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Abstract

Background: Personalized, precision, P4, or stratified medicine is understood as a medical approach in which patients
are stratified based on their disease subtype, risk, prognosis, or treatment response using specialized diagnostic tests. The
key idea is to base medical decisions on individual patient characteristics, including molecular and behavioral biomarkers,
rather than on population averages. Personalized medicine is deeply connected to and dependent on data science,
specifically machine learning (often named Artificial Intelligence in the mainstream media). While during recent years
there has been a lot of enthusiasm about the potential of ‘big data’ and machine learning-based solutions, there exist
only few examples that impact current clinical practice. The lack of impact on clinical practice can largely be attributed to
insufficient performance of predictive models, difficulties to interpret complex model predictions, and lack of validation
via prospective clinical trials that demonstrate a clear benefit compared to the standard of care. In this paper, we review
the potential of state-of-the-art data science approaches for personalized medicine, discuss open challenges, and
highlight directions that may help to overcome them in the future.

Conclusions: There is a need for an interdisciplinary effort, including data scientists, physicians, patient advocates,
regulatory agencies, and health insurance organizations. Partially unrealistic expectations and concerns about data
science-based solutions need to be better managed. In parallel, computational methods must advance more to
provide direct benefit to clinical practice.

Keywords: Personalized medicine, Precision medicine, Stratified medicine, P4 medicine, Machine learning, Artificial
intelligence, Big data, Biomarkers

Background
Personalized, precision, P4, or stratified medicine is
understood as a medical approach in which patients are
stratified based on their disease subtype, risk, prognosis,
or treatment response using specialized diagnostic tests
[1]. In many publications, the terms mentioned above
are used interchangeably, although some authors make
further distinctions between them to highlight particular
nuances. The key idea is to base medical decisions on
individual patient characteristics (including biomarkers)
rather than on averages over a whole population. In

agreement with the US Food and Drug Administration
(FDA; https://www.fda.gov/ucm/groups/fdagov-public/
@fdagov-drugs-gen/documents/document/ucm533161.
pdf ), we herein use the term biomarker for any measur-
able quantity or score that can be used as a basis to
stratify patients (e.g., genomic alterations, molecular
markers, disease severity scores, lifestyle characteristics,
etc). The advantages of personalized medicine (summa-
rized in [2, 3]) are widely considered to be (1) better
medication effectiveness, since treatments are tailored to
patient characteristics, e.g., genetic profile; (2) reduction
of adverse event risks through avoidance of therapies
showing no clear positive effect on the disease, while
at the same time exhibiting (partially unavoidable)
negative side effects; (3) lower healthcare costs as a
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consequence of optimized and effective use of therap-
ies; (4) early disease diagnosis and prevention by
using molecular and non-molecular biomarkers; (5)
improved disease management with the help of wear-
able sensors and mobile health applications; and (6)
smarter design of clinical trials due to selection of
likely responders at baseline.
At present, personalized medicine is only an emerging

reality. Molecular tumor boards at hospitals are probably
furthest in realizing the promises of personalized medi-
cine in clinical practice (Fig. 1). At the same time, this
example already demonstrates a strong dependency of
personalized medicine on computational solutions.
Herein, we first explain, how modern approaches from
data science, and specifically machine learning, are now
beginning to impact personalized medicine. However,
the way in which machine learning (often used inter-
changeably with the term Artificial Intelligence) is pre-
sented in the mainstream media often constitutes a
hype, which must be contrasted with reality. We identify
several challenges that currently constitute hurdles for
realizing machine learning-based solutions more broadly
in clinical practice. We discuss these challenges together
with the existing potential of data science for personal-
ized medicine. Finally, we highlight directions for future
development.

Data science increasingly impacts personalized
medicine
To date, the FDA has listed more than 160 (mostly gen-
omic) pharmacogenomic biomarkers (https://www.fda.gov/
Drugs/ScienceResearch/ucm572698.htm) and biomarker
signatures (oncology: 33.5%; neurology: 6.1%) that have been
approved for stratifying patients for drug response. For ex-
ample, the anti-cancer drug trastuzumab (Herceptin®) can
only be administered if the HER2/neu receptor is overex-
pressed because the drug interferes with this receptor. Per-
sonalized medicine is nowadays thus tightly connected with
genomics. However, genomics and other biological high
throughput data (transcriptomics, epigenomics, proteomics,
metabolomics) are by no means the only source of data
employed in the personalized medicine field. Other relevant
data include, for example, bio-images (e.g., MRT and CT
scans), electronic medical records (EMRs) [4], health claims
data from insurance companies [5], and data from wearable
sensors and mobile health applications [6].
It is important to mention that, in many cases, it is im-

possible to identify a single stratification factor or bio-
marker for patient populations. This is because many
diseases (including cancer and various neurological and
immunological diseases) are complex and affect a multi-
tude of biological sub-systems. Accordingly, drugs for
treating these diseases often target multiple proteins and

