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Introduction

The accuracy of atmospheric numerical models has steadily improved with increases in
resolution. This has been the case for the relatively high resolution weather prediction modes as
well as for the lower resolution climate models. Consequently any new technique that offers
increased efficiency of numerical models without loss of accuracy is of considerable interest for
both applications. One such technique is a semi-Lagrangian treatment of advection which offers
a potential economical advantage by eleminating the normal advective Courant-Friedrichs-Lewy
(CLF) time—step restriction. In principle, the time—step in a semi—Lagrangian model can be cho—
sen based on accuracy considerations.

The semi—Lagrangian advection offers additional advantages beyond the longer time-step. It
gives minimal phase error, minimizes computational dispersion, can handle sharp discontinues
and furthermore desirable properties such as monotonicity or, more generally, shape
preservation may easily be incorporated.

A disadvantage is that the smallest scales resolved may be damped more by semi—Lagrangian
methods than by some Eulerian methodsHowever, this seems not to be a serious issue as it can
be counteracted by a reduction or elimination of horizontal diffusion. A more serious
disadvantage of semi—Lagrangian schemes to date is that they do not formally conserve integral
invariants as total mass and total energy. This may not be a problem in weather forecasting
applications. For long simulations in climate applications, however, lack of conservation could
have serious consequences. The total mass, for instance, could drift enough in long simulations
that the mean surface pressure error might begin to seriously affect the simulation.
Conservation of total mass may be obtained by a "mass—fixer" which after each time—step set
the area avaraged surface pressure equal to the initial value. This prevents a drift of the mean
surface pressure, but the loss or gain of total mass is compensated by adding or removing
abitrarily the same amount of mass everywhere instead of at the correct geographical positions.
How serious the non—conservation of mass may affect a long term integration in unclear.
However, it might be caused by errors which are locally large and systematic in specific types
of pressure patterns, in which case it might significanctly affect the internal dynamics of a
model even when a drift in the mean pressure is prevented by a mass-fixer.

Currently semi-Lagrangian advection approximations are beeing incorporated into many
numerical weather prediction models and at two centres, the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the Canadian Meteorological Center (CMC), semi-



Lagrangian global spectral models have already been used operationally for some time. The
increased efficiency of semi-Lagrangian models has allowed both centers to increase their
operational spatial resolution. At ECMWF, for instance, their global spectral model is now run
at a T213/L3l resolution. Here the semi-Lagrangian model version is permitting a 15 minute
time—step which is a fivefold increase in time-step relative to that required in an Eulerian model
with similar resolution. A resulting efficiency improvement of about a factor 4 has been
obtained.

These developments in numerical weather prediction had been followed with interest here at
MP1. The aim of the present workshop was to get up—to-date informations on the state of
development and to initiate investigations of the fisability of introducing the semi—Lagrangian
advection also in the global spectral model, ECHAM, used for climate simulations at MP1.

It had been decided already that, for the sake of incrased accuracy, the shape preserving semi-
Lagrangian advection, developed at the National Center for Atmospheric Research (NCAR) by
Williamson and Rasch, should be implemented for the advection of water and chemical consti-
tuents in a new version of the model, ECHAM4, which were currently under development. The
question was whether a complete change including also the incorporation of semi—Lagrangian
advection for the remaining variables should be made in a future version of the climate model. It
was realized that the gain in efficiency from incorporating semi—Lagrangian advections in a low
resolution climate model may be less dramatic due to restrictions of the time-steps over which
physical parameterizations may be used without loss of accuracy.

To discuss these issues a representative from each of the three centres CMC, ECMWF and
NCAR was invited to participate in the workshop.

The three scientists invited were

Harold Ritchie, CMC,

Clive Temperton, ECMWF, and
Dave Williamson, NCAR.

They had been the key persons in the development of the semi—Lagrangian model versions at
there respective centres. Beside beeing the central person in the development of the semi—'
Lagrangian model at CMC Harold Ritchie had contributed actively also to the development of
the ECMWF model.



The ECMWF and CMC models are rather similar in design. The main differences are between
these two models and the semi-Lagrangian version of the NCAR Community Climate Model
(CCM2). As mentioned above one area of concern with the semi—Lagrangian approach is the
lake of a priori conservation of integral invariants. In the NCAR model special case has been
taken in retaining a consistency between the terms involved in the conversion between kinetic
and potential energy as well as a consistency between the descrete continuity equation and the
vertical motions influencing the energy conversion. The NCAR models were developed for use
in climate simulations and included "fixers" to guarantee conservation of the mass of dry air
and, in the absence of sources and sinks, the mass of water vapor.

Papers were presented by the three invited guests and by Bennett Machenhauser, MPI. In the
latter paper an alternative semi-Lagrangian model design were layed out for discussion. The
basic idea behind the design was an application of a so called cell-integrated semi-Lagrangian
approach to Lagrangian forms derived from the complete set of primitive equations. The model
design presented would ensure exact conservation of mass, total energy, enstrophy and angular
momentum .
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Conclusions of discussions

Following the presentations on the first day of the workshop a round-table discussion were
held on the second day with the participants (explecitely) mentioned in the list above.

It was concluded that the operational semi—Lagrangian models developed at CMC and ECMWF
seemed to work satisfactory in weather forecast mode. Control Eulerian forecasts with a short
time-step and semi—Lagrangian forecasts with relatively long time—steps had been found to give
almost equivalent accuracy. So far they had not been tested in climate mode, i.e. with lower
resolution in very long term integrations. The semi—Lagrangian version of the CCM2 had been
developed at NCAR for applications in climate research, but so far it had been tested only in
relatively short term integrations.

It was decided to initiate coordinated experiments with the semi-Lagrangian schemes currently
available at the three centres in order to test the suitability for the use in climate simulations.
Each center should perform two five year integrations, an Eulerian control integration and a
semi-Lagrangian integration, with similar resolution and sea—surface temperature (SST). CMC
would run its model at resolution T63/L20, NCAR would run the CCM2 at T42/L18 and
ECMWF would run at T63/Ll9. Annual—cycle climatological SST's and sea-ice distributions
(AMIP) should be used and mass conservation would be (approximately) enforced by fixing
the horizontal mean of In ps (pg beeing the surface pressure). The results obtained from the
ECMWF experiments should be analysed at MP1.

The cell-integrated semi—Lagrangian scheme proposed by Machenhauer were found intriguing
and it was recommended that this work should be continued as intended with tests of the
scheme at first in a shallow water model. A coorporation'might be established with Rene
Laprice and his student Andre Plante at the University of Quebec in Montreal who
independently had developed and tested cell—integrated semi—Lagrangian schemes for horizontal
advection of a passive scalar.





Examples of Semi-Lagrangian Advection Alternatives

Harold Ritchie

Recherche en Prévision Numérique
Atmospheric Environment Service
Dorval, Quebec, Canada H9P 113

Introduction

By way of introduction and to set the stage for the following presentattions, here, we
start by reviewing the steps that we have followed in applying the semi—Lagrangian advection
scheme to spectral models. In particular, examples of some advection alternatives will be
highlighted, and we will conclude with a discussion of a cell-integrated transport scheme
which is being examined by Laprise and Plante at L'Université du Quebec a Montreal for
possible use in climate models, and which may be relevant for the conserving semi—
Lagrangian formulations being developed here at the Max Planck Institute.

The efficiency advantage of the semi-Lagrangian semi-implicit scheme was
demonstrated a decade ago by Andre Robert (1981, 1982) in the context of grid point models
of the shallow water equations. Since that time considerable work has been done in applying
the method in baroclinic models, and several centres are now using it in operational weather
forecasting models. The first step for spectral models was to examine the semi-Lagrangian
treatment of advection on the gaussian calculation grid used in such models (Ritchie, 1987),
which addressed the geometric and linear stability questions. The next step was to combine
the semi—Lagrangian approach with the semi-implicit scheme to get a stable treatment of both
Rossby and gravity waves in a spectral model of the shallow water equations (Ritchie,
1988). The extension to baroclinic models was then examined through an application to a
multilevel spectral primitive equations model, where several issues related to vertical
discretizations were addressed (Ritchie, 1991). Following further optimization, semi-

Lagrangian semi-implicit spectral models have now been implemented at the Canadian
Meteorological Centre and ECMWF. Work is currently in progress to use lower resolution
versions of these models in dynamic extended range forecasting and in climate simulations.



Semi-Lagrangian AdvectioEn on a Gaussian Grid

Here we review the characteristics of two types of semi—Lagrangian advection that

were applied to this problem of solid body rotation (Ritchie, 1987) . In this and subsequent

sections the figure numbering is not necessarily consecutive, as the numbers refer to the

figures as published in the corresponding articles. A schematic diagram showing the

experiment configuration is shown in Fig. 1. We consider rotation with constant angular

velocity about an axis passing through the center of the earth and a point P' on the earth's

surface. To facilitate the interpretation of the results we introduce a stereographic plane

which is tangent to the earth's surface at P'. Since the motion corresponds to solid body

rotation about P', when viewed in this plane the advected field should simply rotate around

P' without any distortion. NP is the projection in the stereographic plane of the north pole

of the gaussian grid, EQ is the projection of the equatorial point E, and the X-axis of the

stereographic (X,Y) plane is also indicated. The analytic solution is centred over EQ initially

and its center passes over NP after half a revolution. The initial field is chosen to be a

"Gaussian hill" function which has a peak value of 100 units at its center and decays towards

zero with a gaussian profile with a length scale of L, which is approximately the diameter of

the contour whose value is 10 percent of the peak value. The angular velocity is chosen to

correspond to one rotation in 20 days, which gives a typical synoptic scale advecting velocity

of 16.4 m/s through points E and N shown in Fig.1. A stereographic map of an analytic

solution with L=2500 km after one rotation is shown in Fig.5.

An Eulerian spectral model was used to solve the solid body rotation problem. The

spectral representation used triangular truncation with a maximum wavenumber N = 42,

requiring 128 gridpoints in the longitudinal direction and 64 gridpoints in the latitudinal

direction to avoid quadratic aliasing. The Courant—Friedrichs—Lewy (CFL) stability limit for

this configuration restricts the time step to 1.82 h. For convenience, the time step for the

Eulerian spectral model integrations was chosen to be 1.5 h. The Eulerian model numerical

solution corresponding to Fig.5 is shown in Fig.6 and the error (analytic-numerical) field is
shown in Fig.7. We note that the dispersion associated with Eulerian model time truncation

error has caused a noticeable distortion in the numerical solution, resulting in a downstream

wake in the error pattern. Here the maximum absolute error value is in excess of 25 units.

Semi-Lagrangian schemes using high-order interpolation have much smaller

dispersion errors than Eulerian schemes. This can be illustrated by an interpolating semi—



FIG. 1. Schematic diagram showing the experiment configuration.
Labelled points are described in the text.

FIG. 5. Analytic solution at 480 h. L = 2500 km. Latitude and
longitude lines are drawn every |0 deg. Contour interval 20 units.
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FIG. 7. Error in Eulerian spectral solution at 480 h. L = 2500 km.
Dashed contours indicate negative values. Contour interval 10 units.
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Lagrangian model solution of the solid body rotation problem. The model grid and

parameters were the same as those used for the Eulerian spectral model except that the time

step was six hours, which is four times that used by the Eulerian spectral model and violates
the CFL stability limit by a factor of roughly 3.3. The numerical solution is shown in Fig.9,

and the error field is presented in Fig. 10. As indicated by the concentric shape of the error

pattern, the semi-Lagrangian scheme gives a much more accurate treatment of the phase

speed of the solution. Also, the maximum value of the error is about 16 units, which is

much less than for the corresponding Eulerian field (Fig.7). However, the error pattern also

shows clear evidence of damping due to the spreading out of the field as a result of

interpolation errors.

There is another version of the semi-Lagrangian scheme which does not require

interpolation in order to pick off the upstream values of the field being advected. This

scheme does not suffer from significant damping errors, but retains the attractive stability

property. The numerical solution produced using a model with this scheme is shown in

Fig. 11 and the error field in Fig.12. The model grid and truncation were the same as those

used for the the Eulerian spectral model, and the time step was 6 hours as in the interpolating

semi-Lagrangian model. The maximum absolute error value in Fig.12 is just over 2.5 units,

which is much less than the corresponding error fields (Figs.7 and 10) for the other two

models. Although the 10 unit contour in Fig.11 indicates some slight distortion due to the

phase speed error, comparing to Fig.6 and Fig.7 shows that the phase error for this length

scale is much less than with the Eulerian model. Also, in Fig.12 there is no evidence of the

concentric error pattern associated with damping as in the corresponding interpolating semi-

Lagrangian integration (Fig. 10).

