On testing substitutability

Cosmina Croitoru^a, Kurt Mehlhorn^b

^aSaarland University, Saarbrücken ^bMax Planck Institut for Informatics, Saarbrücken

Abstract

The papers [1] and [2] propose algorithms for testing whether the choice function induced by a (strict) preference list of length N over a universe U is substitutable. The running time of these algorithms is $O(|U|^3 \cdot N^3)$, respectively $O(|U|^2 \cdot N^3)$. In this note we present an algorithm with running time $O(|U|^2 \cdot N^2)$. Note that N may be exponential in the size |U| of the universe.

Keywords: Choice functions, Substitutability, Algorithm complexity

A *choice function* on a finite set U of alternatives is any function f from subsets of U to subsets of U that maps any set A to a subset of itself, i.e., $f(A) \subseteq A$ for all $A \subseteq U$. A choice function f is *substitutable* if

 $A \subseteq B$ implies $f(B) \cap A \subseteq f(A)$ for all $A, B \subseteq U$,

i.e. the additional alternatives provided by *B* do not promote any $x \in A - f(A)$ to the set of selected elements.

We are interested in choice functions induced by preference lists \mathbb{Y} on subsets of U. A preference list \mathbb{Y} is simply an ordered list of subsets of U and the associated choice function $f_{\mathbb{Y}}$ maps any subset A of U to the first element on the list that is contained in A. If \mathbb{Y} is understood from the context, we write f instead of $f_{\mathbb{Y}}$. We use N to denote the number of elements on \mathbb{Y} , and, in order to make f defined for all A, we assume that the empty set is the last element of \mathbb{Y} . For elements X and Y in \mathbb{Y} , we write $X \succ Y$ if X properly precedes Y on \mathbb{Y} and we write $X \succeq Y$ for $X \succ Y$ or X = Y.

For example, let $U = \{a, b, c, d\}$ and $\mathbb{Y} = (\{a, b\}, \{a, c, d\}, \{a, c\}, \{a\}, \{c\}, \emptyset)$. Then $f_{\mathbb{Y}}(\{a, b, c\}) = \{a, b\}$. The function $f_{\mathbb{Y}}$ is not substitutable since $d \in (f_{\mathbb{Y}}(\{a, c, d\}) \cap \{d\}) - f_{\mathbb{Y}}(\{d\})$. We refer to [1] for a discussion of the role of substitutable choice functions in economics.

 \mathbb{Y} is *coherent* if $X \succ Y$ implies $X \not\subseteq Y$ for any two elements on \mathbb{Y} . Assume $X \succ Y$ and $X \subseteq Y$. Then *Y* does not lie in the range of $f_{\mathbb{Y}}$ and removing *Y* from \mathbb{Y} does not change the function *f*. Thus we may assume that \mathbb{Y} is coherent.

From now on, \mathbb{Y} denotes a coherent preference list and f stands for $f_{\mathbb{Y}}$. \mathbb{Y} is *sub-stitutable* if f is a substitutable choice function.

Lemma 1. Let \mathbb{Y} be a coherent preference list on U. Then for any $A \subseteq U$, f(A) = A if and only if $A \in \mathbb{Y}$.

Proof. Since *f* maps the powerset of *U* to \mathbb{Y} , f(A) = A implies $A \in \mathbb{Y}$. Conversely, assume $A \in \mathbb{Y}$ and $f(A) \succ A$. Then f(A) and *A* are members of \mathbb{Y} with $f(A) \succ A$ and $f(A) \subseteq A$, a contradiction to the coherence of \mathbb{Y} .

An established condition of choice functions known as Aizerman's *outcast*, or Chernoff's *postulate* 5^{*}, or $\hat{\alpha}$ (see Brandt and Harrenstein [3]) is

(*outcast*): if $f(A) \subseteq B \subseteq A$ then f(B) = f(A).

Lemma 2. If Y is a coherent preference list on U, then f satisfies outcast.

Proof. $B \subseteq A$ implies $f(A) \succeq f(B)$ and $f(A) \subseteq B$ implies $f(B) \succeq f(f(A)) = f(A)$, where the last equality uses coherence. Thus f(A) = f(B).

Lemma 3. Let \mathbb{Y} be a coherent and substitutable preference list on U. If X is a member of \mathbb{Y} then also every subset of X is a member of \mathbb{Y} .

Proof. Assume X = f(X) and $A \subseteq X$. By substitutability, $f(X) \cap A \subseteq f(A)$ and hence $A = X \cap A = f(X) \cap A \subseteq f(A)$. Thus f(A) = A.