Fig. 1 The Swiss molecular tumor board as an example of individualized, biomarker-based medical decisions in clinical practice
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associated biological processes [7]. In general, clinical
drug response is highly multi-faceted and dependent on
a combination of patient intrinsic (e.g., genomic, age,
sex, co-medications, liver function) and extrinsic (e.g.,
alcohol consumption, diet, sunlight exposure) factors
[8]. In conclusion, single-analyte biomarker patient
stratification, such as in the Herceptin® example, is only
possible in special cases.
An alternative to single-analyte biomarkers are multi-

analyte signatures derived from complex, high-through-
put data, which allow patient characterization in a much
more holistic manner than single biomarkers. Identifying
marker signatures is difficult and requires state-of-the-art
approaches offered by data science. Specifically, multivari-
ate stratification algorithms using techniques from the
area of Artificial Intelligence (including machine learning)
play an increasingly important role (Fig. 2). A highly-cited
example is MammaPrint™, a prognostic test for breast can-
cer based on a 70-gene signature [9], which was approved
by the FDA in 2007. MammaPrint™ produces a score from
the weighted average of 70 measured genes, which is pre-
dictive for the development of distant metastases. The
clinical utility of the addition of the MammaPrint™
signature compared to standard clinicopathological
criteria has been recently shown in selecting patients
for adjuvant chemotherapy [10]. Other examples are
Geno2pheno [11, 12], which is a computational tool
used in clinical practice to estimate the resistance of
HIV to an individual drug and to combinatorial
therapies based on viral genotype (Fig. 3), and a gene
signature (S3 score) for prediction of prognosis in
patients with clear cell renal cell carcinoma [13].
Driven by the increasing availability of large data-

sets, there is a growing interest into such data
science-driven solutions. Specifically, ‘deep learning’

techniques have received a lot of attention, for
example, in radiology [14, 15], histology [16] and,
more recently, in the area of personalized medicine
[17–20]. Some of these algorithms have been reported
to achieve above-human diagnostic performance in
certain cases [21]. Large commercial players now enter-
ing the field underline the widely perceived potential for
machine learning-based solutions within personalized
medicine (https://www.techemergence.com/machine-lear-
ning-in-pharma-medicine/, http://bigthink.com/ideafeed/
for-new-era-of-personalized-medicine-google-to-store-in-
dividual-genomes-in-the-cloud, http://medicalfuturist.-
com/innovative-healthcare-companies/).

The data science and AI hype contrasts with reality
The mainstream media perception
From the previous discussion one might get the impres-
sion that enabling personalized medicine is mainly a
matter of availability of ‘big data’, sufficient computing
power, and modern deep-learning techniques. Indeed,
this perception is portrayed in many mainstream publi-
cations, read by decision-makers in politics and industry
(https://www.fool.com/investing/2017/09/21/3-ways-ai-is
-changing-medicine.aspx, http://www.healthcareitnews.c
om/slideshow/how-ai-transforming-healthcare-and-solv
ing-problems-2017?page=1, http://medicalfuturist.com/
artificial-intelligence-will-redesign-healthcare/). In that
context, some authors have even claimed the end of
classical, hypothesis-driven science and stated that, in
the future, all novel insights would come from an algo-
rithmic analysis of large datasets (https://www.wired.c
om/2008/06/pb-theory/).
Such statements are overly optimistic and overlook

several important aspects, which we discuss below.

Fig. 2 Discovery of biomarker signatures with machine learning
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Challenge 1: insufficient prediction performance for
clinical practice
Machine learning methods capture and mathematically
describe a (complex) signal that is present in a dataset.
Their success does not only depend on the number of
(patient) samples, but also on the signal-to-noise ratio.
Indeed, separation of true signal from technical noise is
still one of the key challenges in big data analysis [22]
and one of the key aspects of any computational model.
More generally, the prediction performance of any ma-
chine learning model is limited per se by the descriptive
power of the employed data with respect to the clinical
endpoint of interest. For example, EMRs are longitu-
dinal, but largely phenotypic. Thus, molecular phenom-
ena (e.g., non-common genomic variants) that might be
relevant to stratifying patients are not sufficiently repre-
sented in the data. On the other hand, genomic data is
mostly static (at least in non-cancerous tissues) and
misses potentially important longitudinal clinical infor-
mation. For each prediction problem, it is therefore
critical to identify and combine the right data modalities
that could contain parts of the relevant signal when
starting to build machine learning models. Shortcomings
can result in loss of prediction performance. Many
machine learning models developed for personalized
medicine do not have a predictive power close to the
high (and potentially unrealistic) expectations of clini-
cians. Some of the reasons are as follows:

� The relationships of patient-specific characteristics
to clinically relevant endpoints are highly complex
and non-linear, often varying over time and, as
mentioned before, typically not well described by
one data instance alone. Furthermore, discriminating
relevant from irrelevant patient-specific features remains
a challenge, specifically in the field of biological high
throughput (omics) data.

� It is challenging to obtain a sufficiently large patient
cohort with well-defined phenotypes for training and
testing models due to cost and time constraints.

� Many data (e.g., most omics data) are very noisy.
There are two sources of this noise. One is technical
measurement error (undesired), the other is
biological variation (highly informative).We have no
good methods for discriminating between these two
kinds of noise.

� It can be challenging to quantitatively and
objectively define clinical outcomes (e.g., in
neurology, immunology, and psychology). This can
lead to highly subjective and physician-dependent
variations.

� Clinical outcomes may vary over time and be
partially influenced by factors that are not patient
intrinsic and thus hard to capture (e.g., social and
environmental influences).

� A further factor impacting prediction performance
is the careful choice of patient samples. Machine
learning models are typically sensitive to selection
biases, i.e., under- or over-represented specific patient
subgroups in the training cohort, and there are cur-
rently under-explored ethical considerations at play as
well. For example, over- or under-representation of
certain ethnicities could result into a ‘racist’ prediction
model [23]. A proper and careful design of the train-
ing set is necessary to ensure that it is representative
for the population of patients in the intended applica-
tion phase of the model in clinical practice.

