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Abstract

The worldline approach to quantum field theory (QFT) allows to efficiently compute several

quantities, such as one-loop effective actions, scattering amplitudes and anomalies, which

are linked to particle path integrals on the circle. A helpful tool in the worldline formalism

on the circle, are string-inspired (SI) Feynman rules, which correspond to a specific way of

factoring out a zero mode. In flat space this is known to generate no difficulties. In curved

space, it was shown how to correctly achieve the zero mode factorization by applying BRST

techniques to fix a shift symmetry. Using special coordinate systems, such as Riemann

Normal Coordinates, implies the appearance of a non-linear map—originally introduced by

Friedan—which must be taken care of in order to obtain the correct results. In particular,

employing SI Feynman rules, the map introduces further interactions in the worldline path

integrals. In the present paper, we compute in closed form Friedan’s map for RNC coordi-

nates in maximally symmetric spaces, and test the path integral model by computing trace

anomalies. Our findings match known results.
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1 Introduction

In the worldline approach to Quantum Field Theory (QFT), particle path integrals are used as a versatile

computational tool. The method was introduced by Feynman who, already in the 1950, proposed a

particle model representation for the dressed scalar propagator in scalar Quantum Electrodynamics [1].

However, it was only in the late 80’s that the method started to be taken seriously as an alternative

approach to conventional second-quantized methods. Initially it was used as a tool to compute chiral

anomalies [2, 3, 4] and trace anomalies [5, 6], and later it was introduced by Bern and Kosower [7],

and Strassler [8], as a proper method to compute QFT effective actions and generic QFT Feynman

diagrams—see [9] for a comprehensive review of the early stages of the method. Since then, several

applications and new implementations of the worldline formalism have been considered. In the realm of

perturbative QFT some examples are: the computation of multiloop effective actions [10], Bern-Kosower

rules for dressed propagators [11, 12], the worldline formalism in curved spacetime [13, 14, 15], higher-

spin field theory approaches [17, 18, 19, 20], the spinning particle approach to Yang Mills theories [21,

22], as well as applications to noncommutative QFT [23, 24], to the Standard Model and Grand Unified

theories [25, 26], and to QFT on manifolds with boundary [27, 28].

The extension of the worldline formalism to the computation of effective actions and Feynman dia-

grams for QFT in curved space time required to tackle some technical issues which, during several years

had resulted in numerous controversial statements and errors. The main issue boils down to the fact that,

when the metric is non-flat, the associated particle models are characterized by non-linear sigma models

which, in the perturbative path integral approach about the flat space metric, give rise to an infinite set

of vertices with double-derivative interactions. By a simple power counting analysis, these interactions

can be shown to lead to ultraviolet divergences, at the one- and two-loop level, which need to be suitably

regularized. 1 By now all the ambiguities have been dispelled, various regularization schemes have been

devised and tested, and the method has been consistently used in several computations (see ref. [29, 30]

for a detailed description of the method and for a complete list of references)—in the present work we

adopt Dimensional Regularization (DR) to take care of the ambiguous diagrams. However, due to the

aforementioned vertices, the computational difficulty becomes fastly harder as the order in the perturba-

tive expansion increases, and finding simplified methods to handle the perturbative expansion in curved

space would certainly be helpful, which is one of the objectives of the present manuscript.

In this paper we study bosonic particle path integrals in curved space through the computation of

trace anomalies for scalar fields in various dimensions. As reviewed in the Section 2, trace anomalies are

linked to particle path integrals in curved space with periodic boundary conditions, i.e. path integrals over

coordinate trajectories that have the topology of a circle. In the perturbative approach, as we will see,

this leaves the possibility of choosing different boundary conditions for the particle propagator, which

correspond to different ways of factoring out a zero mode of the free kinetic term. Here we use the so-

called “string-inspired” (SI) Feynman rules which correspond to the zero mode identified as the center of

mass of the paths. Along with this, we will make use of Riemann Normal Coordinates in the expansion,

1One-dimensional non-linear sigma models are super-renormalizable theories and diagrams with more than two loops are

finite.
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and specialize ourselves to maximally symmetric (MS) spaces. In curved spaces, as it is reviewed in

Section 3, the use of special coordinates comes with a prize: the need of a map, which we refer to as the

“geodesic map”, that for boundary conditions different than Dirichlet’s gives non-trivial contributions to

the perturbative expansion; as explained by Friedan [35], this is due to the fact that a certain linear shift

symmetry becomes non-linear when expressed in RNC’s. In Section 4 we thus compute the geodesic

map, in closed form (i.e. to any order in the curvature), for MS spaces. Finally, in Section 5 we obtain

the type-A trace anomalies for conformal scalar field theories in MS space-times of dimension six and

smaller, and test that our results reproduce known results. In Section 6 we draw some conclusions and

discuss possible extensions and applications of the model. A technical appendix is added at the end,

which includes the list of worldline integrals needed in the computation, along with a detailed example

where the rules of DR are reviewed.

2 Trace anomalies in the worldline representation

Trace anomalies are linked to the (lack of) Weyl invariance of the effective action of a classically Weyl-

invariant quantum field theory. In particular, as originally shown by Fujikawa [31], in the field theory

path integral approach, the trace anomaly can be seen to arise as a non-trivial Jacobian of the measure

under Weyl transformations. As a paradigmatic example, let us consider a Weyl-invariant scalar field

theory φ(x) in a D-dimensional curved space-time, whose Wick-rotated Euclidean action reads

S[φ, gµν ; ξ] =
1

2

∫

dDx
√
g
Ä

gµν∂µφ∂νφ− ξRφ2
ä

, (1)

where ξ ..= D−2
4(D−1) sets the non-minimal conformal coupling. 2 The latter is invariant under the (in-

finitesimal) Weyl-transformation

δσgµν(x) = σ(x)gµν(x) , δσφ(x) =
1

2

Å

1− D

2

ã

σ(x)φ(x) . (2)

The one-loop gravitational effective action Γ[gµν ] associated to the classical action (1) can be ob-

tained from the functional integral

e−Γ[gµν ] =

∫

Dφ e−S[φ,gµν ;ξ] , (3)

and, under the Weyl rescaling, it gives

−δσΓ =

∫

dDxσ(x)gµν
δΓ

δgµν
=

∫

dDx
√
g
1

2
σ(x)

〈

T µ
µ(x)

〉

. (4)

Now, in order to compute the Weyl rescaling of the r.h.s. of expression (3) it is best to rewrite the fields

in terms of the so-called Fujikawa variables φ(x) → φ̃(x) ..= g
1
4 (x)φ(x), in order to have a dimensional-

independent field transformation δφ̃ = 1
2σφ̃. Such transformation provides a Jacobian which differs from

