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Abstract

We consider a control problem constrained by the unsteady stochastic Stokes equations with nonhomogeneous

boundary conditions in connected and bounded domains. In this paper, controls are defined inside the domain

as well as on the boundary. Using a stochastic maximum principle, we derive necessary and sufficient optimality

conditions such that explicit formulas for the optimal controls are derived. As a consequence, we are able to

control the stochastic Stokes equations using distributed controls as well as boundary controls in a desired way.
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1 Introduction

In this paper, we consider a linear quadratic control problem for the unsteady stochastic Stokes equations with
linear multiplicative noise. Here, controls appear as distributed controls inside the domain as well as tangential
controls on the boundary. Concerning fluid dynamics, noise enters the system due to structural vibration and other
environmental effects, see [34] and the references therein. The aim is to find controls such that the velocity field is
as close as possible to a given desired velocity field.

In the last decades, optimal control problems constrained by the Stokes equations have been studied extensively.
Simultaneous distributed and boundary controls can be found in [16]. In [26, 33], discretization schemes for control
problems are considered. For stochastic distributed controls, we refer to [5]. In [24], an optimal control problem for
the Stokes equations is presented, where the viscosity satisfies a transport equation. A control problem motivated
by Stokes flow in an artificial heart is considered in [9]. We extend this setting by allowing additional noise terms
arising from random environmental effects. We overcome this problem by decomposing the external force into
a control term and a noise term. Moreover, control problems are mainly considered for the case of distributed
controls. Therefore, we include nonhomogeneous Dirichlet boundary conditions to involve tangential boundary
controls.

Using stochastic processes, one can model structural vibration and other environmental effects affecting flow
fields. This leads us immediately to the formulation of a stochastic partial differential equation, which belongs
to the modern research areas of infinite dimensional stochastic analysis. Such equations can be interpreted as
stochastic evolution equations and the solutions are defined in a generalized sense. There exist different approaches
on how to deal with these solutions. In [7, 8, 17, 28], the concept of weak solutions is introduced, where the
construction in mainly based on inner products. Using Gelfand triples, another approach is given by variational
solutions, see [28, 31]. For problems containing a linear operator as the generator of a semigroup on a Hilbert
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space, one can use mild solutions, see [7, 8, 17]. Mild solutions are considered as solutions to integral equations
of Itô-Volterra type containing a stochastic convolution. All of these concepts are based on a given probability
space and they are called (probabilistic) strong solutions. Solutions constructing the probability space are called
(probabilistic) weak solutions or martingale solutions, see [7, 8].

In this paper, we use the theory of mild solutions in order to cover especially the nonhomogeneous boundary
conditions. The construction of the solution is mainly based on an approach for the deterministic Stokes equations,
see [30]. Although this approach is applicable for a broad class of boundary conditions, we restrict to the case of
tangential boundary conditions. Therefor, we can reformulate the Stokes equations as an evolution equation in
a suitable Hilbert space. Since we assume that the external force can be decomposed into a control term and a
noise term, we obtain immediately a linear stochastic partial differential equation with distributed and Dirichlet
boundary controls. We prove the existence and uniqueness of a mild solution being square integrable with respect
to the time variable. In order to get a well defined solution, we need the definition of stochastic integrals with
respect to adapted processes, see [17].

The control problem considered in this paper is formulated as a tracking problem motivated by [2, 5, 23, 29, 33].
We derive a stochastic maximum principle to obtain first order optimality conditions, which are necessary and
sufficient. To utilize these optimality conditions, a duality principle is required. In general, a duality principle gives
a relation between forward and backward stochastic partial differential equations using an Itô product formula,
which is not applicable for mild solutions. Hence, we approximate the mild solutions by strong solutions using
an approach based on the resolvent operator, see [20, 22]. As a consequence, we obtain the duality principle for
the approximating strong solutions and due to convergence results, the duality principle holds also for the mild
solutions. Based on the optimality conditions and the duality principle, we deduce formulas the optimal distributed
control and the optimal boundary control have to satisfy.

The main contribution of this paper is to provide a mild solution to the stochastic Stokes equations with non-
homogeneous tangential boundary conditions. Moreover, we solve a control problem using a stochastic maximum
principle such that optimal distributed controls and optimal boundary controls are derived.

The paper is organized as follows. In Section 2, we introduce common spaces and operators concerning the Stokes
equations. Moreover, we discuss the deterministic Stokes equations with nonhomogeneous boundary conditions
and we give an introduction to stochastic integrals with respect to adapted processes. In Section 3, we provide
an existence and uniqueness result for the stochastic Stokes equations with nonhomogeneous boundary conditions.
Section 4 addresses the control problem. We derive optimality conditions and a duality principle such that formulas
for the optimal distributed control as well as the optimal boundary control are derived.

2 Preliminaries

2.1 Functional Analysis Background

Throughout the paper, let D ⊂ R
n, n ≥ 2, be a connected and bounded domain with C2 boundary ∂D. For s ≥ 0,

let Hs(D) denote the usual Sobolev space and for s ≥ 1
2 , let H

s
0(D) = {y ∈ Hs(D) : y = 0 on ∂D}. We introduce

the following common spaces:

H = Completion of {y ∈ (C∞
0 (D))n : div y = 0 in D} in (L2(D))n

=
{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
,

V = Completion of {y ∈ (C∞
0 (D))n : div y = 0 in D} in

(
H1(D)

)n

=
{
y ∈

(
H1

0 (D)
)n

: div y = 0 in D
}
,
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where η denotes the unit outward normal to ∂D. The space H equipped with the inner product

〈y, z〉H = 〈y, z〉(L2(D))n =

∫

D

n∑

i=1

yi(x)zi(x) dx

for every y = (y1, ..., yn), z = (z1, ..., zn) ∈ H becomes a Hilbert space. For all x = (x1, ..., xn) ∈ D, we denote

Dj = ∂|j|

∂x
j1
1 ···∂xjn

n

with |j| = ∑n
i=1 ji. We set Djy = (Djy1, ..., D

jyn) for every y = (y1, ..., yn) ∈ V and |j| ≤ 1.

Then the space V equipped with the inner product

〈y, z〉V =
∑

|j|≤1

〈Djy,Djz〉(L2(D))n

for every y, z ∈ V becomes a Hilbert space. The norm in H and V is denoted by ‖ · ‖H and ‖ · ‖V , respectively.
We get the orthogonal Helmholtz decomposition

(L2(D))n = H ⊕ {∇y : y ∈ H1(D)},

where ⊕ denotes the direct sum. Then there exists an orthogonal projection Π: (L2(D))n → H , see [13]. Next, we
define the Stokes Operator A : D(A) ⊂ H → H by Ay = −Π∆y for every y ∈ D(A), where D(A) =

(
H2(D)

)n ∩V .
The Stokes operator A is positive, self adjoint and has a bounded inverse. Moreover, the operator −A is the
infinitesimal generator of an analytic semigroup (e−At)t≥0 such that

∥∥e−At
∥∥
L(H)

≤ 1 for all t ≥ 0. For more

details, see [11, 18, 19, 37]. Hence, we can introduce fractional powers of the Stokes operator, see [27, 36, 37]. For
α > 0, we define

A−α =
1

Γ(α)

∞∫

0

tα−1e−Atdt, (1)

where Γ(·) denotes the gamma function. The operator A−α is linear, bounded and injective in H . Hence, we define
for all α > 0

Aα =
(
A−α

)−1
.

Moreover, we set A0 = I, where I is the identity operator in H . For α > 0, the operator Aα is linear and closed in
H with dense domain D(Aα) = R(A−α), where R(A−α) denotes the range of A−α. Next, we provide some useful
properties of fractional powers of the Stokes operator.

Lemma 1 (cf. Section 2.6,[27]). Let A : D(A) ⊂ H → H be the Stokes operator. Then

(i) for α, β ∈ R, we have Aα+βy = AαAβy for every y ∈ D(Aγ), where γ = max{α, β, α+ β},

(ii) e−At : H → D(Aα) for all t > 0 and α ≥ 0,

(iii) we have Aαe−Aty = e−AtAαy for every y ∈ D(Aα) with α ∈ R,

(iv) the operator Aαe−At is bounded for all t > 0 and there exist constants Mα, θ > 0 such that

∥∥Aαe−At
∥∥
L(H)

≤Mαt
−αe−θt,

(v) 0 ≤ β ≤ α ≤ 1 implies D(Aα) ⊂ D(Aβ) and there exists a constant C > 0 such that for every y ∈ D(Aα)

∥∥Aβy
∥∥
H

≤ C ‖Aαy‖H .
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As a consequence of the previous lemma, we obtain that the space D(Aα) for all α ≥ 0 equipped with the inner
product

〈y, z〉D(Aα) = 〈Aαy,Aαz〉H
for every y, z ∈ D(Aα) becomes a Hilbert space. Furthermore, we get the following result.

Lemma 2. Let A : D(A) ⊂ H → H be the Stokes operator. Then the operator Aα is self adjoint for all α ∈ R.

Proof. First, we show the claim for negative exponents. Recall the Stokes operator −A is self adjoint. Hence, the
semigroup (e−At)t≥0 is self adjoint as well. By equation (1), we get for every y, z ∈ H and all α > 0

〈
A−αy, z

〉
H

=

〈
1

Γ(α)

∞∫

0

tα−1S(t)ydt, z

〉

H

=
1

Γ(α)

∞∫

0

tα−1 〈S(t)y, z〉H dt

=

〈
y,

1

Γ(α)

∞∫

0

tα−1S(t)zdt

〉

H

=
〈
y,A−αz

〉
H
. (2)

Next, we show the claim for positive exponents. Using Theorem 1 (iv) and equation (2), we obtain for every
y, z ∈ D(Aα) and all α > 0

〈Aαy, z〉H =
〈
Aαy,A−αAαz

〉
H

=
〈
A−αAαy,Aαz

〉
H

= 〈y,Aαz〉H .

For α = 0, the claim is obvious.