Challenge 2: difficulties in interpretation
The scientific approach, which has been successfully
established since the times of Galileo Galilei in the six-
teenth century, always encompasses an ongoing process
of hypothesis formulation and experimental validation
[24]. While machine learning techniques can detect

Fig. 3 Geno2pheno - a machine learning based toolbox for predicting viral drug resistance in a personalized medicine paradigm
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complex patterns in large data and provide accurate pre-
dictions, in general – we will discuss details later – they
are unable to provide a deeper theoretical, mechanistic,
or causal understanding of an observed phenomenon.
Data science and AI thus do not replace classical,
hypothesis-driven research. One reason is that machine
learning models typically only capture statistical depend-
encies, such as correlation, from data. However, correl-
ation does not imply causation. This is reflected by the
fact that a multitude of biomarker signatures yielding
similar prediction performance can be constructed to
separate the same patient groups [25]. Even if an accept-
able prediction performance can be achieved, the lack of
a clear causal or mechanistic interpretation of machine
learning models can hinder acceptance of data
science-based solutions by physicians.

Challenge 3: insufficient validation for clinical practice
It is important to emphasize that establishing any
algorithm for patient stratification in clinical practice
requires rigorous validation. The quality of the fit of a
sufficiently complex machine learning model to the
training data (i.e., the training error) is usually highly
over-optimistic and not indicative of its later perform-
ance on unseen data. A proper validation for clinical
practice thus comprises several steps [10], as follows:

1. Internal validation based on the initial discovery
cohort. This can be achieved by setting parts of
the data aside as an independent test set or,
more frequently, via cross-validation. Cross-
validation refers to a strategy in which
subsequently a certain fraction (e.g., 10%) of the
original data is left out for model testing and the
remaining part is used for model training. The
cross-validation procedure averages prediction
performance over different test sets and thus
reduces the variance in test set performance esti-
mates. This is specifically relevant if the overall
discovery cohort is not very large.

2. External validation based on an independent cohort.
This is necessary to address the potential selection
bias during the compilation of the discovery cohort.

3. Validation in a prospective clinical trial to demonstrate
the benefit compared to standard of care.

The entire process is time-consuming and costly.
Consequently, the number of clinically validated models
is limited.
Overall, the current hype about machine learning and

AI in healthcare has to be contrasted with a number of
existing challenges, which can be summarized as:

� Insufficient prediction performance

� Challenges with model interpretation
� Challenges with validation and translation of

stratification algorithms into clinical practice

These challenges lead to the fact that, in contrast to the
very high expectations portrayed in the mainstream
media, there exist only very few examples of machine
learning-based solutions that impact clinical practice (see
the examples mentioned above). In the following, we
discuss some of these challenges in more detail and point
to possible ways of addressing them today and in the
future.

What is possible today?
Machine learning for personalized medicine
Defining better clinical endpoints
Many methodological as well as applied articles focus on
simple yes/no decision tasks, e.g., disease progression /
no disease progression or clinical trial endpoint met /not
met. This is surprising, because machine learning re-
search offers a comprehensive arsenal of techniques to
address clinical endpoints beyond binary classification,
such as, real valued, time-to-event, multi-class or multi-
variate outcomes. Models with binary outcomes can be
appropriate in specific situations, but in many cases, an
appropriate clinical outcome is more complex. For in-
stance, the commonly used response criterion for
rheumatoid arthritis, a debilitating autoimmune disease
of the joints, is based on the DAS28 disease score [26],
which ranges on a continuous scale from 0 to 10 and is
often discretized into three consecutive levels (low,
medium, high disease activity).
The DAS28 score itself combines four components

in a nonlinear equation, namely the number of swol-
len joints, the number of tender joints, plasma levels
of CRP protein, and an assessment of the patient’s
global health as estimated by a physician. These com-
ponents vary from discrete to continuous and from
subjective, physician-dependent assessments to more
objective measurements of biomarkers.
Another example is the prediction of response to

anti-epileptic drug treatment. While at first glance
overall seizure frequency reduction after a given num-
ber of weeks relative to baseline seems to be an ap-
propriate endpoint in agreement to common practice
in clinical trials, this choice in fact neglects the exist-
ence of different seizure types as well as the potential
temporal modifications of these seizure types due to
treatment. Thus, other and more complex (possibly
multivariate) clinical endpoints might be necessary.
We expect that a more careful choice of clinical end-
points as well as better technical monitoring capabil-
ities (e.g., via mobile health applications and wearable
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sensors) will lead to more clinically useful prediction
models in the future.

Defining appropriate model quality and performance measures
What makes a good model in personalized medicine?
First, predictions must be accurate. As pointed out
above, prediction accuracy must be assessed via a careful
validation approach. Within such a validation procedure,
it has to be decided how prediction performance will be
measured. It appears that, in many studies, too much
focus is given to standard, off-the-shelf metrics (e.g., area
under the receiver operator characteristic curve), as com-
pared to application-specific performance metrics. For in-
stance, consider the case of predicting response to a first
line therapy and assume that we can formulate this ques-
tion as a classification task (responder vs. non-responder).
Clearly, a perfectly accurate classifier is optimal. However,
even a classifier that is mediocre with respect to overall
accuracy might reliably identify those patients that will def-
initely not respond to the drug. The identified patients
could immediately move on to a second line therapeutic
and, thus, patient quality of life would improve and
healthcare costs could be reduced. This example demon-
strates the relevance of carefully defining appropriate pre-
diction performance metrics.
However, prediction performance is only one aspect of

judging the overall quality of a model. Another aspect is
model stability, which reflects the degree to which a
model (including variables selected by that model) re-
mains the same if the training data is slightly changed.
Model stability is a particular issue when working with
gene expression data, where models trained on very dif-
ferent or even disjoint gene subsets can result in similar
prediction performance regarding a given clinical end-
point, since highly correlated features can be substituted
for each other [26]. Model stability should be routinely
reported in addition to prediction performance.
Various methods have been developed for increasing

the chance of obtaining a stable model during the devel-
opment phase of a stratification algorithm. For example,
inclusion of prior knowledge, such as biological net-
works and pathways, can enhance the stability and thus
reproducibility of gene expression signatures [27–29].
Moreover, zero-sum regression [30] can be used to build
classifiers that are less dependent on the employed
omics platform (e.g., a specific microarray chip) [31],
thus easing external validation, translation into clinical
practice as well as long-term applicability of the model.
We think that more frequent use of such methodology
in conjunction with careful evaluation of model stability
would lower the barrier for model transfer from discov-
ery to external validation and finally to clinical
application.

