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Two methods for fast analysis of Collective Thomson Scattering (CTS) spectra are

presented: Function Parametrization (FP) and feedforward Artificial Neural Net-

works (ANNs). At this time, a CTS diagnostic is being commissioned at the Wen-

delstein 7-X stellarator, with ion temperature measurements in the plasma core as

its primary goal. A mapping was made from a database of simulated CTS spectra

to the corresponding ion and electron temperatures (Ti and Te). The mean absolute

mapping errors are 4.2 % and 9.9 % relative to the corresponding Ti, for the ANN and

FP, respectively, for spectra with Gaussian noise equivalent to 10 % of the average

of the spectral maxima in the database at 650 sampling points per GHZ and within

a limited parameter space. Although FP provides some insight in the information

contents of the CTS spectra, ANNs provide a higher accuracy and noise robustness,

are easier to implement and more adaptable to a larger parameter space. These prop-

erties make ANN mappings a promising all-round method for fast CTS data analysis.

Addition of impurity concentrations to the current parameter space will enable fast

bulk ion temperature measurements in the plasma core region of W7-X.
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I. INTRODUCTION

In the quest for energy generation by controlled nuclear fusion, experiments are conducted

in devices that confine hot (hundred million C) plasma of hydrogen isotopes in a toroidal

geometry by means of a strong magnetic field. The two leading magnetic confinement

concepts are the tokamak and the stellarator. Both feature a helical magnetic field in a

toroidal geometry, but where the tokamak is characterized by a strong electric current inside

the plasma, the field in the stellarator is entirely generated by external coils. While this

comes at the cost of a more complex design, the potential advantages are that the stellarator

is intrinsically steady state and has more resilience against plasma instabilities. The most

recent large stellarator experiment is the Wendelstein 7-X (W7-X) device in Greifswald

(Germany), which saw its first successful campaign in 20161. It aims at demonstrating

the reactor potential of the so-called optimized stellarator configuration. In order to gain

information on the plasma properties in fusion reactors, a variety of diagnostic techniques

are employed.

This paper focuses on Collective Thomson Scattering (CTS), a diagnostic that measures the

scattered waves from a narrow, collimated beam of high power mm-waves that is launched

into the plasma. The collected waves contain information on the ions in the plasma, and

can in principle be used to obtain ion-related plasma parameters, such as the bulk ion

temperature, ion velocity distribution and plasma composition.

To describe the scattering process and compute the scattered spectra, the forward code

eCTS is available2. For the interpretation of measured spectra, the eCTS code is integrated

in the generic Bayesian data analysis framework Minerva, implemented at W7-X3.

However, finding the best fit using the eCTS code requires many runs, which takes up to

several minutes of computation per spectrum. In this paper we explore the possibility to

develop a custom-made inverse mapping, by analysing a data set of simulated spectra that

covers the expected operational space of the experiment. We compare the so-called Function

Parametrization (FP)4,5 which defines an inverse mapping based on functions that are used

to interpolate between the points in the data base, and the more generic approach of Arti-

ficial Neural Networks (ANNs)6. Both techniques require the construction of a data set of

spectra, a form of data reduction such as binning or Fourier analysis, and result in an inverse

mapping that can be applied to the data in real time. Moreover, the fast inverse mapping
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can be used to do optimization studies, e.g. to tune the diagnostic set up for a particular

parameter, or sensitivity analysis, e.g. to investigate the feasibility of the measurement of

additional quantities, such as the radial electric field, for given experimental noise. These

techniques are generic and have been applied to other diagnostics5,7,8. We applied them to

the specific case of CTS at W7-X, for the given set of parameters. Once the methodology

has been set up, creating a mapping for different parameters is a relatively simple action.

We first give a short description of the W7-X environment and the CTS diagnostic and the

mapping parameter space in sections II A and II B, then discuss the spectrum information

content, dimension reduction and the example database in section II C. The principles of

the FP and ANN techniques and their implementations are recalled in sections II D and

II E, respectively. The mapping results are described in section III and the relative merits

of both methods are discussed in section IV.