Next, we introduce the resolvent operator of −A and we state some of its basic properties. For more details,
see [27]. Let λ ∈ R be such that λI +A is invertible, i.e. (λI +A)−1 is a linear and bounded operator in the space
H . Then the operator R(λ;−A) = (λI + A)−1 is called the resolvent operator. The operator R(λ;−A) maps H
into D(A) and using the closed graph theorem, we can conclude that the operator AR(λ;−A) : H → H is linear
and bounded. Moreover, we have the following representation:

R(λ;−A) =
∞∫

0

e−λre−Ardr. (3)

For all λ > 0, we get

‖R(λ;−A)‖L(H) ≤
1

λ

and since the semigroup (e−At)t≥0 is self adjoint, the operator R(λ;−A) is self adjoint as well. Let the operator
R(λ) : H → D(A) be defined by R(λ) = λR(λ;−A). Hence, we get for all λ > 0

‖R(λ)‖L(H) ≤ 1. (4)

By Lemma 1 (iii) and equation (3), we obtain for every y ∈ D(Aα) with α ∈ R

AαR(λ)y = R(λ)Aαy. (5)

Moreover, we have for every y ∈ H
lim
λ→∞

‖R(λ)y − y‖H = 0. (6)

If the domain D is connected and bounded with C∞ boundary ∂D, then we can specify the domain of the
operator Aα for α ∈ (0, 1) explicitly. Let AD : D(AD) ⊂

(
L2(D)

)n →
(
L2(D)

)n
be the Laplace operator with

homogeneous Dirichlet boundary condition defined by ADy = −∆y for all y ∈ D(AD). The domain is given by

D(AD) =
(
H1

0 (D)
)n ∩

(
H2(D)

)n
.
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Then AD is a positive and self adjoint operator and −AD is the infinitesimal generator of an analytic semigroup
(e−ADt)t≥0 such that

∥∥e−ADt
∥∥
L(H)

≤ 1 for all t ≥ 0. Hence, we can define fractional powers of the Laplace operator

denoted by Aα
D for α ∈ R. We get the following result.

Proposition 1 (Theorem 1.1,[11]). Let the operator A : D(A) ⊂ H → H be the Stokes Operator and let the
operator AD : D(AD) ⊂

(
L2(D)

)n →
(
L2(D)

)n
be the Laplace operator with homogeneous Dirichlet boundary

condition. Then we have for any α ∈ (0, 1)

D(Aα) = D(Aα
D) ∩H.

The domain of the operator Aα
D can be determined explicitly for α ∈ (0, 1).

Proposition 2 (cf. Theorem 1,[12]). Let AD : D(AD) ⊂
(
L2(D)

)n →
(
L2(D)

)n
be the Laplace operator with

homogeneous Dirichlet boundary condition. Then we have

(i) D(Aα
D) =

(
H2α(D)

)n
for α ∈

(
0, 14

)
,

(ii) D(A
1/4
D ) ⊂

(
H1/2(D)

)n
,

(iii) D(Aα
D) =

(
H2α

0 (D)
)n

for α ∈
(
1
4 ,

3
4

)
,

(ii) D(A
3/4
D ) ⊂

(
H

3/2
0 (D)

)n

,

(v) D(Aα
D) =

(
H2α

0 (D)
)n

for α ∈
(
3
4 , 1

)
.

2.2 The Stokes Equations

In this section, we consider the deterministic Stokes equations with nonhomogeneous boundary conditions. Here,
we restrict the problem to tangential boundary conditions. A general formulation can be found in [30].

Throughout the paper, let T > 0. We introduce the Stokes equations with nonhomogeneous boundary condi-
tions: 




∂

∂t
y(t, x)−∆y(t, x) +∇p(t, x) = f(t, x) in (0, T )×D,

div y(t, x) = 0 in (0, T )×D,
y(t, x) = g(t, x) on (0, T )× ∂D,
y(0, x) = ξ(x) in D,

(7)

where y(t, x) ∈ R
n denotes the velocity field with initial value ξ(x) ∈ R

n, p(t, x) ∈ R describes the pressure of the
fluid, and f(t, x) ∈ R

n is the external force. The boundary condition g(t, x) ∈ R
n is assumed to be tangential, i.e.

g(t, x) · η(x) = 0 on (0, T )× ∂D,

where η denotes the unit outward normal to ∂D. The goal is to reformulate system (7) as an evolution equation.
We define the following spaces for s ≥ 0:

V s(D) = {y ∈ (Hs(D))
n
: div y = 0 in D, y · η = 0 on ∂D} ,

V s(∂D) = {y ∈ (Hs(∂D))n : y · η = 0 on ∂D} .

For s < 0, the space V s(∂D) is the dual space of V −s(∂D) with V 0(∂D) as pivot space. Moreover, let Hs(D)/R
with s ≥ 0 be the quotient space of Hs(D) by R, i.e. Hs(D)/R = {y+ c : y ∈ Hs(D), c ∈ R}. We set ‖y‖Hs(D)/R =
infc∈R ‖y + c‖Hs(D) for every y ∈ Hs(D)/R. The dual space is denoted by (Hs(D)/R)′ with H0(D)/R as pivot
space.
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Next, let us consider the system
{
−∆w +∇π = 0 and div w = 0 in D,

w = g on ∂D. (8)

We have the following existence and uniqueness results.

Proposition 3 (cf. Theorem IV.6.1,[14]). If g ∈ V 3/2(∂D), then there exists a unique solution (w, π) ∈ V 2(D) ×
H1(D)/R of system (8) and the following estimate holds:

‖w‖V 2(D) + ‖π‖H1(D)/R ≤ C∗‖g‖V 3/2(∂D),

where C∗ > 0 is a constant.

Proposition 4 (cf. [15, 30]). If g ∈ V −1/2(∂D), then there exists a unique solution (w, π) ∈ V 0(D)×
(
H1(D)/R

)′
of system (8) and the following estimate holds:

‖w‖V 0(D) + ‖π‖(H1(D)/R)′ ≤ C∗‖g‖V 3/2(∂D),

where C∗ > 0 is a constant.

We introduce the Dirichlet operators D and Dp defined by

Dg = w and Dpg = π,

where (w, π) is the solution of system (8). We get the following properties of the Dirichlet operators, which is an
immediate consequence of Proposition 3 and Proposition 4.

Corollary 1 (cf. Corollary A.1, [30]). The operator D is linear and continuous from V s(∂D) into V s+1/2(D) for

all − 1
2 ≤ s ≤ 3

2 . If − 1
2 ≤ s < 1

2 , then the operator Dp is linear and continuous from V s(∂D) into
(
H1/2−s(D)/R

)′
,

and if 1
2 ≤ s ≤ 3

2 , then the operator Dp is linear and continuous from V s(∂D) into Hs−1/2(D)/R.

As a consequence of Proposition 1, Proposition 2 and Corollary 1, we getD ∈ L
(
V 0(∂D);D(Aβ)

)
for β ∈

(
0, 14

)
.

By the closed graph theorem, we have AβD ∈ L
(
V 0(∂D);V 0(D)

)
. Note that V 0(D) = H . Furthermore, system

(7) can be rewritten in the following form:




d

dt
y(t) = −Ay(t) +ADg(t) + Πf(t),

y(0) = Πξ,
(9)

where the operators A and Π are introduced in Section 2.1. For the sake of simplicity, we assume f(t), ξ ∈ H for
t ∈ [0, T ]. Hence, we obtain a linear evolution equation and the solution is given by

y(t) = e−Atξ +

t∫

0

Ae−A(t−s)Dg(s)ds+

t∫

0

e−A(t−s)f(s)ds.

For more details about linear evolution equations, see [3]. The following existence and uniqueness result is stated
in [30] for more general boundary conditions and f = 0.

Theorem 1. Let g ∈ L2([0, T ];V 0(∂D)) and f ∈ L2([0, T ];H). If α ∈ [0, 14 ), then for any ξ ∈ D(Aα), there exists
a unique solution y ∈ L2([0, T ];D(Aα)) of system (9) and the following estimate holds:

‖y‖L2([0,T ];D(Aα)) ≤ C∗
(
‖ξ‖D(Aα) + ‖g‖L2([0,T ];V 0(∂D)) + ‖f‖L2([0,T ];H)

)
,

where C∗ > 0 is a constant.
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2.3 Stochastic Processes and the Stochastic Integral

In this section, we give a brief introduction to stochastic integrals, where the noise term is defined as a Hilbert
space valued Wiener process. For more details, see [7].

Let (Ω,F ,P) be a complete probability space endowed with a filtration (Ft)t∈[0,T ] satisfying Ft =
⋂

s>t Fs for
all t ∈ [0, T ] and let E be a separable Hilbert space. We denote by L(E) the space of linear and bounded operators
defined on E. Let Q ∈ L(E) be a symmetric and nonnegative semidefinite operator such that Tr Q < ∞. Then
we have the following definition.

Definition 1 (Definition 4.2,[7]). An E-valued stochastic process (W (t))t∈[0,T ] is called a Q-Wiener process if

• W (0) = 0;

• (W (t))t∈[0,T ] has continuous trajectories;

• (W (t))t∈[0,T ] has independent increments;

• the distribution of W (t)−W (s) is a Gaussian measure with mean 0 and covariance (t−s)Q for 0 ≤ s ≤ t ≤ T .

Next, we give a definition of Ft-adapted processes and predictable processes, which are important to construct
the stochastic integral. Let P denote the smallest σ-field of subsets of [0, T ]× Ω.

Definition 2 ([7]). A stochastic process (X(t))t∈[0,T ] taking values in the measurable space (X ,B(X )) is called
Ft-adapted if for arbitrary t ∈ [0, T ] the random variable X(t) is Ft-measurable. We call (X(t))t∈[0,T ] predictable
if it is a measurable mapping from ([0, T ]× Ω,P) to (X ,B(X )).

Every predictable stochastic process is Ft-adapted. The converse is in general not true. However, the following
result is useful to conclude that a stochastic process has a predictable version.

Lemma 3 (Proposition 3.7,[7]). Assume that the stochastic process (X(t))t∈[0,T ] is Ft-adapted and stochastically
continuous. Then the process (X(t))t∈[0,T ] has a predictable version.

Let Q ∈ L(E) be the covariance operator of a Q-Wiener process (W (t))t∈[0,T ] with values in E. Then there

exists a unique operator Q1/2 ∈ L(E) such that Q1/2 ◦Q1/2 = Q. We denote by L(HS)(Q
1/2(E);H) the space of

Hilbert-Schmidt operators mapping from Q1/2(E) into another Hilbert space H. Let (Φ(t))t∈[0,T ] be a predictable

process with values in L(HS)(Q
1/2(E);H) such that E

∫ T

0 ‖Φ(t)‖2L(HS)(Q1/2(E);H) dt < ∞. Then one can define the

stochastic integral

ψ(t) =

t∫

0

Φ(s)dW (s)

for all t ∈ [0, T ] and we have

E ‖ψ(t)‖2H = E

t∫

0

‖Φ(s)‖2L(HS)(Q1/2(E);H) ds. (10)

The following proposition is useful when dealing with a closed operator A : D(A) ⊂ H → H.

Proposition 5 (cf. Proposition 4.15,[7]). If Φ(t)y ∈ D(A) for every y ∈ E, all t ∈ [0, T ] and P-almost surely,

E

T∫

0

‖Φ(t)‖2L(HS)(Q1/2(E);H) dt <∞ and E

T∫

0

‖AΦ(t)‖2L(HS)(Q1/2(E);H) dt <∞,

7



then we have P-a.s.
∫ T

0 Φ(t)dW (t) ∈ D(A) and

A
T∫

0

Φ(t)dW (t) =

T∫

0

AΦ(t)dW (t).