Tools for interpreting a machine learning model
As researchers collect and analyze increasingly larger sets
of data, a greater number of sophisticated algorithms are
employed to train predictive models. Some of the compu-
tational methods, in particular those based on deep learn-
ing techniques, are often criticized for being black boxes.
Indeed, as the number of input features becomes large
and the computational process more complex, under-
standing the reasons for obtaining a specific result is diffi-
cult, if not impossible. In many instances, for example, in
the case of identification of disease markers, understanding
the computational decision-making process leading to the
selection of specific markers is, however, necessary and
demanded by physicians. Using black-box models for med-
ical decision-making is thus often considered to be prob-
lematic, leading to initiatives like the ‘right to an
explanation’ law Article 22 of the General Data Protection
Regulation propositioned by the European Union in April
2016/679. Similarly, in the process of drug development in
pharmaceutical industry, regulatory agencies require trans-
parency and supporting evidence of a molecular mechan-
ism for the choice of specific biomarker panels.
While usefulness of data-driven prediction is in-

creasingly recognized, a key requirement for credibil-
ity of such solutions is thus the ability to interpret
them in the context of current biomedical knowledge.
It is important to understand that the concept of in-
terpretability covers a spectrum (Fig. 4). At one end
of the spectrum, there is a detailed understanding of
the exact (biochemical) molecular and pathophysiological
mechanisms that link a model with a defined clinical end-
point. Typically, this level of insight is rarely achievable
due to lack of knowledge.
A less detailed level of understanding is that of total

causal effects of a predictor regarding the clinical endpoint
of interest. For example, in a randomized controlled clin-
ical trial, any difference in outcomes between the two
treatment groups is known to be caused by the treatment
(since the groups are similar in all other respects due to
the randomization). Thus, although one may not know
exactly how the treatment affects the outcome, one knows
that it does. Such statements about total causal effects are
more difficult to obtain in a setting outside clinical trials,
where purely observational data from untreated patients
are collected (e.g., cross-sectional gene expression data).
Nonetheless, computational approaches have significantly
advanced in this field over recent years and, under certain
assumptions and conditions, allow for estimating causal
effects directly from observational data [32, 33].
At a lower level of interpretability, gene set and

molecular network analysis methods [34, 35] can help to
understand the biological sub-systems in which bio-
markers selected by a machine learning algorithm are
involved. There also exists a large body of literature on

Fröhlich et al. BMC Medicine  (2018) 16:150 Page 6 of 15



how to directly incorporate biological network informa-
tion together with gene expression data into machine
learning algorithms (see [28] for a review).
Recently, the concept of ‘disease maps’ has been devel-

oped as a community tool for bridging the gap between
experimental biological and computational research [36].
A disease map is a visual, computer-tractable and
standardized representation of literature-derived,
disease-specific cause–effect relationships between gen-
etic variants, genes, biological processes, clinical out-
comes, or other entities of interest. Disease maps can be
used to visualize prior knowledge and provide a platform
that could help to understand predictors in a machine
learning model in the context of disease pathogenesis,
disease comorbidities and potential drug responses. A
number of visual pathway editors, such as CellDesigner
[37] and PathVisio [38], are used to display the content
of a disease map and to offer tools for regular updating
and deep annotation of knowledge repositories. In
addition, dedicated tools such as MINERVA [39] and
NaviCell [40] have been developed by the Disease Map
community. At this point in time, disease maps are
more knowledge management rather than simulation
or modeling tools, although intensive efforts are
underway to develop the next generation of disease
maps that are useful for mathematical modelling and
simulation and become an integral part of data inter-
pretation pipelines.
The least detailed level of understanding of a complex

machine learning algorithm is provided by the analysis
of relative importance of variables with respect to model
predictions. Relative variable importance can be calcu-
lated for a range of modern machine learning models
(including deep learning techniques), but the level of
insight depends on whether only few out of all variables
have outstanding relevance and whether these variables
can be contextualized with supporting evidence from the
literature. It is also not clear a priori if such variables are
only correlated with or perhaps also causal for the

outcome of interest. Finally, inspecting most important
variables may be less informative in the case of highly
collinear dependencies among predictor variables such
as, for example, in gene expression data.
In addition to the interpretation of predictors there

is a need from a physician’s perspective to better
understand model predictions and outputs for a given
patient. One obvious way might be to display patients
with similar characteristics. However, the result will
depend on the exact mathematical definition of
similarity. Moreover, clinical outcomes of most similar
patients will, in general, not always coincide with the
predictions made by complex machine learning
models, which could result in misinterpretations. The
same general concern applies to approaches, in which
a complex machine learning model is approximated
by a simpler one to enhance interpretability, for
example, using a decision tree [41, 42].

