–367.

[6] M. BERGOUNIOUX, K. ITO, AND K. KUNISCH, Primal-dual strategy for constrained optimal control
problems, SIAM J. Control Optim., 37 (1999), pp. 1176–1194.

[7] A. CAGNIANI, E. H. GEORGOULIS, AND S. METCALFE, Adaptive discontinuous Galerkin methods for
nonstationary convection-diffusion problem, IMA J. Numer. Anal., 34 (2014), pp. 1578–1597.

[8] A. CANGIANI, J. CHAPMAN, E. H. GEORGOULIS, AND M. JENSEN, On local super-penalization of interior
penalty discontinuous Galerkin methods, Int. J. Numer. Anal. Mod., 11 (2014), pp. 478–495.

[9] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[10] D. CLEVER, J. LANG, S. ULBRICH, AND J. C. ZIEMS, Combination of an adaptive multilevel SQP method

and a space-time adaptive PDAE solver for optimal control problems, Procedia Comput. Sci., 1 (2010),
pp. 1435–1443.

[11] S. S. COLLIS AND M. HEINKENSCHLOSS, Analysis of the streamline upwind/Petrov Galerkin method applied
to the solution of optimal control problems, Tech. Rep. TR02–01, Department of Computational and
Applied Mathematics, Rice University, Houston, 2002.

[12] L. DEDÈ, S. MICHELETTI, AND S. PEROTTO, Anisotropic error control for environmental applications, Appl.
Numer. Math., 58 (2008), pp. 1320–1339.

[13] H. J. S. FERNANDO, S. M. LEE, J. ANDERSON, M. PRINCEVAC, E. PARDYJAK, AND S. GROSSMAN-
CLARKE, Urban fluid mechanics: Air circulation and contaminant dispersion in cities, Environmental
Fluid Mechanics, 1 (2001), pp. 107–164.

[14] H. FU, A characteristic finite element method for optimal control problems governed by convection-diffusion
equations, J. Comput. Appl. Math., 235 (2010), pp. 825–836.

[15] H. FU AND H. RUI, A priori error estimates for optimal control problems governed by transient advection-
diffusion equations, J. Sci. Comput., 38 (2009), pp. 290–315.

[16] , A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal
control problems, Int. J. Comput. Math., 88 (2011), pp. 2798–2823.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADAPTIVE DG APPROXIMATION OF UNSTEADY OCPS 433

[17] , Adaptive characteristic finite element approximation of convection-diffusion optimal control problems,
Numer. Methods Partial Differential Equations, 29 (2012), pp. 979–998.

[18] A. V. FURSIKOV, Optimal Control of Distributed Systems. Theory and Applications, Amer. Math. Soc.,
Providence, 2000.

[19] E. H. GEORGOULIS, O. LAKKIS, AND J. M. VIRTANEN, A posteriori error control for discontinuous Galerkin
methods for parabolic problems, SIAM J. Numer. Anal., 49 (2011), pp. 427–458.

[20] W. GONG AND N. YAN, A posteriori error estimate for boundary control problems governed by the parabolic
partial differential equations, J. Comput. Math., 27 (2009), pp. 68–88.

[21] A. GÜNTHER, M. HINZE, AND M. H. TBER, A posteriori error representations for elliptic optimal control
problems with control and state constraints, in Constrained Optimization and Optimal Control for Partial
Differential Equations, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz,
M. Ulbrich, and S. Ulbrich, eds., vol. 160 of Internat. Ser. Numer. Math., Springer, Basel, 2012, pp. 303–
317.

[22] R. HERZOG AND E. W. SACHS, Preconditioned conjugate gradient method for optimal control problems with
control and state constraints, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2291–2317.

[23] J. S. HESTHAVEN AND T. WARBURTON, Nodal Discontinuous Galerkin Methods, Springer, New York, 2008.
[24] M. HINTERMÜLLER AND M. HINZE, Moreau-Yosida regularization in state constrained elliptic control

problems: error estimates and parameter adjustment, SIAM J. Numer. Anal, 47 (2009), pp. 1666–1683.
[25] M. HINZE, A variational discretization concept in control constrained optimization: the linear-quadratic case,

Comput. Optim. Appl., 30 (2005), pp. 45–63.
[26] M. HINZE, R. PINNAU, M. ULBRICH, AND S. ULBRICH, Optimization with PDE Constraints, Springer, New

York, 2009.
[27] M. HINZE, N. YAN, AND Z. ZHOU, Variational discretization for optimal control governed by convection

dominated diffusion equations, J. Comp. Math., 27 (2009), pp. 237–253.
[28] P. HOUSTON AND E. SÜLI, Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems,

Math. Comp., 70 (2000), pp. 77–106.
[29] K. ITO AND K. KUNISCH, Semi-smooth Newton methods for state-constrained optimal control problems,

Systems Control Lett., 50 (2003), pp. 221–228.
[30] Z. KANAR SEYMEN, H. YÜCEL, AND B. KARASÖZEN, Distributed optimal control of time-dependent

diffusion-convection-reaction equations using space-time discretization, J. Comput. Appl. Math., 261
(2014), pp. 146–157.