Next, we state a martingale representation theorem for Q-Wiener processes, which we use to construct solutions
of backward SPDE’s. Let Q ∈ L(E) be the covariance operator of a Q-Wiener process (W (t))t∈[0,T ]. Recall that
the operator Q ∈ L(E) is a symmetric and nonnegative semidefinite such that Tr Q < ∞. Hence, there exists
a complete orthonormal system (ek)k∈N in E and a bounded sequence of nonnegative real numbers (µk)k∈N such
that Qek = µkek for each k ∈ N. Then for arbitrary t ∈ [0, T ], a Q-Wiener process has the expansion

W (t) =

∞∑

k=1

√
µkwk(t)ek,

where (wk(t))t∈[0,T ], k ∈ N, are real valued mutually independent Brownian motions. The convergence is in
L2(Ω). Furthermore, we assume that the complete probability space (Ω,F ,P) is endowed with the filtration
Ft = σ{⋃∞

k=1 Fk
t }, where Fk

t = σ{wk(s) : 0 ≤ s ≤ t} for t ∈ [0, T ] and we require that the σ-algebra F satisfies
F = FT . Then we have the following martingale representation theorem.

Proposition 6 (Theorem 2.5,[17]). Let the process (M(t))t∈[0,T ] be a continuous Ft-martingale with values in H
such that E‖M(t)‖2H <∞ for all t ∈ [0, T ]. Then there exists a unique predictable process (Φ(t))t∈[0,T ] with values

in L(HS)(Q
1/2(E);H) such that E

∫ T

0
‖Φ(t)‖2

L(HS)(Q1/2(E);H)
dt <∞ and we have for all t ∈ [0, T ] and P-a.s.

M(t) = EM(0) +

t∫

0

Φ(s)dW (s).

Finally, we state a product formula for infinite dimensional stochastic processes, which we use to obtain a
duality principle. The formula is an immediate consequence of the Itô formula, see [7, Theorem 4.32].

Lemma 4. For i = 1, 2, assume that X0
i are F0-measurable H-valued random variables, (fi(t))t∈[0,T ] are H-valued

predictable processes such that E
∫ T

0
‖fi(t)‖Hdt < ∞, and (Φi(t))t∈[0,T ] are L(HS)(Q

1/2(E);H)-valued predictable

processes such that E
∫ T

0
‖Φi(t)‖2L(HS)(Q1/2(E);H)

dt < ∞. For i = 1, 2, assume that the processes (Xi(t))t∈[0,T ]

satisfy for all t ∈ [0, T ] and P-a.s.

Xi(t) = X0
i +

t∫

0

fi(s)ds+

t∫

0

Φi(s)dW (s).

Then we have for all t ∈ [0, T ] and P-a.s.

〈X1(t), X2(t)〉H =
〈
X0

1 , X
0
2

〉
H
+

t∫

0

[
〈X1(s), f2(s)〉H + 〈X2(s), f1(s)〉H + 〈Φ1(s),Φ2(s)〉L(HS)(Q1/2(E);H)

]
ds

+

t∫

0

〈X1(s),Φ2(s)dW (s)〉H +

t∫

0

〈X2(s),Φ1(s)dW (s)〉H .
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3 The Stochastic Stokes Equations

In this section, we consider the controlled stochastic Stokes equations. Here, controls appear as distributed controls
inside the domain as well as tangential controls on the boundary.

Let (Ω,F ,P) be a complete probability space endowed with a filtration (Ft)t∈[0,T ] satisfying Ft =
⋂

s>t Fs for
all t ∈ [0, T ]. We assume that the external force f(t) in equation (7) can be decomposed as the sum of a control
term and a noise term dependent on the velocity field y(t). Using the spaces and operators introduced in Section
2.1 and Section 2.2, we obtain the stochastic Stokes equations:

{
dy(t) = [−Ay(t) +Bu(t) +ADv(t)] dt+G(y(t))dW (t),

y(0) = ξ,
(11)

where the initial value ξ is assumed to be F0-measurable and the process (W (t))t∈[0,T ] is a Q-Wiener process
with values in H and covariance operator Q ∈ L(H). The set of admissible distributed controls U contains all
predictable processes (u(t))t∈[0,T ] with values in H such that

E

T∫

0

‖u(t)‖2H dt <∞.

The space U equipped with the inner product of L2(Ω;L2([0, T ];H)) becomes a Hilbert space. Similarly, the set
of admissible boundary controls V contains all predictable processes (v(t))t∈[0,T ] with values in V 0(∂D) such that

E

T∫

0

‖v(t)‖2V 0(∂D) dt <∞.

The space V equipped with the inner product of L2(Ω;L2([0, T ];V 0(∂D))) becomes a Hilbert space. The operators
B : H → H and G : H → L(HS)(Q

1/2(H);H) are linear and bounded. Motivated by Section 2.2, we introduce the
definition of a mild solution to system (11).

Definition 3. A predictable process (y(t))t∈[0,T ] with values in D(Aα) is called a mild solution of system (11)
if

E

T∫

0

‖y(t)‖2D(Aα)dt <∞, (12)

and we have for t ∈ [0, T ] and P-a.s.

y(t) = e−Atξ +

t∫

0

e−A(t−s)Bu(s)ds+

t∫

0

Ae−A(t−s)Dv(s)ds +

t∫

0

e−A(t−s)G(y(s))dW (s).

We get the following existence and uniqueness result.

Theorem 2. Let the controls u ∈ U and v ∈ V be fixed. If α ∈ [0, 14 ), then for any ξ ∈ L2(Ω;D(Aα)), there exists
a unique mild solution (y(t))t∈[0,T ] of system (11).

Proof. For all t0, t1 ∈ [0, T ] with t0 < t1, let the space Z[t0,t1] contain all predictable processes (ỹ(t))t∈[t0,t1] with

values in D(Aα) such that E
∫ t1
t0

‖ỹ(t)‖2D(Aα)dt <∞. The space Z[t0,t1] equipped with the inner product

〈ỹ1, ỹ2〉2Z[t0,t1]
= E

t1∫

t0

〈ỹ1(t), ỹ2(t)〉2D(Aα)dt

9



for every ỹ1, ỹ2 ∈ Z[t0,t1] becomes a Hilbert space. We define for t ∈ [0, T ] and P-a.s.

J (ỹ)(t) = e−Atξ +

t∫

0

e−A(t−s)Bu(s)ds+

t∫

0

Ae−A(t−s)Dv(s)ds +

t∫

0

e−A(t−s)G(ỹ(s))dW (s).

Let T1 ∈ (0, T ] and let us denote by ZT1 the space Z[0,T1]. First, we prove that J maps ZT1 into itself. We define
for t ∈ [0, T1] and P-a.s.

ψ1(t) = e−Atξ +

t∫

0

e−A(t−s)Bu(s)ds, ψ2(t) =

t∫

0

Ae−A(t−s)Dv(s)ds, ψ3(ỹ)(t) =

t∫

0

e−A(t−s)G(ỹ(s))dW (s).

Recall that
∥∥e−At

∥∥
L(H)

≤ 1 for all t ∈ [0, T ] and B : H → H is bounded. Using Lemma 1 and the Cauchy-Schwarz

inequality, the process (ψ1(t))t∈[0,T1] takes values in D(Aα) and there exists a constant C1 > 0 such that

E

T1∫

0

‖ψ1(t)‖2D(Aα) dt ≤ 2E

T1∫

0

∥∥e−AtAαξ
∥∥2

H
dt+ 2E

T1∫

0




t∫

0

∥∥∥Aαe−A(t−s)Bu(s)
∥∥∥
H
ds




2

dt

≤ 2T1 E ‖ξ‖2D(Aα) + 2M2
α E

T1∫

0




t∫

0

(t− s)−α ‖Bu(s)‖H ds




2

dt

≤ C1


E‖ξ‖2D(Aα) + E

T1∫

0

‖u(t)‖2H dt


 .

Recall that AβD : V 0(∂D) → H is bounded for all β ∈
(
0, 14

)
. We chose β such that α < β. By Lemma 1 and

Young’s inequality for convolutions, the process (ψ2(t))t∈[0,T1] takes values in D(Aα) and there exists a constant
C2 > 0 such that

E

T1∫

0

‖ψ2(t)‖2D(Aα) dt ≤ E

T1∫

0




t∫

0

∥∥∥A1+α−βe−A(t−s)AβDv(s)
∥∥∥
H
ds




2

dt

≤M2
1+α−βE

T1∫

0




t∫

0

(t− s)−1−α+β
∥∥AβDv(s)

∥∥
H
ds




2

dt

≤M2
1+α−β




T1∫

0

t−1−α+βdt




2

E

T1∫

0

∥∥AβDv(t)
∥∥2
H
dt

≤ C2 E

T1∫

0

‖v(t)‖2V 0(∂D) dt.

Due to Lemma 1 and the fact that the operator G : H → L(HS)(Q
1/2(H);H) is bounded, one can verify the

assumptions of Proposition 5 with A = Aα and hence, the process (ψ3(ỹ)(t))t∈[0,T1] takes values in D(Aα). Using
Lemma 1, Fubini’s theorem, the Itô isometry (10) and Young’s inequality for convolutions, there exists a constant
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C3 > 0 such that

E

T1∫

0

‖ψ3(ỹ)(t)‖2D(Aα) dt =

T1∫

0

E

t∫

0

∥∥∥Aαe−A(t−s)G(ỹ(s))
∥∥∥
2

L(HS)(Q1/2(H);H)
ds dt

≤M2
α E

T1∫

0

t∫

0

(t− s)−2α ‖G(ỹ(s))‖2L(HS)(Q1/2(H);H) ds dt

≤ C3T
1−2α
1 E

T1∫

0

‖ỹ(t)‖2D(Aα)dt. (13)

Hence, we can conclude that for fixed ỹ ∈ ZT1 , the process (J (ỹ)(t))t∈[0,T1 ] takes values in D(Aα) such that

E
∫ T1

0 ‖J (ỹ)(t)‖2D(Aα) <∞. Obviously, the process (J (ỹ)(t))t∈[0,T1] is predictable. We conclude that J maps ZT1

into itself.
Next, we show that J is a contraction on ZT1 . Recall that the operator G : H → L(HS)(Q

1/2(H);H) is linear.
Using inequality (13), we get for every ỹ1, ỹ2 ∈ ZT1

E

T1∫

0

‖J (ỹ1)(t)− J (ỹ2)(t)‖2D(Aα) dt = E

T1∫

0

‖ψ3(ỹ1 − ỹ2)(t)‖2D(Aα) dt ≤ C3T
1−2α
1 E

T1∫

0

‖ỹ1(t)− ỹ2(t)‖2D(Aα)dt.