Data type-specific challenges and solutions
Real-world longitudinal data
Longitudinal EMR and claims data have received in-
creasing interest in recent years within the field of per-
sonalized medicine [43, 44] since they provide a less
biased view on patient trajectories than data from clas-
sical clinical trials, which are always subject to certain
inclusion and exclusion criteria [45]. Specifically in the
United States, a whole industry has grown to collect, an-
notate, and mine real-world longitudinal data (https://
cancerlinq.org/about, https://truvenhealth.com/). The re-
cent US$1.9 billion acquisition of Flatiron Health by the
pharma company Roche (https://www.roche.com/media/
store/releases/med-cor-2018-02-15.htm) marks the po-
tential that is seen by industrial decision-makers in the
context of drug development, pharmacovigilance, label ex-
pansion, and post-marketing analysis [45, 46].
Longitudinal real-world data pose specific challenges

for training and validation of predictive models. Within
the analysis of clinical real-world databases (e.g., Clinical

Fig. 4 Different classes of machine learning models and their interpretability via model analysis
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Practice Research Datalink; https://www.cprd.com/
home/) patients for a study cohort are typically selected
based on a specified index date or event, which is often
difficult to define and thus leaves room for different
choices. Since the maximal observation horizon in
real-world databases is often limited to a certain number
of years (e.g., due to budget restrictions), some patients
are longer observed than others. Specifically, claims data
may contain gaps (e.g., due to periods of unemployment
of patients) and the exact date of a diagnosis, prescrip-
tion, or medical procedure cannot be uniquely deter-
mined. It is not always clear for the treating physician
which ICD diagnosis codes to choose, and this leaves
room for optimization with respect to financial out-
comes. In addition, EMRs require natural language pre-
processing via text mining, which is a difficult and
potentially error-prone procedure in itself. In conclusion,
development of a predictive model for personalized
medicine based on real-world clinical data thus remains
a non-trivial challenge.
Classically, validation of a predictive model relies on

an appropriate experimental design and randomization.
Real-world data often limits the options available for
rigorous validation. Classical strategies, such as carefully
crafted cross-validation schemes, can offer reliable valid-
ation, but they might be tricky to design, and the limits
of such retrospective validation must be properly under-
stood. Another option is the use of different time win-
dows where only retrospective data up to a given date is
used to develop a model, which is then used on the data
available after this date. Such a setup can be close to an
actual prospective evaluation, although the risk for biases
is larger. Another option is to consider such analyses as
only generating hypotheses, which are then followed up in
a more classical fashion by setting up a carefully designed
observational study manifesting the final validation. A
more speculative possibility is the adaptation of so-called
A/B testing techniques that are common in web develop-
ment and software engineering [47]. This would entail
randomization of patients for therapeutic options directly
in the real-world environment. While such a setting is
probably not feasible for drug development, it may be ap-
plicable to determine the efficacy of interventions in a
real-world setting or to determine the right patient popu-
lation for a given intervention.

Multi-modal patient data
There is an increasing availability of multi-scale, multi-modal
longitudinal patient data. Examples include the Alzheimer’s
Disease Neuroimaging Initiative (http://adni.loni.usc.edu/)
(omics, neuro-imaging, longitudinal clinical data), the Par-
kinson’s Progression Markers Initiative (http://www.ppmi-
info.org/) (omics, neuro-imaging, longitudinal clinical data),

the All-of-Us Cohort (https://allofus.nih.gov/) (omics, behav-
ioral, EMRs, environmental data), the GENIE project (http://
www.aacr.org/Research/Research/Pages/aacr-project-genie.as
px#.WvqxOPmLTmE) (genomic and longitudinal real-world
clinical data) and, specifically for multi-omics, the NCI’s
Genomic Data Commons [48]. Multi-modal data provide
unique opportunities for personalized medicine because they
allow for capturing and understanding different dimensions
of a patient. This aspect is in turn widely believed to be key
for enhancing the prediction performance of stratification
algorithms up to a level that is useful for clinical practice.
Accordingly, there has been a lot of work in methods that
combine data from different (omics-) modalities, see [49]
for a review.
A major bottleneck in current studies collecting mul-

tiple data modalities of clinical cohorts is posed by the
fact that different studies are often performed on co-
horts of different patients and different experimental
approaches are used across studies (see Fig. 5 for an ex-
ample). As consequence, data from different studies be-
comes difficult or even impossible to integrate into a
joint machine learning model. Several strategies are
possible to reduce this problem in the future. A first
strategy is to perform systematic multi-modal data as-
sessment of each individual in a clinically rigorously
characterized cohort, including longitudinal clinical and
omics follow-up. In the more classical clinical setting,
the success of the Framingham Heart Study (https://
www.framinghamheartstudy.org/) comes to mind, which
is a long-term study about risk factors for cardiovascular
diseases running since 1948. While, in the future, we will
analyze larger and larger volumes of real-world data, we
should be aware of the limitations of such data (interoper-
ability of data from different sources, non-systematically

Fig. 5 Overlap of different omics data entities and clinical data in the
AddNeuroMed Alzheimer’s Disease cohort from EMIF-AD (http://
www.emif.eu/about/emif-ad). Numbers refer to patients, for which a
particular data modality is available
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collected data, measurement quality, inconsistencies and
errors, etc.). Rigorous multi-modal observational studies
are essential for establishing reliable baselines for the de-
velopment of real-world models. Ideally, multi-modal data
would be collected longitudinally in regular intervals for
all subjects. While this has been achieved for individual
studies [50], for practical and economic reasons, this is
likely to be limited to a small number of cohorts. A sec-
ond approach is to have some overlap among patients
across different cohorts. Statistical methods and machine
learning can then be used to ‘tie’ different datasets to-
gether. A third approach is to collect a joint modality
(such as standardized clinical data or biomarkers) across
different studies. This joint modality again makes it pos-
sible to tie together different datasets. It must be stressed
that this problem of disconnected cohorts is currently a
major obstacle for leveraging multi-omics data.
It should be emphasized that, ideally, multi-modal,

multi-omics data should be considered in conjunction
with longitudinal clinical data. Despite of the examples
mentioned above (Alzheimer’s Disease Neuroimaging
Initiative, Parkinson’s Progression Markers Initiative,
All-of-Us Cohort) we are currently just in the beginning
of performing corresponding studies more systematic-
ally. The combination of multi-omics with real-world
longitudinal data from clinical practice (e.g., EMRs) and
mobile health applications marks a further potential for
personalized medicine in the future. The GENIE project
is an important step into this direction.

