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Abstract 
Reversible-deactivation radical polymerization (RDRP) is without any doubt one of the most 

prevalent and powerful strategies for polymer synthesis, by which well-defined living polymers with 

targeted molecular weight (MW), low molar dispersity (Ɖ) and diverse morphologies can be prepared 

in a controlled fashion. Atom transfer radical polymerization (ATRP) as one of the most extensive 

studied types of RDRP has been particularly emphasized due to the high accessibility to hybrid 

materials, multifunctional copolymers and diverse end group functionalities via commercially 

available precursors. However, due to catalyst-induced side reactions and chain-chain coupling 

termination in bulk environment, synthesis of high MW polymers with uniform chain length (low Ɖ) 

and highly-preserved chain-end fidelity is usually challenging. Besides, owing to the inherited radical 

nature, the control of microstructure, namely tacticity control, is another laborious task. Considering 

the applied catalysts, the utilization of large amounts of non-reusable transition metal ions which lead 

to cumbersome purification process, product contamination and complicated reaction procedures all 

delimit the scope ATRP techniques. 

Metal-organic frameworks (MOFs) are an emerging type of porous materials combing the 

properties of both organic polymers and inorganic crystals, characterized with well-defined crystalline 

framework, high specific surface area, tunable porous structure and versatile nanochannel 

functionalities. These promising properties of MOFs have thoroughly revolutionized academic 

research and applications in tremendous aspects, including gas processing, sensing, 

photoluminescence, catalysis and compartmentalized polymerization. Through functionalization, the 

microenvironment of MOF nanochannel can be precisely devised and tailored with specified 

functional groups for individual host-guest interactions. Furthermore, properties of high transition 

metal density, accessible catalytic sites and crystalline particles all indicate MOFs as prominent 

heterogeneous catalysts which open a new avenue towards unprecedented catalytic performance. 

Although beneficial properties in catalysis, high agglomeration and poor dispersibility restrain the 

potential catalytic capacity to certain degree.  

Due to thriving development of MOF sciences, fundamental polymer science is undergoing a 

significant transformation, and the advanced polymerization strategy can eventually refine the intrinsic 

drawbacks of MOF solids reversely. Therefore, in the present thesis, a combination of low-

dimensional polymers with crystalline MOFs is demonstrated as a robust and comprehensive approach 

to gain the bilateral advantages from polymers (flexibility, dispersibility) and MOFs (stability, 

crystallinity). The utilization of MOFs for in-situ polymerizations and catalytic purposes can be 

realized to synthesize intriguing polymers in a facile and universal process to expand the applicability 

of conventional ATRP methodology. On the other hand, through the formation of MOF/polymer 
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composites by surface functionalization, the MOF particles with environment-adjustable dispersibility 

and high catalytic property can be as-prepared. 

In the present thesis, an approach via combination of confined porous textures from MOFs and 

controlled radical polymerization is proposed to advance synthetic polymer chemistry. 

Zn2(bdc)2(dabco) (Znbdc) and the initiator-functionalized Zn MOFs, ZnBrbdc, are utilized as a 

reaction environment for in-situ polymerization of various size-dependent methacrylate monomers (i.e. 

methyl, ethyl, benzyl and isobornyl methacrylate) through (surface-initiated) activators regenerated by 

electron transfer (ARGET/SI-ARGET) ATRP, resulting in polymers with control over dispersity, end 

functionalities and tacticity with respect to distinct molecular size. While the functionalized MOFs are 

applied, due to the strengthened compartmentalization effect, the accommodated polymers with 

molecular weight up to 392,000 can be achieved. Moreover, a significant improvement in end-group 

fidelity and stereocontrol can be observed. The results highlight a combination of MOFs and ATRP is 

a promising and universal methodology to synthesize versatile well-defined polymers with high 

molecular weight, increment in isotactic trial and the preserved chain-end functionality. 

More than being a host only, MOFs can act as heterogeneous catalysts for metal-catalyzed 

polymerizations. A Cu(II)-based MOF, Cu2(bdc)2(dabco), is demonstrated as a heterogeneous, 

universal catalyst for both thermal or visible light-triggered ARGET ATRP with expanded monomer 

range. The accessible catalytic metal sites enable the Cu(II) MOF to polymerize various monomers, 

including  benzyl methacrylate (BzMA), styrene, methyl methacrylate (MMA), 2-

(dimethylamino)ethyl methacrylate (DMAEMA) in the fashion of ARGET ATRP. Furthermore, due 

to the robust frameworks, surpassing the conventional homogeneous catalyst, the Cu(II) MOF can 

tolerate strongly coordinating monomers and polymerize challenging monomers (i.e. 4-vinyl pyridine, 

2-vinyl pyridine and isoprene), in a well-controlled fashion. Therefore, a synthetic procedure can be 

significantly simplified, and catalyst-resulted chelation can be avoided as well. Like other 

heterogeneous catalysts, the Cu(II) MOF catalytic complexes can be easily collected by centrifugation 

and recycled for an arbitrary amount of times. 

The Cu(II) MOF, composed of photostimulable metal sites, is further used to catalyze controlled 

photopolymerization under visible light and requires no external photoinitiator, dye sensitizer or 

ligand. A simple light trigger allows the photoreduction of Cu(II) to the active Cu(I) state, enabling 

controlled polymerization in the form of ARGET ATRP. More than polymerization application, the 

synergic effect between MOF frameworks and incorporated nucleophilic monomers/molecules is also 

observed, where the formation of associating complexes is able to adjust the photochemical and 

electrochemical properties of the Cu(II) MOF, altering the band gap and light harvesting behavior. 

Owing to the tunable photoabsorption property resulting from the coordinating guests, photoinduced 
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Reversible-deactivation radical polymerization (PRDRP) can be achieved to further simplify and 

fasten the polymerization. 

More than the adjustable photoabsorption ability, the synergistic strategy via a combination of 

controlled/living polymerization technique and crystalline MOFs can be again evidenced as 

demonstrated in the MOF-based heterogeneous catalysts with enhanced dispersibility in solution. 

Through introducing hollow pollen pivots with surface immobilized environment-responsive polymer, 

PDMAEMA, highly dispersed MOF nanocrystals can be prepared after associating on polymer 

brushes via the intrinsic amine functionality in each DMAEMA monomer. Intriguingly, the pollen-

PDMAEMA composite can serve as a “smart” anchor to trap nanoMOF particles with improved 

dispersibility, and thus to significantly enhance liquid-phase photocatalytic performance. Furthermore, 

the catalytic activity can be switched on and off via stimulable coil-to-globule transition of the 

PDMAEMA chains exposing or burying MOF catalytic sites, respectively. 
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1. Introduction 

The modern world without polymers is hard to imagine. A wide variety of polymer materials are 

utilized in the contemporary society in the form of bulk, blends or block copolymers either in liquid, 

crystals, gels, micellar, colloidal or multiple layer phases. No matter what kind of combination is taken, 

it will be implied by the collective behavior of multiple polymer chains, resulting in particular material 

property,1 such as daily food, containers, gasoline and synthetic fibers.   

Traditional radical polymerization (RP) is employed to synthesize polymers within the range of 

100 million tonnes worldwide each year. However, due to the very limited uniformity and mixed 

structure in these polymers, polymers prepared by RP are mostly applied for commodity product with 

low precision requirement, such as plastics, rubbers and fibers. For high-value applications, precise 

control over architectures, compositions and functionalities of polymers is highly demanded, because 

it is a prerequisite to obtain functional materials with desired properties. Therefore, the establishment 

of controlled / living radical polymerization2 or the so-called reversible-deactivation radical 

polymerization (RDRP) has been developed to refine and advance synthetic polymer science.3

Atom transfer radical polymerization (ATRP) is one of the most extensive studied branches of 

RDRP, by which well-defined living polymers with targeted molecular weight (MW), low dispersity 

(Ɖ) and diverse topology can be prepared.4-8 Compared to other RDRP strategies, such as nitroxide 

mediated polymerization (NMP) and reversible addition-fragmentation chain transfer (RAFT), the 

universality and comparability of ATRP are wider, contributing higher accessibility to hybrid 

materials, multifunctional copolymers and diverse end group functionalities. However, attributed to 

catalyst-induced side reactions and chain-chain termination in bulk environment, high MW polymers 

with controlled molecular weight distribution (MWD) and high chain-end fidelity are usually hardly 

achieved.9-10 When it comes to control of microstructure, inherited radical nature makes tacticity 

control difficult for ATRP as well. Furthermore, the utilization of large amounts of non-reusable 

transition metal catalysts which lead to laborious purification or product contamination and tedious 

reaction procedures all delimit the scope ATRP techniques. 

The precision of microstructure in natural products has always been a role-model for synthetic 

polymers.11-12 Natural polymerizations demonstrate that an universal principle towards well defined 

biopolymers is the design of proper confined space as microenvironment for specific molecular 

interaction.13-14 Chaperones, for example, as one of the most important bio-machinery equipped with 

the characteristic hollow-shaped chamber conduct the assembly and folding of polypeptides so as to 

give native bio-macromolecules with defined tertiary structure and proper function.15 Furthermore, the 

precision of steric structure can be re-strengthened with the incorporation of specific trigger factors 
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inside the hollow chamber.16 Another example is the primer-directed approach for transcription of 

large DNA sequences. 17 Theoretical studies also point out that well-defined high MW polymers with 

improved end group fidelity can be synthesized by taking advantage of the compartmentalization 

effect which considerably restrains the termination and deactivation processes.18-19 As a result, inspired 

by nature, researchers have utilized porous materials such as liquid crystals,20 stereoregular 

polymers,21-22 porous silica,23-24 zeolites,25-26 and metal-organic frameworks (MOFs)27-28 as confined 

environment for polymerizations to improve controllability of polymer structures.  