II. METHODS

A. Collective Thomson Scattering on W7-X

Collective Thomson scattering is the scattering of electromagnetic radiation off of fluctu-

ations in the electron density, electric field, magnetic field, and current density. Scattering

of the probing radiation is collective provided that the condition
(
λDk

δ
)−1

> 1 is satisfied9,

where λD is the Debye length, kδ = |kδ| and kδ = ks−ki specifies the direction along which

the fluctuations are resolved, with ki,s being the wave vectors of incident and scattered ra-

diation, respectively. The main contribution to the bulk-ion part of the scattering spectrum

usually comes from the electron density fluctuations. It is a powerful mm-wave diagnostic

that has successfully been applied on a number of fusion experiments10–14. CTS spectra are

sensitive to a broad range of parameters, including the electron density, ion species den-

sities, magnetic field and ion velocity distributions15. With a broad range of sensitivities

comes a broad range of potentially measurable parameters, including the ion temperature,

isotope ratio, fast ion velocity distribution, plasma rotation and MHD activity. A CTS

system is being commissioned for the upcoming experimental campaign on the stellarator

W7-X. The first CTS measurements on W7-X will be aimed at diagnosing the bulk ions.
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FIG. 1. Schematic of the CTS geometry on Wendelstein 7-X. The scattering angle θ = 130◦, the

observation angle φ = 110◦. The second harmonic electron cyclotron resonance layer for 140 GHz

is shown. The probing beam absorption region is in the resonance layer (depicted in red). The red

region on the receiver beam path depicts a region of electron cyclotron emission at 140 GHz. The

blue ellipsoid shows the location of the scattering volume, where the probing and viewing beams

intersect.

To this end, one of the 140 GHz electron cyclotron resonance heating gyrotrons, with the

output power of approximately 500 kW , will be used as the source of the probing beam.

High power of the probing beam is necessary due to the small scattering cross section of

CTS. The local scattering process depends on geometric parameters including the direction

and polarization of the incident beam, the local direction of the magnetic field, and local

plasma properties such as density and temperature. In addition, the incoming and scattered

waves propagate through a dispersive plasma in which cut-offs, resonances and refraction

may occur. Locally, the CTS scattering geometry is determined by the following two angles:

the observation angle φ = ∠
(
B,kδ

)
and the scattering angle θ = ∠

(
ks,ki

)
. In this work,

the geometry φ = 110◦ and θ = 130◦ in the bean-shaped plasma cross section was used, of

which a schematic representation is shown in figure 1.

Inference of the parameter values from the measured spectra is typically done using the

Bayesian formalism in conjunction with a forward code of the scattering10. The developed

forward model of CTS (eCTS16) calculates the spectral power density of the scattered radi-
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ation, as given by17:
∂P s

∂ω
= PinOb

ωiωs

2πc2
r2eneGS

(
kδ, ω

)
(1)

with Pin the probing beam power, Ob the overlap volume, ωi,s the angular frequencies of

incident and scattered radiation, respectively, ω = ωs − ωi, re the classical electron radius,

ne the local electron density, G the so-called geometrical form factor and finally S(kδ, ω)

the spectral density function, which governs the shape of the CTS spectra, and is in turn

influenced by a variety of plasma parameters10. Note that the spatial power density, ne,

G, k and S
(
kδ, ω

)
are assumed to be constant over the overlap volume, simplifying the

overlap integral of incident and observed radiation to a multiplication of scattered power

and volume. In the eCTS code, the spectral density function is calculated in the electrostatic

approximation, where only the scattering off of fluctuations in the electron density is taken

into account2. The spectral density function is given by18:

S
(
kδ, ω

)
= Se

(
kδ, ω

)
+
∑
i

Si
(
kδ, ω

)
, (2)

with Se the electron scattering term and Si the scattering terms due to electrons screening

ion species i.

The input parameters of eCTS are: the incident radiation mode, scattered radiation mode,

Pin, ωi, Ob, ne, ion species densities ni, electron temperature Te, ion temperature Ti, strength

of the magnetic field B, observation angle φ, and the angle between the probing and scat-

tered waves θ = ∠ (ks,ki). Eight CTS spectra computed by the eCTS code, at different Ti

and fixed scattering geometry, are shown in figure 2.

B. The mapping domain

The product of this work is a mapping function that, for a given CTS spectrum, provides

the corresponding plasma parameters (Ti and Te). This mapping is obtained by analysis of a

database containing synthetic CTS spectra and their corresponding eCTS input parameters.

The domain of the mapping is determined by the range of input parameters covered in the

database. To minimize the number of dimensions in the mapping, it was decided to only

include input parameters that influence the shape of the CTS spectrum.

The electron density, Pin, Ob and the attenuation of the collection system are assumed to
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uniformly influence the measured spectral power density. These scaling factors were excluded

from the mapping by normalizing the spectra to their mean value.