Translating stratification algorithms into clinical practice
The ability to accelerate innovation in patient treatment
is linked to our ability to translate increasingly complex
and multi-modal stratification algorithms from discovery
to validation. Stratification in clinical application means
assigning treatment specifications to a particular patient,
which may include type, dosage, time point, access to
the treatment, and other pharmacological aspects. The
validation of such algorithms is usually performed via in-
ternal validation (cross-validation), external validation
(using a separate patient cohort), and prospective clinical
trials compared to the standard of care [10] (http://
www.agendia.com/healthcare-professionals/the-mindact
-trial/). Proper validation constitutes a requirement
for translating these methods to settings in which
they can generate impact on patient outcomes. In
addition to classic healthcare providers, such as hos-
pitals and general practitioner, mobile health applica-
tions and wearable sensors might play an increasing
role in the future. As described earlier, integrating
multi-modal data is key for gaining new insights and
lies also at the heart of stratifying patients for diag-
nostic, predictive, or prognostic purposes. However,
considerable barriers exist regarding the integration of

similar data from different cohorts, normalization of data
across measurement platforms, and the ability to process
very large volumes of data in appropriate systems close to
or within the clinical infrastructure remains limited.
Strictly controlled cloud services, which appropriately
protect patient data, could be an approach to alleviating
this limitation [51]. At this point it might be possible to
learn from organizations that today handle large scale
real-world clinical data (mostly in the US). However, their
approaches may have to be adapted to the legal environ-
ments in each specific country.
At present, translation of algorithms for patient strati-

fication into clinical practice is also difficult due to regu-
latory aspects. Prospective clinical trials required for
approval of diagnostic tools by regulatory agencies are
very costly and the challenges for finding sponsors are
high. One possibility of lowering the associated barriers
might be to perform a stepwise approach with initial
pilot studies to exemplify the value that can be gained
for patients, healthcare sustainability, translational sci-
ence, and economic efficiency. Such projects would need
to showcase the principle value of patient stratification.
Moreover, they could provide meaningful insights into dis-
ease biology (via biomarkers). These outcomes should ideally
be measured longitudinally after machine learning-based
stratification and thus provide a feedback loop that helps
improve the stratification algorithm.
A commonly stated myth is that health innovation is

based on the paradigm of build-and-freeze (https://
www.theatlantic.com/technology/archive/2017/10/algorith
ms-future-of-health-care/543825/), which means that
software is built, frozen, and then tested in unchanged
form for its lifetime. However, development of better
stratification algorithms will require a more seamless up-
dating scheme. There have been interesting developments
in recent years in terms of regulation and risk manage-
ment for continuous learning systems. An example of
such a development is the Digital Health Software Precer-
tification (Pre-Cert) Program (https://www.fda.gov/Medi-
calDevices/DigitalHealth/DigitalHealthPreCertProgram/
Default.htm) launched recently by the FDA. PreCert aims
at learning and adapting its key elements based on the ef-
fectiveness of the program. In addition, Clinical Labora-
tory Improvement Amendments (CLIA; https://www.fda.
gov/MedicalDevices/DeviceRegulationandGuidance/IVD
RegulatoryAssistance/ucm124105.htm) labs provide a
template for how health-related software tools developed
to inform precision medicine can be validated in a clear
and transparent manner as the tool is continually updated.
CLIA labs are certified labs that go through a process of
regular certifications monitored by the FDA and other
regulatory agencies in the US. These labs are required to
follow approved and documented Standard Operation
Procedures. They can use medical devices, which can
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include software for diagnostics, given that they employ
such Standard Operation Procedures and waive the certifi-
cation process (https://wwwn.cdc.gov/clia/Resources/Wai
vedTests/default.aspx). Most importantly, the developer of
the tool can update the software. The CLIA labs are inde-
pendent in deciding whether they will re-validate the soft-
ware and can adopt a strategy that best serves the
technological pace of the software and their clinical needs
with respect to increased capabilities or better perform-
ance. For instance, a lab may decide to validate only major
version releases, such as going from version 1.x to 2.0, and
have minor version releases included on the fly.
The vision of precision medicine is to provide the right

intervention to the right patient, at the right time and
dose. The described approaches, based on iterative feed-
back between the developers and the clinical end users,
could increase our ability to adapt stratification algo-
rithms better to new insights in disease biology, access
to new molecular data, and changes in clinical settings.
This has been a challenge with promising predictive
models often failing validation in independent studies.
Real-world longitudinal data from clinical practice and
data collected through wearables or other means of
participatory data collection cannot only widen the
spectrum of possible data sources to build new stratifica-
tion algorithms [52, 53], but they may also be partially
included in clinical trials for validation purposes of
stratification algorithms.

What could be possible tomorrow?
Novel approaches to better link prediction algorithms
with biomedical knowledge
As discussed earlier, challenges with the interpretation of
complex machine learning models are one of the important
bottlenecks for applying personalized medicine more
widely. Innovative software solutions are needed to better
put complex machine learning models and their outputs
into the context of computationally accessible knowledge of
human pathophysiology.
While the current standard is to map the most rele-

vant molecular features in a machine learning model
onto biological pathways, this approach could be further
enhanced to make machine learning-based decisions in-
terpretable by clinicians. In the future, one might im-
agine software systems that automatically collect
information on each variable from various databases and
publications (e.g., via text mining). Such tools could
eventually even compose entire reports (including sup-
porting texts and figures of disease maps) for each indi-
vidual feature in a machine learning model. Such reports
could thus automatically contextualize each variable with
the multitude of available biomedical knowledge in a
fully interactive fashion. The physician could zoom and
filter specific aspects of a model on demand.