Triggered by the thriving development of material sciences, fundamental polymer science is 

collaterally undergoing a significant transformation. 

MOFs are a new category of porous materials which unify both organic and inorganic properties, 

featuring well-ordered crystal structure, high specific surface area, tunable pore sizes / shapes and high 

degree of tailorable surface functionalities. These advantageous properties have contributed to a 

profound connection to significantly enhance progression of applications, such as gas processing,29-30

sensing,31-32 catalysis,33-36 and confined space for polymerization.37-39 Taking advantage of the highly 

adjustable channel microenvironment, the sites of functional groups and the structure of the channels 

in MOFs becomes highly specified for individual guest monomers, and then after in-situ 

polymerization high-dimensional polymers with controlled structures can be synthesized, giving 

unprecedented polymers with advanced structure and distinct properties.  

Along with polymer synthesis, catalytic materials are of importance in scientific and industrial 

fields. Due to the high transition metal density, accessible catalytic sites40 and the featuring highly-

diversified categories as well as the convenient separation, MOFs have been predicted as potential 

heterogeneous catalysts which may contribute unprecedented performance highly comparable to 

current catalytic materials. Therefore with the ever-developing MOF science, the introduction of MOF 

complexes into multiple dimensions can provide other promising probability to explore the catalytic 

potential of MOFs and at the same time to develop state-of-the-art catalysts. 

In the present thesis, the utilization of MOFs for catalytic purpose and intriguing polymer 

synthesis will be mainly emphasized in the following pages. 
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sources, which is namely degenerative transfer radical polymerization (DTRP), such as RAFT.41 All 

RDRP techniques have in common that degree of polymerization (DP) increases linearly 

corresponding to monomer conversion and low Ð are achieved, or block copolymers can be obtained 

by sequential monomer addition. However, each system features advantages and drawbacks according 

to different purpose and reaction condition (Figure 2.1b),48 and the developed strategies are required to 

be improved to expand the usability.41, 48 Comparatively, ATRP provides wider universality and 

comparability owing to the higher accessibility to hybrid materials, multifunctional block copolymers 

and facile end-functionalization. Other properties including commercially available initiators and 

widely-accepted temperatures all make ATRP a powerful tool for polymer synthesis.   

2.1.2 Mechanism and Kinetics 

ATRP is a catalytic process which is mediated via redox-active transition metal complexes 

including Cu, Ag, Ru, Fe, Mo, Os.49 Take the most prevalent CuI/L and Br-CuII/L (L = halide ligands) 

as an example, the polymerization is predominately controlled by an equilibrium between propagating 

radicals (Pn•) and dormant species (Pn-Br). Depending on active rate constant kact, the dormant species 

periodically react with reduced Cu complexes, CuI/L, acting as activators to intermittently form 

propagating radicals (Pn•) accompanied with oxidized Cu complexes, Br-CuII/L, serving as 

deactivators (Scheme 2.1).5 Reversely, the deactivators react with the propagating radicals to re-form 

the dormant species and the activator under the rate constant of deactivation (kdeact).  

The rate of ATRP (Rp) depends on the propagation constant (kp) and the concentrations of 

monomer ([M]) as well as growing radicals ([Pn•]). The radical concentration fluctuates according to 

the ATRP equilibrium constant (KATRP = kact/kdeact) and the concentration of dormant species ([Pn-Br]), 

activators (CuI/L), and deactivators (Br-CuII/L), as shown in Equation 1: 

The polymerization rate increases in line with catalysts activity (KATRP), but it could decrease due to 

radical termination which results in a higher concentration of deactivators and then lower [CuI/L]/[Br-

CuII/L] ratio. The quality of synthesized polymers can be evaluated based on the polydispersity index 

or molecular weight dispersity (PDI = Mw/Mn = Ɖ). Equation 2 shows ideally how Ɖ is influenced by 

the degree of polymerization (DPn), the concentration of dormant species (Pn-Br) and deactivator (Br-

CuII/L), constants of propagation (kp) and deactivation (kdeact), and monomer conversion (p), under the 

assumption of fast initiation without chain termination or chain transfer.50-51
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ARGET ATRP can be performed successfully to prepare composites with well-defined chain length, 

designed morphology and diverse compositions.69 As a result, owing to the strengthened properties, 

refined control over polymerization and extended feasibility, the (SI)ARGET ATRP is applied in the 

present thesis. 

2.1.5 Photoinitiated ATRP 

Recently, the control over activation−deactivation equilibrium was achieved by various stimuli,70

such as photochemical,71-73 pressure,74-75 and electrochemical.76 The applied stimuli is predicted to 

reduce energy barriers to trigger the critical initiation or activation-deactivation process reversibly, and 

to accumulate activators efficiently so as to increase polymerization rate under mild condition.  

Consequently, photopolymerization with advantages of faster reaction rates, lower catalyst loading 

and spatial control ability can surpass the traditional thermal strategy. Currently, the photoinduced 

Reversible-deactivation radical polymerization (PRDRP) can be achieved by visible light with77-79 or 

without79-82 the utilization of specialized photoinitiators, sensitizers and dyes, synthesizing well-

defined polymers with featuring living property.  

PhotoATRP has received considerable attention owing to the facile process, less additives required, 

and the feasibility of using visible/sunlight.63, 83-84 Although the detailed mechanism of radical 

formation and activator (re)generation in the photochemical system is still not clear, previous studies 

have pointed out that alkyl halide activation via excited CuI complexes photochemically is not 

kinetically significant.84-85 Namely, the photo ATRP with conventional Cu catalysts and ligands must 

proceed by radical formation and activator (re)generation, instead of enhanced activity of the CuI

complex. Five parallel pathways are listed in Scheme 2.2 (1)-(5),80, 84, 86-87 and generally speaking these 

processes could be regarded as a combination of initiators for continuous activator (re)generation 

(ICAR) ATRP and ARGET ATRP, because CuII ion are reduced under light in a term of electron 

transfer as in ARGET while resulting in halogen radicals for initiation, as in ICAR ATRP.  

Simulation and experimental results reveal that the fundamental mechanism of Cu-mediated 

photoATRP is a combination of photoARGET ATRP and photoICAR ATRP.83 The dominant radical 

(re)generation process is the ARGET like photochemical reducing CuII ions by excess amines 

(pathway 5). As eminent electron donors amines are oxidized to promptly produce the CuI complex 

and amine-centered radical cations which initiate a new chain after proton transfer.88 Besides, radicals 

are generated synergistically between alkyl halide and the ligand, referring to a photochemical ICAR 

ATRP with occurrence 10 times slower than the ARGET counterpart (pathway 4). Other processes 

mentioned contribute to merely a minor portion. The overview of mechanism is illustrated in Scheme 

2.2,83 indicating the operation of classic ATRP to supplement radical balance and control the 

polymerization predominantly via photo ARGET ATRP with the combination of photo ICAR ATRP.  
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2.2 Compartmentalized ATRP 
ATRP was originally developed in homogeneous bulk environment,41 but distinct properties are 

observed in dispersed systems ascribed to the mass transfer,89-90 distribution/partition of reactants91-92

and particularly the compartmentalization effect.19, 93-96 Compartmentalization can be divided into the 

segregation and the confined space effect.89, 96-97 Segregation means reactants are located separately 

being unable to react; in contrast, the confined space effect means reactants react faster in a smaller 

space due to an increased local concentration. Take emulsion polymerizations as example, considering 

only propagating radicals, the compartmentalization contributes to isolated radicals, usually resulting 

in higher polymerization rates (Rp) and higher MW than bulk counterparts.18, 98

Different from typical emulsion polymerization, both propagating radicals and deactivator species 

have to be considered in compartmentalized ATRP, once concentration of deactivator is sufficiently 

low. Theoretically, in small particles (diameter, d < 500 nm), when the deactivator (CuII complex) is 

not compartmentalized, segregation reduces the termination rate, and then results in higher Rp with 

broaden molecular weight distribution (MWD). The broad MWD is attributed to a lower termination 

rate avoiding accumulation of deactivator, which reduces deactivation rate and enhances 

polymerization of more monomers per activation-deactivation cycle.91, 99 However, in the case 

deactivators are compartmentalized, besides the improved livingness imparted from segregated 

radicals, according to particle sizes the confined space effect may hasten polymerization by increasing 

propagating radical concentration or slow down the reaction via enhancing deactivation process, 

leading to a narrower MWD.6, 96, 100

Up to now the compartmentalized ATRP was experimentally demonstrated to give poly(butyl 

methacrylate) with high MW of 989,900 and low Đ = 1.25, in term of miniemulsion with weight-

average diameter <110 nm.101-102 Achievement of such high MWs remaining good control/livingness is 

currently challenging via bulk polymerizations.