In order to provide a more systematic and quantitative intercomparison, all three

models were run with initial fields having length scales L = 10000 km, 5000 km, and 2500

km. The grid and model parameters were the same as already outlined. The errors at various

times were calculated by by comparing with the analytic solution and, as a measure of the

accuracy in each case, the integral of the absolute value of these errors was expressed as a

percent of the integral of the analytic solution, Table 1 contains the percentage errors for each

case at 120, 240, 360 and 480 h, which corresponds to one full rotation of the analytic

solution. It is seen that all three models perform very well for L = 10000 km, with the

noninterpolating semi—Lagrangian version being slightly poorer than the other two. For this

length scale, the field is well resolved by all models, so there is very little dispersion or

damping error. As the length scale is reduced, there is a marked deterioration in the

-11-



FIG. 10. As in Fig. 7 except for interpolating semi-Lagrangian model
and contour interval 5 units.
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FIG. l 1. As in Fig. 6 except for noninterpolating
semi-Lagrangian model.
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FIG. l2. As in Fig. 7 except for noninterpolating semi—Lagrangian
model and contour interval 5 units.
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performance of the Eulerian model due to the increased dispersion as discussed earlier. The

performance of the interpolating semi-Lagrangian model deteriorates less, altough the

damping becomes noticeable for the short scales. At short scales, the noninterpolating semi-

Lagrangian model gives the best overall performance because it has less dispersion than the

Eulerian model and less damping than the interpolating semi-Lagrangian model.

This demonstrates that the semi-Lagrangian scheme can be stably and accurately

applied to treat advection on the Gaussian grid with time steps that far exceed the CFL limit

for the Eulerian spectral model. The interpolating and the noninterpolating versions both

compare favourably with the Eulerian one in terms of accuracy, and the noninterpolating

scheme seems to have some advantage for the treatment of short scales.

TABLE 1. Error results for the model intercomparison as explained
in the text. EUL denotes the Eulerian spectral model (time step 1.5
h), lLS denotes the interpolating semi-Lagrangian model (time step
6 h), and NISL denotes the noninterpolating semi-Langmngian mode]
(time step 6 h). The errors are expressed in percent.

Prognosis
(h)

(km) Model 120 240 360 480

10000 EUL 0.22 0.34 0.55 0.68
10000 ISL 0.18 0.35 0.52 0.70
10000 NISL 0.31 0.55 0.77 1.01

5000 EUL 1.55 2.73 4.24 5.48
5000 ISL 0.57 0.96 1.36 1.90
5000 NISL 0.62 1.05 1.31 1.67

2500 EUL 15.2 26.4 38.0 48.2
2500 ISL 6.31 8.02 10.6 15.2
2500 NISL 4.71 6.44 8.08 9.72

_14_



An Energy Conservation Example

An example of the energy conservation properties of the semi-implicit semi-
Lagrangian schemes is found in the application of the semi-Lagrangian method to a spectral
model of the shallow water equations. In order to examine this question, the interpolating
and noninterpolating semi-Lagrangian models were run out to 20 days with a 60 min time
step at resolutions of T63 (triangular 63—wave truncation) and T126. The interpolating model
had no filters, while the noninterpolating one had a Robert time filter with a weak coefficient
of 0.04 at T63 and 0.02 at T126 (using the definition as given in the analysis by Asselin
1972). The evolutions of the potential energy per unit mass (P), the kinetic energy per unit
mass (K), and the total energy (T = P + K) are presented in Fig.10 for the T63 runs and

Fig.11 for the T126 runs. The energies for each run are expressed as a percentage of the
initial total energy for the run. Here the solid curves are for the noninterpolating model and
the long dashed curves are for the interpolating one. As an indication of the energy
conservation behaviour that is considered to be acceptable in typical medium range forecasts,
the Eulerian model was run at a resolution of T106 with a time step of 12 min, and a fourth
order spectral diffusion with a coefficient of 10**15 m**4/s was applied to the vorticity,
divergence, and perturbation geopotential. The evolutions of P, K and T for this model are
given by the short dashed curves in Figs. 10 and 11. At all resolutions, all models have very
similar evolutions of potential energy and the models appear to be evolving towards a state of
equipartition of kinetic and potential energy. For the T106 Eulerian run, the loss in total
energy after 20 days is about 3%. At the lower resolution (T63, Fig.10) the decay of kinetic
energy for the interpolating model is a little excessive, resulting in a loss of about 5% in total
energy, while the noninterpolating model conserves total energy to within about 1%. At the
higher resolution (T126, Fig. l 1), the effect of damping in the interpolating scheme is much
smaller and both semi-Lagrangian models conserve total energy to within about 1%. Note
that the two seim-Lagrangian models are almost indistinguishable (the solid and long dashed
curves almost superimpose) in this figure, and both give better energy conservation than the
T106 Eulerian model (short dashed curve). All these runs have good mass conservation

characteristics, conserving mean perturbation geopotential to within half a percent.

_15_
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FIG. 10. Evolution ofpotential (P), kinetic (K), and total (T) energy
in 20 day T63 integrations as discussed in text. Solid curves are for
the noninterpolating semi-Lagrangian model. and long dashed curves
are for the interpolating one. Short dashed curves give evolution for
T106 Eulerian model with diffusion and are included to indicate
behavior in typical medium range forecasts. Energies are expressed
as a percentage of the initial total energy for the run.
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FIG. 11. As in Fig. 10 except for T126 integrations.
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Example from a Multilevel Spectral Model

These semi-Lagrangian advection alternatives also proved to be relevant in applying
the semi-Lagrangian semi-implicit method to a multilevel spectral primitive equations model.
This can be illustrated by intercomparison tests that were performed during the course of this
work.

The integrations started from a FGGE analysis valid at 12 UTC 12 February 1979.
Nonlinear normal mode initialization was used, and in subsequent intercomparisons

involving semi-Lagrangian models with large time-steps, it was found that initialization was
important for good agreement between models, particularly during the first two days.
Hemispheric integrations were performed with a triangular 79-wave truncation and 20
equally spaced sigma levels ranging from 0.05 at the top to 1.0 at the surface. As in Daley et
al. (1976), the physical processes included Cressman's (1960) drag formulation in the lowest
layer, a moist convective adjustment based on the principles of Manabe et al. (1965), and
orographic effects. Vertical momentum diffusion was included in the top layer. A Robert
time filter (with a coefficient of 0.1 using the definition given in the analysis by Asselin
1972) and a sixth order horizontal diffusion with a coefficient of 10**26 were applied.

The first step in applying the semi-Lagrangian method to the starting model was to
convert it from a vorticity-divergence formulation (QDEUL) to a vector momentum equation
formulation (UVEUL). In terms of the horizontal discretization, these two models are
algebraically equivalent. However, they differ somewhat in terms of their vertical
discretization. The two versions were integrated using a time-step of 12 min which respects
the CFL limit. The changes in vertical discretization cause some differences which warraant
quantitative evaluation. This is presented in Fig.4, which shows the evolution of the root-
mean-square (r.m.s.) differences between the two runs. The results are in metres and are
presented for 10 equally spaced pressure levels, varying from 100 mb at the top to 1000 mb
at the bottom of the figure, and at 12—hour intervals, from 0 hours at the left to 5 days at the
right of the figure. The differences are greatest at the top and descend gradually during the
integrations, reaching values of around 10 m at mid-atmospheric levels after 5 days.

The next step was to convert the Eulerian formulation to one that uses the
interpolating semi—Lagrangian approach in the horizontal, while retaining the Eulerian
treatment of the vertical advection. In order to test the stability and accuracy of this 2DISL
model, the time step was increased to 20 min and the 120 hour forecast was performed. The

_17_
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evolution of the r.m.s. differences compared with the UVEUL model is shown in Fig.6,

with values in the 10-15 m range in the mid atmosphere at 120 hours.

In addition to the CFL limit associated with the horizontal advection, there is also one

associated with vertical advection. An attempt was made to increase the time step to 30 min

with the 2DISL model, but the integration failed, apparently because of a violation of the

vertical CFL criterion. This illustrates the fact that, in order to avoid the vertical CFL limit in

models that have high vertical resolution to support a sophisticated boundary layer physical

parameterization, it is necessary to use fully 3-dimensional semi-Lagrangian treatments

(3DISL). The 120 hour forecast was repeated with the 3DISL scheme using a 20 min time

step, and the evolution of the r.m.s. differences with respect to the UVEUL model is

presented in Fig.7. The most striking feature here is the large differences that develop in the

upper atmosphere early in the integration and then spread downwards, contaminating the

whole domain. A closer examination of the model outputs suggested that this is a

consequence of excessive vertical smoothing of the fields in the vicinity of the tropopause,

where all of the model fields change abruptly in the vertical. In order to clearly identify the

problem as originating from the vertical interpolation of the tropopause, a test was performed

with a 2-1/2-dimensional semi-Lagrangian (2-1/2DISL) version that uses the 3DISL scheme

around the tropopause (i.e. for sigma = 0.20, 0.25, 0.30, 0.35) and the 2DISL scheme

elsewhere. The 120 hour forecast was repeated with this 2-1/2DISL model using a 20 min
time step, and the evolution of the r.m.s. differences with respect to the 2DISL model with a
20 min time step is shown in Fig.8. The results show that, at least for the Lagrange cubic

interpolator and the resolution used here, vertical interpolation of the fields around the

tropopause introduces a large difference that spreads upwards and downwards during the

integration.

As we saw earlier, one way of avoiding the excessive damping arising from

interpolating rapidly varying fields is to modify the semi-Lagrangian scheme to use the
noninterpolating approach. It was decided to apply this approach to the vertical advection,
while retaining the 2DISL treatment in the horizontal. The resulting method is referred to as
noninterpolating semi-Lagrangian in the vertical (NISLV). In order to test the stability and
accuracy of this NISLV model, the time step was increased to 40 min and the 120 hour
forecast was performed. The evolution of the r.m.s. differences with respect to the UVEUL
run in Fig.10 shows that at each level the difference grows roughly linearly in time, and
reaches mid—atmospheric levels of about 15 in after 5 days, confirming that the NISLV model

produces stable and accurate results with a time step that far exceeds the CFL stability limit

-19-
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Fig. 6 As in Fig. 4 except for 2 DISL model with 20 min timcstep versus UVEUL model with
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Fig. 12 As in Fig. 4 except for NISLV model with 60 min timestep versus UVEUL model with
12 min timestep.
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for the corresponding Eulerian model. The time step was further increased to 60 min,
producing r.m.s. differences with respect to the UVEUL model shown in Fig.12. The
model remains stable, but the r.m.s. differences indicate a marginal accuracy at this time step,
with mid-atmospheric differences of about 20 m after 5 days.

Transport by Cell-Integrated Semi-Lagrangian Schemes (SLIC)

The advection alternatives that we have considered so far use simple Lagrange cubic
interpolators. It has been illustrated that the associated interpolating semi-Lagrangian
formulation has some difficulty in handling features with sharp gradients relative to the model
resolution. This has impacts for the conservation properties of the models, which are of
some concern, especially in the context of long term integrations at relatively low resolution,
such as climate simulations. For this reason, tests have been performed with other types of
interpolators which suffer less from some of these deficiencies (e. g., Williamson and Rasch,
1989). Work is currently in progress to develop perfectly conserving semi-Lagrangian
transport schemes, and to incorporate them in perfectly conserving model formulations. In
this section we will consider one such scheme which might be appropriate for the conserving
model formulation being examined here at the Max Planck Institute. This material is taken
from a masters thesis being prepared by Andre Plante (1992) under the supervision of Rene
Laprise at l'Université du Quebec '21 Montreal. Their permission and cooperation are
gratefully acknowledged.