The domain of the other parameters was limited by their possible variation at a specific

set-up of the CTS diagnostic. That is, this mapping does not require input from external

measurements and its results can be applied for CTS as a standalone diagnostic. Firstly,

there is an uncertainty in scattering geometry. Although the placement of the diagnostic

parts is fixed during measurements, the refraction of probing and scattered radiation in

the plasma introduces variations in θ and φ, which are expected to be a few degrees. The

magnetic field in W7-X is known as a function of scattering location, but due to uncertainty

in this location, it might slightly vary: B = 2.2 ± 0.05T . During operational phase 1.2

(OP1.2), Ti is not expected to exceed 4 keV and Te / 8 keV . Both temperatures were

taken as free parameters in the range 0.5 . . . 10.0 keV . In this work, Deuterium (ion mass

mD = 2u and charge number ZD = 1) was chosen as the main ion species. The impurity

concentrations are not known. However, they affect the CTS spectrum in several ways.

Firstly, by dilution: ne =
∑

i niZi. This was simulated in a simplified way: by adding the

main ion species density to the mapping parameter space. Since the electron density is

considered a scaling parameter, the ratio nD/ne was used as input parameter, in the range

0.2 . . . 1. In a very clean plasma, the impurity concentrations can be so small that ni comes

close to ne. To simulate such a clean plasma, another two mappings were made with the

density ratio in the range 0.9 . . . 1.

Plasma impurities also affect the shape of the CTS spectrum. As stated in equation 2, each

ion species has a contribution Si to the total scattering. These terms do not only depend

on general parameters (θ, φ, B, ω) and species-specific properties (mi, Zi, ni, Ti), but also

on the properties of other plasma species. A quantitative analysis of measured CTS spectra

requires a quantitative inclusion of impurities in the data analysis model. The eCTS code

used for this work did not include impurity concentrations, but its results do provide a

methodological comparison of the two fast analysis methods.

The total mapping parameter space spans six dimensions, plus the sampling frequency νs.

The expected parameter values are summarized in table I, together with the actual parameter

ranges used for the mapping. These ranges were chosen larger than or equal to the expected

values.
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TABLE I. Expected values of the relevant plasma and geometry parameters during measurement

and the parameter ranges that were used in the mapping.

parameter expected value mapping parameter range

Ti < 4 keV 0.5 - 10 keV

Te / 8 keV 0.5 - 10 keV

θ 130± 2◦ 125− 135◦

φ 110± 2◦ 105− 115◦

B 2.2± 0.05 T 2.1 - 2.3 T

ni/ne 0.2− 1 0.2 - 1.0

138.0 138.5 139.0 139.5 140.0 140.5 141.0 141.5 142.0

(GHz)
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FIG. 2. Collective Thomson scattering spectra as calculated by the eCTS code2, normalized to

their mean value. The varied parameter is the ion temperature. The other input parameters were

Te = 5 keV , θ = 130◦, φ = 110◦, B = 2.2T and ni = ne.

C. Database and dimension reduction

The goal of this work is to find a fast mapping from the measured spectra q to the input

parameters p of the eCTS model. The former is presented in figure 2 and the latter in table

I. In this work, the density of sampling frequencies was taken to be ρs = 650GHz−1 (corre-

sponding to a spectral resolution of 1.538MHz), in the range 138 < νs < 142GHz, which

makes for an initial number of parameters Nq,0 = 2600. In order to retain computational

tractability of the database building, dimension reduction of q is necessary. In this process,
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FIG. 3. Discrete Fourier transforms of noiseless spectra at Te = 5.0 keV , θ = 130◦, φ = 110◦,

B = 2.2T , ni = ne and varying Ti. Also shown is the average amplitude of the DFT of the noise

σs = 10 % at ρs = 650GHz−1. Only components above this level are useful for the approximation.

the sensitivity of the result with regard to p should be retained while removing the largest

possible amount of unnecessary information.

Without noise, only five variables with finite variance in the parameter range are required to

determine five independent parameters. However, the measured spectra contain noise which

is here assumed to be Gaussian: σs = 10 % at ρs = 650GHz−1, defined in relation to the

average maximum spectral power density in the input parameter space. Two methods of

dimension reduction are considered: binning and the Discrete Fourier Transform (DFT).

For binning, the spectrum is divided in bins, the output of which is given by the average spec-

tral power density in each bin. The noise of the binned spectrum is given by σb = σs/
√
BF ,

with BF the number of sampling points in each bin.

Figure 3 shows the DFTs of several noiseless CTS spectra with varying bulk ion temper-

ature. In this work only the magnitude, not the phase, of the Fourier components was

considered. The amplitude of the Fourier components strongly decreases with the index and

(for Ti > 1 keV ) only the first 10 − 20 components can carry information distinguishable

from noise. In the Fourier space, the process of binning is very similar to removing the higher

Fourier components. To show this, a CTS spectrum with ρs = 650GHz−1 was binned with

several binning factors, followed by a DFT. The normalized amplitudes of these DFT’s are
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FIG. 4. Discrete Fourier transforms of a CTS spectrum at Ti = Te = 5 keV , 2600 bins (ρs =

650GHz−1) and artificial noise σs = 10 %, that was binned to different spectral densities. Spectral

densities > 12.5GHz−1 can be used to reduce computation time during database building and

application of the FP.

shown in figure 4. Firstly, the differences in the Fourier components above the noise level

are negligible for ρs ≤ 12.5GHz−1. Therefore, with the given parameters and noise level,

binning down to 12.5GHz−1 does not significantly reduce the amount of useful information

in the spectrum. Secondly, it can be seen that the noise level is equal for all binning factors.