2.2.1 Theoretical Model Development  

The compartmentalized ATRP is modeling by polymerization of n-butyl acrylate (nBA) using 

CuBr/ 4,4'-dinonyl-2,2'-bipyridine (dNbpy) at 110 ºC in a dispersed condition under an assumption of 

constant Np (total particle number) throughout the polymerization.96 Referring to the homogeneous 

bulk system,3, 45 the modified Smith-Ewart Equation is applied to model the compartmentalized ATRP, 

as shown in Equation (3)-(7).19, 96
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indicates that the polymerization rate (Rp) decreases significant in line with particle size, especially 

while d ≤ 40 nm. Correspondingly, when the particle size is shrinking, both  and  are 

reduced as well (Figure 2.4b).96 However, because P· and CuBr2 are generated in pairs and the 

deactivation rate is also increased by the confined space effect, the Rp at this condition is determined 

by the number of monomers included in an activation-deactivation cycle, relating to the interval time 

before deactivation [= ]. Namely, in extremely small particles (d < 40 nm), the activation 

frequency is proportional to merely the volume in organic phase. The result suggests that under 

homogeneous condition, the activation frequency can be increased by conducting polymerization 

under a more confined condition, resulting in a higher polymerization rate.  

2.2.3 Compartmentalization Effect on Termination and Deactivation  

Equations (8)-(11) are applied to calculate and compare the compartmentalized rates (Rc) and the 

corresponding non-compartmentalized rates (Rnc). 

The distinct transformation of  and  at 10% conversion versus d can be observed 

in Figure 2.4c.96 Due to the confined space effect the deactivation rate is dramatically increased, 

giving the larger  value while d is decreasing. Conversely, the  decreases in line 

with d between the range 30-90 nm and then remains steady, resulting in retarded termination process. 

Therefore in ideal ATRP without termination, transfer and side reactions, the Đ is determined by the 

repeated times of activation–deactivation cycles towards the targeted MW;3 that is, Đ can be reduced 

by increasing the conducted cycle number. The confined space effect-resulted enhanced deactivation 

rate in small particles leads to higher cycle number, contributing to well-controlled polymerization 

with lower Đ; moreover, the retarded termination results in higher livingness. In summary, 

compartmentalization has the benefits of improving both control and livingness under the cost of 

slower polymerization rate, and via interpretation of the confined space effect and the segregation 

effect the compartmentalized effect can be exploited to improve control/livingness in ATRP, 

especially in high MW attempt.   
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2.3 Metal-Organic Frameworks (MOFs) 
Metal–organic frameworks (MOFs) are infinitely extended networks formed by metal ions and 

bridging organic ligands103-104 which have attracted tremendous attention over the last decades.105-106

Due to the promising advantages of porous structure with high surface areas, tunable pore sizes and 

devisable topologies, applications have driven the ever-growing interest in this newly-developed 

material,107 igniting researches30-31, 108-110 in adsorption, separation, sensing, drug delivery, 

luminescence, catalysis, and especially as hosts for (in)organic molecules.111-113

2.3.1 Design and Synthesis of MOFs 

The characteristic metal ligand network of MOFs ranging from one dimensional (1D) to 3D can 

be designed and constructed by enormous secondary binding units (SBU) with different applied metal 

ions and bridging ligands (Figure 2.5).29, 114 Once the metal cations which act like nodes in the 

framework are determined (Figure 2.5a), the organic bridging anions, such as carboxylates, are 

utilized to balance the system charge and connect the metallic nodes (Figure 2.5b).29, 115-116 Benzene-

comprised multi-carboxylate ligands with unique angles (i.e. 120º, 180º or others), spacers (longer or 

shorter) and metal binding sites (i.e. 2, 3 or more) are prevalent and usually chosen for the synthesis of 

multidimensional MOFs. While the neutral bridging ligands are applied,116-118 charge is balanced by 

the counter ions of original metal salt, such as Cl-, NO3-, SO4
2- or BF4

-. These non-charged ligands are 

predominantly contributed by nitrogen containing heterocyclic molecules which can not only act as a 

linear spacer bridging metal connectors but can further serve as a hydrogen-bond acceptor to diversify 

the microenvironment inside the MOF framework.119 Generally, rigid bridging linkers are preferred 

among all available linkers in order to gain thermally stable and robust porous frameworks which can 

retain the MOF integrity even after the elimination of supporting guest molecules.  

Nowadays many alternative methods are established to prepare MOFs including 

mechanochemistry using a mechanical ball mill to replace solvents,120-121 sonochemistry,122

electrochemistry123 and microwave irradiation.124-126 However, the solvo- or hydrothermal synthesis127-

128 is still one of the most prevalent methods for MOF syntheses, by which organic ligands and metal 

salts are mixed in high boiling, polar solvents such as water, dialkyl formamides, dimethyl sulfoxide 

(DMSO) or acetonitrile to react at relatively low temperatures (≤ 300 ºC). Through tuning parameters 

applied in solvothermal strategy (i.e. reacting temperature, concentrations of metal salt and ligand, pH 

of solution, etc.), distinct MOF structures can be fabricated. Several kinds of MOFs are currently 

synthesized in large industrial scale and commercially available. 
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Namely, from simple to complicated, the structure can be arranged in a trigonal or a square plane of 

the metal atoms, a tetrahedron alignment of metal atoms surrounded by an oxyanion in the middle, and 

a tetragonal arrangement with a di-metal paddlewheel in the center. Regardless of the structure, each 

metal pair is linked coordinatively by the ligands orienting the linker molecules in a highly controlled 

fashion.  

Owing to high crystallinity, MOFs possess a defined microporous structure (d < 2 nm). However, 

materials with large pores, such as mesopores (20 nm < d < 50 nm) or even macropores (d > 50 nm), 

are more appealing and suitable for common host–guest reactions. Recently, via increasing the length 

of the organic linker, series of isoreticular MOFs (i.e. MOF-74) with tunable pore sizes from 1.4 to 9.8 

nm can be fabricated under constant topology.130 The large-pore MOFs will enable the incorporation 

of larger reactants, and the tunable the pore size can furthermore expands as well as improve the 

dimension/diffusivity of includable guest molecules. 

2.3.3 Functionalization of MOFs  

It is highly accepted that the framework topology of MOFs is predominantly dependent on the 

incorporated metal ions and organic ligands, resulting in distinct pore size and shape and even 

chemical functionality of the whole framework as well as the material performance.124, 131-132 As a 

result, increasing effort was devoted to alter the intrinsic properties of MOFs by functionalization in 

order to improve or modify the host guest interactions, and allow fine-tuning of the pore 

environment with designed properties. Two general strategies are established to prepare functionalized 

MOFs: the pre- or post-synthetic functionalization (Figure 2.6).133-134

At the beginning, via mixing the pre-modified ligand during the solvothermal step, the targeting 

functionality can be incorporated into a MOF during crystallization process. This co-crystalization or 

prefunctionalization approach allows the preparation of multivariate (MTV) MOFs with pendant but 

simple substituents, such as Br, NH2, CH3, lining along the pore channels (Figure 2.6a).133 The 

facileness and widely applicability offered by this strategy gives rise to a variety of functionalized 

MOFs ranging from the IRMOFs (Isoreticular Meta Organic Framework),135 ZIFs (Zeolitic 

Imidazolate Frameworks),136 to MIL-53 (Material Institut Lavoisier)137 series of materials without 

undesirable change or breaking the original structure. By applying this strategy, more than one type of 

linkers can be included in a MOF crystal, leading to plenty of framework structure built-up by two (or 

more) linkers with diversified material properties. Nevertheless, the stability of functional ligands 

throughout the harsh solvothermal conditions (i.e. high temperature and/or pressures) restrains the 

feasibility of this approach, delimiting the scope of functional groups within the MOFs.  
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2.4 MOF-Polymer Composites 
Among material properties of MOFs, tunable nanochannels is one of the most outstanding 

advantage which makes MOF an excellent accommodation for various of guest molecules, serving as 

a promising platform to elucidate the chemistry resulting from host guest effect.111-113 In an attempt 

to investigate the synergic effect between host and guest molecules, the development in MOF-polymer 

nanohybrid has been particularly emphasized. The hybridization strategy serves as an alternative to 

convert the randomly-entangled polymer chains into highly controlled polymer population with well-

defined chain conformation, unique composition and unanticipated properties.27 More than an 

accommodation, heterogeneous catalysis is another promising application of MOFs. However, the 

drawbacks like less malleability and processibility attributing to the highly crystalline innate has been 

a long-term restriction, restraining the catalytic property and applicability of MOFs in films or 

membranes.146 In this regard, the soft and low dimension polymers can be an universal solution to 

balance the trade-off property via grafting polymer brushes on the MOF surface. In general, 

integration of organic polymers and crystalline MOFs opens an avenue to develop advanced 

complexes with unprecedented performances which could surpass the individual components.147-149

2.4.1 Confined Polymerization within MOFs 

Templating strategy is one of the most facile ways to obtain hybrid materials and to synthesize 

well-controlled polymers with hierarchical structure inherited from porous frameworks. Up to now in 

situ polymerization has been widely conducted in porous zeolites or organic materials. However, 

owing to the microporous geometry with limited pore size, the polymerization of monomers with size 

larger than 6 Å is forbidden.150-154 The designable pore features in size, shape and surface 

functionalities make MOFs advantageous to act as unique nanosized niches for polymerization in 

terms of radical, ionic, oxidative and electrochemistry.  