The conventional starting point for semi—Lagrangian formulations is to express the
model equations in Lagrangian or total derivative form. For the cell-integrated semi-
Lagrangian scheme the equations are first recast in a conservative or flux form, which is then
volume integrated and simplified using Leibniz' and Gauss' theorem to give the total
derivative of a volume integral. The surface (henceforth referred to as the "membrane")
bounding the volume element moves in time. The position of the membrane is tracked using
the classical semi-Lagrangian trajectory calculation algorithm. For the transport equation,
perfect conservation is imposed by ensuring that the total mass within the membranes is
constant as the volume elements move from one time step to the next. Two versions of the
scheme are examined. In the upstream version, the volume element corresponds to a grid
volume at forecast time and the membrane is traced backwards over one time step (see
Fig.3.2 for a 2-D illustration); in the downstream version the volume element corresponds to
a grid volume at the previous time step, and the membrane is projected forward over one time

_23_



t+At

Y//
/ /54522/ X

t-At

p.—
X

/ J/o/x/j/
p—

X

Figure 3.2. Grille de calcul du SLIC amont ä t—At (grille du bas) et L+At (grille du haut).
Le rectangle mete sur la grille du haut représente la tuile i,j. Lye tétragone Lireté sur la
grille du bas illustre la surface d’amont de 1a tuile i‚j sur laquelle i1 faut intégrer la
distribution de 1a densité pour obtenir 1a valeur au point de grille i,j a t+AL Les points
P1 21 P4 défmissent 18. surface d'amom.

Figure 3.10. Surfaces d’amont obtenues avec l’écoulernent de type courantjet.
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Flgure 3.16. Illustration des surfaces aval pour 16 test du couranl jeLToutes les surfaces
sont rectanguiajres. Notez le chevauchement et les trous are les surfaces. Pour une
Illustration des venls qui ont produil ccs surfaces. voir la figure 3.9.
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step (see Fig.3.l4 for a 2-D illustration). For the two-dimensional problem, the upstream

scheme is equivalent to Rancic's (1992) piecewise biparabolic scheme.

In order to test the these schemes, two-dimensional transport problems were solved.

The initial mass distribution is shown in Fig.3.8 and the streamfunction corresponding to the

transporting "jet" flow is shown in Fig.3.9. The configuration of the upstream membranes

for the upstream version is shown in Fig.3.10, and the configuration of the downstream

membranes for the downstream version is shown in Fig.3.16. The evolution of the change

(in percent) in mass over 80 time steps is shown in Fig.3.l3. The solid curve is for the

traditional interpolating semi—Lagrangian approach and shows a change of about 2% during

the integration. The dotted curve is for the upstream SLIC scheme and confirms that the

scheme does indeed conserve the mass. A similar test for the downstream SLIC scheme

confirms its mass conservation. In other assessments it is found that, overall, the upstream

SLIC scheme performs as well as the interpolating semi-Lagrangian method, conserves

mass, and costs about 2-3 times as much. The downstream SLIC scheme is found to be

slightly more dispersive, but only costs about 1.5 times as much as the interpolating semi-

Lagrangian version. The overhead of the downstream version is smaller because its tracking

scheme is simpler than that for the upstream version.

However, there is a problem that is inherent in such mass-flux schemes, but which is

not present in the classical semi-Lagrangian approach. This problem is referred to as

"fictitious convergence", and appears to be due to the fact that the area is not conserved for

individual cells, implying that the integrated cell mass is not constant for individual cells

which borrow from or lend to neighbours in order to conserve mass overall. This can be

illustrated by starting with a constant initial density and using the advecting wind shown in

Fig.5.3. The resulting density field after one time step with the upstream SLIC scheme is

shown in Fig.5.6.a, and the associated upstream cells are shown in Fig.5.6.b. The

corresponding fields for the downstream SLIC scheme are shown in Fig.5.ll. Note that the
fictitious convergence has generated a 1% density fluctuation for the upstream version, and a

10% density fluctuation for the downstream version. Despite the rather alarming fluctuations

produced for this particular flow, in experiments performed with other flows that are thought

to be more representative of those found in climate models (Fig.5.l3), the two SLIC

simulations are found to be competitive with the classical approach and, in addition, provide

a perfect conservation of mass (Fig.5. 14).
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Figure 5.13. Foncu‘on dc couram utilisée pour génércr des vents s'approchant d’un 035
real reLrouvé dans un modüie climatique. Le domains de calcul est rcclangulajre (41 par
21 points de grille) et conüent deux jets identiques ayant un nombre de Courant
maximal d'environ 0,3.
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Figure 5.14. Le diagramme note DEPART illustre la distribution initiale de la masse
dans le domaine: les points hors du pic sont a 50 unites de masse alors que la valeur
maximale du pic est de 100 unites de masse. La valeur au point de grille ä gauche en
arriere plan (pour tous les diagrammes) a été ajustée a 100 unites avant d’afficher 1e
champ dans le but de de faciliter la comparaison. La hauteur de ces traits est donc de 50
unités, soit la hauteur iniLiale du pic. Le trait a droiu; au premier plan a la méme utilité et
mesure -10 unités. Le diagramme note HAUTE RESOLUTION présente le résultat du
test a haute resolution alors que les autres diagrammes présentent les résultats obtenus
par les modeles dont le nom est inscrit en haut ä gauche de chaque diagramme. Les
mesures d’erreur M,S,N et E definies par les relations (5.4) a (5.8) sont données pour
chaque schémas.
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Recent and future developments of

the ECMWF semi-Lagrangian scheme

Clive Temperton

European Centre for Medium-Range Weather Forecasts

Shinfreld Park, Reading, Berkshire, U.K.

l. Introduction
The accuracy of medium-range forecasts has steadily improved with increases in

resolution. Consequently, in its four-year plan for the period 1989—1992, ECMWF proposed

development of a high-resolution version of its forecast model. A target resolution of a

spectral representation with a triangular truncation of 213 waves in the horizontal and 31

levels in the vertical (T213/L31) was set, entailing a doubling of the horizontal resolution and

an approximate doubling of the vertical resolution in the troposphere compared to the

T106/L19 configuration that was operational at the time (Simmons et al., 1989). In view of

the anticipated computer resources, it was clear that major efficiency gains would be

necessary in order to achieve this objective. These gains have been provided by the

introduction of the semi-Lagrangian treatment of advection permitting about a fourfold

increase in the length of the timestep, the use of a reduced Gaussian grid (Hortal and

Simmons, 1991) giving a further advantage of about 25%, the introduction of economies in

the Legendre transforms (Temperton, 1991), and improvements to the model’s basic

architecture.

2. Semi-Lagrangian formulation

The general form of the model equations is

dX

where

dxzflr ß):E at +YH-VX* an’

17” is the horizontal wind and n is the ECMWF hybrid vertical coordinate (Simmons and
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Burridge, 1981). A three-time—level semi-Lagrangian treatment of (2.1) is obtained by finding

the approximate trajectory, over the time interval [ t—A t, t+A t] , of a particle which arrives

at each gridpoint 25 at time ( t+A t) . The trajectories are found as in Ritchie (1988, 1991).

Equation (2.1) is then approximated by

where the subscripts + , 0 ‚ — respectively denote evaluation at the arrival point ()5, t+A t) ,

the mid—point of the trajectory (gr—g , t) , and the departure point (35-29, t—A t) . Since

the mid-point and the departure point will not in general coincide with model gridpoints,

X‘ and R° must be determined by interpolation.

It is more economical (and sometimes gives better results) to evaluate the right-hand

side of (2.2) as

R0 = ä [Rug—29, t) + Ros, t)] (2.3)

since only a single interpolation [of the combined field X ( t—A t) +A tR( t) at the point

05-295) ] is then required in order to determine X+.

The right-hand sides of the time-discretized model equations also contain semi—implicit

correction terms, which in the Eulerian model took the form

AUX = (X+ — 2X° + X")
where the superscripts refer to time—levels, and to a single common gridpoint. In the semi-

Lagrangian version of the model, the semi-implicit correction terms take the form

AttX = (X05, t+At) —X()~(, t) ) + (X(}5—2¢~z, t-At) —X(g§-2g, t)) (2.4)

and again the terms to be evaluated at the departure point @929!) can be added to other

right—hand side terms before interpolation. Notice that the evaluation of AttX, and both ways

of evaluating R°, are all centered in space and time.

An alternative form, referred to as "non—interpolating in the vertical" (Ritchie, 1991),

replaces (2.1) by

dHX .‚aX_ _.6X .,6X—dt+"‘ar*R "ea—NWT] (2'5)
where
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d—HX: a_){ + YH'VX
dt at

and 1'] * is a modified vertical velocity such that the resulting departure point lies exactly on

a model level. The left-hand side of (2.5) is then discretized in the same way as that of (2.1);

since the modified departure point is defined to be on a model level, evaluation of quantities
there requires only horizontal interpolation.

Following Ritchie (1988, 1991), the momentum equations are integrated in vector form

to avoid an instability of the metric term near the poles. Ignoring the horizontal diffusion

(which is handled later, in spectral space), the semi-Lagrangian discretization is

‘35}- If};W + [ flfxgH + Vd) + RdTVVlnp ]°

= p, — —:—AttV[IT+RdTrlnps] (2.6)

where y is a linearization of the hydrostatic matrix and TI is the reference temperature for

the semi-implicit scheme.

The thermodynamic and moisture equations become

T+-T' [ Kfyw 0— _ .1.2At [l-I—(ö-1)q)p] ‘PT 2A,,(ED) (27)

where 3 is another matrix of the semi-implicit scheme (the details are in Simmons and

Burridge, 1981), and

T“? = P . (2.8)

The terms PV, PT, Pg in (2.6)—(2.8) represent the contributions of the physical

parameterizations, which are evaluated at the arrival gridpoint. In (2.6)-(2.8) the semi-

Lagrangian discretization has been expressed in its "fully interpolating" form corresponding

to (2.1)—(2.2).

The vertically discretized continuity equation may be written

ö (lnps)AB d (lnps) — ABk[ atkE +yk.VlnpS] = 0 (2.9)

where
a NLEV

— (lnps) = — E [kApk+(yk.Vlnps)ABk] .
at 10-1 pg
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Integrating in the vertical and including the semi-implicit correction terms, the semi—

Lagrangian discretization of (2.9) becomes

NLEV 6(lnpg
(lnps)* = E1 ABkHlnps)‘ + 2At:( at + yk.Vlnp5)°

„EA (Nimm-ran] (210)I tr: J J ° '
s _7-1

It is important to bear in mind that each contribution to the sum on the right—hand side of

(2.10) involves a different trajectory.

In practice it was found sufficiently accurate to use linear interpolation for the

trajectory calculations and for "right-hand—side" terms evaluated at the mid-point of the

trajectory, but essential to use cubic interpolation (or at least an economical approximation

to it) for terms evaluated at the departure points. After some experimentation, it was decided

to compute the right-hand side terms of the momentum equations by averaging along the

trajectory as in (2.3), but to evaluate the right-hand side terms of the other equations at the

mid—point of the trajectory.

3. Note on CPU time

The semi—Lagrangian version of the model can be run stably with timesteps several

times longer than for the Eulerian formulation. At the same time, the computation per

timestep is more expensive and it is important that the additional overhead remains modest.

For the T213/L31 model using a 15-minute timestep, it was found that the "semi—Lagrangian"

routines (trajectory calculations and interpolations) took 27% of the CPU time for the fully

interpolating version of the scheme, and 20% of the CPU time for the "non-interpolating in

the vertical" version. The "semi-Lagrangian overhead" is in fact slightly less than these figures

suggest, since there is at the same time a reduction in the number of Legendre transforms

required in comparison with the Eulerian formulation.

In the case of the "non—interpolating in the vertical" scheme, the semi-Lagrangian

calculations have been optimized by making use of the observation that, in the course of a

typical 10-day T213/L3l forecast with a 15—minute timestep, the "modified" departure point

was at the same model level as the arrival point on 99.76% of occasions. Thus, the treatment

of the vertical advection is in fact Eulerian almost everywhere. As a result, three—dimensional
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interpolations collapse to two-dimensional interpolations with an occasional local correction,

while the additional terms in the "non—interpolating" scheme, which in principle require extra

interpolations, need only be evaluated at a few points.

4. Results

The experiments reported on here were performed with a high resolution version of

the ECMWF forecast model having a spectral representation in the horizontal with a

triangular 213-wave truncation (T213), and 31 levels in the vertical. The baseline semi-

Lagrangian version is the "vertically non—interpolating" scheme which has been used

operationally at ECMWF since August 1992. In order to compare various formulations, sets

of integrations consisting of 12 independent cases (starting from operational analyses on the

15th of each month during the first year following the implementation of the T2l3/L3l model

on September 17, 1991) were performed.