We choose T1 ∈ (0, T ] such that C3T
1−2α
1 < 1. Applying Banach fixed point theorem, we get a unique element

y ∈ ZT1 such that for t ∈ [0, T1] and P-a.s. y(t) = J (y)(t).
Next, we consider for t ∈ [T1, T ] and P-a.s.

J (ỹ)(t) = e−A(t−T1)y(T1) +

t∫

T1

e−A(t−s)Bu(s)ds+

t∫

T1

Ae−A(t−s)Dv(s)ds+

t∫

T1

e−A(t−s)G(ỹ(s))dW (s).

Again, for a certain T2 ∈ [T1, T ], there exists a unique fixed point of J on Z[T1,T2]. By continuing the method,
we get the existence and uniqueness of a predictable process (y(t))t∈[0,T ] satisfying for t ∈ [0, T ] and P-a.s. y(t) =
J (y)(t).

For the rest of the paper, we assume that (y(t))t∈[0,T ] satisfies condition (12) with α = 0 and we assume that
the initial value ξ ∈ L2(Ω;H) is fixed. To illustrate the dependence on the controls u ∈ U and v ∈ V , let us denote
by (y(t;u, v))t∈[0,T ] the mild solution of system (11). Whenever the process is considered for fixed controls, we
omit the dependency.

Next, we show some useful properties. Therefor, we need the following formulation of Gronwall’s inequality for
integrable functions. The result might be deduced from more general formulations, see [6, 38, 39].

Lemma 5. Let a, x : [0, T ] → [0,∞) be integrable functions and let b ≥ 0. If

x(t) ≤ a(t) + b

t∫

0

x(s)ds

for all t ∈ [0, T ], then

x(t) ≤ a(t) + b

t∫

0

eb(t−s)a(s)ds.
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for all t ∈ [0, T ]. If a(t) is nondecreasing on [0, T ], then for t ∈ [0, T ]

x(t) ≤ a(t)ebt.

Corollary 2. Let (y(t;u, v))t∈[0,T ] be the mild solution of system (11) corresponding to the controls u ∈ U and
v ∈ V . Then the process (y(t;u, v))t∈[0,T ] is affine linear with respect to u and v, and we have for every u1, u2 ∈ U
and every v1, v2 ∈ V

E

T∫

0

‖y(t;u1, v1)− y(t;u2, v2)‖2Hdt ≤ Ĉ


E

T∫

0

‖u1(t)− u2(t)‖2H dt+ E

T∫

0

‖v1(t)− v2(t)‖2V 0(∂D) dt


 , (14)

where Ĉ > 0 is a constant.

Proof. First, we show that (y(t;u, v))t∈[0,T ] is affine linear with respect to u ∈ U . We assume that ξ = 0 and v = 0.

Moreover, let a, b ∈ R and u1, u2 ∈ U . Recall that the operators B : H → H and G : H → L(HS)(Q
1/2(H);H) are

linear and bounded. Moreover, we have
∥∥e−At

∥∥
L(H)

≤ 1 for all t ∈ [0, T ]. Using the Itô isometry (10) and Fubini’s

theorem, there exists a constant C∗ > 0 such that for t ∈ [0, T ]

E ‖y(t; a u1 + b u2, 0)− a y(t;u1, 0)− b y(t;u2, 0)‖2H

≤ E

∥∥∥∥∥∥

t∫

0

e−A(t−s)G(y(t; a u1 + b u2, 0)− a y(t;u1, 0)− b y(t;u2, 0))dW (s)

∥∥∥∥∥∥

2

H

≤ C∗

t∫

0

E ‖y(s; a u1 + b u2, 0)− a y(s;u1, 0)− b y(s;u2, 0))‖2H ds.

By Lemma 5 and Fubini’s theorem, we get

E

T∫

0

‖y(t; a u1 + b u2, 0)− a y(t;u1, 0)− b y(t;u2, 0)‖2Hdt = 0.

We obtain that (y(t;u, 0))t∈[0,T ] with initial value ξ = 0 is linear with respect to u ∈ U . For arbitrary ξ ∈ L2(Ω;H)
and v ∈ V , we can conclude that (y(t;u, v))t∈[0,T ] is affine linear with respect to u ∈ U . Similarly, we obtain that
(y(t;u, v))t∈[0,T ] is affine linear with respect to v ∈ V .

Next, we show that inequality (14) holds. Let u1, u2 ∈ U and v1, v2 ∈ V . Recall that AαD : V 0(∂D) → H is
linear and bounded for all α ∈

(
0, 14

)
. Due to the Itô isometry (10), Lemma 1 and Fubini’s theorem, there exist

constants C1, C2, C3 > 0 such that for t ∈ [0, T ]

E ‖y(t;u1, v1)− y(t;u2, v2)‖2H ≤ C1 E

t∫

0

‖u1(s)− u2(s)‖2H ds+ C2 E




t∫

0

(t− s)α−1 ‖v1(s)− v2(s)‖V 0(∂D) ds




2

+ C3

t∫

0

E ‖y(s;u1, v1)− y(s;u2, v2)‖2Hds.
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Using Lemma 5, Fubini’s theorem and Young’s inequality for convolutions, we get for t ∈ [0, T ]

E ‖y(t;u1, v1)− y(t;u2, v2)‖2H

≤ C1 E

t∫

0

‖u1(s)− u2(s)‖2H ds+ C2 E




t∫

0

(t− s)α−1 ‖v1(s)− v2(s)‖V 0(∂D) ds




2

+ C3

t∫

0

eC3(t−s)


C1 E

s∫

0

‖u1(r) − u2(r)‖2H dr + C2 E




s∫

0

(s− r)α−1 ‖v1(r) − v2(r)‖V 0(∂D) dr




2

 ds

≤ C1

(
1 + C3e

C3t
)
E

t∫

0

‖u1(s)− u2(s)‖2H ds+ C2 E




t∫

0

(t− s)α−1 ‖v1(s)− v2(s)‖V 0(∂D) ds




2

+
C2C3e

C3tt2α

α2
E

t∫

0

‖v1(s)− v2(s)‖2V 0(∂D) ds.

By Fubini’s theorem and Young’s inequality for convolutions, there exists a constant Ĉ > 0 such that

E

T∫

0

‖y(t;u1, v1)− y(t;u2, v2)‖2Hdt

≤
T∫

0


C1

(
1 + C3e

C3t
)
E

t∫

0

‖u1(s)− u2(s)‖2H ds+ C3e
C3t

C2t
2α

α2
E

t∫

0

‖v1(s)− v2(s)‖2V 0(∂D) ds


 dt

+ C2 E

T∫

0




t∫

0

(t− s)α−1 ‖v1(s)− v2(s)‖V 0(∂D) ds




2

dt

≤ Ĉ


E

T∫

0

‖u1(t)− u2(t)‖2H dt+ E

T∫

0

‖v1(t)− v2(t)‖2V 0(∂D) dt


 .

4 The Control Problem

The control problem considered in this paper is motivated by [2, 5, 23, 29, 33]. In this section, we state first order
optimality conditions, which are necessary and sufficient. Moreover, we derive a duality principle such that we can
deduce explicit formulas the optimal controls have to satisfy.

Let us introduce the following cost functional:

J(u, v) =
1

2
E

T∫

0

‖y(t;u, v)− yd(t)‖2Hdt+
κ1
2

E

T∫

0

‖u(t)‖2H dt+
κ2
2

E

T∫

0

‖v(t)‖2V 0(∂D) dt, (15)

where (y(t;u, v))t∈[0,T ] is the mild solution of system (11) corresponding to the controls u ∈ U and v ∈ V . The
function yd ∈ L2([0, T ];H) is a given desired velocity field and κ1, κ2 > 0 are weights. The task is to find controls
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u ∈ U and v ∈ V such that
J(u, v) = inf

u∈U,v∈V
J(u, v).

The controls u ∈ U and v ∈ V are called optimal controls. Note that the control problem is formulated as an
unbounded optimization problem constrained by a SPDE. The functional J : U × V → R given by equation (15) is
continuous, coercive and strictly convex, which is a consequence of Corollary 2. Hence, we get the existence and
uniqueness of optimal controls. For more details, we refer to [25, 40].

4.1 Necessary and Sufficient Optimality Conditions

First, let us introduce the following systems:

{
dz1(t) = [−Az1(t) +Bu(t)] dt+G(z1(t))dW (t),

z1(0) = 0,
(16)

{
dz2(t) = [−Az2(t) +ADv(t)] dt+G(z2(t))dW (t),

z2(0) = 0,
(17)

where u ∈ U , v ∈ V and (W (t))t∈[0,T ] is a Q-Wiener process with values in H and covariance operator Q ∈ L(H).
The operators A,B,D,G and the spaces U, V are introduced in Section 2 and Section 3, respectively.

Definition 4. a) A predictable process (z1(t))t∈[0,T ] with values in H is called a mild solution of system (16)
if

E

T∫

0

‖z1(t)‖2Hdt <∞, (18)

and we have for t ∈ [0, T ] and P-a.s.

z1(t) =

t∫

0

e−A(t−s)Bu(s)ds+

t∫

0

e−A(t−s)G(z1(s))dW (s).

b) A predictable process (z2(t))t∈[0,T ] with values in H is called a mild solution of system (17) if

E

T∫

0

‖z2(t)‖2Hdt <∞,

and we have for t ∈ [0, T ] and P-a.s.

z2(t) =

t∫

0

Ae−A(t−s)Dv(s)ds+

t∫

0

e−A(t−s)G(z2(s))dW (s).

Existence and uniqueness results of mild solutions to system (16) and system (17) can be obtained similarly to
Theorem 2. For stronger regularity properties of the mild solution to system (16), we refer to [7, 17]. However, we
assume that the weaker condition (18) holds. To illustrate the dependence on the controls u ∈ U and v ∈ V , let
us denote by (z1(t;u))t∈[0,T ] and (z2(t; v))t∈[0,T ] the mild solutions of system (16) and system (17), respectively.
Whenever these processes are considered for fixed controls, we omit the dependency. Similarly to Corollary 2, we
get the following result.
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Lemma 6. Let (z1(t;u))t∈[0,T ] and (z2(t; v))t∈[0,T ] be the mild solutions of system (16) and system (17) corre-
sponding to the controls u ∈ U and v ∈ V , respectively. Then the process (z1(t;u))t∈[0,T ] is linear with respect to
u and the process (z2(t; v))t∈[0,T ] is linear with respect to v. Moreover, we have for every u1, u2 ∈ U and every
v1, v2 ∈ V

E

T∫

0

‖z1(t;u1)− z1(t;u2)‖2H ≤ Ĉ E

T∫

0

‖u1(t)− u2(t)‖2H dt,

E

T∫

0

‖z2(t; v1)− z2(t; v2)‖2H ≤ Ĉ E

T∫

0

‖v1(t)− v2(t)‖2V 0(∂D) dt,

where Ĉ > 0 is a constant.