Another idea is to visualize entire patient trajectories
(originating, for example, from longitudinal clinical tri-
als, real-world clinical or behavioral data) within inter-
active ‘disease landscapes’ (essentially low-dimensional
data projections). Such a tool could help physicians to
understand disease development over time. Taking the
patient’s history into account will allow clinicians to
visualize and interpret the speed and severity of disease
progression. Individual patient trajectories could then be
followed and compared to determine, for example,
which intervention is appropriate for which patient and
at what time [54]. Similar concepts have been developed
in other contexts, e.g. for estimating the in-vivo fitness
landscape experienced by HIV-1 under drug selective
pressure [55].
The development of such methods and software sys-

tems will be a major effort and will likely require a sub-
stantial text analytical and software engineering
component. However, such systems could greatly facili-
tate the communication between computational scien-
tists and physicians and help make complex machine
learning models more interpretable.

Going from ‘what’ to ‘why’ – towards better interpretable
modeling approaches
Causal models
Machine learning models are typically neither mechanis-
tic nor causal. They largely capture (non-linear) correla-
tions between predictor variables and clinical outcomes
and are thus often criticized for being black boxes. The
main advantage of modern machine learning approaches
is that they neither require a detailed prior understand-
ing of cause–effect relationships nor of detailed mecha-
nisms. The main limitation is the difficulty to interpret
them (see previous Section). A major question thus re-
lates to how far machine learning methods could evolve
into more causal models in the future.
Causal graphical models (causal Bayesian networks in

particular) constitute an established framework for
causal reasoning [56]. They provide a compact mathem-
atical and visual representation of a multivariate distri-
bution, and more importantly, they allow to make
predictions of the system under unseen interventions
(e.g. a new treatment or a gene knockout). Under appro-
priate assumptions, causal graphical models can be
learned from observational data [57–59]. In doing so, it
is also possible to incorporate background knowledge or
to allow for hidden or unmeasured confounders. We
refer to [60] for a review paper.
Causal graph learning methods may play an increas-

ingly important role in the future in identifying predictor
variables with causal influence on clinical outcomes [61]
and may thus help to move towards a causal interpret-
ation of predictor variables in a machine learning model
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[62]. However, there are non-trivial challenges that need
to be addressed, such as dealing with violations of
assumptions, high computational costs and non-linear
relationships [63].

Hybrid machine learning and mechanistic models
Despite the increasing availability of massive datasets, the
predictive power of most of the available disease models
does not yet satisfy the requirements for clinical practice.
One of the reasons is that, in principle, predictive disease
models must cover all relevant biotic and abiotic mecha-
nisms driving disease progression in individual patients.
Although the primary disease-driving mechanisms are
often aberrations at the molecular level, such as mutations
in the genome, disease progression is affected by the ro-
bustness of the overall system. However, biological sys-
tems have established a multitude of repair mechanisms
to compensate for the effects of molecular aberrations,
thus introducing feedback loops and non-linear interac-
tions into the system [64]. Overall, disease progression is a
process affected by a multitude of highly diverse mecha-
nisms across biological hierarchies, which are differently
expressed in individual patients.
Thus, a disease model, designed for applications in

precision medicine in clinics, must in principle integrate
three conceptual layers:

� A core disease model (CDM) represents only the
known intra- and inter-cellular processes that are
the key drivers of the disease in an average patient.

� The CDM must be adapted to the individual
patient and their specific medical history and
environment, such as genetic variations, co-
morbidities or physiology, by environment
adaption models (EAM). The EAM must provide an
individualization of the parameters controlling the
CDM, eventually combined with an individualized re-
structuring of the CDM, e.g., by adding or dropping
biological mechanisms that are relevant only in
specific patient populations.

� Monitoring models must be developed to describe
how clinically accessible outcome measurements
representing the disease evolution are linked to the
CDM.

Today, fully mechanistic models exist for a series of
disease-driving core processes at the molecular and cell
population level [65]. However, broader application of
mechanistic modelling to implement the CDM for com-
plex diseases is hampered by insufficient knowledge of the
interaction of the core disease-driving mechanisms across
scales. Even worse, the relevant mechanisms for EAM and
monitoring models are almost never completely known.
Altogether, it thus seems unlikely that fully mechanistic

models will play a dominant role in personalized medicine
in the near future.
While machine learning models are not harmed by in-

sufficient biomedical knowledge, they are often criticized
for their black-box character. Hybrid modelling, also
named grey-box or semi-parametric modelling, is an inte-
grative approach combining available mechanistic and
machine learning-based sub-models into a joint computa-
tional network. The nodes represent model components
and the edges their interaction. First combinations of
mechanistic and data-driven models have been developed
for chemical and biotech process modelling [66, 67]. For
example, neural networks have been used to compensate
the systematic errors of insufficient mechanistic models,
to estimate unobservable parameters in mechanistic
models from observable data, or to estimate the inter-
action between different mechanistic sub-models [68, 69].
A further successful example of hybrid modeling com-

prises learning the drug mechanism of action from data
[70, 71]. Hybrid models may thus be a way to combine the
positive aspects of fully mechanistic and purely data-driven
machine learning models. First showcases have demon-
strated the potential, but more successful applications are
needed. Moreover, a deeper understanding of the theoret-
ical capabilities of hybrid models as well as their limitations
is necessary.