The computation time required to produce the spectra, however, scales linearly with ρs.

Thus, the lower value ρs = 12.5GHz−1 was used for database building. The artificial noise

was changed accordingly:

σs =

√
ρs
ρ0
× σs,650, (3)

where σs,650 is defined as the equivalent spectral noise at ρs = 650GHz−1.

The database was built by doing N = 25, 000 simulations with the eCTS model, yielding

vectors pα and qα with (α = 1, . . . , N). pα were picked from a uniform random distribution

covering the expected domain of parameter space (described in table I).

The input to each simulation consists of the input parameters pα and the 50 sampling

frequencies in the range 140 ± 2GHz. The eCTS code then produces the corresponding

spectrum. As stated in section II B, the scaling factor was removed by normalizing each
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spectrum to its mean value. A final step in the simulation was to apply a notch filter. The

notch width is assumed to be 300MHz, centered at the probing frequency 140GHz. In

principle, the notch can be applied by cutting out the corresponding part of the spectrum.

But since this would introduce artefacts in the DFT of the spectra, the notch was applied by

replacing the values within the notch by a linear interpolation between the spectral values

bordering the notch.

Next to the database built for learning, several test sets were built. These had equal pa-

rameter domains, except for the temperatures. Considering that the W7-X plasma will

be heated through the electron cyclotron resonance, the temperature range was limited to

1
10
< Ti/Te < 3.

1. Principal Component Analysis

Depending on the mapping method, 50 variables might still be too much for a stable

mapping. On the other hand, the binned or Fourier-transformed spectrum might still contain

information that is unnecessary for an adequate mapping. The number of dimensions can

be further reduced through a Principle Component Analysis (PCA)7.

In a PCA, a set of observations of a number of possibly correlated variables is transformed

to a different set of values of uncorrelated variables, called the principle components. In

this case, the set of observations are the database spectra qα. The principle components

can be sorted with respect to their variance in the database and thus with respect to their

relative importance in the database. Because the principle components are uncorrelated,

one can use PCA to reduce the number of variables in the data without discarding the most

significant patterns in the database.

The process of a PCA on a database qα is as follows: first, the databased is normalized: for

each element j in qα, qαj = (qαj − 〈q〉j)/σj, with σj the standard deviation of variable j and

〈q〉j the mean value of qj in the database. Then, the covariance matrix Dq of the normalized

variables is calculated, the elements of which are given by:

Dq
ij =

1

N − 1

∑
α

qαi q
α
j . (4)
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The matrix Dq contains the cross-correlations between the elements of q. The eigenvalues

λj of Dq are a measure of the regressive significance of the corresponding eigenvectors

Dqej = λjej. The principal components of each spectrum are then given by q̃j
α = ej ·qα. If

λj > (3σs)
2, with σs the measurement noise, q̃j is considered a significant component. The

eigenvalues and corresponding eigenvectors are sorted such that λ1 ≥ λ2 ≥ . . . ≥ λNs with

Ns the number of significant eigenvectors. One can now make a mapping from the signifi-

cant components in q̃ to p. The application of the PCA in the function parametrization is

described in the next subsection.

D. Function parametrization

After the dimension reduction is complete, a mapping from the processed variables q1 to

the eCTS input parameters p can be made. The first mapping method considered in this

work is function parametrization (FP)4,7. In a FP, a regression is performed on a database

of examples, in which the error of a certain mapping function p = M(q1) is minimized.

For the regression in FP, one has to select a function f that can adequately describe the

trends in the model. The eCTS model is non-linear, so the regressor must be too if the whole

parameter range is to be covered. Multivariate Adaptive Regression Splines (MARS19) is a

regression algorithm that uses non-linear hinge functions as basis for a multivariate model

with a multi-dimensional output. The regression consists of a forward pass where terms are

added to the model and a backward pass where the least useful terms are removed from

the model one by one (pruning). Because it minimizes the complexity of the model, the

backward pass tends to prevent overfitting. However, if the model obtained in the forward

pass cannot fully capture the patterns in the database, pruning is unlikely to yield much

results.