Next, we calculate the Fréchet derivative of the mild solution to system (11). Let X,Y and Z be arbitrary
Banach spaces. For a mapping f : MX ×MY → Z with MX ⊂ X , MY ⊂ Y nonempty and open, the (partial)
Fréchet derivative at x ∈ MX in direction h ∈ X for fixed y ∈ Y is denoted by dxf(x, y)[h]. Analogously, the
(partial) Fréchet derivative at y ∈ MY in direction h ∈ Y for fixed x ∈ X is denoted by dyf(x, y)[h]. We get the
following result.

Theorem 3. Let (y(t;u, v))t∈[0,T ], (z1(t;u))t∈[0,T ] and (z2(t; v))t∈[0,T ] be the mild solutions of systems (11), (16)
and (17) corresponding to the controls u ∈ U and v ∈ V , respectively. Then the Fréchet derivative of y(t;u, v) at
u ∈ U in direction ũ ∈ U satisfies for fixed v ∈ V , t ∈ [0, T ] and P-a.s.

duy(t;u, v)[ũ] = z1(t; ũ).

The Fréchet derivative of y(t;u, v) at v ∈ V in direction ṽ ∈ V satisfies for fixed u ∈ U , t ∈ [0, T ] and P-a.s.

dvy(t;u, v)[ṽ] = z2(t; ṽ).

Proof. First, we calculate the Fréchet derivative of y(t;u, v) at u ∈ U in direction ũ ∈ U . Let v ∈ V be fixed.
Recall that the operators B : H → H and G : H → L(HS)(Q

1/2(H);H) are linear and bounded. Moreover, we have∥∥e−At
∥∥
L(H)

≤ 1 for all t ∈ [0, T ]. Using the Itô isometry (10) and Fubini’s theorem, there exists a constant C∗ > 0

such that for t ∈ [0, T ]

E ‖y(t;u+ ũ, v)− y(t;u, v)− z1(t; ũ)‖2H = E

∥∥∥∥∥∥

t∫

0

e−A(t−s)G(y(s;u + ũ, v)− y(s;u, v)− z1(s; ũ))dW (s)

∥∥∥∥∥∥

2

H

≤ C∗

t∫

0

E ‖y(s;u+ ũ, v)− y(s;u, v)− z1(s; ũ)‖2H ds.

By Lemma 5 and Fubini’s theorem, we get

E

T∫

0

‖y(t;u+ ũ, v)− y(t;u, v)− z1(t; ũ)‖2Hdt = 0.

Hence, the Fréchet derivative of y(t;u, v) at u ∈ U in direction ũ ∈ U satisfies for every v ∈ V , t ∈ [0, T ] and P-a.s.

duy(t;u, v)[ũ] = z1(t; ũ).

Due to Lemma 6, the operator duy(t;u, v) is linear and bounded on U . Similarly, we obtain the Fréchet derivative
of y(t;u, v) at v ∈ V in direction ṽ ∈ V .
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As a direct consequence of the previous theorem and the chain rule for Fréchet derivatives, we get the following
result.

Theorem 4. Let the functional J : U × V → R be defined by (15). Then the Fréchet derivative at u ∈ U in
direction ũ ∈ U for fixed v ∈ V satisfies

duJ(u, v)[ũ] = E

T∫

0

〈y(t;u, v)− yd(t), z1(t; ũ)〉H dt+ κ1 E

T∫

0

〈u(t), ũ(t)〉H dt,

where (z1(t; ũ))t∈[0,T ] is the mild solution of system (16) corresponding to the control ũ ∈ U . The Fréchet derivative
at v ∈ V in direction ṽ ∈ V for fixed u ∈ U satisfies

dvJ(u, v)[ṽ] = E

T∫

0

〈y(t;u, v)− yd(t), z2(t; ṽ)〉H dt+ κ2 E

T∫

0

〈v(t), ṽ(t)〉V 0(∂D) dt,

where (z2(t; ṽ))t∈[0,T ] is the mild solution of system (17) corresponding to the control ṽ ∈ V .

As a result of the previous theorem and the fact that the cost functional J : U ×V → R given by (15) is strictly
convex, the optimal controls u ∈ U and v ∈ V satisfy the following necessary and sufficient optimality conditions:

duJ(u, v)[ũ] = 0, (19)

dvJ(u, v)[ṽ] = 0 (20)

for every ũ ∈ U and every ṽ ∈ V . For more details about optimality conditions of convex differentiable functionals,
we refer to [25, 40]. Next, we use the optimality conditions (19) and (20) to derive explicit formulas for the optimal
controls u ∈ U and v ∈ V . Therefor, we need a duality principle, which gives us a relation between the Fréchet
derivatives of the mild solution to system (11) and the adjoint equation, which is given by a backward SPDE.

4.2 The Adjoint Equation

We introduce the following backward SPDE:
{
dz∗(t) = −[−Az∗(t) +G∗(Φ(t)) + y(t)− yd(t)]dt+ Φ(t)dW (t),

z∗(T ) = 0,
(21)

where (y(t))t∈[0,T ] is the mild solution of system (11) and yd ∈ L2([0, T ];H) is the desired velocity field. The
process (W (t))t∈[0,T ] is a Q-Wiener process with values in H and covariance operator Q ∈ L(H) and the operator

G∗ : L(HS)(Q
1/2(H);H) → H is linear and bounded. A precise meaning is given in the following remark.

Remark 1. Since the operator G : H → L(HS)(Q
1/2(H);H) is linear and bounded, there exists a linear and bounded

operator G∗ : L(HS)(Q
1/2(H);H) → H satisfying for every h ∈ H and every Φ ∈ L(HS)(Q

1/2(H);H)

〈G(h),Φ〉L(HS)(Q1/2(H);H) = 〈h,G∗(Φ)〉H . (22)

Definition 5. A pair of predictable processes (z∗(t),Φ(t))t∈[0,T ] with values in H ×L(HS)(Q
1/2(H);H) is called a

mild solution of system (21) if

sup
t∈[0,T ]

E ‖z∗(t)‖2H <∞, E

T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt <∞,
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and we have for all t ∈ [0, T ] and P-a.s.

z∗(t) =

T∫

t

e−A(s−t)G∗(Φ(s))ds+

T∫

t

e−A(s−t) (y(s)− yd(s)) ds−
T∫

t

e−A(s−t)Φ(s)dW (s).

An existence and uniqueness result is mainly based on the following lemma.

Lemma 7 (Lemma 2.1,[21]). Let z ∈ L2(Ω;H) be FT -measurable and let (f(t))t∈[0,T ] be a predictable process with

values in H such that E
∫ T

0 ‖f(t)‖2Hdt <∞. Then there exists a unique pair of predictable processes (ϕ(t), φ(t))t∈[0,T ]

with values in H × L(HS)(Q
1/2(H);H) such that for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)z +

T∫

t

e−A(s−t)f(s)ds−
T∫

t

e−A(s−t)φ(s)dW (s).

Moreover, there exists a constant c > 0 such that for all t ∈ [0, T ]

E ‖ϕ(t)‖2H ≤ c


E ‖z‖2H + (T − t)E

T∫

t

‖f(s)‖2Hds


 , (23)

E

T∫

t

‖φ(s)‖2L(HS)(Q1/2(H);H)ds ≤ c


E ‖z‖2H + (T − t)E

T∫

t

‖f(s)‖2Hds


 . (24)

Existence and uniqueness results of mild solutions to backward SPDE’s with cylindrical Wiener processes can
be found in [21]. Similarly, we get the existence of a unique mild solution to system (21). Furthermore, note that
the mild solution of system (11) depends on the controls u ∈ U and v ∈ V . Thus, we get this property for the
mild solution of system (21) as well. To illustrate the dependence on the controls u ∈ U and v ∈ V , let us denote
by (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] the mild solution of system (21). Whenever these processes are considered for fixed
controls, we omit the dependency. For the process (z∗(t;u, v))t∈[0,T ], one can show another important regularity
property. Therefor, we need a modification of Young’s inequality for convolutions.

Lemma 8. Let f ∈ Lp([0, T ]) and g ∈ Lq([0, T ]) be arbitrary. We set for t ∈ [0, T ]

h(t) =

T∫

t

f(s− t)g(s)ds.

If p, q, r ≥ 1 satisfy 1
p + 1

q = 1
r + 1, then h ∈ Lr([0, T ]) and

‖h‖Lr([0,T ]) ≤ ‖f‖Lp([0,T ])‖g‖Lq([0,T ]).

Proof. The proof can be obtained similarly to the classical version of Young’s inequality for convolutions, see [4,
Theorem 3.9.4].

Proposition 7. Let (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] be the mild solution of system (21) corresponding to the controls
u ∈ U and v ∈ V . Then (z∗(t;u, v))t∈[0,T ] takes values in D(Aε) with ε ∈ [0, 1) such that

E

T∫

0

‖z∗(t;u, v)‖2D(Aε)dt <∞.
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Proof. For the sake of simplicity, we omit the dependence on the controls. Since (z∗(t;u, v))t∈[0,T ] is predictable,
we get for t ∈ [0, T ] and P-a.s.

z∗(t;u, v) = E




T∫

t

e−A(s−t)G∗(Φ(s))ds +

T∫

t

e−A(s−t) (y(s)− yd(s)) ds

∣∣∣∣∣∣
Ft


 .

Recall that the operator G∗ : L(HS)(Q
1/2(H);H) → H is bounded. Using Lemma 1 and Lemma 8, the process

(z∗(t))t∈[0,T ] takes values in D(Aε) with ε ∈ [0, 1) and there exists a constant C∗ > 0 such that

E

T∫

0

‖z∗(t;u, v)‖2D(Aε)dt

≤ 2E

T∫

0




T∫

t

‖Aεe−A(s−t)G∗(Φ(s))‖Hds




2

dt+ 2E

T∫

0




T∫

t

‖Aεe−A(s−t) (y(s;u, v)− yd(s)) ‖2Hds




2

dt

≤ 2M2
ε E

T∫

0




T∫

t

(s− t)−ε‖G∗(Φ(s))‖Hds




2

dt+ 2M2
ε E

T∫

0




T∫

t

(s− t)−ε‖y(s;u, v)− yd(s)‖Hds




2

dt

≤ C∗


E

T∫

0

‖Φ(t)‖2L(HS)(Q1/2(H);H)dt+ E

T∫

0

‖y(t;u, v)‖2Hdt+
T∫

0

‖yd(t)‖2Hdt


 .