A preference list \mathbb{Y} is *complete* if it contains for each $X \in Y$ also all of its subsets. Note that complete preference lists are exponentially long in the size of their largest member.

In order to demonstrate non-substitutability of a preference list, we need to exhibit sets *A* and *B* with $A \subseteq B$ and $f(B) \cap (A - f(A)) \neq \emptyset$. We next show that we can restrict the search to special subsets of *U*. A *witness (to non-substitutability)* is a pair (X,Y) of members of \mathbb{Y} such that $X \succ Y$, $f(X \cup Y) = X$ and there is an $x \in X - Y$ such that $f(Y \cup \{x\}) = Y$. Note that *x* is selected when the set of alternatives is $X \cup Y$ (this is the set *B*) but is not selected when the set of alternatives is $Y \cup \{x\}$ (this is the set *A*).

Theorem 4. \mathbb{Y} is not substitutable if and only if there is a witness to non-substitutability.

Proof. Assume first that (X, Y) is a witness. Then $X \succ Y$, $f(X \cup Y) = X$ and there is an $x \in X - Y$ such that $f(Y \cup x) = Y$. Let $A = Y \cup \{x\}$ and $B = X \cup Y$. Then $A \subseteq B$ and $x \in f(B) \cap (A - f(A))$. Thus f is not substitutable.

Conversely, assume that *f* is not substitutable. Then there are subsets *A* and *B* of *U* with $A \subseteq B$ and $f(B) \cap A \not\subseteq f(A)$. Since $A \subseteq B$, we have $f(B) \succeq f(A)$. In fact, $f(B) \succ f(A)$ since f(B) = f(A) and $f(A) \subseteq A$ implies $f(B) \cap A = f(A)$. Since $f(A) \subseteq A \subseteq B$, we have $f(A) \cup f(B) \subseteq B$ and hence $f(B) \subseteq f(A) \cup f(B) \subseteq B$. Thus $f(f(A) \cup f(B)) = f(B)$ by property (outcast). Let $x \in (f(B) \cap A) - f(A)$. Then $f(B) \cup \{x\} \subseteq A$ and $f(A) \subseteq f(A) \cup \{x\} \subseteq A$ and hence $f(f(A) \cup \{x\}) = f(A)$ by (outcast). Thus (f(B), f(A)) is a witness.

Theorem 4 directly translates into an algorithm of running time $O(N^3|U|+N^2|U|^2)$. Note first that one can determine f(A) in time O(N|U|) by simply scanning the list \mathbb{Y} and checking each set for containment. The algorithm has two phases. In the first phase, one determines for each $Y \in \mathbb{Y}$ the set of x for which $f(Y \cup \{x\}) = Y$. This requires N|U| function evaluations and $O(N^2|U|^2)$ time. Then one checks for every pair (X,Y) of elements of \mathbb{Y} , whether it is a witness. This requires N^2 function evaluations and $N^2|U|$ look-ups of precomputed values and hence takes time $O(N^3|U|)$.

```
1. Preprocessing

for all X ∈ Y do { d<sub>X</sub> := 1; for all x ∈ U do sens(x,X) := false }
for all X ∈ Y do

for all Y ∈ Y with X ≻ Y do {
if X ⊆ Y then return Y is NOT COHERENT;
if Y ⊆ X then increment d<sub>X</sub>;
for all x ∈ U − Y do if X ⊆ Y ∪ {x} then sens(x,Y) := true }

for all X ∈ Y do if d<sub>X</sub> ≠ 2<sup>|X|</sup> then return Y is NOT COMPLETE;
2. Looking for the first witness to non-substitutability

for all X ∈ Y do
for all Y ∈ Y with X ≻ Y do
if (∃x ∈ X − Y s.t. sens(x,Y) = true) ∧ (∀y ∈ Y − X sens(y,X) = false) then return Y is NOT SUBSTITUTABLE: witness (X,Y);
```

return 𝖞 is SUBSTITUTABLE

Figure 1: Testing if the list \mathbb{Y} is substitutable

We improve the running time to $O(N^2|U|^2)$. The crucial insight is as follows. We search for a witness pair (X, Y) in increasing order of X. Of course, we stop the search as soon as we have found a witness. So when we consider a pair (X, Y) we know that there is no witness (Z, \cdot) with $Z \succ X$. We then have $f(X \cup Y) = X$ if and only if $f(X \cup \{x\}) = X$ for all elements $x \in Y - X$. We stress that this equivalence does not hold in general, it only holds under the assumption that there is no earlier witness. So we can replace the function evaluation $f(X \cup Y)$ of cost O(N|U|) by |U| look-ups of precomputed values. We next give the details.