Free radical polymerization of styrene in one-dimensional nanochannels of Zn2(bdc)2(dabco) (bdc 

= 1,4-benzenedicarboxylate, dabco = triethylenediamine) has been conducted to fabricate highly 

controlled polystyrene (PS) with narrower Ɖ,37 improved tacticity155-156 and defined structure (Figure 

2.7).157-160 It has been pointed out that ascribing to the host-guest and compartmentalization effect, 

porous structure of host MOF (i.e. regularity, dimension, shape, microenvironment, etc.) will 

significantly affect the microstructure of accommodated polymers. For example, a polymer with 

refined tacticity can be obtained from MOFs with uniform porous structure (i.e. unimodal pore size 

distribution),155 bulky substitution groups,37 or unsaturated metal sites (UMS).156 That is, when a 

polymerization is conducted within a MOF with regular and narrower pore size, the isotactic ratio of 

polymers can be increased, because the host-guest effect and space-saving isotactic conformation 

compared to syndiotactic counterpart.161 Besides, when a MOF host is comprised of large substituents 

or UMS, the stereoregularity can be improved as well due to the strengthened nanoconfined effect and 
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aggregation and poor dispersibility which have severely restricted their applications in solution state 

catalysis.173 However, the polymer functionalization is also a trade-off technology, because the 

incorporated polymers can alter the material properties under the sacrifice of blocking the active sites 

or decreasing porosity, which will adversely retard the catalytic performance of the formed 

composites.174 In summary, combining low-dimensional polymers with crystalline MOFs is a 

promising and comprehensive strategy which enables the integrated complexes to gain the bilateral 

advantages from polymers (flexibility, dispersity) and MOFs (stability, crystallinity). Nevertheless, an 

universal method to further optimize performance of composites or even break the trade-off resulting 

from these functionalized techniques is still absent and has to be developed. 
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modified the material properties.36, 133-134, 138, 183-184 Second, the ligands with functionalized organic 

groups can trigger reactions like organocatalysts. Third, the porous body of MOFs can act as a 

physical space where the catalytic reaction takes place or as a confined space where catalytic species 

are encapsulated, stabilized and oriented.185-186 Generally, the MOF may merely act as a spectator or 

passive medium to disperse the catalytic complexes, or it can participate in the catalytic reaction in 

terms of stabilizing transitional metals, orienting guest molecules, or introducing additional active sites.  

Understanding the current limitations of MOFs can provide another important viewpoint to 

develop feasible catalytic applications. Although few kinds of MOFs with extraordinary robust 

structures have been discoverd,187-189 most of other MOFs are usually criticized for their sensitivity to 

moisture and open air, spontaneous hydrolysis, phase transitions or amorphization during time.190-191

Moreover, the degradation of frameworks in special solvents or in acidic/basic solutions are all serious 

drawbacks that delimit the application scope of MOF as a heterogeneous catalyst. Consequently, 

improvement of the thermal and chemical resistance in MOF population to a certain degree at which 

the catalytic processes can still be carried out properly is an urgent task waiting to be solved. 

2.5.2 Designed Catalytic Property of MOFs 

MOFs are comprised of three distinct groups where the catalytic function can be well allocated: 

the metallic nodes, the organic linkers, and the porous structure.114 Some as-synthesized active MOFs 

containing metal ions that are coordinatively unsaturated sites (CUS) can directly coordinate to 

substrates to catalyze a chemical reaction. The use of CUS-containing MOFs is one of the most facile 

and widely exploited applications. In this category, one of the coordination positions is occupied by a 

weakly associated guest molecule (i.e. solvent molecule or water), which can be easily eliminated 

without destroying the crystalline structure. Examples of this as-synthesized active MOFs are the 

HKUST-1-Cu,192 and the MIL-101-Cr.187 After removing the guest molecules to form a coordination 

vacancy, the resulting metal center can act as a Lewis acid with high affinity toward electrons. If the 

metal oxide nodes whose electronic configuration resembles to that of a semiconductor, the 

semiconducting ability could be observed on these materials,193-194 resulting in photocatalytic 

properties.193-196

When it comes to organic linker-oriented catalytic reactions, the MOF framework might act as a 

robust organocatalyst.197-199 2-Aminoterephthalate (NH2bdc) is one of the most fundamental ligands 

which impart MOFs with several functionalities, since the incorporated amino groups can pass on 

basic properties to the material, resulting in association with different strength (figure 2.10a).1991,3,5-

Benzene tricarboxylic acid tris[N-(4-pyridyl)-amide] (4-btapa) is another well-known example of a 

ligand containing two types of functional groups that have been used to prepare MOFs.181 The ligand 

coordinates to the metal ions via the N atom of pyridine, and the non-coordinated amide groups can be 

used as active sites for base catalysis. To avoid the undesired association between metal ions and 
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confinement effect. To achieve encapsulation in a porous matrix, the entrapped complexes must be so 

small that they can fit into the cavity of the cage and meanwhile larger than the openings to avoid 

leakage. Considering to the critical pore dimension, the conventional impregnation is less available, 

and by contrast two other approaches have been demonstrated. The first one is through assembling the 

active species directly within the cavity of porous cage, the so-called “ship in bottle” strategy. The 

second approach is by assembling the support around the active species, also known as a “bottle 

around ship” or “templated synthesis” strategy.  

2.5.3 Unique Niches for Application 

The huge diversity of structures and composition of MOFs, together with facile functionalization 

to incorporate versatile catalytic active sites/functional groups at the metal nodes, at the linking 

ligands or inside the pores, offers unique and unprecedented potential to MOF engineering for 

catalytic applications. Nevertheless, it is obvious that the currently prevalent conventional catalysts 

can hardly be replaced by MOFs for the synthesis of materials in large-amount bulk, especially in 

fields with low specificity requirement. These traditionally applied catalysts have the advantages of 

low cost and higher stability than MOFs, and are constantly applied by industry. Therefore, to expand 

potential of MOFs in the future catalysis area, attempts shall be targeted on applying these well-

defined crystalline solids in reactions where their highly dynamic property can be exploited to surpass 

other catalysts. As a result, the transformations that are too complicated to conventional catalysts will 

become suitable targets for MOFs, for instance, chemo-/enantio/regioslective reactions, one-pot 

multicomponent coupling reactions and step-dependent sequential reactions.212-213 It is believed that, in 

not too distant future, MOFs as highly-tailorable heterogeneous catalysts will find unique application 

niches in asymmetric catalysis, one-pot multicomponent coupling/tandem reactions, or combined 

reactions.214-216 These, additionally with light harvesting applications (i.e. photocatalysis), are probably 

the scenarios in which MOFs can outperform traditional catalysts.217-218



Chapter II 

26 

2.6 Photoconductivity of MOFs  
Recently, the potential usage of MOFs in the field of photocatalysis has stimulated thriving interest 

due to large surface area, well-ordered porous structure and tunable, versatile organic linkers/metal 

nodes complexes, which impart MOFs promising photo-physical and chemical properties.211, 219-221

These photocatalytic materials can be prepared by combining the luminescent metal clusters with 

adjustable organic linkers, as well as incorporation of specialized guest molecules to optimize the light 

absorption behavior and to diversify the surface functionality of MOFs.106, 222-223 Thus modulation of 

MOFs to realize superior visible light-driven photocatalysis in different areas is of utmost importance. 

2.6.1 Electrical- and Photoconductivity of MOFs 

Three categories of electrical conductivity are prevalently utilized to distinguish the electrical 

property of a material at room temperature (RT): insulator (≤ 10-10 S/cm), semiconductor (10-10-101

S/cm) and metal (101-105 S/cm).224 To evaluate the electrical behavior in a reliable way, the thermal 

variation of MOF’s electrical conductivity is traced within the linear Ohmic function. Take the MIL-

125(Ti) as an example, an electrical conductivity of ~10-5 cm2/Vs was determined under UV 

irradiation (340 nm), and the value decreased in line with the temperature, indicating the thermal-

dependent charge transport in MOFs.225-227

Distinct from conventional semiconductors with a band structure, a localized model was identified 

in MOFs, where the charges ‘‘jump’’ by a photon-assisted quantum tunneling mechanism.228 The 

conductivity illustrated by this hopping model can be represented by a modified Arrhenius Equation: 

where σ0 (localization length) and T0 (phonon frequency) are related to the electronic density of the 

states at the Fermi level, the exponent a is related to the electronic dimensionality, a = 1/(1 + D), D is 

the dimensionality. Based on the above analysis, it is suggested that MOFs with 1D structure are more 

conductive than 2D- and 3D-MOFs.224

In the case of inorganic semiconductor photocatalysts, while excited by light the negative electrons 

(e-) will be translocated to the conduction band (CB) and a positive hole will remain on the valance 

band (VB), which reacts with the adsorbed reactant separately.229-230 A similar mechanism happens in 

organic semiconductor as well. However, the energy level is differently described as the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).231-233

Although the detailed mechanism is still unclear in MOF systems, considering to the optical transition 

and the visible photocatalytic performance, MOFs have long been regarded as semiconductors193, 234-235

with theoretical band gaps between 1.0 and 5.5 eV.236-238 In order to understand the electronic and 
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2.6.2 Proposed mechanism for charge transfer  

Up to now, the photocatalytic properties have been reported for several MOFs, such as MOF-5,191, 

193-194, 243 UiO-66-Zr,188, 196 MIL-101-Fe241, 244-246 and MIL-125-Ti.247-250 For the above mentioned 

systems, once excited by light, the comprised linkers can act as build-in antennas to harvest light and 

then deliver the photo-excited charge carriers to central metal clusters, revealing the so-called linker-

to-metal-cluster charge transfer (LCCT) mechanism.  