The main motivation for using a semi—Lagrangian formulation is to permit the use of

time steps that far exceed the Courant—Friedrichs-Lewy (CFL) stability criterion for the

corresponding Eulerian model, thus enhancing the model efficiency, provided that the

additional time truncation error does not significantly decrease the accuracy. Figure 1 shows

the mean objective scores (averaged over the 12 cases) for the northern hemisphere,

comparing the Eulerian version with a 3 minute timestep (solid) and the semi-Lagrangian

version with a 15 minute timestep (dashed). Figure 2 shows the corresponding result for the

southern hemisphere. It is seen that the accuracies are almost equivalent, particularly for

forecasts whose skill exceeds the 60% threshhold. Thus, even at this high resolution, the

semi-Lagrangian scheme is permitting a fivefold increase in timestep with no significant

degradation in the quality of the forecasts. In section 3 it was seen that the overhead of the

semi—Lagrangian scheme is approximately 20%, so the semi-Lagrangian version gives an

efficiency improvement of about a factor of 4 relative to the Eulerian in this comparison.

The T213/L31 model was implemented operationally in September 1991 using the

"fully interpolating" version of the semi-Lagrangian scheme. The higher resolution version

immediately demonstrated clear improvements in the forecasts in the first few days of the 10-

day forecast range. However, despite extensive parallel testing before implementation, during

the subsequent months it was found that, relative to the former operational version, there was

increased day-to—day variability in the forecasts in the medium-range. The levels of eddy
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kinetic energy were typically higher with this version, too. Following several studies to try

to determine which aspects of the semi-Lagrangian formulation were responsible for this

behaviour, attention focussed on the option of using the "vertically non-interpolating" scheme
(Ritchie, 1991). This scheme was included quite early on in the Centre’s semi-Lagrangian

code, but was not fully validated during the development of the code because it was not
expected to be necessary at the higher vertical resolution.

Tests of this option revealed a positive impact on objective measures of skill. This
is evident in the anomaly correlations at 1000 hPa and 500 hPa for the northern hemisphere

(Figures 3(a) and (b)), as well as in the corresponding root-mean—square height errors (Figures

3(c) and (d)). The improvement is even more striking in the results for the European region,

as seen in Figure 4. Moreover, levels of eddy activity are generally lower (and more
realistic) with this version than with the fully interpolating scheme.

Also, differences in zonal-mean temperature between semi-Lagrangian and Eulerian
forecasts are substantially reduced at upper levels when the semi-Lagrangian scheme is

changed to the vertically non-interpolating form. The reason for the different behaviour of the
fully interpolating scheme is not entirely understood. Ritchie (1991) originally attributed it
to an excessive smoothing in the fully interpolating version due to vertical interpolation
through the tropopause where all the dynamic fields vary abruptly in the vertical. This was

based on five-day experiments with a baroclinic model that included only very simple
parameterizations. More recently Williamson and Olson (1993) have examined climate
simulations using a semi—Lagrangian version of the NCAR CCM2 which includes
sophisticated physical parameterizations, and have concluded that the fully interpolating

version actually reduces deficiencies that the former Eulerian version had in the vicinity of

the tropopause. These are points that warrant further investigation. In any case, the present

results in terms of medium-range forecasts with a high resolution, fully parameterized forecast

model indicate a clear advantage for the vertically non—interpolating semi-Lagrangian scheme.

It was implemented operationally in August 1992 and the anticipated improvement was

realized.

By virtue of its increased efficiency, incorporation of the semi—Lagrangian scheme was

very important in enabling an increase in horizontal resolution from T106 to T213 in the

operational ECMWF forecast model. It is of interest to document the impact of this increase
in horizontal resolution for the set of 12 cases studied here. In Figure 5 we see the marked
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improvement in the objective scores (mean anomaly correlations and root—mean-square height

errors at 1000 and 500 hPa) for the northern hemisphere. Figure 6 presents the corresponding

results for the European region. In these tests the same 31 level configuration was used for

both horizontal resolutions. It is seen that this increase in horizontal resolution indeed had

a very significant positive impact which, in fact, is substantially greater than the impact of

any of the other changes that have been presented in the previous figures.

Several additional sets of tests were performed to study the impact of some of the

optimizations that have been incorporated in the operational semi-Lagrangian T213/L31

model. These optimizations leave the objective scores virtually unchanged, but produce

worthwhile extra efficiency gains that help reduce the semi-Lagrangian overheads. In

particular, it was confirmed that there is no significant degradation resulting from using linear

rather than cubic interpolation, and only one iteration rather than two, in calculating the

trajectories. Optimizations based on approximations to the spherical trigonometry are also

used in the calculation of the departure points. The versions implemented correspond to those

presented in section 2(b) of Ritchie and Beaudoin (1993), except that only the terms accurate

to second order in the timestep are explicitly retained.

5. Summary and plans

Conversion of the ECMWF spectral model to semi-Lagrangian form was essential in

enabling the operational implementation of the high—resolution (T213/L31) version. It was

found that the semi-Lagrangian version with a 15—minute timestep gave an accuracy

equivalent to that of an Eulerian version with a 3-minute timestep, giving an improvement

of around a factor of 4 in efficiency. The "non-interpolating in the vertical" form of the semi—

Lagrangian scheme was found to give better forecasts than the "fully interpolating" form,

though the reasons for this are still not completely understood. Finally, it was confirmed that

increasing the horizontal resolution from T106 to T213 has a significant positive impact on

the forecasts.

Future plans for the model include the development of a version in which the moisture

is treated entirely in gridpoint space (Williamson and Rasch, 1993), and the development of

a two—time-level scheme (see for example McDonald and Haugen, 1993).
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Fig.1:

Fig.2:

Fig.3:

Fig.4:

Fig.5:

Fig.6:

FIGURE LEGENDS

Mean objective scores for the northern hemisphere comparing the Eulerian version

with a 3 min timestep (solid) and the semi-Lagrangian version with a

15 min timestep (dashed):

(a) anomaly correlation of 1000 hPa height

(b) anomaly correlation of 500 hPa height

(c) root-mean-square error of 1000 hPa height (metres)

((1) root-mean-square error of 500 hPa height (metres).

As in Fig.1 except for southern hemisphere.

Mean objective scores for the northern hemisphere comparing the vertically non-

interpolating (solid) and fully interpolating (dashed) semi-Lagrangian versions:

(a) anomaly correlation of 1000 hPa height

(b) anomaly correlation of 500 hPa height

(c) root-mean-square error of 1000 hPa height (metres)

((1) root—mean-square error of 500 hPa height (metres).

As in Fig.3 except for the European region.

Mean objective scores for the northern hemisphere comparing T213 horizontal

resolution (solid) and T106 horizontal resolution (dashed):

(a) anomaly correlation of 1000 hPa height

(b) anomaly correlation of 500 hPa height

(0) root-mean-square error of 1000 hPa height (metres)

((1) root—mean-square error of 500 hPa height (metres).

As in Fig.5 except for the European region.
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A Semi—Lagrangian Version of the NCAR CCM2

and Examples of Climate Simulations

David L. Williamson

National Center for Atmospheric Research *

Boulder, CO 80307

Introduction

We have developed a semi-Lagrangian version of the Community Climate Model

(CCM2) at NCAR. The design goal was to produce a semi-Langrangian version which

differed from the Eulerian version only in the advection approximation. At the same time,

consistency between the discrete continuity equation and the vertical velocity w in the en—

ergy conversion term of the thermodynamic equation was desired, along with consistency

between the conversion term and the pressure gradient term in the momentum equations.

To achieve the former consistency, slight changes are required in the discrete approxima-

tions to the vertical integral in the w approximation in the original Eulerian form of CCM2.

To achieve the latter, the original hydrostatic approximation must then also be modified.

The following discussion focuses on the continuity and thermodynamic equations. The

momentum equation is not described. It is treated in the CCM2 version much the same

as Ritchie (1990).

Continuitv Equation

We adopt a hybrid vertical coordinate (17) defined by

2907:1751) = A(’7)po + B(’7)Ps (1)

and consider first the continuity equation

* The National Center for Atmospheric Research is sponsored by the National Science

Foundation.
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8B Ölnps Öp) 1 1 Ö (.810)— -v s =— —— —6——— — . 2
an ( at +V mp) (an Pa 103317 77377 ( )

In Eulerian models this equation is generally applied in the form of integral equations for

alnps/at and 17.

0111p, /1 3B /1 8p 1
= — —-—V-Vln 3d — ——6d 38t n an p 77 n p n ()

T

1 .Üp 6111n /" 8B 7'Öpl
12377817 (77) a: ”T 877 p 77 "T 377 ps n ( )

In the Eulerian CCM2, the integrals in (3) and (4) are approximated by discrete sums

(Hack et al., 1992). In the formal development of Eulerian models, the integral forms (3)

and (4) for the continuous equations are often derived first, then discrete approximations

are applied. The same approximations, however, can often, as in the case of CCM2, be

obtained by defining a discrete version of the continuity equation (2), then summing in the

vertical. Or, stated another way, the discrete versions of (3) and (4) can be differenced to

provide a discrete continuity equation.

The integral forms of the continuity equation (3) and (4) are not suitable for semi-

Lagrangian development because the Lagrangian derivative is partially mixed in with the

vertical integral. Thus we start with a discrete approximation to the original continuity

equation (2). First, note that the left—hand-side includes horizontal advection only. A1—

though it can be converted to a three dimensional advection operator since 7'73 ln 1),, /Ö 17 = 0,

it is more convenient to treat it as horizontal advection only. In the traditional hybrid coor-

dinate approach (Simmons and Striifing, 1981), the coordinate functions B (and A) of (1)

are defined only at discrete levels. Thus it is problematical to include terms such as AB in

the vertical interpolations associated with a three-dimensional semi—Lagrangian operation.
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The discrete semi-Lagrangian, semi-implicit continuity equation is

WW}A _ _
k(Psnö’7 ID2

+1 —1Y; )"(111PS: ‘0a 02 1 1 _Öp n+1
AR 2m = ‘éi [1. (Walt. +

1 n

—(—61API)
P3 M2

1 1 ”+1 1 ”’1 1 T "-{§[(-r§ep7) WM) l-(TW) }ps A pa D2 ps M2

Ak( )1 = ( )1+%— ( )z—%

(5)

where

denotes a vertical difference and A denotes the arrival point, D2 the departure point from

horizontal (2 dimensional) advection, M2 the midpoint of that trajectory, and l denotes

the vertical level. Equation (5) is similar to the a system forms chosen by Ritchie (1991),

McDonald and Haugen (1992), and Bates et a1. (1992), although McDonald and Haugen

(1992) and Bates et al. (1992) included some decentering to stabilize their two time

level approach, and Ritchie (1991) adopted three—dimensional advection. The subtleties

associated with the discrete 17 system mentioned above do not arise in the a system. In

addition, the divergence term is linear in the a system, unlike the 77 system. Thus (5)

includes divergence terms centered on the trajectory, which arise from the linearization for

the semi—implicit approximations.

The surface pressure forecast equation is obtained by summing over all levels

K

(lnps):+1 = Z AB1(1nps‚):2—1
I=1

K 1 Öp n—l

Wile: (rt-)1(=1 P3 377 i D2

(6)
nK 1

— 2m: (—6,z_\.p,)
[:1 133 M2

K
1 1 n+1 n—l n 1‘_ 2At; 19—:{5 [(61)A + (61),,2 ] — (51)M2 }AP:
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The (lnps)"_1 term does not collapse to a single value as in the Eulerian case because

the departure points are not necessarily aligned in the vertical, preventing the summation

and departure point interpolations from commuting. The reference atmosphere terms p:

and Apr in the last (semi-implicit) sum do commute with the horizontal interpolation

operators because they are a function of 17 only.

The equation for the vertical velocity is also obtained by summation of the continuity

equation (5)

i.@ n+1 — 1

11317817 — At

k

1 Bk+%(1n p3):+1 — Z AB,(1n Mr}
k+5 l=1

21m<111>IJ"'*~2:<M[=1 D2 M2

k

— 2121H; [(61>:+1+(6,);:;1] — (61)::‚2 }Ap1
=1 8

We retain the semi—implicit structure of the continuity equation in the 17 equation.

This is normally not done in Eulerian formulations although it could be. It provides

greater discrete consistency while adding little to the complexity of the programming.

McDonald and Haugen (1992) and Bates et al. (1992) adopt a similar equation for 1'} (in

their 0' systems), but Ritchie (1991) uses an explicit approximation to the vertical integral

form (4).
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Thermodynamic Equation

The semi—implicit Eulerian thermodynamic equation in CCMZ from Hack, et a1. (1992)

is

TEI—H __ Til—1 8T n R(T„)E (0.))”

———_ V"- TT‘ 'n —— =—— —2N + k V L +7” (an);c 0;: p k
(8)

RTT‘ 1 n 71- TL 1‘

ok021[5(6z+1+51 1)—51]AP1
p

k

(=1

The semi—implicit component (last sum on the right hand side) will be described shortly,

but first we discuss the discrete approximations for w.