The function parametrization in this work was obtained by performing a MARS regres-

sion on the principle components q̃ of the discrete Fourier transform of the spectra in the

database. Only the first 10 principle components were used, because it was found that the

computation time and systematic errors of the resulting mapping increase drastically for

Nq1 ' 10. Moreover, the maximum number of terms in the model was limited to 80, each

with a maximum degree of three (corresponding to the product of three hinge functions).
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Gaussian noise was added to the database spectra in order to stabilize the MARS regression.

The amplitude of this noise was equal to 0.1 % of the mean of the maximum values of each

spectrum in the database.

All computation for this research was performed on an Intel i5-6300U dual-core CPU along

with 20 GB of RAM.

The obtained FP was applied to test sets with different amounts of noise and ρs =

12.5GHz−1. The results for σs,650 = 10 % are presented in section III A. The results

for tests at different noise levels (σs,650 = 1, 5, 10, 30 and 100 % at ρs = 12.5GHz−1) are

presented in section IV.

1. Error analysis

The simplest error analysis is the comparison of the approximation pinv with the eCTS

input parameters p. This can be done for each individual example to get a grasp of the

estimation error in different parts of the parameter subspace. An error indication can also

be obtained for the FP as a whole, defined as follows:

εi ≡
1

Ntest

∑
β

∣∣∣pβi,inv − pβi ∣∣∣
pβi

, (5)

with β the test spectrum index and Ntest the number of spectra in the test set.

During operation, p will not be available. Reduced chi-squared analysis is proposed

as a self-consistent method to provide an indication of the goodness of fit of a spectrum

corresponding to the measured pout, with the observed spectrum. This was implemented as

follows:

χ2 ≡
N∑
n=1

(
qn − S(ωn,pout)

σs

)2

, (6)

where qn are the normalized spectral power densities measured at frequencies ωn. S is the

spectral power density as calculated by the forward model, including artificially added noise

with magnitude equal to the measurement noise σs. The vector pout contains the measured

parameters. Reduced chi-squared is then χ2
red = χ2/K, with K the number of degrees of

freedom. The value of χ2
red can be interpreted in the following way: The closer χ2

red is to
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1, the better the fit. Values of χ2
red > 1 represent an underfit whereas χ2

red < 1 represents

overfitting. However, it is not possible to use χ2
red as a quantitative measure of the goodness

of fit20. χ2
red has an intrinsic probability distribution function, which can only be known for

the true model having the true parameter values.

χ2
red can still provide an indication of self-consistency: under the assumption that the ap-

proximation (be it FP or a neural network) follows the true model, χ2
red of the most accurate

measurements should follow the χ2
red-distribution and thus have a mean value of 1. Moreover,

a correlation between ε and χ2
red might provide a rough error estimation for measurements.

The results of this analysis are presented in section III A 1.

E. Artificial neural networks

An artificial neural network (ANN) is a computing system that consists of a network of

artificial neurons: mathematical function that mimic the behaviour of biological neurons.

Neurons mutually transmit signals which depend on the signals they receive from other

neurons. Although ANNs are much simpler than biological neural networks, they share the

ability to learn new patterns through the consideration of examples.

In this research, a specific class of feedforward neural network was used: the multi-layer

perceptron (MLP). The perceptron is a class of ANNs that was invented by Rosenblatt6,

initially as a hardware single binary classifier, but later generalised to a computation system

consisting of neurons arranged in layers, which can be activated by inputs from all neurons in

the preceding layer, and transmit their output o to the succeeding layer. This is summarised

in the following recurrent formula:

oki = φ(netki ) = φ

(
Ni∑
l=1

oli−1w
lk
i−1 + bki

)
, (7)

where i and k denote the layer and neuron indices, respectively. netki is the net input of

neuron k in layer i, formed by the sum of all Ni neuron outputs of the previous layer,

multiplied by the corresponding weights wlki−1, plus bki , the bias of neuron k. Finally, φ

describes the ”activation” of a neuron based on the information it receives. This so-called

activation function should be a strictly increasing and non-linear function between 0 and

1 in the domain (−∞,∞). Many activation functions can be used, but for this work, the
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standard logistic function and its convenient derivative were used:

φ(x) =
ex

1 + ex

dφ

dx
= φ(x)(1− φ(x)) (8)

1. Training procedure

An MLP can be trained by repeatedly offering (possibly pre-processed) simulated spectra

qα1 to the first neuron layer oin and adjusting the weights and biases of the network for

minimization of the loss function: E = 1
2
|oout − p|2. The influence of each weight on the

loss function, δki = ∂E
∂wkl

i
. δki can be calculated in an algorithm called backpropagation.

Following the gradient descent optimization algorithm, the weight adjustments are then

given by ∆wkli = ηδki o
k
i , with η the learning rate, which can be adapted during training.