In other MOFs, the metal clusters containing photosensitive metal ions can be directly excited and 

induce the electron transfer subsequently. For instance, the Fe–O cluster in the Fe-containing MOFs 

(i.e. MIL-101(Fe), MIL-53(Fe) and MIL-88B(Fe) can be directly excited and transfer the electron 

from O2- to Fe3+ to form active Fe2+ and finally to commence photocatalysis.241, 244-245

The other functionalized MOFs, such as NH2-MIL-101(Fe), a dual excitation pathway was 

conducted instantaneously in a MOF. Namely, the amine groups from the functionalized ligands are 

excited and transfer the electrons to Fe centers via the LCCT, and meanwhile the Fe-O clusters can be 

excited as well. This synergic effect between functionalized ligands and metal ions which expands the 

light absorption range toward visible light and thus enhanced the catalytic performance by 3 times can 

be observed in the MIL-101(Fe) system while compared to the inert MOF (Figure 2.11b and c).241

2.6.3 Modified Photocatalytic Performance 

Although significant progress has been made in using MOFs as photocatalysts, the photocatalytic 

efficiency still cannot reach the practical requirement. Fortunately, due to the inherent nature including 

porous structure with large surface area and high versatility of linkers/metal clusters, several strategies 

have been developed to improve the photocatalytic performance, for example, alternation of organic 

linkers/metal clusters or incorporation of extra addition complexes to expand visible light absorption, 

to improve charge separation, and to activate reactant more efficiently. 

2.6.3.1 Modulation of Organic Linkers 
Because one critical step in a photocatalyst is light harvesting to generate charge carriers, the 

photocatalytic system can be directly benefited from expanded absorption wavelength. By adjusting 

the functional organic linkers of MOFs, the ligand-to-metal charge-transfer (LMCT) transition will be 

coincidently changed, and thus the light absorption behavior can be effectively enhanced.196, 251-252 A 

series of isoreticular MOFs with different organic linkers were fabricated, namely terephthalic acid 

(IRMOF-1, MOF-5), 2-bromoterephthalic (IRMOF-2) acid, 2,5-dibromoterephthalic acid, biphenyl-

4,4’-dicarboxylic acid (IRMOF-9), 1,4-naphthalenedicarboxylic (IRMOF-7) acid and 2,6-

naphthalenedicarboxylic (IRMOF-8) acid. The band gap energies of these MOFs are determined by 

UV/Vis spectroscopy and summarized in Figure 2.11d.242 At the beginning, a band gap of 4 eV was 

determined in the MOF-5 with intrinsic bdc ligand. Once the comprised ligand was replaced, the band 



Chapter II 

29 

gap changes dramatically as anticipated by theoretical results.237 All the 6 selected functional ligands 

were electron-donating molecules, but with different type of functional groups (Br or aromatic ring); 

besides, both naphthalene linkers share the same value of band gap (≈ 3.3 eV). The result provides a 

guide line for ligand-dependent MOF bandgap, and illustrates that the semiconductor behavior of is 

highly designable via selection ligands with miscellaneous substituents. 

2.6.3.2 Modulation of the Structure of Metal Clusters 
Consistent with the MOF-5 system, another theoretical investigation based on the density 

functional theory (DFT) indicates that the band gap of MOF-5 can be altered via substitution of the 

metal oxide, Zn4O, with X4Y (X = Zn, Cd, Be, Mg, Ca, Sr, Ba; Y = O, S, Se, Te) in the node, resulting 

band gaps ranging from 1.7 to 3.6 eV owing to the electronic states of Y atoms in the X4Y nodes and 

C atoms in the organic bdc linkers. The decreasing band gap and the red-shifted absorption edge are 

following the trend of O  S  Se  Te.253 The result is also duplicable in other MOF systems241

and therefore can serve as an instruction to design MOFs with capacity to harvest and utilize visible-

light. 
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3. Outline 

Precise control over architectures, compositions and functionalities of polymers has been a long-

standing goal in synthetic polymer chemistry, as it is a prerequisite to obtain functional 

macromolecules with desired properties.42, 254-255 Over the past decades, RDRP techniques including 

NMP, RAFT and ATRP have provided access to polymers with predetermined molecular weight, low 

dispersity (Ɖ), tailor-made topology, and living end functionality.4-8 Among these strategies, ATRP is 

more advantageous because of the higher compatibility to hybrid materials, facile preparation of 

multifunctional copolymers and miscellaneous end-functionalities. Other properties including 

commercially available initiators and widely-adapted reaction conditions all point to ATRP as an 

eminent methodology for polymer synthesis. However, there are also long-term struggles which 

delimit the application of ATRP to some degree. For example, due to catalyst-induced biradical 

termination in bulk state, synthesis of high MW polymers is challenging, resulting in high Ɖ and loss 

of chain-end functionality. Moreover, due to the innate radical polymerization, tacticity control has 

been another arduous challenge for ATRP. While considering utilized catalysts, the non-reusable 

transition metal catalysts in high concentration and tedious reaction procedures which lead to 

laborious purification and product contamination are other drawbacks of using ATRP techniques.  

MOFs are new-emerging porous materials comprised by metallic nodes and organic linkers, 

featuring well-ordered robust structure, high specific surface area, tunable pore sizes/shapes and 

specific tailorable surface functionalities. These promising properties have significantly boosted 

diverse applications, such as gas processing,29-30 sensing,31-32 catalysis,33-36 and confined space for 

polymerization.37-39 In the present thesis, the utilization of MOFs in catalysis and intriguing polymer 

synthesis will be further emphasized (Scheme 3.1). 

In Chapter 4, an inert MOF structure will be employied as host for various monomers with 

different sizes to conduct ARGET ATRP controlled polymerization inside the confined nanochannels. 

Previous study has theoretically advocated that the compartmentalization effect can serve as an 

universal niche to synthesize higher MW polymers with controlled Ɖ. Experimental results also point 

out by free radical polymerization of vinyl monomers inside MOFs, the improved tacticity in 

accommodated polymers can be observed.155, 157 Nevertheless, the uncontrolled MW, relatively high Ɖ

and dead chain-end functionality resulting from free radical polymerization prevent subsequent 

macromolecular engineering. Therefore, replacing the conventional free radical polymerization by 

ARGET ATRP, the combination of MOF’s compartmental space with sustainable controlled 

polymerization mechanism can diversify polymer composites with expanded properties. To get deeper 

insight of host-guest interaction for polymer manipulation, functionalized MOFs with polymerization 

initiating moieties are designed and used for polymerization in a refined confined environment as well. 
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Extended from Chapter 5, the adjustable optical properties of MOF catalysts according to the guest 

monomers with varied association strength toward Cu ions are further illuminated in Chapter 6. 

Comprehensive studies have evidenced that the band gaps and light harvesting property of MOFs are 

highly designable via varying the organic linkers or introducing guest molecules in the structures. 

Other reports also evidence that nitrogen-containing molecules, such as TEA, DMAEMA and vinyl 

pyridines, are able to act as reducing agents to activate the metal catalytic centers under light 

irradiation.62-63, 256-258 Therefore, through forming complexes with various nucleophilic 

monomers/molecules, series of photochemical and electrochemical properties of the Cu(II) MOF are 

investigated in Chapter 5. Based on the tunable photoabsorption property, photoinduced Reversible-

deactivation radical polymerization (PRDRP) can be realized under visible-light irradiation and 

requires no photo-specialized initiators, sensitizers or complexed ligands. Owing to the advantage of 

photopolymerization, the polymerization processes can be further fastened and temporal control 

during the reaction becomes achievable. 