The vertical velocity w is related to In ps and Ü by

2-22 5111m . 3%]
p — p [B(n)< at +V V1np3)+psn3n (9)

and by substitution of (4)

n
B(17)V~Vlnps—/ 2—:V-Vlnpsdn—/Pa n

"T "T

Öp 1
_ ——6d 10
P 377 Pa 77] ( )

In the Eulerian CCM2, (10) is approximated in a general way by

(f) = flVk ~ psV ln p3
P k Pk

(11)k

— Z Ck1[61Apl-l— V1 - psv ln psABI]
1:1

The coefficients Ck; in the vertical sum are chosen to be energetically consistent with the

pressure gradient in the momentum equations (Burridge and Haseler, 1977)

Hlk
= — l2Ckl Apk ( l

where H represents the coefficients in the vertical sum of the discrete hydrostatic equation
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K

<I>‚c = <I>‚ + R: H“ (p) T1,, (13)
I=k

The relationship (12) ensures that in the discrete equations the conversion from potential

to kinetic energy does not introduce a computational source or sink in the total energy.

In the Eulerian CCM2, the w term on the right hand side of (8) is from (11) and

the semi—implicit component (second term) includes the divergence component of (11)

only, linearized about the reference atmosphere. Since the discrete form of w was chosen

independently of the continuity equation, it is not necessarily consistent, in the sense of

(9), with the discrete continuity equation.

The discrete thermodynamic equation in the semi-Lagrangian version of CCM2 is

T3“ _ 5-1 = (Rv)"
2A: 0;; E M

RT" p_;
Cp pr

7- Ki) <31;
d2 In p, Z (In ps 1+1 — (In ps 13:1 (15)

dt 2m

(It 17); 26?}auf"? 1“ P“ +(—10—_p)] <14)

where

and

<‘—>‘ = 5K 2+1+< )33—11 (16)
This form is based on (9) for w and both d2 ln ps/dt and 77 are treated in a semi-Lagrangian,

semi—implicit fashion rather than just the semi—implicit divergence component in (8) How—

ever, care is needed to ensure that the explicit component of w in (14) is also consistent

with the continuity equation. This can be done by defining w as an explicit vertical sum,

which is consistent with the discrete continuity equation,
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k(g) = 2—:{Bkvk-V1nps—kz [iölAp' +V‚.v1npsABz] } (17)
k l=1 s

and has the same form as (11) but not necessarily the same coefficients CH, or by defining

it directly from 77 and 6 by eliminating d2 ln p, /dt from (9)

w p. 16p.) Bk [1 (1,319)”— =— —— _F— —6A +A — — 18(p)k Human" k A37.- Pa ’° p" ’° 19377677 k ( )
Ritchie (1991) adopts a form similar to (14) for his a system thermodynamic equation with

the w in the nonlinear term from an integral (17) form. McDonald and Haugen (1992)

and Bates et al. (1992) both combine the (three dimensional) Lagrangian lnps derivative

(with linear coefficient) with the Lagrangian temperature derivative to write a forecast

equation for the combination. This seems to introduce an inconsistency in the way lnps is

treated since it is 3—dimensional in the thermodynamic equation and 2—dimensional in the

continuity equation. Both use the form (18) for the explicit to component.

Modifications to CCM2 for consistency

As was mentioned in the introduction, the goal of this development was to obtain

a semi—Lagrangian version of CCM2 that differed from the Eulerian version only in the

advection approximations. In addition, we desire consistency between to in the energy

conversion term and the discrete continuity equation as well as the pressure gradient.

Thus we first modify the Eulerian version to have this consistency and illustrate the effect

that these changes have on the simulated climate.

In CCM2, the discrete hydrostatic equation (13) and the discrete form of the conti-

nuity equation integrals (3) and (4) were chosen first, independently of each other. The

coefficients for the integral in w (11) were chosen for energy consistency (12). Thus, the

discrete w is not derivable from the discrete Ölnps/Öt and 77 equations. This approach

has been adopted in Eulerian models for some time (e.g. ECMWF, Burridge and Haseler,
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1977; and CCM1, Williamson et al., 1987). Since energy consistency is desirable, one might

ask, given the discrete w equation, is there a consistent discrete continuity equation? The

answer is no with the CCMZ form. Given the discrete w, the inverse problem for 1'7 and

ölnp, /Öt is singular, in part because of the vertically staggered grid.

One can solve the problem the other way around. Given the discrete continuity

equation of CCM2, there is a discrete w equation which is consistent With it. This is most

easily found if the vertical level interfaces and mid—levels are related by

1
Bk = 5 (Bk+% + Bk—ä) (19)

and similarly for the As. This form, however, relinquishes a priori energy conservation

associated with the conversion process. Results from this form, in which the mid—levels are

defined from the interfaces by (19), are labeled MODl in the figures which follow. We also

consider a second modification to the Eulerian CCM2 to regain energy conservation. As

above, the continuity equation is chosen first and the w equation is chosen to be consistent

with it. Then the hydrostatic matrix (13) is chosen to be consistent with w by inverting

(12) for H“. Results from simulations with this form are labeled MOD2 in the figures.

Results are presented from two versions since the original grid levels of CCM2 do not

satisfy (19). In the first, the mid layers are redefined from the interfaces to satisfy (19).

This has the shortcoming that levels at which the atmospheric state is defined are changed.

In the second version, the layer interfaces are redefined from the mid-levels to satisfy

working up from the surface.

Figure 1 presents the January average, zonal average temperature from CCM2 and

differences (MOD—CCMZ) of the modified versions with CCM2. The contour interval

is 5.0K for the temperature and 0.5K for the differences. Poleward of 30° latitude the

differences are within the natural variability of one January from another and cannot be

considered significant. The differences in the structure at and above the tropopause are

likely to be significant as are the differences in the mid and upper tropical troposphere
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in the two panels on the left. Nevertheless, these differences are small compared to the

differences made when the physical parameterizations are changed and/or tuned.

Conservation Aspects

The semi-Lagrangian method as applied today, with interpolation for pointwise val-

ues, is not a priori conservative. Our earlier experience with water vapor illustrated that a

“fixer” to ensure conservation was convenient, especially since it had no significant interac-

tion with the physical parameterizations and did not affect the overall simulation (Rasch

and Williamson, 1991; Williamson and Rasch, 1992). Without the “fixer”, the parameter-

ized sources and sinks compensated for the “computational” water vapor source so that

all fields remained reasonable. That may not be the case for atmospheric mass since the

model contains no parameterized physical sources and sinks. The mass could drift enough

in long simulations that the mean pressure error could begin to seriously affect the simu—

lation. Therefore, in the CCM2 (Eulerian and semi-Lagrangian versions), we apply fixers

to guarantee conservation of both the dry mass of the atmosphere and the water vapor of

the atmosphere.

The discrete conservation relations for the dry mass and water vapor are

/p?+1 — /q"+1Ap"+1 = /p2’1 - /Q"’1AP"’1 = P (21)
2 3 2 3

/qn+1Apn+1 = / (qm—1 +S)Apn-1 (22)

3 . .3
where, since p is given by (1), Ap is given by

AP = AAPO + ABPS (23)

and S includes the water vapor sources and sinks this time step. The horizontal integral f2

denotes the normal Gaussian quadrature approximation of spectral models and the three

dimensional integral 1:, includes a vertical sum over the grid as well. (The mass weighting

is taken care of by the Ap already included in the equations.) We choose to modify the

masses in the following way:
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1)?“ (M15) = MP: (M15) (24)

q"+1(/\‚<b‚n) = 61“ + aq+ 4+ - (4""1 + 5) ß (25)
Where the superscript + denotes the provisional values following the application of the

numerical approximations and fl is chosen to be 3/2. The form (24) is chosen so that V Inp,

is not changed. The gradient is the important dynamical quantity and it is undesirable

to change it for arbitrary reasons. The form (25) is chosen so that the changes to the

water vapor are small in the regions where the water vapor itself is small and where the

advection made a small change to the water vapor. Substitution of (24) and (25) into (21)

and (22) yields

M = [P +/3(q”’1 + SAN—1] //2p? (26)

a = f3 (qn—l + 5) Apn—l __ j; q+Apn+1

ß
f3 (1+ 4+ - (q"‘1 + 5) A1)"+1

(27)

Table 1 presents the average and standard deviation of the absolute value of the

dry mass correction from several T42, 18 level simulations. The statistics are calculated

for January from simulations starting September 1 and are in units of Pa per time step.

“CCM2” denotes the MOD2 Eulerian version described above, with the interfaces de—

fined by (20). “CCM2 FORM” denotes its semi—Lagrangian variant and “ECMWF Form”

denotes a model based on my interpretation of the approximations to the continuity equa—

tion and conversion term in the ECMWF semi-Lagrangian model, but with the levels as

in CCM2 and the H and C matrices as in the original CCM2 rather than as defined in

the ECMWF model. Thus, this is, in fact, very different from the ECMWF model itself

and the label is adopted for convenience only. The characteristics of simulations with the

ECMWF model may be very different from those reported here. All experiments were run
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with a 20 minute time step to ensure the physical parameterizations were unaffected in

any primary way.

Table 1

|AMass| (Pa/At)

ECMWF CCM2
CCM2 FORM FORM

.006:l:.004 .08i.04 .15 :l: .09

Energy conservation is also important for climate models. We currently make no

correction to the total energy as it is observed to be conserved in the model to an adequate

degree. The conserved quantity is the integral of

TE = ä [0;T + <I>s + ä (u2 + v2) (28)

If we denote the temperature source/sink as Q” and the momentum as (F17, F51), then the

residual (non conserved) energy over a time step is

R = /{TEn+1APn+1 __ TEn—lApn—l

3 . (29)
C; n 1 n n— 2At? (Q) AP" — 2A2? (uF: + vFv ) Ap

Table 2 summarizes the January statistics for the three experiments described above in

Table 1. The values are the average and standard deviation of the absolute value of the

residual over a time step converted to units of W/m2. As can be seen, the semi—Lagrangian

versions conserve better than the Eulerian does.
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Table 2

¥ (W/m2)

ECMWF CCM2

CCM2 FORM FORM

.98:t.13 .36:|:.13 .24 j: .11

Comparison of semi-Lagrangian and Eulerian simulations

Figure 2 shows differences in the January average, zonal average temperature for semi—

Lagrangian simulations minus Eulerian. The contour interval is 1.0K. All simulations in

this section use a 20 minute time step so that the physical parameterizations are unaf-

fected. The time step is a fundamental aspect of some of the physical parameterizations,

and changing it can make differences in the behavior of those parameterizations. Semi—

Lagrangian simulations with longer time steps will be discussed in the next section. The

top row of Figure 2 has differences with the Eulerian version labeled MODZ described

above, and the bottom row has differences with the original unmodified Eulerian CCM2.

The left column has differences from the semi—Lagrangian version of CCM2 and the right

column has differences from the ECMWF form of approximations. Both of these semi—

Lagrangian versions are described more clearly in the previous section. All averages in

Figure 2 are for a single month.

Most of the differences poleward of 30° cannot be said to be significant. To illustrate

the natural variability, Figure 3 contains differences of four individual Januaries chosen

from a 20 year control simulation with the Eulerian CCM2 from the 20 year average of

that control simulation. The contour interval is 0.5K. Note that the contour intervals in

Figures 2 and 3 are chosen to allow a meaningful visual impression or comparison between

the two figures. Recall, Figure 2 shows differences of a single January with a single January,
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while Figure 3 shows differences of a single January with the 20 year average January, thus

a ratio of 2 to 1 for the contour interval is reasonable.

Referring back to Figure 2, the differences at and above the tropical tropopause are

likely to be significant, with the semi-Lagrangian forms both being colder than the Eu—

lerian. This difference is in the opposite sense than that which would be expected from

smoothing introduced by the semi-Lagrangian vertical interpolations (Ritchie, 1991). It

is likely to be attributable to the physical parameterizations (in particular, convection)

working differently in response to a changed vertical advection. The other significant dif-

ference noticeable in Figure 2 is the colder upper tropical troposphere with the ECMWF

form resulting in a slightly less stable tropical tropopause. In addition, the colder south—

ern hemisphere mid—latitude troposphere (405) is probably significant. No differences of

individual months with the 20 year average show such large differences. The differences

chosen for Figure 3 are typical.

Figure 4 shows the difference in water vapor mixing ratio for semi-Lagrangian minus

Eulerian simulations in the same format as Figure 2. The contour interval is 0.2g/kg.