2Our conventions for the Riemann and Ricci tensors are [∇µ,∇ν ]V
ρ = Rµν

ρ
σV

σ and Rµν = Rµρ
ρ
ν .
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unity by the trace of an infinite dimensional operator (the scalar field action instead is Weyl invariant by

assumption)

det
∂φ̃′(x)

∂φ̃(y)
− 1 = tr

∂δφ̃(x)

∂φ̃(y)
= tr

[1

2
σ(x)δD(x− y)

]

. (5)

The trace must thus be regulated

tr
[1

2
σ(x)δD(x− y)

]

:= lim
β→0

tr
[1

2
σe−βR

]

, (6)

with the consistent regulator R being the kinetic operator of φ̃, which reads (see [29] for details)

R = −1

2
g−

1
4∂µg

1
2 gµν∂νg

− 1
4 − 1

2
ξR . (7)

Thus, using the identification pµ = −i∂µ, the differential operator (7) can be interpreted as the quantum

hamiltonian of a non-relativistic particle in curved space 3

H =
1

2
g−

1
4pµg

1
2 gµνpνg

− 1
4 − 1

2
ξR , (8)

and the regulated trace can be written as a particle path integral transition amplitude with periodic bound-

ary conditions. Hence, putting all together we have,

∫

dDx
√
g σ(x)

〈

T µ
µ(x)

〉

= lim
β→0

∫

PBC
Dx σ(x) e−S[x] (9)

where

S[x] =
1

β

∫ 0

−1
dt
{1

2
gµν(x)ẋ

µẋν + β2
î

V (x) + VDR(x)
ó

}

, V ..= −1

2
ξR (10)

is the particle action associated to the hamiltonian (8), and VDR(x) is the counterterm that arises from the

regularization that we choose to be Dimensional Regularization (DR), whose application to finite-time

one-dimensional non-linear sigma models was proposed in [32], after earlier applications to the infinite-

time counterparts had been obtained [33]. In the expressions above the limit β → 0 is meant to convey

the information that only the β-independent terms are retained—in fact, it can be shown that terms that

diverge in that limit can be removed by adding local counterterms to the field theory action. Finally, by

setting σ to a constant, we recognize that

∫

dDx
√
g
〈

T µ
µ(x)

〉

= lim
β→0

Z(β) (11)

with

Z(β) :=

∫

PBC
Dx e−S[x] , (12)

i.e. the integrated trace anomaly coincides with the β-independent part of the particle partition function.

3Such identification is guaranteed by the fact that, in terms of the rescaled fields, the Hilbert space inner product is given by

〈ψ|ϕ〉 =
∫
dDxψ̃∗(x)ϕ̃(x).
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3 BRST-methods for the particle path integral

In the short-β perturbative expansion of the partition function (12), needed to compute (11), it is conve-

nient to expand the background metric gµν(x) that characterizes the action (10), around a fixed point and

treat the potential and the terms with metric derivatives as perturbations. Thus, the leading term becomes

a free kinetic term whose corresponding operator has a zero mode on the circle, which is related to the

constant translational symmetry. This zero mode must be factored out, and an efficient way of doing that,

which we review here, was described in [34]. Firstly, it amounts to decompose the generic periodic path

xµ(τ) into a constant zero mode xµ0 and a quantum fluctuation yµ(τ)

xµ(τ) = xµ0 + yµ(τ) . (13)

This splitting obviously introduces a constant shift symmetry

δxµ0 = ǫµ

δyµ(τ) = −ǫµ ,
(14)

which—treating both fields xµ0 and yµ(τ) as dynamical variables of the path integral—behaves as a gauge

symmetry. Hence, the path integral needs to be gauge-fixed in order not to overcount equivalent field

configurations. This can be achieved using BRST methods: the shift symmetry (14) is thus turned into a

BRST symmetry

δxµ0 = ηµΛ δyµ(τ) = −ηµΛ

δηµ = 0 δη̄µ = iπµΛ

δπµ = 0 ,

(15)

where Λ is an anticommuting parameter and ηµ, η̄µ and πµ are constant fields, the first two anticom-

muting and the third commuting. The gauge can thus be fixed by introducing a “gauge fixing fermion”

Ψ[ρ] = η̄µ

∫ 0

−1
dτ ρ(τ)yµ(τ) , (16)

which is parameterized by a distribution ρ(τ), normalized to
∫ 0
−1 dτρ(τ) = 1. The gauge-fixed action

reads

Sgf [x0, y, η, η̄, π] ..= S[x0, y] +
δ

δΛ
Ψ

= S[x0, y] + iπµ

∫ 0

−1
dτ ρ(τ)yµ(τ)− η̄µη

µ
(17)

and all the fields (that appear as arguments of Sgf ) are path-integrated. In particular, the integral over the

anticommuting constant fields is equal to unity, whereas the integral over the auxiliary commuting field

πµ imposes the constraint

∫ 0

−1
dτ ρ(τ)yµ(τ) = 0 =⇒

∫ 0

−1
dτ ρ(τ)xµ(τ) = xµ0 , (18)
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which allows to invert the free kinetic operator of the fluctuations yµ, to find the particle propagator.

Obviously, different gauge functions ρ’s give rise to different propagators, but the ρ-independence of

the partition function is guaranteed by BRST symmetry, whereas the partition function density may, in

general, be ρ-dependent. We can thus write the partition function as an integral over the zero mode

Z(β) =

∫

dDx0
»

g(x0)Z(ρ)(x0, β) , (19)

where Z(ρ)(x0, β) is the partition function density, whose β-independent part yields the trace anomaly.

Moreover, the dependence on ρ of the partition function density must arrange in the form of covariant

total derivatives, which are indeed trivial anomalies, that can be removed by adding local counterterms

to the field theory action.