[31] A. KUFNER, O. JOHN, AND S. FUCIK, Function Spaces, Nordhoff, Leyden, 1977.
[32] D. LEYKEKHMAN AND M. HEINKENSCHLOSS, Local error analysis of discontinuous Galerkin methods

for advection-dominated elliptic linear-quadratic optimal control problems, SIAM J. Numer. Anal., 50
(2012), pp. 2012–2038.

[33] J.-L. LIONS, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.
[34] J.-L. LIONS AND E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications. Vol. I,

Springer, New York, 1972.
[35] W. LIU, H. MA, T. TANG, AND N. YAN, A posteriori error estimates for discontinuous Galerkin time-stepping

method for optimal control problems governed by parabolic equations, SIAM J. Numer. Anal., 42 (2004),
pp. 1032–1061.

[36] W. LIU AND N. YAN, A posteriori error estimates for optimal control problems governed by parabolic
equations, Numer. Math., 93 (2003), pp. 497–521.

[37] C. MAKRIDAKIS AND R. H. NOCHETTO, Elliptic reconstruction and a posteriori error estimates for parabolic
problems, SIAM J. Numer. Anal., 41 (2003), pp. 1585–1594.

[38] R. H. NOCHETTO, K. G. SIEBERT, AND A. VEESER, Theory of adaptive finite element methods: an
introduction, in Multiscale, Nonlinear and Adaptive Approximation, R. A. DeVore and A. Kunoth, eds.,
Springer, Berlin, 2009, pp. 409–542.

[39] D. PARRA-GUEVARA AND Y. N. SKIBA, On optimal solution of an inverse air pollution problem: theory and
numerical approach, Math. Comput. Modelling, 43 (2006), pp. 766–778.

[40] J. W. PEARSON AND M. STOLL, Fast iterative solution of reaction-diffusion control problems arising from
chemical processes, SIAM J. Sci. Comput., 35 (2013), pp. B987–B1009.

[41] J. W. PEARSON, M. STOLL, AND A. J. WATHEN, Regularization-robust preconditioners for time-dependent
PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 1126–1152.

[42] B. RIVIÈRE, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and
Implementation, SIAM, Philadelphia, 2008.

[43] A. RÖSCH, Error estimates for linear-quadratic control problems with control constraints, Optim. Methods
Softw., 21 (2006), pp. 121–134.

[44] M. STOLL AND A. WATHEN, Precondining for partial differential equation constrained optimization with
control constraints, Numer. Linear Algebra Appl., 19 (2012), pp. 53–71.

[45] T. SUN, Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal
control problem, Int. J. Numer. Anal. Model., 7 (2010), pp. 87–107.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

434 H. YÜCEL, M. STOLL, AND P. BENNER

[46] T. SUN, L. GE, AND W. LIU, Equivalent a posteriori error estimates for a constrained optimal control
problem governed by parabolic equations, Int. J. Numer. Anal. Model., 10 (2013), pp. 1–23.

[47] F. TRÖLTZSCH, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Amer.
Math. Soc., Providence, 2010.

[48] R. VERFÜRTH, A Review of A Posteriori Error Estimation and Adaptive Mesh–Refinement Techniques, Wiley,
Chicester, 1996.

[49] , Robust a posteriori error estimates for nonstationary convection-diffusion equations, SIAM J. Numer.
Anal., 43 (2005), pp. 1783–1802.

[50] W. WOLLNER, A posteriori error estimates for a finite element discretization of interior point methods for an
elliptic optimization problem with state constraints, Comput. Optim. App., 47 (2010), pp. 133–159.

[51] N. YAN AND Z. ZHOU, A priori and a posteriori error analysis of edge stabilization Galerkin method for the
optimal control problem governed by convection-dominated diffusion equation, J. Comput. Appl. Math.,
223 (2009), pp. 198–217.

[52] H. YÜCEL AND P. BENNER, Adaptive discontinuous Galerkin methods for state constrained optimal control
problems governed by convection diffusion equations, Comput. Optim. Appl., 62 (2015), pp. 291–321.

[53] H. YÜCEL, M. HEINKENSCHLOSS, AND B. KARASÖZEN, An adaptive discontinuous Galerkin method for
convection dominated distributed optimal control problems, Tech Report, Department of Computational
and Applied Mathematics, Rice University, Houston, 2012.

[54] , Distributed optimal control of diffusion-convection-reaction equations using discontinuous Galerkin
methods, in Numerical Mathematics and Advanced Applications 2011, A. Cangiani, R. L. Davidchack,
E. Georgoulis, A. N. Gorban, J. Levesley, and M. V. Tretyakov, eds., Springer, Heidlenberg, 2013,
pp. 389–397.

[55] H. YÜCEL AND B. KARASÖZEN, Adaptive symmetric interior penalty Galerkin (SIPG) method for optimal
control of convection diffusion equations with control constraints, Optimization, 63 (2014), pp. 145–166.

[56] Z. ZHOU AND H. FU, A posteriori error estimates for continuous interior penalty Galerkin approximation of
transient convection diffusion optimal control problems, Bound. Value Probl., 2014 (2014), Art. 2014:207
(19 pages).

[57] Z. ZHOU AND N. YAN, The local discontinuous Galerkin method for optimal control problem governed by
convection diffusion equations, Int. J. Numer. Anal. Model., 7 (2010), pp. 681–699.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