Figure 5 shows differences of individual Januaries with the 20 year ensemble average from

the Eulerian CCM2 with a contour interval of 0.1g/kg. The variability between individual

Januaries (Figure 5) is primarily vertically oriented and associated with movement of, and

changes in the strength of, the Hadley cell from year to year. The differences between

CCM2 form of semi-Lagrangian and Eulerian (left column, Figure 4) appear to be within

the natural variability. The ECMWF form produces a drier troposphere equatorward of

40° latitude. The difference is probably significant, as it is of broader scale than that of

the banded structure associated with movement of the Hadley cell. It is also consistent

with the colder troposphere seen in Figure 2. Concerning the colder tropopause seen in

Figure 2, we speculate that the semi-Lagrangian vertical advection, which is formally more

accurate, transports more moisture and heat vertically in the lower troposphere, and as

a result, the convection is slightly less active, producing differences further up. Whatever

the actual cause, the differences in Figures 2 and 4 associated with the different numerical

approximations are smaller than those encountered with different physical parameteriza—
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tions or even With tuning a given parameterization. Semi-Lagrangian advection certainly

seems to be a suitable basis for climate models.

Semi-Lagrangian simulations with different time stem

Figure 6 (top left panel) shows the difference in January average, zonal average tem-

perature from a semi—Lagrangian simulation with 30 minute time step minus the one with a

20 minute time step discussed in the preceeding section. The contour interval in all panels

of Figure 6 is 1.0K. The simulation with a 30 minute time step is warmer around and above

the tropical tropopause. This difference is of opposite sign to that in the preceeding sec-

tion. Figure 6 also shows differences from some other formulations of the semi-Lagrangian

version. The treatment of the centered terms on the trajectory in the continuity and ther-

modynamic equations is somewhat arbitrary. The upper right panel shows the time step

sensitivity in January averages to replacing the trajectory mid point terms ( )2/1 with spa-

tial averages along the trajectory % [( ) Z + ( ) '5]. This form is labeled “CENTERED”. A

slight variant which introduces some damping by weighting the value at the arrival point

slightly more» %[(1 +6) (m + (1 — e) ( )g], is labeled “OFF—CENTERED”. This type
of off—centering is adopted by McDonald and Haugen (1992) and Bates et al. (1992) to

stabilize their two time level schemes (Gravel et al., 1992). The centered form shows the

same sensitivity to time step as the original “CCM2 FORM”. The sensitivity of the zonal

average to the placement of the centered terms on the trajectory (bottom row of Figure

6) is rather minor. The simulations discussed in this section started January 1 and thus

the January average does not represent a climatological balance. These differences should

be considered as indicating a trend rather than the final climatology.

Conclusions

The semi-Lagrangian, semi—implicit formulation for atmospheric models is viable for

climate simulation. Although the approach is not a priori mass and energy conservative,

mass fixers can be applied to correct the deficiencies each time step with no detrimental

effect on the simulations. We showed elsewhere (Rasch and Williamson, 1991; Williamson

and Rasch, 1992) that the water vapor fixer appears to be cosmetic. The simulations de-



scribed in the current paper indicate that the atmospheric mass fixer seems to be cosmetic

as well, as the semi—Lagrangian simulations differ from Eulerian in only very minor ways.

Energy, on the other hand, is conserved better in the semi-Lagrangian simulations than in

the Eulerian.

The change from Eulerian to semi-Lagrangian advection has only a small effect on

the simulated climate. Similarly, changing from a 20 to a 30 minute time step (in the

T42 model) also has only a small effect. Both changes are smaller than the changes

introduced by varying horizontal or vertical resolution, by introducing different physical

parameterizations, or by “tuning” parameterizations in a given suite of parameterizations.

Thus a suitable development strategy would be to choose the resolution, semi—Lagrangian

approximations, and time step practical for the application model, then to retune the

physical parmeterizations to yield the desired simulation.
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1. Introduction

For climate simulations especially mass and energy conservation are important properties of a

numerical model. Eularian Semi—implicit spectral models as the former operational ECMWF

model conserve these quantities relatively well. Concerning mass conservation we performed

a 120 day test integration with this ECMWF model in T63 resolution. It resulted in a slight

increase of mass corresponding to less than 1 hPa in the global mean Surface pressure. A simi—

lar integration with the new ECMWF semi-Lagrangian Semi—implicit model resulted, howe-

ver, in a systematic loss of mass corresponding to 4.5 hPa in 120 days. Two different

“mass—fix” procedures were tried in semi-Lagrangian integrations. In these the global mean

surface pressure p—s or fps were corrected after each time step. As expected the changes in

total mass over 120 day integrations were eliminated, or almost so, when these schemes were
applied. Such corrections are insatisfactory, however, because mass which is added or sub-
tracted in each time step is evenly distributed over the globe and not added or subtracted at the

right geographical positions.

In the test integrations there were no signs of improvement when the mass-fix procedures
were applied, except for the mass conservation. Assuming that the Eulerian integration is the

most correct one we could have hoped that the differences between the integration results of

the semi Lagrangian and the Eulerian model were reduced when the mass-fix procedures were

applied in the former model. This was not the case in the present test integrations. The mass—

fix procedures were found to introduce changes in the time mean fields, in particular in the

fields of accumulated precipitation, which were as big as the differences between the Eulerian

and the uncorrected semi—Lagrangian fields. At many locations the differences to the Eulerian

results were increased by the mass-fix procedures. Thus the application of such simple cor—

rection schemes seems not to be the proper way to fix a non-conservation property of a model.

Still mass-fix procedures are widely used also in long Eulerian integrations, at least at MP1,

without any other justification than an improved mass conservation.

It seems desirable to develop models, especially semi-Lagrangian models, with improved

conservation properties. If possible this should be achived without loss of “local” accuracy. In

the present note a new three time level semi—Lagrangian PE model formulation is suggested

which under certain conditions will give exact conservation of total mass, total entropy and

total energy. This new formulation has not jet been tested in practice so the intention of this

note is to invite comments prior to such tests.
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The idea is to use as prognostic equations Lagrangian forms of the continuity equations, the

thermodynamic equation and the energy equation. To complete the system of prognostic equa—

tions in addition a special component of the momentum equation is used to predict changes in

the wind direction. These equations are formulated for the volumes of air that are being

advected in the horizontal wind field at time t and are ending up after each time step in the

model grid volumes.

Trajectories are computed from the comer points of each grid area, 2At back in time, using

horizontal velocities at a certain model level at time level I. These trajectories and the conti-

nuity equation are used to define the air volumes at time t— Ar and tthat are ending up in the

grid volumes at time t+ At. An explicit leapfrog time extrapolation scheme applied to the
continuity, thermodynamic and energy equations must be absolutely stable since the total

mass, entropy and energy with the formulation chosen can not increase over a 2A1 time step.

Also a leap frog time extrapolation of the wind direction equation is expected to be stable

since the Coriolis and the pressure gradient force, determined by the continuity, thermodyna—

mic and energy equations, are bounded. Consequentely it is difficult to imagine how gravity

oscillations could create unstable oscillations in the wind direction. Should such oscillations

never the less turn out to develop in practice then an implicit scheme might be chosen for the

wind direction equation.

Before the proposed new formulation for a full 3—D model is outlined in Section 3 we shall in

the following Section 2 consider in more details the corresponding 1—D and 2-D shallow water

model formulations. This will simplify the presentation of the basic ideas and the procedures
proposed to be used in the full 3—D scheme. Furthermore the 1—D and 2—D formulations should

be used in the first test experiments which must be canied out before the detailes of the 3—D

scheme can be formulated.

Since this is a “Note” only we do not define carefully all notations used as we hope the reader

will know the standard notations used.

_75_



2. Shallow water equation models

2.1 The 1-D case:

The momentum and continuity equations are

au au 8h
E+uäi+gäx
8h ah au

From these we easily obtain

8E a 1 2 _

8h a

_ l 2 l 2where E — 2u h+ 2gh.

For a periodic domain O S x S L (3) and (4) imply that.

d L _d—IJOd — O

d L _äjohdx _ 0

which express conservation of total energy and mass, respectively (when multiplied by the

constant density).

In order to obtain equations suitable for Lagrangian integration we write (3) and (4) in the

forms

dE au a 1 2 _
E+E32+Ec<§gh u) —O

dh H314
E ax=0

and substitute in these the Eulerian expression for the divergence
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t+AtI‘

Fig. 1
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au 1da=aam” 9
where öx is an infinitesimal length interval.

We thereby get the equations that we shall use for Lagrangian integration:

1(Eöx) + öx—a— (1gh2u) = 0 (10)
dt 8x 2

fl (höx) = O (11)
dt

The discretization of these is based on trajectories that are ending up at time t+ At at the mid

points between grid points and are computed from velocities at time tusing the usual iterative

procedure. Such trajectories are illustrated in Figure 1

We discretizise the continuity equation (1 1) as

hi + Ax = hf 6x; (12)

where the index i refers to the arrival grid point and other notations are as indicated in the
figure. For simplicity Ax is assumed constant. (It could be variable).

One way to obtain conservation of total mass is illustrated in the figure. The height h is assu—

med constant within each grid interval Ax and hi— is computed as a “length-weighted” mean

over the interval 6x; . For the grid point xi in the figure for instance

5x17 h:— = (d h:_3+ (5x: —d)hi—_2) (13)

where d is a distance defined in the figure.

It is obvious that by this procedure we obtain that

2h; + Ax = Zfax; = 2h; Ax (14)
1' i i

which means exact conservation of total mass.

We discretizise the energy equation (10) as
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E, + Ax = E; 5x; — gAt{ (hzu) i+1/2—(h2u)i_1/2} ” (15)

Corresponding to the procedure used in the continuity egation we assume that u and h are

constants within each grid interval Ax and we take for E: the “length weighted” mean. Thus,

for the case shown in the figure

—_ 1 _ _ _ _ _ _E,- 6x, = Z {d[(u £_3)2+ghi_3]hi_3+ (5x, -d) [(u,_2)2+gh,_2]h,_2} (16)

The fluxes hzu in the last term of (15) may be computed from their grid point values

(hzu) i = (hi) Zui at time tby interpolations to the mid points of the trajectories.

By this procedure we obtain that

l

2151 + Ax = 2E; 6x; = 2E; Ax (17)
i i

That is, exact conservation of total energy.

In each time step we compute at first hi + using (12). To obtain ui + we then use (15)
which may be written

u.+ = :„’2G./h.+ —gh.+ (18)

where G i is the right hand side of (15) which depends only on values at time levels I and

t — At.

We have to choose between the plus and minus sign in (18). Normally we choose the same

sign as the “length-weighted” mean value of the momentum over the departure interval öxi,

which for the case shown in the figure is

Hajj-ax; = d u;_3h;_3 + (6x; — d) u;_2h;_2 (19)

It may happen, however, that the radicant in (18) becomes negative which means that the

kinetic energy at time t + At becomes negative. This will happen in grid intervals for which

(1714711): is small and the net flux at the boundaries of the grid interval of potential energy is

sufficiently large.For such points the velocity of the air in the grid interval is assumed to

become zero at a certain time during the time step and then it is assumed to be accelerated in
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the opposite direction during the rest of the time interval. This situation is illustrated in Figure

2 where we have assumed a linear variation of Ekin.

Fig. 2

As indicated in the figure it is suggested simply to change the sign of the predicted kinetic

energy at points where it becomes negative. As thereby the total energy is increased by an

amount of 2 (Ekin) l. + we suggest that the kinetic energy of each of the two neighbouring

grid intervals are decreased by an amount of (Ekm) l, + . (If one or two of the neighbours the-

reby get negative energy the same procedure is used for these points). At points where the sign

of (Ekin),- + has been changed we choose the oppsite sign of that of (Lt—h)? in (18).

By this procedure we preserve conservation of total energy and allow “particles” to change

the sign of their velocities within a time step. Normally, with a realistic size of Ar and realistic

atmospheric flows it should be few points if any where corrections of kinetic energy are nee-

ded.

It should be noted that as total mass and total energy are conserved exactly the above descri-

bed explicit scheme must be absolutely stable. So for stability reasons at least there should be

no need for introducing instead a semi-implicit scheme.
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When extended to 2—D and especially 3—D global models the geometric computations needed
to obtain exact conservation may turn out to be too expensive. It is the computation of the
“length-weighted” means especially that may become to expensive. Instead of “length-weigh-

ted” means one could use values interpolated to the mid points of 6x; which would be less
complicated to compute in two and three dimensional generalizations. For the present l-D

case this would imply that (14) and (17) become

l

Zhi + Ax = 212,-— öx; „2h; Ax
i i

(20)

2111 + Ax = 2E] 5x; ~2E; Ax
i i i

where a “hat” indicates an interpolated value. Thus, the conservation of total mass and energy
become only approximately valid. The explicit time scheme should however still be absolu-
tely stable as the interpolation will damp the smaller scales more or less.