The eminent catalytic property of MOFs, especially Cu2(bdc)2(dabco), has been demonstrated in 

the previous works, and consequently the concept to push the catalytic performance towards a higher 

level is presented in Chapter 7. It is common that the performance of heterogeneous catalysts can be 

improved efficiently through decreasing particle size or increasing dispersibility. However, the 

intrinsically coordinated inorganic property makes MOF crystals usually brittle and easily 

aggregated/clogged which inevitably retards mass transfer, reduces interfacial area, and then restrics 

the catalytic capability. To conquer this long-term problem,173, 259-260 “smart” polymer grafted pollen 

grains (P-pollen) are devised. Via surface initiated ARGET ATRP (SI-ARGET ATRP) pollen grains 

are grafted with responsive poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes, acting 

as environment-responsive tentacles to capture and disperse MOF nanoparticles (nanoMOF) in 

solutions. Owing to the restricted mobility, intrinsic amine functionality and responsive property of 

densely grafted polymers, PDMAEMA, the P-pollen can serve as a potential stabilizer for various 

MOFs to prepare well-dispersed MOF@P-pollen composites without debilitating their catalytic 

potential. Furthermore, via applying the environment-responsive behaviour of tentacles, the associated 

nanoMOFs can be exposed (catalytic active) or buried (catalytic inactive) reversibly to give the state-

of-the-art catalytic performance with switchable on-off capability in visible light-triggered copper(I) 

catalyzed azide–alkyne cycloaddition (CuAAC)  and dye degradation model reactions.
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4. Functionalized MOFs as Unique Niches for Highly-Defined 

Polymerization Reactions 

4.1 Introduction 
A facile and universal method to improve control in high molecular weight systems and 

stereoregularity is presented in this chapter. It is well known that precise control over architectures, 

compositions and functionalities of polymers has been a long-standing goal in synthetic polymer 

chemistry.42, 254-255 Attributed to catalyst-induced side reactions and chain-chain termination in bulk 

environment, high molecular weight polymers with controlled Ɖ and high chain-end fidelity are 

usually hardly achieved.9-10 Although a few ultra-high-molecular-weight (UHMW, Mn > 106) polymers 

have been successfully synthesized by modified-ATRP and RAFT, specialized conditions such as high 

pressure,75, 261 high concentration,262 or heterogeneous reaction media102 are required. Moreover, 

tacticity control has been another arduous challenge for RDRP.263-265

Inspired by nature, researchers have utilized porous materials such as liquid crystals,20

stereoregular polymers,21-22 porous silica,23-24 zeolites,25-26 and metal-organic frameworks (MOFs)27-28

as confined polymerization environment to improve control over polymer structures. Up to now 

polymerization of vinyl monomers inside of MOFs is still limited to the free radical process, which 

results in uncontrolled MW, relatively high Ɖ and dead chain-end functionality preventing subsequent 

macromolecular engineering. Functionalized MOFs can be easily prepared via prefunctionalization 

which introduces deliberated heterogeneous struts, forming multivariate composites with consistently 

ordered structures.133, 266 134, 155 In such a way, polymerization initiating/mediating moieties can be 

incorporated directly in the frameworks, which enable tailored nanochannels for host-guest 

interactions and confined size-dependent polymerizations.160, 267

In the present Chapter, a strategy combining porous MOFs and activators regenerated by electron 

transfer (ARGET) ATRP, is proposed to unshackle current limitations and improve the precision of 

synthetic polymer chemistry comprehensively. Specifically, ARGET ATRP is conducted to gain the 

advantages of  mild conditions, higher oxygen tolerance and lower catalyst demand.5 As shown in 

Scheme 4.1, MOFs are designed and fabricated to investigate the nanoconfinement effect on 

controlled polymerization. The inert [Zn2(bdc)2(dabco)]n (abbreviated as Znbdc, 1a) (bdc = benzene-

1,4-dicarboxylic acid and dabco = 1,4-diazabicyclo[2.2.2]octane) was employed at first,268-269 and then 

series of initiator-functionalized [Zn2(bdc)2-x(Brbdc)x(dabco)]n (abbreviated as ZnBrbdc) (Brbdc = 

initiator functionalized bdc) were prepared by a mixed-ligand strategy incorporating bdc and Brbdc 
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Table 4.1 Crystal data, details of data collections and structure refinement of 2b and 2c with the 

general composition [Zn2(bdc)2(dabco)·x DMF]; x = 3.44-4.40. 

Compound 2b 2c 

Empirical formula Zn2(bdc)2(dabco)
· 3.44 DMF 

Zn2(bdc)2(dabco)
· 4.40 DMF 

Formula weight (g/mol)a 863.52 863.52 

Crystal system tetragonal hexagonal 

Space group I 4/mcm (No 140) P6/mmm (No 191) 

a (Å) 15.0812(5) 21.5725(5) 

b (Å) 15.0812(5) 21.5725(5) 

c (Å) 19.2621(8) 9.6834(3) 

α (°) 90 90 

β (°) 90 90 

γ (°) 90 120 

Cell volume (Å3) 4381.0(3) 3902.6(2) 

Z 4 3 

ρcalc (g/cm3) 1.31 1.10 

μ (mm-1) 1.15 0.97 

F(000) 1800 1350 

Theta range (°) 3.20 - 24.98 2.37 – 25.00 

Total reflections 43453 64103 

Unique reflections 1048 1383 

Parameters 49 54 

R1/wR2 [I > 2σ(I)] 0.0389/0.0907 0.0273/0.0744 

R1/wR2 (all data) 0.0643/0.1014 0.0331/0.0777 

Goodness-of-fit 1.083 1.070 

Largest difference 

peak and hole (e· Å-3) 0.392/-0.292 0.255/-0.255 

a Calculated without solvent.  
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The over-shooting MW derived from 1a can be attributed to the compartmentalization effect in 

confined environment where polymerization kinetics is accelerated due to the suppressed deactivation 

and termination.18-19, 96, 272 Study has proved that the polymerization in constrained MOF templates is 

predominately dependent on the initiation stage instead of reaction time, and therefore, long polymer 

chains are formed when the monomer is encapsulated in the confined MOF nanochannels.37 Although 

the lower control of molecular weight due to inevitable compartmentalized effect, controlled 

polymerization can still be realized, yielding polymers with MW of 43,800-72,900 and low Ɖ (1.1-

1.3).

Table 4.1 Characterization of MOF-derived polymers formed via (SI-)ARGET ATRP a and the 

corresponding block copolymer after chain extension with IBMA. b

Polymer MOF Mn,SEC
c

(×103) Ɖ d DP e Tacticity f

mm:mr:rr 
Co-

polymer 
Mn,Theo

g

(×103) 
Mn,SEC 

c

(×103) Ɖ d

PMMA 

Bulk 
Solution h 20.0 1.2 200 2:31:67 

PMMA-
b-

PIBMA 

- - - 

L-1a i 43.8 1.3 438 7:53:40 192 221 1.3 
H-1a j 53.8 1.2 537 8:39:53 104 97.5 1.1 

2a 392 1.4 3915 7:33:60 535 556 1.3 
2b 198 1.3 1978 11:36:53 313 295 1.4 

PBzMA 

Bulk 
Solution h 14.4 1.3 82 2:32:66 

PBzMA-
b-

PIBMA 

- - - 

L-1a i 70.2 1.1 398 7:35:58 362 355 1.4 
H-1a j 72.9 1.1 414 8:38:54 117 131 1.3 

2a 143 1.2 812 4:38:58 259 261 1.3 
2b 71.5 1.1 406 4:36:60 164 155 1.3 

PEMA 

Bulk 
Solution h 21.6 1.3 189 1:35:64 PEMA-

b-
PIBMA 

- - - 

H-1a j 61.0 1.3 534 8:36:56 343 350 1.3 
2a 169 1.4 1481 10:36:54 355 368 1.4 

a Polymerization condition: [MMA]0/[EBIB]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 100:1:0.15:0.36:0.6; 

[EMA]0/[EBIB]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 88:1:0.15:0.36:0.6; 

[BzMA]0/[EBIB]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 57:1:0.08:0.16:0.036 (half amount of initiator was 

applied for the high molecular weight attempt) mixed with MOF (0.8 g) at RT for 24 hr, and 

polymerization at 50 ºC for 12 hr; b Chain extension condition: using the accommodated 

homopolymers as macroinitiators, [IBMA]0/[m ]0/[CuBr2]0/[PMDETA]0/[dabco]0

50 ºC for 24 hr. c Determined by SEC in THF based on PMMA calibration. The 

calculation of theoretical molecular weight is according to the Equation S1. d Determined by SEC 

using PS standard. e DP = degree of polymerization, Mn/M0. f Calculated by 13C NMR. g Conversion 

determined by GC-MS. The theoretical number averaged molecular mass Mn,theo was calculated as 

MMinitiator + MMmonomer × ([monomer]0/[initiator]0) × conversion. h  Polymer obtained from the bulk 

solution of Znbdc High. i The low molecular weight attempt. j The high molecular weight attempt. 
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   Initiator functionalized MOFs were introduced to improve the polymerization control. 

Essentially, the polymerizations were carried out by the same process but with initiator-embedded 2a

(0.25% Brbdc incorporated) and 2b (0.66% Brbdc incorporated) without initiator addition, and 

consequently no polymer product was found in the bulk because of the grafted initiator in the MOF 

nanochannel. Eventually, SEC showed significant improvement in polymer properties with low Ɖ and 

designable molecular weight (Table 4.1, Figure 4.9). In sharp contrast to polymerization in 1a, a 

strong correlation between the amount of grafted initiator and MW is observed. As the amount of 

embedded Brbdc decreases by half, the MW of polymers increases by two as expected for a RDRP 

process. For instance, high MW PMMA can be prepared from 2a (392,000) and 2b (198,000), and the 

similar controlled results were obtained from BzMA and EMA.   

Table 4.2 Calculated initiation efficiency of monomers in Znbdc and ZnBrbdc MOFs.