We call $X \in \mathbb{Y}$ insensitive to $x \in U$ if $f(X \cup \{x\}) = X$ and sensitive otherwise.

Lemma 5. Let $X, Y \in \mathbb{Y}$ with $X \succ Y$. If $f(X \cup Y) = X$, then X is insensitive to all $x \in Y - X$. If X is insensitive to all $x \in Y - X$ and there is no witness (Z, \cdot) with $Z \succ X$, then $f(X \cup Y) = X$.

Proof. Let $x \in Y - X$ be arbitrary. Then $X \subseteq X \cup \{x\} \subseteq X \cup Y$ and hence $X = f(X \cup Y) \succeq f(X \cup \{x\}) \succeq f(X) = X$. Thus $f(X \cup \{x\}) = X$ and X is insensitive to x.

For the second part, assume $f(X \cup Y) = Z$ with $Z \succ X$. Then $Z \subseteq X \cup Y$ and hence $Z \cup X \subseteq X \cup Y$. Thus $Z \succeq f(X \cup Y) \succeq f(X \cup Z) \succeq Z$, where the last inequality follows from $Z \subseteq X \cup Z$. Thus $f(X \cup Z) = Z$. Since (Z,X) is not a witness, we must have $f(X \cup \{x\}) \neq X$ for every $x \in Z - X$. On the other hand, $Z - X \subseteq Y - X$ (since $Z \subseteq X \cup Y$) and $f(X \cup \{x\}) = X$ since X is insensitive to all $x \in Y - X$, a contradiction.

Lemma 5 suggests a way to find the non-substitutability witness (X, \cdot) with minimal first component.

Theorem 6. Let $X, Y \in \mathbb{Y}$ with $X \succ Y$ and assume that there is no witness (Z, \cdot) with $Z \succ X$. Then (X, Y) is a witness if and only if X is insensitive to all $x \in Y - X$ and Y is sensitive to some $x \in X - Y$.

Proof. Assume first that (X, Y) is a witness pair. Then Y is sensitive to some $x \in X - Y$ and $f(X \cup Y) = X$. The latter implies that X is insensitive to all elements of Y - X.

Conversely, assume that X is insensitive to all $x \in Y - X$ and Y is sensitive to some $x \in X - Y$. Then, $f(X \cup Y) = X$ by Lemma 5 and hence (X, Y) is a witness pair. \Box

We are now ready for the algorithm. The algorithm has two phases. In a preprocessing phase, we determine whether \mathbb{Y} is coherent, complete, and, most importantly, compute the Boolean flags sens(x, X) which is true if $X \in \mathbb{Y}$ is sensitive to x.

In the main computation, we search for the first witness to non-substitutability. We iterate over the elements of *X* of \mathbb{Y} in increasing order. Assume that there is no witness (Z, \cdot) with $Z \succ X$. We then iterate over the $Y \in \mathbb{Y}$ with $X \succ Y$ and use Theorem 6 to determine whether (X, Y) is a witness pair.

The most expensive task of the first phase is the construction of the Boolean matrix sens of size $|U| \times N$. Since an inclusion test needs O(|U|) time, the overall time is therefore $O(|U|^2 \cdot N^2)$. The time complexity of the second phase is $O(|U| \cdot N^2)$ (the |U| factor is given by the inspection of the Boolean matrix sens in order to apply Theorem 6).

By Theorems 4 and 6 and the above discussion, the following corollary holds.

Corollary 1. The algorithm in Figure 1 tests in $O(|U|^2 \cdot N^2)$ time if a given preference list of size N over an universe U is substitutable.

Remarks. The O(N) speed-up over the existing algorithms is significant since (as we noted after the definition of complete lists) N is exponential in the size of the largest member of \mathbb{Y} . The algorithm in [2] also applies to weak preferences. We leave it as an open problem whether this also holds for our algorithm.

References

- J. W. Hatfield, N. Immorlica, S. D. Kominers, Testing substitutability, Games and Economic Behavior (2011) 639–645.
- [2] H. Aziz, M. Brill, P. Harrenstein, Testing substitutability of weak preferences, Mathematical Social Sciences (2013) 91–94.
- [3] F. Brandt, P. Harrenstein, Set-retionalizable choice functions and self- stability, Journal of Economic Theory 146 (2011) 233–273.