In the present calculation we use the string-inspired (SI) Feynman rules, which correspond to the

choice ρ(τ) = 1, where the zero mode plays the role of the “center of mass” of the loop and the quantum

fluctuations are periodic and have vanishing center of mass [9]. Another popular choice in this type of

computations is ρ(τ) = δ(τ) which leads to Dirichlet boundary conditions (DBC) for the fluctuations

and the zero mode is the initial(=final) point of the loop. The advantage of the SI choice is that, unlike

with DBC, the worldline propagator is translationally invariant. However, as we shall shortly see, in a

special coordinate system, SI requires the inclusion of further vertices than DBC. We will make use of

(geodesic) Riemann Normal Coordinates (RNC) ξµ centered around the zero mode xµ0 , i.e.

yµ = ξµ −
∞∑

n=2

1

n!
Γµ

(ν1ν2;ν3...νn)(x0)ξ
ν1 . . . ξνn (20)

where Γµ
(ν1ν2;ν3...νn)(x0) is the symmetrized derivative of Christoffel’s symbol evaluated at x0, covari-

antized on the lower indices, which leads to RNC expansion of the metric

gµν(x0, ξ) = gµν(x0) +
1

3
Rµρσν(x0)ξ

ρξσ +
1

6
Rµρσν;α1(x0)ξ

ρξσξα1+

+
( 1

20
Rµρσν;α1α2(x0) +

2

45
Rµρσ

β1Rβ1α1α2ν(x0)
)

ξρξσξα1ξα2 + o(ξ5) .
(21)

Thus, the coordinate transformation (20), induces the following non linear BRST transformation on the

RNC coordinates

δξµ(τ) = −Qµ
ν(x0, ξ(τ))η

νΛ , (22)

Qµ
ν(x0, 0) = δµν . (23)

We refer to Qµ
ν as the “geodesic map” and a geometric interpretation thereof is given in the following

Section, along with a derivation in closed form, for the case of maximally symmetric backgrounds.

However, let us check here how the particle action changes if we use ξ as dynamical variables. In this

case it is convenient—in strict analogy to what discussed above for a generic coordinate set—to consider

the gauge-fixing fermion

Ψ = η̄µ

∫ 0

−1
dτ ρ(τ)ξµ(τ) (24)
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which then yields the gauge-fixed action

Sgf [x0, ξ, η, η̄, π] = S[x0, ξ] +
δ

δΛ
Ψ

= S[x0, ξ] + iπµ

∫ 0

−1
dτ ρ(τ)ξµ(τ)− η̄µ

∫ 0

−1
dτ ρ(τ)Qµ

ν(x0, ξ(τ))η
ν .

(25)

Note that, as a consequence of condition (23), the last term of the previous expression is ξ-independent

if ρ(τ) = δ(τ) and thus, for DBC, it does not introduce addition interactions. On the other hand, for SI it

is ξ-dependent and does introduce a new interacting piece of action, which in the perturbative approach

leads to an infinite set of vertices, which must be taken into account in order to correctly compute the

short-β expansion, and ultimately the trace anomalies. Specifically, we thus get

Sgf [x0, ξ, η, η̄, π] = S[x0, ξ] +
δ

δΛ
Ψ

= S[x0, ξ] + iπµ

∫ 0

−1
dτ ξµ(τ)− η̄µ

∫ 0

−1
dτ Qµ

ν(x0, ξ(τ))η
ν .

(26)

and the Einstein-invariant and BRST-invariant path integral measure reads

Dx = dx0 dη dη̄ dπ
∏

−1≤τ<0

»

g(x0, ξ(τ)) dξ(τ) . (27)

The
√
g factor of (27) can now be conveniently exponentiated by introducing a set of ghost fields, a(τ)

(bosonic) and b(τ), c(τ) (fermionic), with their own dynamics [5],

»

g(x0, ξ(τ)) =

∫

DaDbDc e−Sgh

Sgh[ξ, a, b, c] =
1

β

∫ 0

−1
dτ
[1

2
gµν(x0, ξ)(a

µaν + bµcν)
]

,
(28)

so that the final quantum action is given by

Sq[x0, ξ, η, η̄, π, a, b, c] ..= Sgf [x0, ξ, η, η̄, π] + Sgh[x0, ξ, a, b, c] . (29)

Putting all together, the full transition amplitude reads

Z(β) =

∫

dx0
»

g(x0)Z(SI)(x0, β)

=

∫

dx0dη̄dηdπ

∫

DξDaDbDc e−Sq . (30)

In order to compute the perturbative expansion of the latter, we consider the expansion of the metric and

of the geodesic map about the point xµ0 , i.e. ξµ = 0. The terms quadratic in the various fields yield the

propagators
¨

ξµ(τ)ξν(σ)
∂

= − βgµν(x0)B(τ, σ)
¨

aµ(τ)aν(σ)
∂

= βgµν(x0)∆gh(τ, σ)
¨

bµ(τ)cν(σ)
∂

= − 2βgµν(x0)∆gh(τ, σ)
¨

η̄µην
∂

= δµν ,

(31)
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with

B(τ, σ) = 1

2
|τ − σ| − 1

2
(τ − σ)2 − 1

12
∆gh(τ, σ) = δ(τ − σ) .

(32)

The interacting part of the action, S
(int)
q , can be obtained by replacing gµν(x0, ξ) → gµν(x0, ξ)−gµν(x0)

inside the kinetic part of (10), and by replacing Qµ
ν(x0, ξ) → Qµ

ν(x0, ξ)− δµν inside the BRST ghost

action (for notational simplicity, we will use reparametrization invariance in x0 to set gµν(x0) = δµν ).

For the partition function we thus get

Z(β) =

∫

dDx0

»

g(x0)

(2πβ)
D
2

〈

e−S
(int)
q

〉

(SI)
(33)

where the suffix SI is meant to remind that we are using String-Inspired Feynman rules. Hence, com-

paring with (19), we get

Z(SI)(x0, β) =
1

(2πβ)
D
2

〈

e−S
(int)
q

〉

(SI)
(34)

and

〈

T µ
µ(x0)

〉

= lim
β→0

Z(SI)(x0, β) (35)

gives the local (i.e. unintegrated) trace anomaly at point x0.

Before proceeding further with the perturbative computation, we need to evaluate the expansion of

the geodesic map Qµ
ν to the necessary order: this was discussed by Friedan in [35]. However, instead

of considering a generically curved space, here we content ourselves with spaces of maximal symmetry,

where

Rµνρσ = b(gµρgνσ − gµσgνρ) , (36)

and b := R
D(1−D) , is negative on spheres. In this case we find that the above non-linear map can be

obtained in closed form. This is the subject of the following section.