Polymer MOF Monomer 
Loading a (%) Yield b (%) Mn,Theo

c

(×103) 
Initiation 

Efficiency d (f, %) 

PMMA 

L-1a e 62.2 11.9 5.0 11.5 
H-1a f 64.3 11.5 10.0 18.8 

2a 58.8 14.1 263.0 67.1 
2b 59.2 15.5 95.0 48.2 

PBzMA 

L-1a e 23.5 11.6 5.0 7.2 
H-1a f 24.1 11.6 10.0 13.8 

2a 14.3 14.8 63.7 44.6 
2b 12.7 19.1 20.5 28.6 

PEMA H-1a f 46.5 12.5 10.0 16.5 
2a 34.1 15.7 152.0 90.1 

a Determined by gravimetry via comparison of the empty MOF hosts (0.8 g) and the forming 
polymer@MOF complex after polymerization and intensive wash: 

୫,୧୬ୡ୭୫,୧୬୧ ୮୭୪୷୑୓୊ ୑୓୊୫,୧୬୧
where ୫,୧୬୧ is the weight of applied monomer,  ୫,୧୬ୡ୭ is the weight of incorporated monomer in 
the MOF host, ୑୓୊ is the weight of empty MOF host and ୮୭୪୷୑୓୊ is the weight of polymer@MOF 
composite after washing. 
b Obtained via gravimetric comparison of MOF-derived polymers and absorbed monomer amount: 

୮୭୪୷୫ୣ୰୫,୧୬ୡ୭ ୮୭୪୷୫ୣ୰୮୭୪୷୑୓୊ ୑୓୊
where ୮୭୪୷୫ୣ୰ is the weight of accommodated polymer obtained after removing MOF frameworks 
by Na2EDTA solution. The low yield is suggested to the loss of polymers during the EDTA treatment 
to decompose MOF hosts and the intensive wash of polymers to get rid of the EDTA salt. 
c According to ICP results, the initiator ratio incorporated in 2a and 2b is 0.24% and 0.67% separately. 

The theoretical molecular weight was calculated with the assumption of 100% conversion. d The 

initiation efficiency was determined by Mn,Theo/Mn,SEC. e The low molecular weight attempt. f The high 

molecular weight attempt.  
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The absorbed amount of monomers in 1a and functionalized 2a-b and polymer yield can be 

utilized to calculate the initiation efficiency (f) under the assumption of homogeneous distribution and 

quantitative conversion (Table 4.2). The ratio between incorporated monomer and monomer outside of 

the MOF decreases with the increment of monomer size. Namely, 1a can absorb more MMA (64%) 

than EMA (47%) and BzMA (24%). Furthermore, 1a with larger pore size can accommodate more 

BzMA (24%) than 2b with smaller pores (13%), revealing the trend of molecular size selection. In 

accordance with the SEC results, a significant improvement in calculated initiation efficiency of 

initiator-functionalized MOFs, 2a and 2b, compared to 1a confirms the refined ability to modulate 

molecular weight especially in an attempt to higher target molecular weights. Owing to the grafted 

initiators which are well-distributed and installed directly inside the confined channel, less gradient 

effect resulting from different molecules in the feeding mixture is the case. The improved initiation 

efficiency and designable molecular chain lengths advocate the unique advantage of functionalized 

MOFs. Especially for SI-ARGET ATRP, where the initiators are already anchored to a planar surface, 

deactivation and termination processes are retarded, which allows the fabrication of well-defined 

polymers with much higher molecular weight than those prepared in native 1a. Additionally, the 

molecular weight of MOF-derived polymers decreases with increased monomer size, because of the 

restricted mobility and fewer loading for larger monomers. However, MOF-derived polymers with 

high molecular weight can still be prepared in 2a for MMA, EMA and BzMA. As a result, the MOFs 

can serve as nanoreactors for confined polymerization up to high molecular weight polymers (MW = 

143,000-392,000) in a well-controlled fashion (Ɖ = 1.2-1.4).  The low yield is suggested to the loss of 

polymers during the EDTA treatment to decompose MOF hosts and the intensive wash of polymers to 

get rid of the EDTA salt.  

The in-situ polymerization inside the MOF crystals is based on the adducted reagents containing 

monomers, initiators and catalyst/ligand complexes. A successful polymerization requires all of the 

above mentioned molecules be introduced into the given confined space. However, it is absolutely not 

guaranteed that the local concentrations inside MOF nanochannels for each species match the one of 

the bulk. Furthermore, in such confined space the capillary could be the main driving force for the 

introduction of reagents into the MOF nanochannels,273-274 but the defects in the MOF crystals will 

hinder the distribution/adduction of reagents275-276 and then halt the polymerization process as well. 

Therefore, although the crystal size of MOF hosts is around 5-20 µm, the polymer chain length can’t 

reach such dimension owing to the less homogeneous distribution of polymerization ingredients and 

the innate crystal defects. 

4.2.4 Microstructure	of	MOF-derived	Polymers		
The effect of space confinement on polymer stereostructure was studied via polymerization of 

three methacrylate monomers, MMA, EMA and BzMA in two confined environments (i.e. 

conventional ARGET ATRP in 1a and SI-ARGET ATRP in 2a-b). In such a way, the control over 
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polymerization (Figure 5.2b) was attributed to the incorporation of the monomer in the porous texture, 

and the decrease in volume corresponded to the size of the applied monomers. The monomer 

incorporation effect was again confirmed via measurement of weight increase after recycling the 

catalyst (Figure 5.9b), which has to be considered when switching monomers between different runs 

of polymerization. 

Table 5.1 Polymerization of monomers via Cu2(bdc)2(dabco)a and corresponding block copolymers 

resulting from chain extension with IBMA.b

Homo 
polym. 

Mn,theo 
c

(×103) 
Mn,SEC 

d

(×103) Ɖ e Copolym. Mn,theo 
c

(×103) 
Mn,SEC 

d

(×103) Ɖ e

PBzMA 17.2 15.5 1.4 PBzMA-b-
PIBMA 30.6 28.6 1.2 

PS 11.2 16.8 1.3 PS-b-PIBMA 21.1 20.2 1.5 

PI 21.8 23.0 1.4 PI-b-PIBMA 135.8 104.9 1.6 
P4VP 11.6 9.2 1.5 P4VP-b-PIBMA 28.9 16.0 1.2 

a Polymerization condition: [BzMA]0/[I]0/[dabco]0 = 180:1:2, 50 °C for 12 hr; [St]0/[I]0/[dabco]0 = 

110:1:5, 110 °C for 6 hr; [Isoprene]0/[I]0/[dabco]0 = 805:1:5, 120 °C for 36 hr; [4VP]0/[I]0/[dabco]0 = 

370:1:5, 60 °C for 5 hr. Polymerizations were performed with 5.7 wt.% Cu(II) MOF. b Chain extension 

condition: [PBzMA-Br/PS-Br]0/[IBMA]0/[CuBr2]0/[Ligand]0/[dabco]0 = 1:400:0.4:1:2.4, 50 °C for 24 

hr; [PI-Br]0/[IBMA]0/[CuBr2]0/[Ligand]0/[dabco]0 = 1:1100:1.1:2.75:6.6, in 50 vol % dioxane at 50 °C 

for 24 hr; [P4VP-Br]0/[IBMA]0/[CuBr2]0/[Ligand]0/[dabco]0 = 1:450:0.45:1.13:2.7, in 50 vol.% 

dioxane at 50 °C for 24 hr. c Conversion determined by GC-MS. The theoretical number averaged 

molecular mass Mn,theo was calculated as MMinitiator + MMmonomer × ([monomer]0/[initiator]0) × 

conversion. d Determined by SEC according to equation S1, using PS standard in THF for the as-

synthesized PS and PMMA as standard for the as-synthesized PBzMA (in THF), PI (in NMP) and 

P4VP (in NMP). eDetermined by SEC using PS standard.  

5.2.3 Microstructure of the Cu(II) MOF –Mediated PI and P4VP  
PI synthesized by Cu(II) MOF appears to feature high regioselectivity, with an 1,4-addition above 

80% (Figure 5.5a).13 Additionally, referring to P4VP, the Cu(II) MOF catalyzed polymerization not 

only leaded to controlled molecular weights and end groups, but even an effect on the microstructure 

of polymer chains was observed, which has been rarely reported so far. As shown in the 13C NMR 

profiles (Figure 5.5c), the assignment of mm and mr triad from C4 carbon were identified at 152 and 

150 ppm,40 and compared to free radical polymerization, the control over tacticity was improved in the 

Cu(II) MOF-mediated P4VP, as reflected by the increasing ratio of isotactic diads (mm) from 13 % to 

25 %. It was speculated that the increased tacticity was due to the alignment of 4VP monomers along 

the MOF framework, because the Cu(II) MOF could act as Lewis acid forming strong coordination 

between comprised Cu ions and nitrogen atoms from 4VP monomer and/or polymer chains.41 The 
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Table 5.2 The remaining Cu concentration (mg/g) in the polymer products formed via CuBr2 and 

Cu2(bdc)2(dabco) catalysis. a 

CuBr2 Cu2(bdc)2(dabco) 

Bulk Solutionb Precipitationc Bulk Solutionb Precipitationc

PBzMA 0.6 mg/g 0.1 mg/g 0.09 mg/g 0.07 mg/g 

PS 2.1 mg/g 0.6 mg/g 0.19 mg/g 0.01 mg/g 
a Determined via ICP-OES. b The as-synthesized polymer was extracted by THF, the solvent removed 

and the dry residue was analyzed by ICP. c The as-synthesized polymer was precipitated in methanol 

from THF with the volume ratio 1:4, the precipitate was isolated via centrifugation, vacuum dried and 

the  residue was analyzed by ICP-OES.  