Also, to avoid ending up in a local minimum of E, momentum can be added through the

inertia term α21:

∆wkli (t+ 1) = (1− α)ηδki o
k
i + α∆wkli (t). (9)

Backpropagation is normally performed on a batch of examples concurrently. The larger

the batch, the more general the trends that can be captured. A database can be chopped

up in a number of batches, which can be offered one by one to form one epoch of training.

In the next epoch, the database can be chopped up again (using a possibly different order

of examples) for the next epoch. Depending on the application, the training is continued

for one, several or many epochs, or until a certain desired error margin is reached.

During training, the backpropagation is performed on examples from the database. However,

similarly to FP, it is better to test the resulting MLP on new test data. The fraction of

variance unexplained (FVU) can provide a measure of how well p is replicated by the model,

and is defined as the ratio of the variance in the error over the total variance:

FV Ui ≡
∑Ntest

k=1

(
pki,pred. − pki,true

)2∑Ntest

k=1

(
pki,pred. − pi,mean

)2 , (10)

with Ntest the number of examples in the test set, i the index of p, and the subscripts

denoting the true, predicted and mean parameter values, respectively. The FVU can be
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calculated after each batch, to quantify the training progress. This was done during training

for both the training database and the test set. If the FVU of the database keeps decreasing

but the FVU of the testset does not, the MLP might be overfitted to the dataset, and not

generalisable to new data.

In this work, the MLP regressor class from the SciKit-Learn package22 was used to make

the approximation. Three hidden layers were used, containing 150, 100 and 50 neurons

respectively. The MLP was trained with the same databases as used for the FP. The

DFT and PCA were omitted: q1 = q. The total layout of the MLP is then given by

[Nq,1, N1, N2, N3, Np] = [50, 150, 100, 50, 6]. Instead of training once on low-noise spectra

and applying the resulting model on noisy spectra, the MLP was trained for each desired

noise level separately. The MLP regressor was set to use adaptive training and an inertia

term α = 5 · 10−5 and training was done with batches of size 250.

2. Error propagation through sensitivity analysis

As described in section II D 1, observed measurement errors and χ2
red cannot provide a

quantitative uncertainty of the mapping output during new measurements. A tool that can

provide such quantifications, is the sensitivity analysis.

The trained network can be represented as a function MLP : pinv = MLP (q1) with pinv

the retrieved system parameters and q1 the preprocessed spectra, or oout = MLP (oin) with

in and out depicting the first and last layer of the MLP. Analogous to the partial derivative

∂E
∂wkl

i
in backpropagation, one can calculate

∂oiout
∂ojin

∣∣∣
q

for all neuron combinations i and j and

a given q1
23. Together, the derivatives form the Jacobian matrix J.

One could use these sensitivities as an indication of the relative importance of different

spectral regions in the estimation of each pi. However, it has been demonstrated that such

indications are unreliable for dependent input parameters24. Namely, there are many possible

networks that describe the same patterns in the data, while having different distributions of

the sensitivity.

The sensitivities can also be used for error propagation. In general, an error indication can

be obtained from the covariance matrix of the output, Dp. The elements of this matrix are
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given by:

Dp
ij =

Nq∑
k=1

Nq∑
l=1

JikD
q
klJjl, (11)

with Dq the covariance matrix of the input. At a fixed point p in parameter space, the

uncertainties in q can be assumed to be uncorrelated and equal to the spectral noise. In that

case, Dq is a diagonal matrix with constant value σ2
s . The synthetic data indeed originate

in a single point p, but due to the finite scattering volume and signal integration time,

the collected radiation is given by the integral of scattered power over a small subspace in

p-space and time. Although incorporation of the finite scattering volume in the mapping

would be overly complicated, its integration in the uncertainty estimation is possible, . For

each point at which Dp is evaluated, one could evaluate Dq over a set of spectra which was

picked from the expected p-subspace.

Using the network trained with spectra at ρs = 12.5GHz−1 and σs,650 = 11 %, Dp was

evaluated on a grid of points in parameter space, at fixed geometry θ = 130◦, φ = 110◦,

B = 2.2T ,ni = ne and temperatures in the range 0.5 ≤ Ti, Te ≤ 10.0 keV .

III. RESULTS

A. Function parametrization results

The computation time required to make the FP mapping was 71 minutes. The results

of the function parametrization for a test set with ρs = 12.5GHz−1 and σs,650 = 10 % are

shown in figure 5. In the MARS regression process, the maximum number of 80 terms was

reached: three terms of the first degree, four terms of second degree and the rest of third

degree. During pruning, none of these terms was removed. This indicates an underfit of the

training data. The results for varying noise levels are shown in figures 9 and 10 for nD/ne

in the ranges 0.2− 1 and 0.9− 1, respectively.
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FIG. 5. Input (real) and output (approximated) ion temperature of the application of the FP on a

test set with 1000 samples, 1.4 % noise and ρs = 12.5GHz−1 (σs,650 = 10 %). The average absolute

deviation for Ti is 9.9 % of the input temperatures.