4 The geodesic map in maximally symmetric spaces

As we have anticipated, in order to use RNC coordinates as quantum fluctuations in our path integral, we

need to take into account that the BRST symmetry induced by the linear shift of the zero mode x0, acts

non linearly on the RNC’s, namely

δξµ(τ) = −Qµ
ν(x0, ξ(τ))η

νΛ . (37)

This stems from the fact that, by definition, xµ0 is the origin of the RNC coordinates which are vectors

on the tangent space Tx0 : they are tangent vectors, in xµ0 to the geodesics that link xµ0 to generic points

8



xµ of the manifold. Therefore, a shift of xµ0 implies a shift of tangent space, and in turn this means that

ξ′µ = ξµ+δξµ is a vector on the shifted tangent space. Thus, if the manifold is not flat, the transformation

of the RNC coordinates is a non-linear expression of the old RNC coordinates ξµ. On the other hand, if

the manifold is flat the different tangent spaces coincide and Qµ
ν(x0, ξ(τ)) = δµν . Moreover, if xµ ≡ xµ0 ,

i.e. ξµ = 0, then δξµ = δyµ = −δxµ0 , and Qµ
ν(x0, 0) = δµν .

Friedan [35] proposed a method, which we briefly review below, to systematically compute the map

Qµ
ν(x0, ξ) in an arbitrary geometry as a power series in ξ. Let us denote by

Q ..= Qµ
ν(x0, ξ) (38)

the matrix which represents the geodesic map. It was found it convenient to re-write the latter in terms

of another matrix V , as

Q = 1 + ∂ log V . (39)

Above, the derivative operator is defined by

∂ ..= ξµ
( ∂

∂ξµ
− ∇̃µ

)

, (40)

where ∇̃µ is a covariant derivative that acts on tensor-valued functions of ξ (for ξ-independent functions

it reduces to the standard covariant derivative) and satisfies the property

∇̃µξ
ν = 0 . (41)

By formally expanding V as a power series in ξ

V =
∞∑

n=0

1

(n+ 1)!
V(n) (42)

where

V(0) = 1 , V(1) = 0 , V(n) ∝ ξn , (43)

one obtains that, in a generic torsion-free space, the matrices V(n) satisfy the recursion relation

V(n) = 2∇V(n−1) −∇2V(n−2) + V(n−2)R (44)

with

R ..= Rµ
ρσν(x0)ξ

ρξσ . (45)

The previous recursion relation uniquely fixes V order by order in ξ. However, by increasing the order,

the calculation becomes rapidly harder and, for a generic manifold, a closed form for the matrix is not

known. On the other hand, for MS spaces we obviously have that

∇̃αR = 0 , (46)

9



which immediately implies

V(2n+1) = 0 (47)

V(2n) = Rn (48)

and we thus get

V =
∞∑

n=0

1

(2n + 1)!
Rn =

sinh
√
R√

R
(49)

with

R0 ..= 1 , Rn ..= Rµ
α1β1ρ1R

ρ1
α2β2ρ2 · · ·Rρn−1

αnβnν(x0) ξ
α1ξβ1 · · · ξαnξβn . (50)

Moreover, note that for MS spaces the operator ∂ defined above just acts as a number operator, i.e.

∂R = 2R. Therefore, the geodesic map simply reads

Q(MS) =
√
R coth

√
R , (51)

which can be easily expanded to the desired order. Before doing that, let us first rearrange it in a more

convenient form. Note in fact that, using (36) and (45), we get

R = b(δµσδρν − δµν δρσ)ξ
ρξσ =: −bξ2P (52)

in terms of the projector P = δµν − ξµξν
ξ2 , which satisfies the condition ∂P = 0. We thus get

Rn = (−bξ2)nP , (53)

and finally

V(MS) = 1 + P
(

sinh
√

−bξ2
√

−bξ2
− 1

)

(54)

Q(MS) = 1 + P
(»

−bξ2 coth
»

−bξ2 − 1
)

. (55)

Hence, one can easily expand the previous expression in power series of b. In components the expansion

reads,

Q(MS)µ
ν = δµν +

ñ

b

3
+

b2

45
ξρξ

ρ +
2

945
b3 (ξρξ

ρ)2 + . . .

ô

(ξµξν − δµνξρξ
ρ) . (56)

Here we only keep the terms that will be needed in the following section to perform our trace anomaly

tests.
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5 Computation of the trace anomaly

In order to compute the local trace anomaly of a conformally coupled scalar field theory, we need to

obtain the perturbative expansion of the correlator of eq. (34), which involves the interacting quantum

action, whose derivation was explained in Section 3, namely

S(int)
q =

1

β

∫ 0

−1
dt
{1

2

î

gµν(x0, ξ)− δµν
óî

ξ̇µξ̇ν + aµaν + bµcν
ó

+ β2
î

V (x0, ξ) + VDR(x0, ξ)
ó

}

+

− η̄µ

∫ 0

−1
dτ
î

Qµ
ν(x0, ξ(τ)) − δµν

ó

ην .

(57)

Notice that, in the MS geometry, the potential term −β(V + VDR) is a constant and can thus be factored

out from the correlator, i.e.

Z(SI)(x0, β) =
e−β(1−4ξ)R

8

(2πβ)
D
2

〈

e−S̃
(int)
q

〉

(SI)
, (58)

where the new interacting quantum action is given by

S̃(int)
q

..= S(int)
q − β(1 − 4ξ)

R

8
. (59)

In the present work we content ourselves we the computation of trace anomalies in dimension six or

smaller, for which the necessary RNC expansion of the metric (in MS spaces) is already known, and can

be found for instance in ref. [36]

gµν(ξ) = δµν + 2 (ξµξν − δµνξρξ
ρ)

ï

b

6
− 16

6!
b2 (ξρξ

ρ)2 +
8

7!
b3 (ξρξ

ρ)4 + . . .

ò

, (60)

whereas the expansion of the geodesic map is the one given above in eq. (56). Hence,

S̃(int)
q =

1

β

∫ 0

−1
dτ

[

b

6
− 16

6!
b2ξρ(τ)ξ

ρ(τ) +
8

7!
b3 [ξρ(τ)ξ

ρ(τ)]2 + . . .

]

×

×
[

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

][

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ)+

+ bµ(τ)cν(τ)

]

− η̄µ

∫ 0

−1
dτ

[

b

3
+

b2

45
ξρ(τ)ξ

ρ(τ)+

+
2

945
b3 [ξρ(τ)ξ

ρ(τ)]2 + . . .