4.3 Approximation by a Strong Formulation

In general, a duality principle of solutions to forward and backward SPDE’s can be obtained by applying an Itô
product formula. This formula is not applicable to solutions in a mild sense. Hence, we need to approximate
the mild solutions of systems (16), (17) and (21) by strong formulations. One method is given by introducing
the Yosida approximation of the operator A, see [7]. For applications regarding duality principles, see [10, 35].
However, we apply the method introduced in [20, 22]. The basic idea is to formulate a mild solution with values
in D(A) by using the resolvent operator R(λ) introduced in Section 2.1. Thus, we get the required convergence
results and the mild solutions coincide with the strong solutions. In this section, we omit the dependence on the
controls for the sake of simplicity.

4.3.1 The Forward Equations

Here, we provide approximations of the mild solutions to system (16) and system (17). We introduce the following
systems:

{
dz1(t, λ) = [−Az1(t, λ) +R(λ)Bu(t)] dt+R(λ)G(R(λ)z1(t, λ))dW (t),

z1(0, λ) = 0,
(25)

{
dz2(t, λ) = [−Az2(t, λ) +AR(λ)Dv(t)] dt+R(λ)G(R(λ)z2(t, λ))dW (t),

z2(0, λ) = 0,
(26)

where λ > 0, u ∈ U and v ∈ V . The process (W (t))t∈[0,T ] is a Q-Wiener process with values in H and covariance
operator Q ∈ L(H). The operators A,R(λ), B,D,G and the spaces U, V are introduced in Section 2 and Section
3, respectively.
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Definition 6. a) A predictable process (z1(t, λ))t∈[0,T ] with values in D(A) is called a mild solution of system
(16) if

E

T∫

0

‖z1(t, λ)‖2D(A)dt <∞,

and we have for t ∈ [0, T ] and P-a.s.

z1(t, λ) =

t∫

0

e−A(t−s)R(λ)Bu(s)ds +

t∫

0

e−A(t−s)R(λ)G(R(λ)z1(s, λ))dW (s).

b) A predictable process (z2(t, λ))t∈[0,T ] with values in D(A) is called a mild solution of system (17) if

E

T∫

0

‖z2(t, λ)‖2D(A)dt <∞,

and we have for t ∈ [0, T ] and P-a.s.

z2(t, λ) =

t∫

0

e−A(t−s)AR(λ)Dv(s)ds +

t∫

0

e−A(t−s)R(λ)G(R(λ)z2(s, λ))dW (s).

Remark 2. Note that the approximation scheme provided in [20, 22] differs to the approximation scheme introduced
by system (25) or system (26). Here, the additional operator R(λ) is necessary to obtain a duality principle.

Recall that the operators R(λ) and AR(λ) are linear and bounded on H . Hence, existence and uniqueness
results of mild solutions to system (25) and system (26) can be obtained similarly to Theorem 2 for fixed λ > 0.
In the following lemma, we state that the mild solutions of system (25) and system (26) also satisfy a strong
formulation, which is an immediate consequence of [22, Proposition 2.3].

Lemma 9. Let (z1(t, λ))t∈[0,T ] and (z2(t, λ))t∈[0,T ] be the mild solutions of system (25) and system (26), respec-
tively. Then we have for fixed λ > 0, t ∈ [0, T ] and P-a.s.

z1(t, λ) =

t∫

0

(−A)z1(s, λ) +R(λ)Bu(s)ds +

t∫

0

R(λ)G(R(λ)z1(s, λ))dW (s),

z2(t, λ) =

t∫

0

(−A)z2(s, λ) +AR(λ)Dv(s)ds +

t∫

0

R(λ)G(R(λ)z2(s, λ))dW (s).

We have the following convergence results.

Lemma 10. (i) Let (z1(t))t∈[0,T ] and (z1(t, λ))t∈[0,T ] be the mild solutions of system (16) and system (25), respec-
tively. Then we have

lim
λ→∞

E

T∫

0

‖z1(t)− z1(t, λ)‖2Hdt = 0.

(ii) Let (z2(t))t∈[0,T ] and (z2(t, λ))t∈[0,T ] be the mild solutions of system (17) and system (26), respectively. Then
we have

lim
λ→∞

E

T∫

0

‖z2(t)− z2(t, λ)‖2Hdt = 0.
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Proof. First, we show part (i). Let I be the identity operator in H . Recall that G : H → L(HS)(Q
1/2(H);H) is

linear and bounded. By definition, we have for all λ > 0, t ∈ [0, T ] and P-a.s.

z1(t)− z1(t, λ) =

t∫

0

e−A(t−s)[I −R(λ)]Bu(s)ds +

t∫

0

e−A(t−s)G([I − R(λ)]z1(s))dW (s)

+

t∫

0

e−A(t−s)[I −R(λ)]G(R(λ)z1(s))dW (s) +

t∫

0

e−A(t−s)R(λ)G(R(λ) [z1(s)− z1(s, λ)])dW (s).

The remaining part of the proof can be obtained similarly to [22, Lemma 3.1] using Lemma 5.
Next, we prove part (ii). By definition, we obtain for all λ > 0, t ∈ [0, T ] and P-a.s.

z2(t)− z2(t, λ) =

t∫

0

Ae−A(t−s)[I − R(λ)]Dv(s)ds +

t∫

0

e−A(t−s)G([I −R(λ)]z2(s))dW (s)

+

t∫

0

e−A(t−s)[I −R(λ)]G(R(λ)z2(s))dW (s) +

t∫

0

e−A(t−s)R(λ)G(R(λ) [z2(s)− z2(s, λ)])dW (s).

Thus, we get for all λ > 0 and t ∈ [0, T ]

E ‖z2(t)− z2(t, λ)‖2H ≤ 4 I1(t, λ) + 4 I2(t, λ) + 4 I3(t, λ), (27)

where

I1(t, λ) = E

∥∥∥∥∥∥

t∫

0

Ae−A(t−s)[I −R(λ)]Dv(s)ds

∥∥∥∥∥∥

2

H

,

I2(t, λ) = E

∥∥∥∥∥∥

t∫

0

e−A(t−s)G([I −R(λ)]z2(s))dW (s)

∥∥∥∥∥∥

2

H

+ E

∥∥∥∥∥∥

t∫

0

e−A(t−s)[I −R(λ)]G(R(λ)z2(s))dW (s)

∥∥∥∥∥∥

2

H

,

I3(t, λ) = E

∥∥∥∥∥∥

t∫

0

e−A(t−s)R(λ)G(R(λ) [z2(s)− z2(s, λ)])dW (s)

∥∥∥∥∥∥

2

H

.

Recall that D : V 0(∂D) → D(Aα) for all α ∈
(
0, 14

)
. Using Lemma 1, equation (5), Fubini’s theorem and Young’s

inequality for convolutions, there exists a constant C1 > 0 such that for all λ > 0 and all t ∈ [0, T ]

t∫

0

I1(s, λ) ds ≤ E

t∫

0




s∫

0

∥∥∥A1−αe−A(s−r)[I −R(λ)]AαDv(r)
∥∥∥
H
dr




2

ds

≤ C1 E

T∫

0

‖[I −R(λ)]AαDv(t)‖2H dt. (28)

Recall that
∥∥e−At

∥∥
L(H)

≤ 1 for all t ∈ [0, T ]. Due to the Itô isometry (10) and Fubini’s theorem, there exists a
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constant C2 > 0 such that for all λ > 0 and all t ∈ [0, T ]

t∫

0

I2(s, λ) ds ≤
t∫

0

E

s∫

0

∥∥∥e−A(s−r)G([I −R(λ)]z2(r))
∥∥∥
2

L(HS)(Q1/2(H);H)
dr ds

+

t∫

0

E

s∫

0

∥∥∥e−A(s−r)[I −R(λ)]G(R(λ)z2(r))
∥∥∥
2

L(HS)(Q1/2(H);H)
dr ds

≤ C2


E

T∫

0

‖[I −R(λ)]z2(t)‖2H dt+ E

T∫

0

‖[I −R(λ)]G(R(λ)z2(t))‖2L(HS)(Q1/2(H);H) dt


 . (29)

By the Itô isometry (10), inequality (4) and Fubini’s theorem, there exists a constant C3 > 0 such that for all λ > 0
and all t ∈ [0, T ]

I3(t, λ) ≤ C3

t∫

0

E ‖z2(s)− z2(s, λ)‖2H ds.

Due to inequality (27), we get for all λ > 0 and t ∈ [0, T ]

E ‖z2(t)− z2(t, λ)‖2H ≤ 4 I1(t, λ) + 4 I2(t, λ) + 4C3

t∫

0

E ‖z2(s)− z2(s, λ)‖2H ds.

Applying Lemma 5, we obtain for all λ > 0 and t ∈ [0, T ]

E ‖z2(t)− z2(t, λ)‖2H ≤ 4 I1(t, λ) + 4 I2(t, λ) + 16C3e
4C3t

t∫

0

[I1(s, λ) + I2(s, λ)]ds.

Using Fubini’s theorem, inequality (28) and inequality (29), there exists a constant C3 > 0 such that for all λ > 0

E

T∫

0

‖z2(t)− z2(t, λ)‖2H dt ≤ C∗
E

T∫

0

‖[I −R(λ)]AαDv(t)‖2H dt+ C∗
E

T∫

0

‖[I −R(λ)]z2(t)‖2H dt

+ C∗
E

T∫

0

‖[I −R(λ)]G(R(λ)z2(t))‖2L(HS)(Q1/2(H);H) dt.

By equation (6) and Lebesgue’s dominated convergence theorem [4, Theorem 2.8.1], we can infer

lim
λ→∞

E

T∫

0

‖z2(t)− z2(t, λ)‖2H dt = 0.

4.3.2 The Backward Equation

Here we provide an approximation of the mild solution to system (21). We introduce the following backward SPDE:
{
dz∗(t, λ) = −[−Az∗(t, λ) +R(λ)G∗(R(λ)Φ(t, λ)) + R(λ)(y(t)− yd(t))]dt+Φ(t, λ)dW (t),

z∗(T, λ) = 0,
(30)
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where λ > 0. The process (y(t))t∈[0,T ] is the mild solution of system (11) and (W (t))t∈[0,T ] is a Q-Wiener process
with values in H and covariance operator Q ∈ L(H). The function yd ∈ L2([0, T ];H) is the desired velocity field.
The operators A,R(λ), G∗ are introduced in Section 2.1 and Section 4.2, respectively.