1. Chi-squared analysis results

The χ2
red values of the FP applied to a test set with Ntest = 1000 for different noise levels

are shown in figure 6. With a high noise level, almost no correlation between χ2
red and ε can

be recognized and the median χ2
red-value approaches 1.

At lower noise levels, there is a certain correlation, and probabilities of certain ε for given

χ2
red can be provided. For example, in the test set of the σs,650 = 10 % in figure 6:

P (ε > 0.1|χ2
red < 10) = 0.21. In principle, a probability distribution P (ε|χ2

red) can be

obtained in this way. However, since the theoretical uncertainty for a given χ2
red can only

be known for a perfect model and ε equal to zero20, this method cannot be used to provide

sound quantitative error estimations.
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FIG. 6. Scatter plots of χ2
red versus the estimation error εTi for a set of Ntest = 1000 tests on the

FP mapping, at different noise levels. The horizontal lines show the median values of χ2
red: 26.8,

1.9 and 1.2 for equivalent noise levels of 1 %, 10 % and 100 %, respectively. For measurements with

a low error in their category, the values of χ2
red are distributed around a value slightly larger than

one, indicating a modest underfit of mapping to data.

B. Artificial neural networks

The training progress for a dataset with σs,650 = 10 % is shown in figure 7. The cor-

responding estimation error εT i = 4.2 %. The results for varying noise levels are shown in

figures 9 and 10 for nD/ne in the ranges 0.2− 1 and 0.9− 1, respectively.

1. Sensitivity analysis

The obtained uncertainties were compared with the absolute errors of a small test set,

the results of which are shown in figure 8. It can be seen in figure 8 that for both tem-

peratures, the majority of tests have εi < σi(Ti, Te). Also, the average standard deviation

of the sensitivity grid corresponds well with the average estimation mapping error of the

ANN: εTi = 4.2 %. Thus, the sensitivity is a reasonable measure of the mapping accuracy

of a specific ANN and can be used to obtain uncertainties of the mapping results for new

measurements within the parameter domain covered during training.
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FIG. 7. Neural network trianing progress for the assumed parameter space described in table I.

Each training iteration was performed with a batch of 250 spectra. With a database of 25,000

spectra, an epoch is completed after 100 iterations. FVU is the Fraction of Variance Unexplained,

defined in equation 10.

IV. DISCUSSION

In figure 9, it can be seen that both FP and ANNs can provide an adequate mapping of

the ion temperature, with mean errors εTi = 9.9 % and 4.2 %, respectively, at the expected

noise level σs,650 = 10 %. However, the ANN is much more robust to noise: if the expected

estimation error is to be kept below 20 %, FP will not be useful for σs,650 ' 30 %, whereas

εTi = 14.3 % for an ANN trained at σs,650 ' 100 %. Because the CTS probing beam is also

used for heating and there are several other heating gyrotrons operating in the machine

at the probing frequency, there will be large amounts of stray radiation in the frequency

range of the CTS spectra. Therefore, the mapping method with maximal noise robustness

is preferable.

The electron temperature mapping accuracy was much smaller for both methods. The

reason for this is that nD/ne and Te appear very similarly in the CTS equations and thus

their influence on the CTS spectra is comparable. It should be noted that with a small

range of nD/ne in the mapping parameter space, Te can be estimated just as well as Ti by

both the FP and ANN mappings, as shown in figure 10.

In figure 9, the following can be also recognized: for the FP, the error increases linearly

with noise, whereas the MLP mapping error levels off just above 30 %. This highlights a
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FIG. 8. Contour plot of the normalized standard deviation σTi/Ti, as obtained from the covariance

matrix Dp. This matrix was evaluated on an equidistant grid with Ti and Te = [0.5, 1.0, . . . , 10],

at fixed geometry θ = 130◦ and φ = 110◦, B = 2.2T , ni = ne, using an MLP trained with

ρs = 12.5GHz−1, σs,650 = 10 % and 2 < nD/ne < 1. The mean standard deviation over the grid is

σTi/Ti = 4.3 %. On top of the contour plot is a scatter plot of Ntest = 500 actual ion and electron

temperature estimations where Ti,e are in the range 0.5 . . . 10 keV . These are depicted by black

dots surrounded by a circle, the colour of which represents the normalized deviation on the same

colour scale.

fundamental difference between the FP and the MLP. The MARS model does not have pa-

rameter space boundaries. It was made to fit best to the examples in the training database,

but can be extrapolated for anomalous input spectra and thus map outside of the training

parameter space. The MLP, on the other hand, was trained to provide a mapping within

the training database only, and will only provide output in that range. This is in the nature

of the activation function, which is limited between zero and one for all input values.