][

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

]

ην . (61)

Using β as the perturbative parameter, the above action can be split up as

S̃(int)
q = S′

2
︸︷︷︸

β

+ S4
︸︷︷︸

β

+ S′
4

︸︷︷︸

β2

+ S6
︸︷︷︸

β2

+ S′
6

︸︷︷︸

β3

+ S8
︸︷︷︸

β3

+ . . . , (62)
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where, for each term, its perturbative weight is indicated. In particular, such terms are

S4 =
b

6β

∫ 0

−1
dτ
[

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

][

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ)+

+ bµ(τ)cν(τ)
]

(63)

S6 =
−16b2

6!β

∫ 0

−1
dτ ξσ(τ)ξ

σ(τ)
[

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

]

×

×
î

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
ó

(64)

S8 =
8b3

7!β

∫ 0

−1
dτ ξσ(τ)ξ

σ(τ)ξα(τ)ξ
α(τ)

[

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

]

×

×
[

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
]

(65)

S′
2 = − η̄µ

b

3

∫ 0

−1
dτ
[

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

]

ην (66)

S′
4 = − η̄µ

b2

45

∫ 0

−1
dτ ξσ(τ)ξ

σ(τ)
[

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

]

ην (67)

S′
6 = − η̄µ

2b3

945

∫ 0

−1
dτ ξσ(τ)ξ

σ(τ)ξα(τ)ξ
α(τ)

[

ξµ(τ)ξν(τ)− δµνξρ(τ)ξ
ρ(τ)

]

ην , (68)

and they can be used to reduce the contraction in (58) to (to avoid cluttering we omit the suffix SI)

≠

e−S̃
(int)
q

∑

=exp

(

− 〈S4〉
︸︷︷︸

β

−
〈
S′
2

〉

︸ ︷︷ ︸

β

−〈S6〉
︸︷︷︸

β2

−
〈
S′
4

〉

︸ ︷︷ ︸

β2

+
1

2

¨

S4
2
∂

C
︸ ︷︷ ︸

β2

+
1

2

¨

S′
2
2
∂

C
︸ ︷︷ ︸

β2

+

+
〈
S′

2S4
〉

C
︸ ︷︷ ︸

β2

−〈S8〉
︸︷︷︸

β3

− 〈S′
6

〉

︸ ︷︷ ︸

β3

+ 〈S4S6〉C
︸ ︷︷ ︸

β3

− 1

3!

¨

S4
3
∂

C
︸ ︷︷ ︸

β3

− 1

3!

¨

S′
2
3
∂

C
︸ ︷︷ ︸

β3

+

+
〈
S′
2S6

〉

C
︸ ︷︷ ︸

β3

+
〈
S′
2S

′
4

〉

C
︸ ︷︷ ︸

β3

+
〈
S′
4S4

〉

C
︸ ︷︷ ︸

β3

−1

2

¨

S′
2
2
S4

∂

C
︸ ︷︷ ︸

β3

−1

2

¨

S′
2S4

2
∂

C
︸ ︷︷ ︸

β3

+ . . .

)

. (69)

In the following, we report the results for the various contractions of (69), expressed both in terms of

their string-inspired worldline integrals (we indicate them with M) and then explicitly computed—we

already write them in terms of the curvature scalar R. The M integrals are reported in Appendix A.

〈S4〉 =
βR

6
M1 = − 1

72
βR (70)

〈
S′
2

〉
=

βR

3
M2 = − 1

36
βR (71)

〈S6〉 =
16β2R2

6!D (1−D)
(D + 2)M3 = − 1

6480

(D + 2)

D(D − 1)
β2R2 (72)

〈
S′
4

〉
= − β2R2

45D (1−D)
(D + 2)M4 =

1

6480

(D + 2)

D(D − 1)
β2R2 (73)
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¨

S′
2
2
∂

C
=

β2R2

32D (D − 1)

î

−(D − 1)(M2)
2 + (2D − 5)M5

ó

= − 1

2160

1

D − 1
β2R2 (74)

¨

S4
2
∂

C
=

β2R2

18D (D − 1)

[

(D − 1)(2M6 +M7 +M8) + 3(M9 − 2M10 +M11)
]

= − 1

6480

7D − 46

D(D − 1)
β2R2 (75)

〈
S′
2S4

〉

C =
β2R2

9D
(M12 +M13) = − 1

1620

1

D
β2R2 (76)

〈S8〉 =
8β3R3

7!D2(1−D)2
(D + 2)(D + 4)M14 = − 8

7! · 1728
(D + 2)(D + 4)

D2(1−D)2
β3R3 (77)

〈
S′
6

〉
=

2

945

β3R3

D2(1−D)2
(D + 2)(D + 4)M15 = − 2

945 · 1728
(D + 2)(D + 4)

D2(1−D)2
β3R3 (78)

〈S4S6〉C =
16β3R3

6 · 6!D2(1−D)2
2(D + 2)

[

(D + 1)(−2M16 −M17 − 2M19 −M21)+

+ 5(−M18 + 2M20 −M22)
]

= − 16

6 · 6! · 2160
(9D − 74)(D + 2)

D2(1−D)2
β3R3 (79)

¨

S4
3
∂

C
= − β3R3

63D2(1−D)2

[

− 24(D − 1)2(M23 +M24 − 2M25 +M26 +M28 +M29+

+
1

3
M30 +M32 −M35 +

1

3
M39 −M44)− 72(D − 1)(M27 +M31 +M33 −M36+

− 2M37 +M40 −M41 + 2M43 −M45 − 2M46 + 2M47 −M48)− 24(2D − 5)(M34+

−M38 −M49 − 2M50 + 2M51 + 2M52 +
1

3
M55) + 8(D − 16)(M42 + 3M54)+

+ 24(D + 11)(M53 +
1

3
M56)

]

= − 1

63 · 7560
289D2 − 2464D − 4068

D2(1−D)2
β3R3 (80)

¨

S′
2
3
∂

C
= − β3R3

33D2(1−D)2

[

− 2(D − 1)2M57 + 6(D − 1)(2D − 5)M58+

− 2(D − 2)(4D − 19)M59

]

= − 1

33 · 30240
D2 + 23D + 6

D2(1−D)2
β3R3 (81)

〈
S′
2S6

〉

C =
16β3R3

3 · 6!D2(1−D)
2(D + 2)(2M60 +M61) =

16

3 · 6! · 1440
D + 2

D2(1−D)
β3R3 (82)

〈
S′
2S

′
4

〉

C =
β3R3

3 · 45D2(1−D)2
(D + 2)

[

(4D − 9)M62 + (D − 1)M63

]

=

=
1

3 · 45 · 8640
(D + 2)(D + 4)

D2(1−D)2
β3R3 (83)

〈
S′
4S4

〉

C = − β3R3

6 · 45D2(1−D)2
4 (D + 2) (M64 +M65) = − 112

6 · 45 · 60480
D + 2

D2(1−D)
β3R3

(84)