Definition 7. A pair of predictable processes (z∗(t, λ),Φ(t, λ))t∈[0,T ] with values in D(A)×L(HS)(Q
1/2(H);H) is

called a mild solution of system (30) if

sup
t∈[0,T ]

E ‖z∗(t, λ)‖2D(A) <∞, E

T∫

0

‖Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt <∞,

and we have for all t ∈ [0, T ] and P-a.s.

z∗(t, λ) =

T∫

t

e−A(s−t)R(λ)G∗(R(λ)Φ(s, λ))ds +

T∫

t

e−A(s−t)R(λ) (y(s)− yd(s)) ds−
T∫

t

e−A(s−t)Φ(s, λ)dW (s).

Recall that the operators R(λ) and AR(λ) are linear and bounded in H . Hence, existence and uniqueness
results of the mild solution to system (30) can be obtained similarly to [21]. In the following lemma, we state
that the mild solution of system (30) also satisfies a strong formulation, which is an immediate consequence of [1,
Theorem 4.2].

Lemma 11. Let the pair of stochastic processes (z∗(t, λ),Φ(t, λ))t∈[0,T ] be the mild solution of system (30). Then
we have for fixed λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t, λ) =

T∫

t

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds−
T∫

t

Φ(s, λ)dW (s).

We have the following convergence results.

Lemma 12. Let (z∗(t),Φ(t))t∈[0,T ] and (z∗(t, λ),Φ(t, λ))t∈[0,T ] be the mild solutions of system (21) and system
(30), respectively. Then we have

lim
λ→∞

sup
t∈[0,T ]

E ‖z∗(t)− z∗(t, λ)‖2H = 0, lim
λ→∞

E

T∫

0

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0.

Proof. Let I be the identity operator in H . By definition, we have for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t)− z∗(t, λ) =

T∫

t

e−A(s−t)[G∗(Φ(s)) −R(λ)G∗(R(λ)Φ(s, λ))]ds

+

T∫

t

e−A(s−t)[I −R(λ)] (y(s)− yd(s)) ds−
T∫

t

e−A(s−t)[Φ(s)− Φ(s, λ)]dW (s). (31)

Recall that the operator G∗ : L(HS)(Q
1/2(H);H) → H is linear and bounded. Hence, we get for all λ > 0, all
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t ∈ [0, T ] and P-a.s.

z∗(t)− z∗(t, λ) =

T∫

t

e−A(s−t)G∗([I −R(λ)]Φ(s))ds +

T∫

t

e−A(s−t)[I −R(λ)]G∗(R(λ)Φ(s))ds

+

T∫

t

e−A(s−t)R(λ)G∗(R(λ)[Φ(s) − Φ(s, λ)])ds +

T∫

t

e−A(s−t)[I −R(λ)] (y(s)− yd(s)) ds

−
T∫

t

e−A(s−t)[Φ(s)− Φ(s, λ)]dW (s).

Note that the assumptions of Lemma 7 are fulfilled. Thus, inequalities (23) and (24) hold. Let T1 ∈ [0, T ). We
obtain for all λ > 0

sup
t∈[T1,T ]

E ‖z∗(t)− z∗(t, λ)‖2H ≤ 4c(T − T1) [I1(λ) + I2(λ)] , (32)

E

T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt ≤ 4c(T − T1) [I1(λ) + I2(λ)] , (33)

where

I1(λ) = E

T∫

T1

[
‖G∗([I −R(λ)]Φ(t))‖2H + ‖[I −R(λ)]G∗(R(λ)Φ(t))‖2H + ‖[I −R(λ)] (y(t)− yd(t)) ‖2H

]
dt,

I2(λ) = E

T∫

T1

‖R(λ)G∗(R(λ)[Φ(t) − Φ(t, λ)])‖2Hdt.

Using equation (6) and the Lebesgue’s dominated convergence theorem [4, Theorem 2.8.1], we can conclude

lim
λ→∞

I1(λ) = 0. (34)

By inequality (4), there exists a constant C∗ > 0 such that for all λ > 0

I2(λ) ≤ C∗
E

T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt. (35)

Due to inequality (33) and inequality (35), we get for all λ > 0

E

T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt ≤ 4c(T − T1) I1(λ) + 4cC∗(T − T1)E

T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt.

We chose T1 ∈ [0, T ) such that 4cC∗(T − T1) < 1. Thus, we have for all λ > 0

E

T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt ≤
4c(T − T1) I1(λ)
1− 4cC∗(T − T1)

.
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Due to equation (34), we can conclude

lim
λ→∞

E

T∫

T1

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0. (36)

Using inequality (32), inequality (35), equation (34) and equation (36), we have

lim
λ→∞

sup
t∈[T1,T ]

E ‖z∗(t)− z∗(t, λ)‖2H = 0.

By equation (31), we get for all λ > 0, all t ∈ [0, T1] and P-a.s.

z∗(t)− z∗(t, λ) = e−A(T1−t)[z∗(T1)− z∗(T1, λ)] +

T1∫

t

e−A(s−t)[G∗(Φ(s)) −R(λ)G∗(R(λ)Φ(s, λ))]ds

+

T1∫

t

e−A(s−t)[I −R(λ)] (y(s)− yd(s)) ds−
T1∫

t

e−A(s−t)[Φ(s)− Φ(s, λ)]dW (s).

Again, we find T2 ∈ [0, T1] such that

lim
λ→∞

sup
t∈[T2,T1]

E ‖z∗(t)− z∗(t, λ)‖2Hdt = 0, lim
λ→∞

E

T1∫

T2

‖Φ(t)− Φ(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0.

By continuing the method, we obtain the result.

5 Main Results

5.1 Duality Principle

Based on the results provided in the previous sections, we are able to show a duality principle. Since we formulated
a control problem with simultaneous distributed controls and boundary controls, we obtain two equations. The
first equation gives us a relation between the mild solution of system (16) and the mild solution of the adjoint
equation (21). The second equation provides a relation between the mild solution of system (17) and the mild
solution of the adjoint equation (21).

Theorem 5. Let (y(t;u, v))t∈[0,T ] and (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] be the mild solutions of system (11) and system
(21) corresponding to the distributed control u ∈ U and the boundary control v ∈ V , repsectively. Moreover,
let (z1(t; ũ))t∈[0,T ] and (z2(t; ṽ))t∈[0,T ] be the mild solutions of system (16) and system (17) corresponding to the
controls ũ ∈ U and ṽ ∈ V , respectively. Then we have for all α ∈ (0, 1/4)

E

T∫

0

〈y(t;u, v)− yd(t), z1(t; ũ)〉H dt = E

T∫

0

〈z∗(t;u, v), Bũ(t)〉H dt, (37)

E

T∫

0

〈y(t;u, v)− yd(t), z2(t; ṽ)〉H dt = E

T∫

0

〈
A1−αz∗(t;u, v), AαDṽ(t)

〉
H
dt. (38)
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Proof. For the sake of simplicity, we omit the dependence on the controls. First, we prove the result for the
approximations derived in Section 4.3. Let (z1(t, λ))t∈[0,T ] and (z2(t, λ))t∈[0,T ] be the mild solutions of system (25)
and system (26), respectively. Using Lemma 9, we have for all λ > 0, t ∈ [0, T ] and P-a.s.

z1(t, λ) =

t∫

0

(−A)z1(s, λ) +R(λ)Bũ(s)ds+

t∫

0

R(λ)G(R(λ)z1(s, λ))dW (s), (39)

z2(t, λ) =

t∫

0

(−A)z2(s, λ) +AR(λ)Dṽ(s)ds+

t∫

0

R(λ)G(R(λ)z2(s, λ))dW (s). (40)

Next, let the pair of stochastic processes (z∗(t, λ),Φ(t, λ))t∈[0,T ] be the mild solution of system (30). Due to Lemma
11, we get for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t, λ) =

T∫

t

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds−
T∫

t

Φ(s, λ)dW (s). (41)

By definition, the process (z∗(t, λ))t∈[0,T ] is predictable. Hence, we have for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗(t, λ) = E




T∫

0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds

∣∣∣∣∣∣
Ft




−
t∫

0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) + R(λ) (y(s)− yd(s)) ds.

By the martingale representation theorem given by Proposition 6 with (M(t))t∈[0,T ] satisfying for all t ∈ [0, T ] and
P-a.s.

M(t) = E




T∫

0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds

∣∣∣∣∣∣
Ft


 ,

there exists a unique predictable process (Ψ(t, λ))t∈[0,T ] with values in L(HS)(Q
1/2(H);H) such that for all λ > 0,

all t ∈ [0, T ] and P-a.s.

z∗(t, λ) = E




T∫

0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds




−
t∫

0

(−A)z∗(s, λ) +R(λ)G∗(R(λ)Φ(s, λ)) +R(λ) (y(s)− yd(s)) ds+

t∫

0

Ψ(s, λ)dW (s). (42)

Since the pair (z∗(t, λ),Φ(t, λ))t∈[0,T ] satisfies equation (41) uniquely, we can conclude Ψ(t, λ) = Φ(t, λ) for all
λ > 0, almost all t ∈ [0, T ] and P-almost surely. Applying the Itô product formula given by Lemma 4 to equation
(39) and equation (42), we get for all λ > 0, all t ∈ [0, T ] and P-a.s.

〈z1(t, λ), z∗(t, λ)〉H = I1(t, λ) + I2(t, λ) + I3(t, λ) + I4(t, λ),
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where

I1(t, λ) =
t∫

0

[〈z1(s, λ), Az∗(s, λ)〉H − 〈z∗(s, λ), Az1(s, λ)〉H ] ds,

I2(t, λ) =
t∫

0

[
〈R(λ)G(R(λ)z1(s, λ)),Φ(s, λ)〉L(HS)(Q1/2(H),H) − 〈z1(s, λ), R(λ)G∗(R(λ)Φ(s, λ))〉H

]
ds,

I3(t, λ) =
t∫

0

〈z∗(s, λ), R(λ)Bũ(s)〉H ds−
t∫

0

〈z1(s, λ), R(λ) (y(s)− yd(s))〉H ds,

I4(t, λ) =
t∫

0

〈z1(s, λ),Φ(s, λ)dW (s)〉H +

t∫

0

〈z∗(s, λ), R(λ)G(R(λ)z1(s, λ))dW (s)〉H .

By definition, we have z∗(T, λ) = 0 for all λ > 0 and P-almost surely. Hence, we obtain for all λ > 0 and P-a.s.

0 = I1(T, λ) + I2(T, λ) + I3(T, λ) + I4(T, λ). (43)

Since the operator A is self adjoint, we have for all λ > 0 and P-a.s.

I1(T, λ) = 0. (44)

Recall that the operator R(λ) is self adjoint on H . Using equation (22), we obtain for all λ > 0 and P-a.s.

I2(T, λ) = 0. (45)

By equations (43) – (45) and E I4(T, λ) = 0 for all λ > 0, we get for all λ > 0

0 = E I3(T, λ).