The chi-squared analysis can be applied to both FP and NN to provide an indication of

the goodness of fit of real measurements. A quantitative uncertainty for new measurements

can be obtained from a sensitivity analysis. For the MLP, this uncertainty was in good

agreement with actual results from predictions on synthetic data. In principle, FP also
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FIG. 9. Mean absolute deviations of Ti and Te as calculated with function parametrization (full

lines) and an artificial neural network (dashed lines) at ρs = 12.5GHz−1, for different equivalent

noise levels and 0.2 < nD/ne < 1.

allows sensitivity analysis. But, because the phase information of the DFT is not used in

the FP, the derivatives and thus the sensitivity of the FP are more difficult to interpret.

An advantage of FP over ANNs is that the terms in the MARS functions form direct links

between input and output, thus providing insight in the mapping. The maximum number

of inputs to MARS poses the need for a stricter dimension reduction compared to the ANN.

This can be achieved by two extra steps: DFT and PCA. In principle, these steps can provide

insight into the system complexity and the amount of information that can be distinguished

from noise. In the DFT, half of the information is removed: the half concerning the location

of spectral changes (corresponding to phase in a DFT of a time-dependent signal). In future

expansions of the mapping parameter space, this information might be necessary, further

complicating the FP.

The current ANN implementation considers the (binned) spectra as a whole. This method

seems more coarse than the dimension reduction in the FP. However, one can also train a

new MLP on the transformed variables that were input to MARS, or any other set of vari-

ables obtained from the spectra. For example, an MLP can be trained with variable spectral

density to emphasize certain spectral regions while reducing the required complexity of the

neural network.
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FIG. 10. Mean absolute deviations of Ti and Te as calculated with function parametrization (full

lines) and an artificial neural network (dashed lines) at ρs = 12.5GHz−1, for different equivalent

noise levels and 0.9 < nD/ne < 1.

In fact, except for the increased computation time required for training, dimension reduc-

tion is no principal requirement for the MLP. It has the ability to learn the most relevant

patterns by itself. This also makes ANNs more flexible to changes in the parameter space,

i.e. a larger range of scattering geometries or additional dimensions, like the plasma drift

or properties of the (fast) ion velocity distribution.

Another important set of additional dimensions are the plasma impurity concentrations,

which might have significant influence on the shape of measured spectra in W7-X. As stated

in section II B, the parameter space used in this work does not account for impurities.

However, once the addition of impurities is implemented in the eCTS code, a new mapping

can be made with inclusion of the impurity concentrations.

More in general, the following should be noted: an ANN can only describe the (physics)

patterns that were used for training. There are two ramifications of this. The first is that the

physics model used to produce the synthetic database is wrong. The eCTS model provides

an electrostatic estimation of CTS, which might not cover all processes under observation

during measurements. The second aspect is the difference in parameter space between

synthetic data and measurements. This includes the omission of impurity concentrations,

but also other differences that might or might not be foreseen. For example, due to finite
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size of the scattering volume, the measured spectra are formed by the addition of different

scattering processes and thus span a finite subspace in parameter space, instead of a single

point. Also, the synthetic background radiation is uniform white noise, whereas the real

background originates in stray radiation from the gyrotron (modulation), electron cyclotron

emission from the plasma in the line of sight and any other radiation present in the con-

cerning spectral region.

V. CONCLUSION

Both FP and ANNs can provide a mapping between synthetic CTS spectra and the

bulk ion temperature. Without any additional input, the FP and ANN can estimate Ti

with mean absolute errors εTi = 9.9 % and 4.3 % for spectra with ρs = 12.5GHz−1 and

σs,650 = 10 %. In a more limited parameter space where nD/ne is almost fixed, Te can also

be identified: εTe = 8.4 % and 4.6 % for the FP and ANN, respectively.

The current mappings can be made into a ready-to-use data analysis method by including

relevant impurity concentration ranges in the eCTS code and mapping parameter space.

Other significant differences between synthetic and measured spectra might appear as well,

for example due to background radiation in the plasma. These differences might harm the

applicability of both FP and the ANN. But, ANNs have several significant advantages: a

much larger noise robustness, ease of implementation and higher adaptability with respect

to the parameter space. Thus, artificial neural networks are the method of choice to enable

fast CTS ion temperature measurements and possibly other plasma properties in the future.
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