¨

S′
2
2
S4

∂

C
=

β3R3

6 · 32D2(1−D)3

[

− 4(D − 1)2(2D − 5)(M66 +M68)− 2(2D3 − 10D2 + 17D+

13



− 7)M67 + 4(D − 1)(2D2 − 6D + 7)M69 − 2(2D3 − 6D2 + 9D − 7)M70+

+ 4(D − 1)3(M71 +M72)
]

= − 4

54 · 60480
4D2 + 21D − 46

D2(1−D)2
β3R3 (85)

¨

S′
2S4

2
∂

C
= − β3R3

3 · 62D2(1−D)

[

8(D − 1)(M73 +M74 − 2M75 − 2M76 +M77 + 2M81+

+M83 +M84 +M85) + 24(M78 −M79 − 2M80 + 2M82 +M86 +M87)
]

=

=
1

3 · 62 · 7560
37D + 158

D2(1−D)
β3R3 . (86)

In the above calculations, all terms containing equal time propagators with one derivative have been

excluded, as they vanish—see Appendix A. This fact contributes significantly to simply the expansion in

Wick’s contractions.

Now, putting all together, the local trace anomaly can be extracted from

〈T µ
µ(x0)〉 = lim

β→0
Z(β) = lim

β→0

1

(2πβ)
D
2

exp

[

β

4!
(12ξ − 2)R+

− β2

6!

(D − 3)

D(D − 1)
R2 +

β3

8!

16(D + 2)(D − 3)

9D2(D − 1)2
R3 + . . .

]

.

(87)

At fixed dimension D, the β-limit selects the β-independent part in the expansion of the exponent in (87)

after the simplification with the Feynman measure 1/(2πβ)D/2, whereas β-divergent terms are ignored

as they may be removed by a QFT renormalization procedure. Recalling that ξ = D−2
4(D−1) , the result of

our trace anomaly reads

D = 2 =⇒ 〈T µ
µ(x0)〉 = − R

24π

D = 4 =⇒ 〈T µ
µ(x0)〉 = − R2

48 · 6!π2

D = 6 =⇒ 〈T µ
µ(x0)〉 = − R3

60 · 9!π3
,

(88)

which is in perfect agreement with the results obtained using the standard DBC procedure [36]. Note

that trivial anomalies are absent in MS spaces, as they would appear as covariant derivatives of curvature

combinations.

6 Conclusions

We have discussed the application of the string-inspired method within the worldline formalism in curved

space which, on the circle, allows to compute one-loop effective actions and associated scattering am-

plitudes, and anomalies. The implementation of SI Feynman rules corresponds to a convenient way of

factoring out a zero mode present on the circle. A BRST technique, studied in [34], has been used for

that purpose, along with RNC coordinates.
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The main advantage of using the SI Feynman rules, in place of those associated to different ways of

factoring out the zero mode (such as DBC), resides in the simplicity of the worldline propagator which

results translationally invariant, unlike the DBC propagator. Therefore, all the diagrams that involve

equal time propagators with one derivative, are vanishing. The price to pay for such advantage is the

introduction of further vertices in the theory, which arise from a non-linear “geodesic map”. Above we

have computed such map in closed form, for MS spaces, and successfully tested the associated non-

linear sigma model via the computation of type-A trace anomalies of conformally-coupled scalar fields

in dimension not larger than six.

The string-inspired formalism in curved space can be exploited in a wider class of calculations, and

can be considered as a powerful tool to reduce the complexity of standard Feynman diagrams compu-

tations. One important example is the systematic computation of graviton scattering amplitudes and

gravitational effective actions. It is an outstanding problem, and the development of new methods, both

analytic and numeric, may be of considerable help. To such extent, an interesting scenario, that was

conjectured years ago in [37] and recently improved in [38, 39, 40], consists in the possibility of map-

ping the particle non-linear sigma model to a linear sigma model where the gravitational properties are

described in terms of an effective potential, with a substantial gain of effectiveness in the perturbative

computation. So far, such mapping has been studied only with DBC Feynman rules and seems to be

guaranteed only for MS spaces. However, it would be interesting to investigate the possibility of using

the SI method there since, because of flatness, the geodesic map should not add complications. Another

relevant extension involves supersymmetric sigma models, which are linked to the worldline approach

for Dirac particles in curved space [14], where it is certainly possible to consider SI Feynman rules.

A Worldline integrals

The worldline integrals, that enter in the perturbative calculation described in the main text, involve the

coordinate Green’s function B and the ghost Green’s function ∆gh, which read

B(τ, σ) = B(σ, τ) = 1

2
|τ − σ| − 1

2
(τ − σ)2 − 1

12
(89)

∆gh(τ, σ) = δ(τ − σ) , (90)

and derivatives of the former, which at the unregulated level read

•B(τ, σ) = 1

2
sgn(τ − σ)− τ + σ = −B•(τ, σ) (91)

••B(τ, σ) = δ(τ − σ)− 1 = B••(τ, σ) . (92)

Due to the translational invariance of the string inspired propagator (89), the derivative with respect to

the second variable (right bullet) is the opposite of the derivative with respect to the first variable (left

bullet). However, for future convenience, in the formulas below we prefer to keep explicit the distinction.
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Propagators satisfy the properties
∫ 0

−1
dτ B(τ, σ) = (•B(τ, σ))

∣
∣
∣
σ=τ

= 0

[
•B•(τ, σ) + ∆gh(τ, σ)

]

σ=τ
= 1 ,

(93)

which will be largely exploited in the actual computation. The last property of (93) shows an example of

divergence cancellation: a δ(0) term gets canceled in the sum. This is the simplest example of how the

ghost fields contribute to cancel worldline divergences.

In the following, we report the list of the SI worldline integrals which have been used for the calcu-

lation of the trace anomalies. They are computed using Dimensional Regularization, when needed. For

completeness, at the end of the section we provide an example of how DR works in this worldline context.

To simplify the notation, we define
∫

..=
∫ 0
−1, B|τ ..= B(τ, τ) and B ..= B(τ1, τ2) (or B12

..= B(τ1, τ2) for

triple integrals).