As in all semi-Lagrangian modes there is of course an upper limit for At as all 6x17 must be
positive.

2.2 The 2-D case

For simplicity we assume a regular grid as shown in Figure 3. The grid points are marked by

crosses and the corners of the surrounding grid areas are marked by dots. Trajectories are con-

structed backwards in time from the corners of the grid areas as indicated for one of those in

the figure. The end points and mid points of the trajectories have been connected by straight

lines. We assume that the two resulting quadrangles contain the air at time t— Al and t,

respectively, that is ending up at time t + AI in the square grid area shown.

The forms of the shallow water equations that we shall use are

i (höA) = O (21)
dt

d 1 24EUEÖA) = —öAV- (ägh V) (22)

d _ ah ahd—t(\yVh8A) _ —höA(fV+g(ä; H415 )) (23)
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Here 8A is the time dependent grid area and E = 1/2V2h+1/2gh2 is (except for a factor of den-
sity) the total energy per unit area. V is the wind speed (i W ) and w is the direction angle of

the wind vector as indicated in Figure 3.

The continuity equation (21) and the energy equation (22) are derived in a similar way as in

the 1-D case. The equations (23) is derived from the components of the momentum equation

in a natural coordinate system. The shallow water momentum equation is

_\

‘51—? = —f/2 x 17—t (24)

In natural coordinates the acceleration can be written

a? _ dV» du!)—d—t — Et+VEn (25)

N
“

where <1
<L

(See e. g. Haltiner and Martin (1957) sections 11-12 and 11-13)

So by scalar multiplication of (24) by ü and? we obtain, respectively

dV ah
E _ _8E

and

du; ah
Va = ‘W‘gä;

where s and n denote curvilinear distances in the i and ü directions, respectively. From these

we easily obtain

d _ ah ah(170W)— fV («51+a (26)

which when combined with (21) gives (23).

We choose the following three—time-level discretization of (21)-(23).
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+ __ _—' —hm. AA _ hijjSAU (27)
4 0

EL; AA = EZjSAZj—gAt[ 2 (kWh-@514 (28)
k=1 ij

—- _ ah ah 0vi); m? hi; AA = (t)i’j5Ai’j—2At[h(fV+g(an+w$))]j6Agj (29)
l,

where AA = AxAy, 5A2} and 5A2]. are the areas at timet+ At, t — At and t, respectively and

h“, EZj, (WV/1):]. are “area—weighted” means of the height, the total energy and the

momentum weighted wind direction angle at time t— At. In (28) the last term gives the sum

of the fluxes of potential energy at the four sides (with length 51k) of SAgj. These fluxes

should be determined from values interpolated to the mid points of the sides.

When sumed over a periodic domain (27) and (28) give

2%.? AA = fill-SAL- = ZtAA (so)
Li Lj Lj

2151:7 AA = EEZJ'MZJ' = EEZJ-AA (31)
i j i, j i, j

expressing conservation of total mass and total energy, respectively. If for the sake of com—

putational economy h—Zj and EL- are computed as interpolated values then the conservations

are only approximately valid. In either case the scheme should be numerically stabel as the

interpolations will introduce damping. A logical choise of the point inside SAL. to which an
interpolation should be made is the “centre of gravity” of SAZj. In (29) the two terms on the

right hand side should be determined as “area—weighted” mean values and as interpolated
9l, j, respectively.values at the “centre of gravity” of 8A;j and 5A

As in the 1-D case points in which the kinetic energy predicted from equation (28) become

negative must be treated separately. A procedure which is analoguous to that described for the
1-D case is suggested. Namely the sign of (V‘- j )2 is changed, \lll. j." is changed by adding

n and 2 (Vi-Jr )2 is taken from the neighbouring grid areas in order to maintain total energy

conservation.

The order in which the computations in a time step should be made is as follows. At first the

continuity equation (27) is used to determine hi; , then the energy equation (28) is used to

determine V1; and finally (29) is used to determine Wt ;’ from which the wind components

can be determined:
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”A; = VJ coswij (32)

v-TL = VJ Sinn/i]? (33)

Because the total mass and total energy are either conserved or reduced each time step the

scheme can not be numerical unstable in the sense that h and/0r V is increasing unlimited.

There is , however, no conservation property that puts a limit on changes in w. So, from the

conservation properties it is not possible in advance to exclude the possibility of unstable

oscillations of w. From a physical point of view, however, it seems unlikely that such unstable

oscillations should develop as oscillations in u! would imply oscillations in h and/or V which

are bounded globally. Experiments will show if (as we expect) the scheme is numerically sta—

ble. If it should turn out not to be the case a semi-implicit scheme could be used in the descre-

tization of (23).

In order to justify the use of a semi—Lagrangian time integration scheme as proposed here it

must be necessary that the flow remains smooth over the distances of the straight line trajecto-

ries used in the scheme. It is expected therefore to be necessary to include a horizontal diffu-

sion which selectively damps the highest resolved wave numbers and thereby prevents a

spectral blocking of energy at these wave numbers and furthermore to apply an Asselin time

filter in order to damp high frequency oscillations and in particular to prevent a separation of

odd and even time steps.

Besides grid point values of the prognostic variables u, v, h also values of j" and 3h are

needed in (29). These derivatives may be computed by finite difference, finit'é elemeiii or

spectral techniques. If a spectral technique is chosen then the spectral truncation after each

time step will eliminate the energy at the smallest grid resolved scales whereby only a smaller

horizontal diffusion of the smallest spectrally resolved scales are needed.

If u, v and h are the variables that are represented spectrally then the conservation of mass

(30) will not be affected by the spectral truncation, whereas it will lead to a slight decrease of

total energy. The same is the case for linear VP-diffusion schemes if applied to these progno-

stic variables.
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3. A fu113-D primitive equation model.

The forms of the primitive equations we shall use are for a generalized vertical coordinate

a6%(a—fi59) = o (34)
g a_p
dt qan

1
dl‘

d V2 öp _

so) = 3—5159 (Pq +Kq) (35)

ap ap c (P‚.+K.‚)(cplnefiöfl) = fiat)“ T——+h(T,p) (Pq+Kq)] (36)

8p; 88p. 88p 31,444—m[v. (WM +ä (firm) +ä (mm) —a (V- (Pv+Kv> +PCPT+KCPT>] <37>
d öp _ 3p A t A AEmit/$89) _ —%59[fv+ („u/Hz) - (Vq)+RdTvVlnp+Pv+Kv)] (38)

The equations are derived in the Appendix.

The notations used are mostly those defined in the ECMWF documentation manual (Research
manual 2, M1.6/3).

(34) is the continuity equation, where 89 is a small volume in the (x, y, T1) coordinate
a . .system. Thus, 5%89 = öpöA = göM where 5M IS the mass of the volume.

(35) is the moisture equation, where q is the specific humidity. Here and in the following

equations Px and Kx are a parameterized physical tendency and a tendency due to horizontal
diffusion of variable X, respectively.

R/c(36) is the thermodynamic equation, where 6 = T (p/po) P is a potential temperature and

cpln6 is the specific entrophy. Note that here we have used R and 6p for moist air and not as

usual those for dry air.

(37) is the total energy equation and(38) is the prognostic equation for the direction angle “’11

of the (horizontal) wind vector 17 similar to equation (23) for the 2-D case

To complete the system of equations we need the hydrostatic equation
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ä _RdTv ap 3p 3T1 (9)

3.1 The discrete equations

The proposed vertical representation is that used at ECMWF. To represent the vertical varia-
tion of the dependent variables T7, 6 and q the atmosphere is devided into NLEV layers defi-
ned by the pressure at the interfaces (the “half” levels):

Pk+1/2 = ak+1/2+bk+1/2 Ps (40)

where

“1/2 = [91/2 Z aNLEV+1/2 = 0 (41)

bNLEV+ 1/2 = 1

The prognostic variables are represented by their values at the intermediate levels (“full”
levels) with

1
Pk = j (Pk+1/2+Pk—1/2) (42)

We define

Aak = ak+1/2— ak—l/Z (43)

Abk : bk+1/2_bk— 1/2 (44)

and

Apk = Pk+1/2‘Pk—1/2 (45)

= Aak+Abkps.

The discrete analogue of (39) is

¢k+1/2_ ¢k—1/2 = —Rd(Tv)kln (Pk+1/2/Pk—1/2) (46)
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which gives

NLEV

(1) 1= ¢s+ 2 Rd(Tv)jl"(Pj+1/2/Pj-1/2) (47)
k+§ j=k+1

Full-level values of geopotential are given by

¢k = ¢k 1+0td<Tv>k (48)

where

0Ll = ln2

and

“k = 1_(pk—1/2/Apk) 1” (Pk+1/2/Pk—1/2) for k>1

The proposed discrete version of the continuity equation (34) is

(5p);j,k(5A);j,k = (Ap) ijkAAij (49)

where

(Aphjk = Aak+Abk (p3) 11+ (50)

we assume that a volume which at time t + At ends up as a grid volume at level k has been

advected with vertical walls in the horizontal wind field 17k (2‘) . (5A) 17]. k is the area defined

by the end points of the trajectories computed 2At backward in time from the four corners of

the grid area (AA) if . (öp) :— j, k is the area mean pressure difference between the top and
bottom of the volume:

1 Ni‚j‚k

= (ms).— —'—"" zATfl<pB)n,k—1 (51)l’jlk (6A):j,kn=1
(SPÄJ-‚k = (p3)i—,j,k— (pT)t‚j‚/<

Here (pB) i‘j k is the pressure at the bottom which is assumed constant over the area except

for the lowest layer k = NLEV. The last term in (51) is an area mean pressure at the top.Here

—88—



H

ATZ
AT

\I 1-—- (pB)2

‚ (5A)—

— ( )(1,5)] —|_fl PS 2

A32
AB]

(pB)I

= 1
(5A)—

PT (AT1(PB)1+AT2(PB)2)

1pB = (öA‘) (ABI(ps)1+ABZ (1992)
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N[1 j, k is the number of volumes at level k — l which overlap (ES/1):]. k. For the top layer

k = 1 this term is zero. For the lowest layer k = NLEV (pB)z_j k is

l i‚j‚k

T. = - — AB —A 52(p3) 1,},NLEV (5A);J’NLEvn§1 n(p_y(t t))n ( )

where Mi, j, k is the number of grid squeres that (5A) i j NLEV overlap.

As an illusuation consider the simple case of an advection where Ük (z) has the same

direction at all levels. For such a case Figure 4a shows some departure volumes in a (x,p)-

coordiante system. Those volumes that at time t+ At end up as a vertical column and which

therefore have the same ps + in (50) are conected by thin lines. Consider the single bottom

volume which is “blown up” in Figure 4b. In this case N and M are both 2 and the two areas

and two pressures used to define the top and bottom pressure, respectively, are indicated in the

figure.

By inserting (50) and (51) in (49) we get the following expression for the bottom pressure of a

certain volume

NL“

(p3).- 1 2AT„(pB>„‚k_1+<AA)‚.„+ (Aakwbkmsw Ü (53>1,],k _ (5min „1

At the upper most level k = l, which is always an isobaric layer, the first and last term are

zero. More of the upper layers may be isobaric layers in which case the last term is zero also

for these layers.

For the hybrid - and sigma-layers (for which Abk ¢ 0), however, (ps) 11+ is included in the

expression for (pB) Z}. k. Thus, we have to determine (ps) i: before all the bottom pressu—

res of the volumes can be determined. A system of equations from which (ps) J can be

determined are obtained by setting (53) for k = NLEV equal to (52):

Ni. j, NLEV

n=l

Mu
2 ABn(Px("At))„’ (MM; AaNLEV

n=l

When the (pB) i that appear in the first term (and are given by (53)) are inserted inj, NLEV— r
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(54) and the (pB) L13 NLEV _ 2 that appear in the resulting equation are inserted - and so on— we

arrive at a linear equation for each gridpoint i, j of the form

L.u"
2 C13}. „ (ps) ‚1+ = du (55)

n = 1

A number of surface pressure values (ps (t + At) ) 131' from a group of neighbour grid points
appear on the left hand side of each of the equations (55). In the case considered in Figure 4a

we get pS (t + At) values from four neighbour grid points. The coefficients C1313 n and the
right hand sides dt, j in (55) can be determined from known quantities.