Controlling critical transitions in patient trajectories
One of the key objectives of personalized medicine is pre-
dicting the risk of an individual person to develop a cer-
tain disease or, if the disease has already developed, to
predict the most suitable therapy. This also includes pre-
dicting the likely course of disease progression. Disease
trajectories entail all the hallmarks of a complex system.
In this sense, modeling disease trajectories is not funda-
mentally different from attempts to model and simulate
other complex systems such as the climatological, eco-
logical, economic or social systems. In many of these
highly nonlinear, complex systems with thousands or mil-
lions of components, involving redundant and intertwined
feedback relations, so called critical transitions or cata-
strophic shifts can be observed. Such transitions are defined
by critical thresholds, sometimes called tipping points at
which a system transitions abruptly from one state to an-
other, seem to exist. However, in many of these cases, crit-
ical transitions are extremely difficult to predict in advance.
For certain diseases, we believe that the concept of

critical transitions might also be applicable in the con-
text of personalized medicine. Tipping points are often
observed during the course of acute or chronic disease
development. The ability to predict a critical transition
of a developing disease before it really happens would be
highly desirable and provide very valuable pre-disease
biomarkers.
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Recently, Liu et al. [72] used gene expression analysis
to develop the concept of dynamic network biomarkers,
where higher-order statistical information is used to
identify upcoming tipping points. The idea is that,
during the disease trajectory, a subset of genes starts to
fluctuate and leads to a destabilization of a (possibly
high-dimensional) attractor state. By measuring the
changes in gene correlation in addition to changes in the
variation of gene expression, a quantitative index was
proposed as an early warning signal for a critical
transition.

Towards an evolutionary understanding of human
disease
From a broader perspective, evolutionary principles could
help to improve our understanding of human disease [73].
Evolutionarily conserved control genes are probably highly
relevant for the proper functioning of molecular pathways
[74], and evolutionary history of human disease genes re-
veals phenotypic connections and comorbidities among
some diseases [75]. We are now at the verge of recon-
structing the molecular and cellular circuitry of embryo-
genesis [76]. In addition, whole-genome next-generation
sequencing efforts of hundreds of thousands and soon Mil-
lions of patients with common and rare diseases provide us
with a rich genotype–phenotype landscape underlying the
development and manifestation of human diseases. Such
data provides interesting opportunities to better understand
the influence of genomic variants on evolutionarily con-
served genomic regions and molecular networks in the
context of human diseases.
Evolutionary conservation might be relevant for

constraining models and simulating human diseases.
Biologically possible and plausible disease trajectories
are likely limited by the topological and dynamic
upper and lower bounds that are set by the evolution-
ary history of a disease network. A key challenge for
personalized medicine is to come up with a mechan-
istic explanation of an individual’s disease develop-
ment. We need to understand the effects of genetic
variation on the resulting phenotypic variation. This
requires close cooperation between disciplines striving
for an integration of the concepts of ontogeny and
phylogeny. Human diseases must be seen in the light
of evolution and models of human diseases need to
integrate data, information, and knowledge from de-
velopmental biology and embryology.

Conclusions
In the era of growing data volumes and ever shrinking
costs for data generation, storage, and computation,
personalized medicine comes with high promises, which
can only be realized with the help of advanced algorithms
from data science, particularly machine learning. Modern

machine learning algorithms have the potential of inte-
grating multi-scale, multi-modal, and longitudinal patient
data to make relatively accurate predictions, which, in
some examples, may even exceed human performance
[21]. Large commercial players that are now entering the
field of medicine underline the potential that is widely
seen for computational solutions.
However, the current hype around AI and machine

learning must be contrasted with reality. While many
prediction algorithms for patient stratification have been
published over the last decade, only very few approaches
have reached clinical practice so far. Major existing bot-
tlenecks discussed in this paper include the (1) lack of
sufficient prediction performance due to a lack of signals
in the employed data; (2) challenges with model stability
and interpretation; (3) a lack of validation of stratifica-
tion algorithm via prospective clinical trials, which dem-
onstrate benefit compared to standard of care; and (4)
general difficulties to implement a continuous mainten-
ance and updating scheme for decision support systems.
In addition, general concerns around data privacy as

well as ethical and legal aspects must not be overlooked.
To overcome these hurdles, an interdisciplinary effort in-
cluding computational scientists, physicians, patient advo-
cates, regulatory agencies, and health insurance providers
is required in the context of a ‘learning healthcare system’
(http://www.learninghealthcareproject.org/section/bac
kground/learning-healthcare-system). There is a need
to better manage the (partially unrealistic) expectations
and concerns about data science and AI-based solutions.
In parallel, computational methods must advance in

order to provide direct benefit to clinical practice. Current
algorithms are far from being able to recommend the right
treatment at the right time and dose for each patient.
Steps that bring us closer to this goal could be (1) in-
novative software tools that better link knowledge
with machine learning-based predictions from
multi-scale, multi-modal, and longitudinal data; (2) in-
novative modeling approaches, such as causal infer-
ence techniques and hybrid modeling, which go
beyond typical state-of-the-art machine learning; and
(3) new computational modeling approaches that
allow us to identify critical transitions in a patient’s
medical trajectory.
More speculatively, a broader understanding of hu-

man disease, incorporating findings from basic re-
search and evolutionary studies, might help the
creation of entirely new concepts for simulating hu-
man diseases and predicting optimal intervention
points. Overall, the ambition of research towards
personalized medicine should be to move from a
system analysis perspective (such as in molecular
biology) to a system control view that allows for the
planning of optimal medical interventions at the
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right time and dose on an individualized basis. Novel
computational modeling approaches that go beyond
the current machine learning methodology may play
an increasing role for that purpose.
In this context, it must be emphasized that no algo-

rithm is meant to replace a physician. Rather, the idea is
to provide them a tool at hand, which supports their de-
cisions based on objective, data-driven criteria and the
wealth of available biomedical knowledge.
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