M1 =

∫

dτ B|τ
(•B• +∆gh

)|τ = − 1

12

M2 =

∫

dτ B|τ = − 1

12

M3 =

∫

dτ B|τ 2
(•B• +∆gh

)|τ =
1

144

M4 =

∫

dτ B|τ 2 =
1

144

M5 =

∫

dτ1

∫

dτ2 B2 =
1

720

M6 =

∫

dτ1

∫

dτ2 B|1 •B2 (•B• +∆gh

)|2 = − 1

144

M7 =

∫

dτ1

∫

dτ2 B|1B|2
Ä

•B•2 −∆gh
2
ä

= − 1

144

M8 =

∫

dτ1

∫

dτ2 B2 (•B• +∆gh

)|1
(•B• +∆gh

)|2 =
1

720

M9 =

∫

dτ1

∫

dτ2 B2
Ä

•B•2 −∆gh
2
ä

=
1

120

M10 =

∫

dτ1

∫

dτ2 B B• •B •B• = − 11

1440

M11 =

∫

dτ1

∫

dτ2 B•2 •B2 =
1

80

M12 =

∫

dτ1

∫

dτ2 B2 (•B• +∆gh

)|2 =
1

720

M13 =

∫

dτ1

∫

dτ2 B•2B|2 = − 1

144

M14 =

∫

dτ B|τ 3
(•B• +∆gh

)|τ = − 1

1728

M15 =

∫

dτ B|τ 3 = − 1

1728
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M16 =

∫

dτ1

∫

dτ2 B|1B|2•B2 (•B• +∆gh

)|2 =
1

1728

M17 =

∫

dτ1

∫

dτ2 B|1B|22
Ä

•B•2 −∆gh
2
ä

=
1

1728

M18 =

∫

dτ1

∫

dτ2 B2B|2
Ä

•B•2 −∆gh
2
ä

= − 1

1440

M19 =

∫

dτ1

∫

dτ2 B2B|2
(
•B• +∆gh

)|1
(
•B• +∆gh

)|2 = − 1

8640

M20 =

∫

dτ1

∫

dτ2 B|2 B B• •B •B• =
11

17280

M21 =

∫

dτ1

∫

dτ2 B•2B|22
(
•B• +∆gh

)|1 =
1

1728

M22 =

∫

dτ1

∫

dτ2 B•2 •B2B|2 = − 1

960

M23 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1•B12
2 •B23

2 (•B• +∆gh

)|3 = − 1

1728

M24 =

∫

dτ1

∫

dτ2

∫

dτ3 B|12 •B12
2
Ä

•B•
23

2 −∆gh,23
2
ä

= − 1

1728

M25 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12 B23
•B23

•B•
12 = 0

M26 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23

(
•B• +∆gh

)|2
(
•B• +∆gh

)|3 =
1

8640

M27 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23

Ä

•B•
23

2 −∆gh,23
2
ä

=
1

1440

M28 =

∫

dτ1

∫

dτ2

∫

dτ3 B|12 •B12 B•
23

•B•
13

(
•B• +∆gh

)|2 = − 1

1728

M29 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23
2
Ä

•B•
12

2 −∆gh,12
2
ä (

•B• +∆gh

)|3 =
1

8640

M30 =

∫

dτ1

∫

dτ2

∫

dτ3 B|13
(
•B•

12
•B•

23
•B•

13 +∆gh,12 ∆gh,23 ∆gh,13
)
= − 1

1728

M31 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23
2 (•B•

12
•B•

23
•B•

13 +∆gh,12 ∆gh,23 ∆gh,13
)
=

1

1440

M32 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B23

2 (•B• +∆gh

)|1
(
•B• +∆gh

)|3 =
1

8640

M33 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

•B23
•B•

12

(
•B• +∆gh

)|3 = − 11

20160

M34 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

2
Ä

•B•
23

2 −∆gh,23
2
ä

= − 1

4032

M35 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B23

•B23
(
•B• +∆gh

)|1
(
•B• +∆gh

)|3 = 0

M36 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B12
•B13

•B23
(
•B• +∆gh

)|3 =
11

60480

M37 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13 B23
•B•

12

(
•B• +∆gh

)|3 = − 1

60480
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M38 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B23