When the surface pressure field (pS (t + At) ) l. j has been determined from (55) we can finally

determine (pB) if}. k from (53) for all the volumes with k < NLEV whereuppon the volumes

(5P) :J- k (5141):]. k are completely determined.

When (49) is summed over all grid points for a periodic domain we get

.2 (ps (r+ At) ) “AA“. = z (ps (t—At) ) “AA“. (56)
1,} 1:]

i.e. exact conversation of mass.

. E) J .
In the elbergy equation we will need j—I—n at the bottom surface of each of the volumes at

(

time t. 85.171 is the mass fiux (except fora factor g) through an 1] surface. We shall compute

this quantity, which we shall call WT], in a way that is consistent with the Lagrangian discreti-
zation of the continuity equation proposed above. From (49) we get

_ EM) +
(6A);(Ap)k+ -(5p); = (Am+ (Arm+

(AN/Ü (1— (AA) ]
(öAufi

OI'

Pkii/z‘PE _{k1/2-P}_ = _(_Ap)k+ 1_ _(i\/{_)_+_
2At 2At 2At (5,4);

01'
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(Ap) + (3.4 ) +0 0 k= .__.. ________ 7{<W„>B}k {(W„>T}k+ 2m (1 ._ j <5)
For convenience we have omited the indicies i and j. When the continuity equation has been

solved as described above the second right hand term in (57) is known and the first term can

be determined as an area wighted sum of those bottom fluxes in the layer above that (5.4);

overlap.

The vertical flux of geopotential needed in the discrete version of (37) is then computed as

5P. 0 _ 0(371n¢)3,k_ {(Wn)B}k{(¢(l))B}k

where the last factor is the geopotential interpolated to the mid point of the bottom surface of

the advected grid volume at time t. The position of this surface is determined by the mid

points of the trajectories and the pressure

<p = ;(pk:1„+<p; >k) (58)
For the bottom layer we use (a—pfiqa) = 0.

3n B, NLEV

We shall not in this Note list the discrete equations corresponding to the contious equations

(35) - (38). They are to a great extend analoguous to those given previously for the 1-D and 2-

D shallow water equations. We shall just make some general comments.

For all the equations we propose the leap frog scheme to be used and to evaluate the right

hand sides of the equations for the advected grid volumes at time t. Exceptions are the physi-

cal parameterization terms (the P-terrns) for which as usual generally a forward time scheme

should be used, the horizontal diffusion terms (the K—terms) for which either a forward or pre-

ferably a backward scheme should be used and finally the term öQän (q) a?) in the energy

equation to which we shall return presently.

The advected grid volumes at time I were defined above. A certain volume is supposed to

have vertical plane walls going through the mid points of the trajectories from the corners of

the grid square in question and to have a bottom pressure given by (58). At the top it is boun-

ded by the bottom pressure surfaces of the volumes it overlaps (as indicated in Figure 4a,
though at time t—At). The horizontal fluxes in (37) must be evaluated by interpolation to the

mid points of the vertical walls and the Coriolis and pressure gradiant terms in (38) should be
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interpolated to the centre of gravity of the volume. The discrete equations furthermore involve

an evaluation of the prognostic quantities cplneöpöA, (fl: V2 + cpT) 5p 5A and will/5p 6A in
the departure volumes at time t— At. Preferably volume weighted mean values should be used

which (together with a consistent determination of the fluxes on the right hand sides of the

equations) will ensure that the conservation properties are retained.

Also the term

6 8p
5955 (4)5)

on the right hand side of (37) must be treated in a special way in order to maintain energy con—

servation. The following discretization of this term is suggested:

AA. .
fit}! [Wu/20) (pk+1/2(t+At)_pk+1/2(I_At))

_¢k—1/2(t) (Pk_1/2 0+ At) —pk_1/2(t-At) ) ]i‚j (59)

The sum over all grid volumes of this expression gives

£2} ((1)3) A]. (ps (H Al) ) i,jAA;,j - i2} (OS) A} ( (p5 (t-Al) ) LjAA‘lJ')

So that when diabatic and dissipation terms are neclected the sum over all grid points of the

full energy equation gives

EM (r+ Ar) = Em, (t—At)

where

1 2Em z 2/} (EV +cpT)Ap}ij kAAiJ+z {QSPSAALJ
1,], ’ ’ 1).]

is a proper definition of the “discrete” total energy.
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The sequence of computations in a time step should be as follows:

At first horizontal trajectory computations then determination of (ps (t + At) ) from (55) ,

determination of (pB) ‘ using (53) and (W11): using (57). Then using the discrete version of

(34) to determine q (t + At) , (36) and the definition of 6 to determine T (t + At) , (47) and

(48) to determine ¢k+1/2(t+At) and (bk (t+ At) , (37) to determine V (t+ At) and finally (38)

to determine utH (t + At) from which the wind components can be computed as in (32).

Concerning numerical stability of the proposed leap frog scheme, the possibility of using a

spectral representation and the use of a numerical time filter and a horizontal diffusion the

remarks made at the end of the last section (after equations (32)) apply also for the 3-D case

considered in the present section.
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4. Concluding remarks

In the scheme presented in the preceding sections an exact conservation of mass, total energy
and entrophy were obtained when the mean values over the areas 8A2]. were computed as
“area-weighted” mean values. In these computations the prognostic values (i.e. 5p, qöp,
(V2/2 + CPT) 5p, snesp, \VH Vöp) at time t— AI were assumed constant within each grid

area. This constant finite element representation is the simplest possible distribution of the
variables within a grid area. When applied to pure horizontal advection in a constant wind
field it is obvious that this constant finite element representation will imply a damping of the

smallest scales and especially a smearing of steep gradients. As mentioned in section 2 some
smoothing of the smallest resolved scales is desireable, but the numerical damping may be too

severe and furthermore it is a disadvantage that it can not be controled explicitely. It may the-
refore be considered if a higher order finite element representation should be used.

In a recent paper, Rancic (1992) (which the author became aware of just after completion of
the preceding sections of this note), a new semi—Lagrangian scheme for two-dimensional hori-
zontal advection of a passive scalar were presented. This scheme turns out to be similar in
several respects to the more general scheme presented in this note, except that a biparabolic
finite element representation is used. A similar representation, or one based on linear finite
elements, might be used also in the present scheme, in some or in all the prognostic equations.
This would reduce the small scale damping, but of course at the expense of increased com-
putational time.
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Appendix

Derivation of the continuous equations

As a starting point we take the continuous equations for a general pressure -based terrain- fol-

lowing vertical coordinate T] (p, ps) as formulated for the ECMWF model (equations (1.2.2)-

(1.2.5) in the Research Manual 2, M1.6/3) which may be written as

_\

g: = —V¢—0t—f7c><l7+13v+f(v (A1)

dT

dq _E — Pq+Kq (A3)

d 3p 4 3fi_

where V is the horizontal wind vector and

RdTv
a = ‚-T„ = T[1+ (é—1)q],‘e = Rd/Rv

(A5)
cp = pd[1+(ö—1)q];ö = cpv/d

With a few exceptions we use the notations introduced in the ECMWF manual. Following this

manual the P-terms are:

-l8 8 slaw—mg) (371% (A6)
_ 8p '1 8 ö 8cpPT — QR+QL+QD—g(fi) [fig—emu mag] (A7)

8p “1 8

In (AD-(A3) 3v, Js and Jq represent net parmeterized vertical fluxes of momentum, dry static
energy cpT + q), and moisture. QR, QL and QP represents heatings due respectively to radia-

tion, to internal phase changes and to the internal dissipation of kinetic energy associated with

the f", term. Sq denotes the rate of change of (1 due to rainfall and snowfall. The terms Ev, KT

and Kq in (A1)-(A3) represents the horizontal diffusion.
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1.The continuity equation

Using that

an _ 16189

where 59 is an infinitesimal small volume in the (x, y, 11) space (A4) becomes

d öp öp d6!) _

or

d 8p_ .. = A10dt ( an öQ) 0 ( )

2. The moisture equation

Using (A10) and (A3) we get

d 3p 8p dq _ 8p

01'

d 3p _ 3pElm—59) — (wie) (Pq+Kq) (A11)an

3. The total energy equation

Scalar multiplication of (A1) with I7 gives

_(_) =—17-V¢—al7-Vp+f/-(I3V+I?a) (A12)

a
"ä öQ and (A10) with V2/2 and addition of the resulting equa-Multiplication of (A12) with ö

tions gives

d V2 ap _ ap .3 _x A _\ 4
ä(7%ög) _ —äfiöQ[V-vq>+ocV-Vp—V. (P„+K„)] (A13)

a
The first two terms in the square brackets multiplied by 5% may be transformed as follows
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8p; 8p; _fiV~V¢+afiV-Vp _
8p A 8p; 8p; _

ap A 3 8p 3 3p, 8p —~
V-(fiW)+<b(a-t(ä)+%(äfin))+aäfi(V-Vp)

_ 8p 4 3 8p a öp . ap.aq> öp; _
V (fi¢V)+¢a—t(fi)+fi(fi¢n)-fingfi+afiV-Vp -

ap _x 3 6p , 83p a¢ap öp ap A . _
V' (fiWHfigfi—dm)+(¢afi§+fi§)+fia(§+V-Vp+nfi) -

8p 4 9 3p . a 8p 8p
V' (a—n¢V)+a—n(fi¢n)+éfi(¢m)+5fi0¢w (A14)

where the hydrostatic equation

34> _ 8p
fi__afi

and the continuity equation on the form

a A a a a a .
V- (—pV) = -(—(—p)+—--(—pn))an at an an 811

were used.

Substituting the final expression (A14) into (A13) this equation become

d V2 3p _(17(78—1189) — (A15)

3p; Bap, 38p ap rapes69[V- (WV) +ä (Wm) +m («pg—t) +fiaco— (v- 671’ draws]
We then derive the total potential energy equation. We have

d _ dT dcp _ dT
(5%“ - 6pm +Td—t - Cpa „ d;

Using (A2), (A3), (A7) and (A8) we get from this

dir (cpT) = aw+PcpT+cT (A16)

where
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öp “1 8PCPT=QR+QL+QD+cpdT(ö—1)Sq—g(a—T—1) 3—a

and

3pMultiplication of (A16) with 31']
ons gives:

69. and (A10) with cpT and addition of the resulting equati—

d 8p _ at)Z: (cpTE so) _ üso (0cm + PCPT + KCPT) (A17)

We now add this equation to (A15) and become finally

d V2 8p _Er“? +cpT) 57159) _ (A18)

öp .„ 6 8p _ 3 8p ap A A A
_5Q[V. (afiqJV) +ü (WM) +‘afi‘Ma—r _fi (V- (Pv'l'Kv) +PcPT+KcPT)]

4. The thermodynamic equation

We define the potential temperature 6 as

p R/c‘,J

0 = “50) p0 = 1000 hPa (A19)

where

R = (1—q)Rd+q

cp (1—q)cpd+qcpv

Logarithmic differentiation of (A19) gives

flmm) +h<T‚p> (ff-15f) (A20)d l
a<Cplne) — 71(6d

where

h(T,p) = (cpv— pd)lnT+ (Rv—Rd)ln(pO/p).
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Using (A2) and (A3) in (A20) we get

P..+ K.
Edi (cplne) = Gigi—r) +h(T,p) (Pq+Kq) (A21)

B
Multiplication of (A21) with ä öQ and (A10) with cpln6 and addition of the resulting equa-
tions gives:

d 3P _ 3P[Cp(PT+KT) ]

5. The wind direction equation

This equation is derived from the momentum equation in natural coordinates (see e.g. Haltiner

and Martin (1957), Section 11-13).

Fig. 5

The accelleration of the horizontal wind 17 with the approximations traditionally made in the
primitive equations may be represented in a natural coordinate system as

df/ d d‘I’H A_ = _ A2dt drHtn ( 3)
where 2‘ = 17’ f1 = k>< i, V = M and WH is a wind direction angle in the instantaneus tan-

gent plane as illustrated in the figure shown above.

It follows from (A23) that

d _ dV d‘I’H
äÜVHV) _ WHE+V(—dt—)
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a?7d? (A24)= (ü + wHi) -

. . . . 8p . . . . .
Multiplication of w1th 8—11 89 and (A10) w1th WHV and add1t10n of the resulting equatlons
give

d 3p _ 3p A s (117

which gives (38) when dV/dt is substituted from (A1).
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