Hence, we have for all λ > 0

E

T∫

0

〈R(λ)z1(t, λ), y(t)− yd(t)〉H dt = E

T∫

0

〈R(λ)z∗(t, λ), Bũ(t)〉H dt. (46)

Next, we show that the left hand side and the right hand side of equation (46) converge as λ → ∞. By the
Cauchy-Schwarz inequality and inequality (4), we have for all λ > 0

∣∣∣∣∣∣
E

T∫

0

〈z1(t), y(t)− yd(t)〉H dt− E

T∫

0

〈R(λ)z1(t, λ), y(t) − yd(t)〉H dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣
E

T∫

0

〈[I −R(λ)]z1(t), y(t)− yd(t)〉H dt

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣
E

T∫

0

〈R(λ)(z1(t)− z1(t, λ)), y(t) − yd(t)〉H dt

∣∣∣∣∣∣

2

≤ 4


E

T∫

0

‖y(t)‖2H dt+

T∫

0

‖yd(t)‖2H dt





E

T∫

0

‖[I −R(λ)]z1(t)‖2H dt+ E

T∫

0

‖z1(t)− z1(t, λ)‖2H dt


 .
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Using equation (6), Lebesgue’s dominated convergence theorem [4, Theorem 2.8.1] and Lemma 10, we can conclude

lim
λ→∞

E

T∫

0

〈R(λ)z1(t, λ), y(t) − yd(t)〉H dt = E

T∫

0

〈z1(t), y(t)− yd(t)〉H dt. (47)

Recall that the operator B : H → H is bounded. Similarly as above, there exists a constant C∗ > 0 such that for
all λ > 0

∣∣∣∣∣∣
E

T∫

0

〈z∗(t), Bũ(t)〉H dt− E

T∫

0

〈R(λ)z∗(t, λ), Bũ(t)〉H dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣
E

T∫

0

〈[I −R(λ)]z∗(t), Bũ(t)〉H dt

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣
E

T∫

0

〈R(λ)(z∗(t)− z∗(t, λ)), Bũ(t)〉H dt

∣∣∣∣∣∣

2

≤ C∗


E

T∫

0

‖ũ(t)‖2H dt





E

T∫

0

‖[I −R(λ)]z∗(t)‖2H dt+ sup
t∈[0,T ]

E ‖z∗(t)− z∗(t, λ)‖2H


 .

By equation (6), Lebesgue’s dominated convergence theorem [4, Theorem 2.8.1] and Lemma 12, we can infer

lim
λ→∞

E

T∫

0

〈R(λ)z∗(t, λ), Bũ(t)〉H dt = E

T∫

0

〈z∗(t), Bũ(t)〉H dt.

We conclude that the left hand side and the right hand side of equation (46) converge as λ→ ∞ and equation (37)
holds.

Next, we show that equation (38) holds. Again, we apply Lemma 4 to equation (40) and equation (42). Similarly
to equation (46), we find for all λ > 0 and all α ∈ (0, 1/4)

E

T∫

0

〈R(λ)z2(t, λ), y(t)− yd(t)〉H dt = E

T∫

0

〈
R(λ)A1−αz∗(t, λ), AαDṽ(t)

〉
H
dt. (48)

Similarly to equation (47), we can conclude

lim
λ→∞

E

T∫

0

〈R(λ)z2(t, λ), y(t) − yd(t)〉H dt = E

T∫

0

〈z2(t), y(t)− yd(t)〉H dt.

Recall that the operator AαD : V 0(∂D) → H is bounded for all α ∈ (0, 1/4). Hence, the process (AαDṽ(t))t∈[0,T ]

takes values in H such that E
∫ T

0 ‖AαDṽ(t)‖2Hdt < ∞. Since D(A1−α) is dense in H , there exists a sequence of

processes (vm(t))t∈[0,T ], m ∈ N, taking values in D(A1−α) such that E
∫ T

0 ‖vm(t)‖2D(A1−α)dt < ∞ for each m ∈ N

and

lim
m→∞

E

T∫

0

‖AαDṽ(t)− vm(t)‖2Hdt = 0.

Due to Proposition 7, the process (z∗(t))t∈[0,T ] takes values in D(A1−α) for all α ∈ (0, 1/4). By equation (5),
Lemma 2, the Cauchy-Schwarz inequality, inequality (4) and Fubini’s theorem, there exists a constant C∗ > 0 such
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that for all λ > 0, all α ∈ (0, 1/4) and each m ∈ N

∣∣∣∣∣∣
E

T∫

0

〈
A1−αz∗(t), vm(t)

〉
H
dt− E

T∫

0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣
E

T∫

0

〈
[I −R(λ)]z∗(t), A1−αvm(t)

〉
H
dt

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣
E

T∫

0

〈
R(λ)(z∗(t)− z∗(t, λ)), A1−αvm(t)

〉
H
dt

∣∣∣∣∣∣

2

≤ C∗


E

T∫

0

‖vm(t)‖2D(A1−α) dt





E

T∫

0

‖[I −R(λ)]z∗(t)‖2H dt+ sup
t∈[0,T ]

E ‖z∗(t)− z∗(t, λ)‖2H


 .

Using equation (6), Lebesgue’s dominated convergence theorem [4, Theorem 2.8.1] and Lemma 12, we can infer for
each m ∈ N

lim
λ→∞

E

T∫

0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt = E

T∫

0

〈
A1−αz∗(t), vm(t)

〉
H
dt.

Due to the Moore-Osgood theorem [32, Theorem 7.11], we get

lim
λ→∞

E

T∫

0

〈
R(λ)A1−αz∗(t, λ), AαDṽ(t)

〉
H
dt = lim

λ→∞
lim

m→∞
E

T∫

0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt

= lim
m→∞

lim
λ→∞

E

T∫

0

〈
R(λ)A1−αz∗(t, λ), vm(t)

〉
H
dt

= E

T∫

0

〈
A1−αz∗(t), AαDṽ(t)

〉
H
dt.

We conclude that the left hand side and the right hand side of equation (48) converge as λ→ ∞ and equation (38)
holds.

5.2 The Optimal Controls

Based on the optimality conditions given by equation (19) and equation (20), we deduce formulas of the optimal
controls using the duality principle derived in the previous theorem.

Theorem 6. Let (z∗(t;u, v),Φ(t;u, v))t∈[0,T ] be the mild solution of system (21) corresponding to the controls

u ∈ U and v ∈ V . Then the optimal controls u ∈ U and v ∈ V satisfy for all α ∈ (0, 14 ), almost all t ∈ [0, T ] and
P-a.s.

u(t) = − 1

κ1
B∗z∗(t;u, v), (49)

v(t) = − 1

κ2
K∗A1−αz∗(t;u, v), (50)

where B∗ ∈ L(H) and K∗ ∈ L(H ;V 0(∂D)) are the adjoint operators of B ∈ L(H) and K = AαD ∈ L(V 0(∂D);H),
respectively.
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Proof. Let (y(t;u, v))t∈[0,T ] and (z1(t;u))t∈[0,T ] be the mild solutions of system (11) and system (16) corresponding
to the controls u ∈ U and v ∈ V , respectively. Using equation (19) and Theorem 4, the optimal control u ∈ U
satisfies for every ũ ∈ U

E

T∫

0

〈y(t;u, v)− yd(t), z1(t; ũ)〉H dt+ κ1 E

T∫

0

〈u(t), ũ(t)〉H dt = 0.

By Theorem 5, we obtain for every ũ ∈ U

E

T∫

0

〈z∗(t;u, v), Bũ(t)〉H dt+ κ1 E

T∫

0

〈u(t), ũ(t)〉H dt = 0.

Hence, we get for every ũ ∈ U

E

T∫

0

〈B∗z∗(t;u, v) + κ1 u(t), ũ(t)〉H dt = 0.

Therefore, the optimal control u ∈ U satisfies equation (49) for almost all t ∈ [0, T ] and P-almost surely.
Let (z2(t; v))t∈[0,T ] be the mild solution of system (17) corresponding to the control v ∈ V . Due to equation

(20) and Theorem 4, the optimal control v ∈ V fulfills the following equation for every ṽ ∈ V :

E

T∫

0

〈y(t;u, v)− yd(t), z2(t; ṽ)〉H dt+ κ2 E

T∫

0

〈v(t), ṽ(t)〉V 0(∂D) dt = 0.

By Theorem 5, we have for all α ∈ (0, 14 ) and every ṽ ∈ V

E

T∫

0

〈
A1−αz∗(t;u, v), AαDṽ(t)

〉
H
dt+ κ2 E

T∫

0

〈v(t), ṽ(t)〉V 0(∂D) dt = 0.

Hence, we get for all α ∈ (0, 14 ) and every ṽ ∈ V

E

T∫

0

〈
K∗A1−αz∗(t;u, v) + κ2 v(t), ṽ(t)

〉
V 0(∂D)

dt = 0.

Therefore, the optimal control v ∈ V satisfies equation (50) for all α ∈ (0, 14 ), almost all t ∈ [0, T ] and P-almost
surely.

Remark 3. Let us denote by (y(t))t∈[0,T ] and (z∗(t),Φ(t))t∈[0,T ] the mild solutions of system (11) and system (21)
corresponding to the optimal controls u ∈ U and v ∈ V , respectively. As a consequence of the previous theorem, the
optimal controls can be computed by solving the stochastic boundary value problem imposed by the following system
of coupled forward-backward SPDEs:





d y(t) =

[
−Ay(t)− 1

κ1
BB∗z∗(t)− 1

κ2
ADK∗A1−αz∗(t)

]
dt+G(y(t))dW (t),

d z∗(t) = −
[
−Az∗(t) +G∗

(
Φ(t)

)
+ y(t)− yd(t)

]
dt+Φ(t)dW (t),

y(0) = ξ, z∗(T ) = 0.

(51)

As a next step, computational methods for solving system (51) need to be developed.
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6 Conclusion

In this paper, we considered a control problem constrained by the stochastic Stokes equations on connected and
bounded domains with linear multiplicative noise, where controls are defined inside the domain as well as on the
boundary.

We proved an existence and uniqueness result for the mild solution of the stochastic Stokes equations dependent
on inhomogeneous tangential boundary conditions. Based on the Fréchet derivative of the cost functional, we stated
necessary and sufficient optimality conditions the optimal distributed control as well as the optimal boundary
control have to satisfy. Using the adjoint equation given by a backward SPDE, a duality principle was derived
such that we deduced explicit formulas for the optimal controls. As a consequence, the optimal velocity field can
be obtained by solving a system of coupled forward-backward SPDEs.

For engineering applications to control problems of fluid dynamics, the inflow is often used as a boundary
control, see [30] and the references therein. These boundary controls can not be covered by tangential boundary
conditions and thus remain as an open problem.
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