•B23

Ä

•B•
13

2 −∆gh,13
2
ä

=
61

120960

M39 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13
(
•B• +∆gh

)|1
(
•B• +∆gh

)|2
(
•B• +∆gh

)|3 = − 1

30240

M40 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13
(
•B• +∆gh

)|1
Ä

•B•
23

2 −∆gh,23
2
ä

=
1

40320

M41 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13 B•
23

•B23
•B•

23

(
•B• +∆gh

)|1 =
13

120960

M42 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13
(
•B•

12
•B•

23
•B•

13 +∆gh,12 ∆gh,23 ∆gh,13
)
=

143

120960

M43 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B•

23
•B23

2 (•B• +∆gh

)|1 = − 1

6720

M44 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B|3 •B12 B•
23

•B•
12

•B•
23 = 0

M45 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B•

23
•B23

•B•
23 = − 11

17280

M46 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12 B23
•B23

•B•
13

•B•
23 = − 11

17280

M47 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12 B•
23

•B23
2 •B•

13 =
1

960

M48 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23 B•
23

•B23
•B•

12
•B•

13 = − 11

17280

M49 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

•B23
•B•

13
•B•

23 =
1

30240

M50 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13
2 B•

23
•B•

23 =
1

30240

M51 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13 B23
•B•

13
•B•

23 = − 79

120960

M52 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12

•B13
•B23 B•

23
•B•

13 = − 1

30240

M53 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13
•B23 B•

23
•B•

12
•B•

13 = − 19

40320

M54 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13

•B•
12

•B13 B•
23

•B23 =
11

12096

M55 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12

2 •B13
2 B•

23
2 =

17

20160

M56 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12 B•

13
•B12

•B13 B•
23

•B23 = − 17

20160

M57 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B|2 B|3 = − 1

1728

M58 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B23
2 = − 1

8640

M59 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13 = − 1

30240

18



M60 =

∫

dτ1

∫

dτ2 B2 B|2
(
•B• +∆gh

)|2 = − 1

8640

M61 =

∫

dτ1

∫

dτ2 B•2 B|2 =
1

1728

M62 =

∫

dτ1

∫

dτ2 B|2 B2 = − 1

8640

M63 =

∫

dτ1

∫

dτ2 B|1 B|22 = − 1

1728

M64 =

∫

dτ1

∫

dτ2 B|1 B|2 •B2 =
1

1728

M65 =

∫

dτ1

∫

dτ2 B2 B|2
(
•B• +∆gh

)|1 = − 1

8640

M66 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23 =

1

8640

M67 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B13

2 =
1

8640

M68 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13
(
•B• +∆gh

)|1 = − 1

30240

M69 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13
•B12

•B13 = 0

M70 =

∫

dτ1

∫

dτ2

∫

dτ3 B13
2 •B12

2 =
1

8640

M71 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 B|3 •B12
2 =

1

1728

M72 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 B|3

(
•B• +∆gh

)|1 = − 1

8640

M73 =

∫

dτ1

∫

dτ2

∫

dτ3 B12
2 •B23

2 (•B• +∆gh

)|3 =
1

8640

M74 =

∫

dτ1

∫

dτ2

∫

dτ3 B|3 B12
2
Ä

•B•
23

2 −∆gh,23
2
ä

=
1

8640

M75 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B23

•B23
(
•B• +∆gh

)|3 = 0

M76 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
12 B•

23
•B•

23 B|3 = 0

M77 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13
(
•B• +∆gh

)|2
(
•B• +∆gh

)|3 = − 1

30240

M78 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B23 B13

Ä

•B•
23

2 −∆gh,23
2
ä

=
1

40320

M79 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B13
•B23 B•

23
•B•

23 =
13

120960

M80 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B23

•B23
•B•

23 = − 1

60480

M81 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B•

23 B|3
(
•B• +∆gh

)|2 =
1

8640
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M82 =

∫

dτ1

∫

dτ2

∫

dτ3 B12 B•
13 B•

23
•B23

2 = − 1

6720

M83 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12

2 B23
2 (•B• +∆gh

)|3 =
1

8640

M84 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12

2 B•
23

2 B|3 = − 1

1728

M85 =

∫

dτ1

∫

dτ2

∫

dτ3 B|2 B|3 B•
12 B•

13
•B•

23 = − 1

1728

M86 =

∫

dτ1

∫

dτ2

∫

dτ3 B23
2 B•

12 B•
13

•B•
23 = − 11

20160

M87 =

∫

dτ1

∫

dτ2

∫

dτ3 B•
12 B•

13 B23 B•
23

•B23 =
11

60480
.

To provide an example, we report a step-by-step DR calculation of the integral M27.

M27 =

∫

dτ1

∫

dτ2

∫

dτ3 B|1 •B12
•B13 B23

Ä

•B•
23

2 −∆gh,23
2
ä

→

→
∫

dD+1t1

∫

dD+1t2

∫

dD+1t3 B|1 µB12 µB13 B23

Ä

νB23ρ
2 −∆gh,23

2
ä

=

= B|1
∫∫∫

µB12 µB13 B23 (νB23ρ νB23ρ − 1− ννB23 − B23ρρ − ννB23 B23ρρ) =

= B|1
∫∫∫ (

µB12 µB13 B23 νB23ρ νB23ρ − µB12 µB13 B23 − µB12 µB13 B23 ννB23+

− µB12 µB13 B23 B23ρρ − µB12 µB13 B23 ννB23 B23ρρ

)

=

= B|1
∫∫∫ [

− νB23 µB12 (µB13 B23 νB23ρ)ρ − µB12 µB13 B23 (1 + 2B23ρρ)+

+ νB23 µB13 (µB12 B23 B23ρρ)ν

]

=

= B|1
∫∫∫ [

− νB23 µB12 µB13ρ B23 νB23ρ − νB23 µB12 µB13 B23ρ νB23ρ+

−
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

νB23 µB12 µB13 B23 νB23ρρ − µB12 µB13 B23 (1 + 2B23ρρ) + νB23 µB12ν µB13 B23 B23ρρ+

+ νB23 µB12 µB13 νB23 B23ρρ +
✭
✭
✭
✭
✭
✭
✭

✭
✭
✭
✭
✭✭

νB23 µB12 µB13 B23 νB23ρρ

]

=

= B|1
∫∫∫ [

νB23 µµB12 B13ρ B23 νB23ρ
︸ ︷︷ ︸

≡ I

−νB23 µB12 µB13 B23ρ νB23ρ
︸ ︷︷ ︸

≡ J

+

− µB12 µB13 B23 (1 + 2B23ρρ)− νB23 B12ν µµB13 B23 B23ρρ + νB23 µB12 µB13 νB23 B23ρρ

]

,

(94)
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with

I :=
1

2

Ä

νB23
2
ä

ρ µµB12 B13ρ B23 ≃ −1

2
νB23

2
µµB12 B13ρρ B23 −

1

2
νB23

2
µµB12 B13ρ B23ρ

J := νB23 µµB12 B13 B23ρ νB23ρ =
1

2

Ä

νB23
2
ä

ρ µµB12 B13 B23ρ ≃ −1

2
νB23

2
µµB12 B13ρ B23ρ+

− 1

2
νB23

2
µµB12 B13 B23ρρ

(95)

where the symbol “≃” means equal up to an irrelevant integration by parts. Hence

B|1
∫∫∫ [

I + J − µB12 µB13 B23 (1 + 2B23ρρ)− νB23 B12ν µµB13 B23 B23ρρ+

+ νB23 µB12 µB13 νB23 B23ρρ

]

=

= B|1
∫∫∫ [

− 1

2
νB23

2
µµB12 B13ρρ B23 −

1

2
νB23

2
µµB12 B13ρ B23ρ+

− 1

2
νB23

2
µµB12 B13ρ B23ρ −

1

2
νB23

2
µµB12 B13 B23ρρ − µB12 µB13 B23 (1 + 2B23ρρ)+

− νB23 B12ν µµB13 B23 B23ρρ + νB23 µB12 µB13 νB23 B23ρρ

]
D→0−−−→

D→0−−−→ B|1
∫

dτ1

∫

dτ2

∫

dτ3
[

− 1

2
•B23

2 ••B12 B••
13 B23 − •B23

2 ••B12 B•
13 B•

23+

− 1

2
•B23

2 ••B12 B13 B••
23 − •B12

•B13 B23 (1 + 2B••
23)− •B23 B•

12
••B13 B23 B••

23+

+ •B23
•B12

•B13
•B23 B••

23

]

=

=
1

1440
.

(96)

In the first line of (94) we have •B•
23

2 −∆gh,23
2, which needs to be regularized. To do that we adopt the

worldline dimensional regularization scheme studied in [32, 29]. We introduce D arbitrary dimensions

for each worldline integral, i.e. we extend the worldline time variable to a (D + 1)-dimensional vector

t ..= (τ, t1, . . . , tD) along with its derivatives

µB(t1, t2) ≡
∂

∂t1µ
B(t1, t2)

Bν(t1, t2) ≡
∂

∂t2ν
B(t1, t2)

(97)

and we integrate over the (D+1)-dimensional space. Now, by means of successive integrations by parts

we remove ambiguous expressions, neglecting all boundary terms because of momentum conservation

in the new D dimensions and periodicity of the propagators in the original interval. We proceed until

the final expression is written in a manner that can be unambiguously computed removing the additional

dimensions.
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