5.3 Conclusion 

In conclusion, Cu(II) MOFs were utilized in ARGET ATRP of various monomers. Styrene and 

BzMA were polymerized in controlled fashion according to RDRP standards as proven via a gradually 

increase of molecular weight with conversion and chain extension experiments. Furthermore, the 

challenging monomers 4VP and isoprene could be polymerized in a controlled way, as confinement of 

Cu(II) ions and ligands effectively supresses the side reactions between reagents and monomers to 

successfully perform RDRP. Furthermore, as a heterogeneous catalyst with particle size around one 

hundred nm, the copper catalyst can be separated simply from the polymer product by centrifugation, 

and be reused for further reactions. In summary, with the capability to simplify the polymerization 

procedure, to prevent side-effects in reactions and to solve the cumbersome catalyst removal, Cu(II) 

MOF is demonstrated as a powerful catalyst complex for comprehensive polymerization offering well-

controlled and living properties of the polymers to expand the feasibility and applicability of ATRP in 

synthetic chemistry.  
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Due to the highly-tailorable composites or specific host-guest binding effects, optical properties of 

MOFs can be designed. Namely, the chosen linkers or associated molecules will affect the optical 

properties and the energy gap between the highest/lowest occupied/unoccupied molecular orbital 

(HOMO/LUMO),195, 236, 302 resulting in diverse MOFs acting as photosensitizers with adjustable 

chemical and optical properties.112, 195, 303-304 Once irradiated with light, the metal ions can act as 

photocatalytic centers for oxidation or reduction processes.305-307 Furthermore, investigations have 

revealed that MOFs containing unsaturated metal sites acted as Lewis-acid centers with enhanced 

catalytic activity towards electron-rich molecules.308-309 Moreover, nitrogen-containing ligands were 

introduced as potential reducing agents to activate the metal catalytic centers under light irradiation.62, 

256-257, 283

Since, the catalytic property of Cu2(bdc)2(dabco) as a heterogeneous catalyst to catalyze controlled 

polymerization of various monomers including in the term of ARGET ATRP has been demonstrated 

in Chapter 5, the Cu(II)-based MOF is in this Chapter demonstrated as an excellent catalyst for 

visible-light photoinduced Reversible-deactivation radical polymerization (PRDRP) of various 

nucleophilic monomers, namely 4VP, 2-vinylpyridine (2VP), 2-(dimethylamino)ethyl methacrylate 

(DMAEMA), and methyl methacrylate (MMA) (Scheme 6.1). The applied MOF is determined as 

4/mmm primitive symmetry cell with channel size 7.5 x 7.5 Å,310 which is composed of dication Cu2

segments, with terephthalic acid (H2bdc) as two-dimensional linker and with 1,4-

diazabicyclo[2.2.2]octane (dabco) as both pillar and potential reducing motif under light irradiation. A 

series of photochemical and electrochemical properties of the Cu(II) MOF were investigated first. 

Then, PRDRP was carried out, under visible-light irradiation to reduce Cu(II) to the active Cu(I), i.e., 

without photo-specialized initiators, sensitizers or complexed ligands. Surpassing the conventional 

homogeneous catalyst, the Cu(II) MOF was found to tolerate strongly coordinating monomers. The 

presence of monomer affected the MOF’s properties, influencing both photoabsorption and 

polymerization behaviors. Being a heterogeneous catalyst, the MOF could be easily separated from the 

polymerization mixture by centrifugation, and then reused for the PRDRP of 2VP and DMAEMA. 

Moreover, the on/off character of photoinduced reactions was exploited to obtain temporal control in 

the polymerization of 4VP. 

6.2 Results and Discussion 
6.2.1 Optical Properties of Monomer-Cu2(bdc)2(dabco) Complexes  

It was reported that N-containing monomers can reduce Cu(II) complexes in solution to the active 

Cu(I) oxidation state under light irradiation.83 In the following sections, it is shown that nucleophilic 

N-containing monomers can both reduce the MOF to its Cu(I) state and enhance the light absorption 

of the MOF. 
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(where Epc and Epa are the cathodic and anodic peak potentials, respectively). The redox potential of 

the Cu(II)/Cu(I) couple in the MOF is more negative than that of active ATRP catalysts in aprotic 

solvent, e.g. Eo = -0.02 V vs. SCE for Cu(II)/tris(2-pyridylmethyl)amine2+ (TPMA) in CH3CN,314 but 

more positive then redox potential for Cu(II)/TPMA in water, Eo = -0.34 V vs. SCE.315 

Overall, the Cu(II) MOF thereby can be expected to be a good ATRP catalyst due to the following 

properties: i) an accessible Cu(I) oxidation state, separated by ~0.4 V from the reduction to Cu(0); ii) a 

reversible Cu(II)/Cu(I) redox behavior, required for the ATRP equilibrium; iii) a reducing power (i.e. 

ATRP activity) comparable to that of the most active ATRP catalysts.316

The effect of light on the redox state of the Cu(II) MOF was studied subsequently (Figure 6.3b). In 

the dark, application of a steady potential of +0.4 V vs. SCE generated a small background current of 

ca. 1 nA, indicating no reactions at the electrode. Upon irradiating the electrode surface with UV/Vis 

light, a sudden increase in oxidation current was observed, which indicates the formation of Cu(I) 

species. In fact, it has been already shown that photoexcited amine ligands, such as dabco, can reduce 

Cu(II) to Cu(I).83 When switching off the light, the current decayed to the background value quickly. 

The on/off cycles could be repeated for an arbitrary amount of times, which is an indication of the 

good reversibility of the redox reaction and stability of the MOF structure under irradiation. 

6.2.3 Visible Light-Triggered Photopolymerization via Cu2(bdc)2(dabco) 
The Cu(II) MOF was used to photo-polymerize the four monomers mentioned above, in the order of 

coordinating ability: 4VP, 2VP, DMAEMA, and MMA. A nearly linear semilogarithmic plot of 

monomer conversions against time for both P4VP and P2VP indicated a constant concentration of 

propagating radicals (Figure 6.4 a and b). In both cases, molecular weights increased linearly with 

conversion and agreed well with theoretical values (Figure 6.4 d and e). Polymerization rate of 4VP 

was the fastest, with near-quantitative conversion (> 85%) in 90 minutes. The slower rate with 2VP, 

40% conversion in 90 minutes, was attributed to the different microstructure. The different position of 

the heteroatom in 2VP could affect the binding affinity towards the MOF due to steric hindrance,317

diminishing the polymerization rate.301, 318 Table 6.1 shows that well-defined polymers were 

synthesized, giving controlled P4VP with MW of 3,300 and Ɖ = 1.2, and a P2VP with MW of 5,300 

and Ɖ = 1.4. The control over 2VP polymerization indicated limited side reactions such as 

intramolecular displacement of Br by penultimate 2VP unit.301, 318 For both monomers, the free radical 

polymerization gave uncontrolled polymers with dispersity up to 9.7. The polymerization behavior of 

the two vinylpyridine monomers supported the proposed concept of synergistic effect resulting from 

highly nucleophilic monomer and metal ions. The MOF, which intrinsically harvests only near UV 

light, was sensitized to accept visible light, and thus improved polymerization efficiency.  
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18,900 and Ɖ = 1.4 (Table 6.1). The slower rate might be due to the weaker coordination between 

DMAEMA and embedded Cu ions, resulting in less significant photo-harvesting ability, as evaluated 

by UV/Vis spectra in Figure 6.1. 

Table 6.1 Properties of (co)polymers obtained via conventional strategies and Cu2(bdc)2(dabco) 

catalysis, at ambient temperature under visible light. 

Homo 

polym. 
Catalyst 

kp
app

(h-1) 

Mn,theo 

(Conv./hr) c
Mn, 

SEC
d Ɖ e Co 

polym.f
Mn, 

Theo 
c

Mn, 

SEC
d Ɖ e

P4VP 

Free Radical - - 11.3 6.4 - - - - 

Cu(II) MOFa 1.32 
2.8 

(22%/0.25) 
3.3 1.2 

P4VP-b-

POEGM

A 

15.5 13.9 1.2 

P2VP 

Free Radical - - 87.3 9.7 - - - - 

Cu(II) MOF a 0.32 
4.9 

(13%/0.33) 
5.3 1.4 

P2VP-b-

PIBA 
15.9 13.8 1.3 

PDMA

EMA 

CuBr2/ 

PMDETAa - 
18.5 

(79%/24) 
15.2 1.2 - - - - 

Cu(II) MOFa 0.029 
2.3 

(3%/0.5) 
3.2 1.2 

PDMAE

MA-b-

POEGM

A 

10.8 9.7 1.2 

PMMA 

CuBr2/ 

PMDETAa - 
21.9 

(93%/24) 
20.0 1.2 - - - - 

Cu(II) MOF/ 

TEAa - 
4.2 

(13%/2) 
19.4 1.3 - - - - 

Cu(II) MOF/ 

4-EP a* - 
4.5 

(14%/6) 
13.8 1.3 

PMMA-

b-PIBA 
39.2 33.6 1.2 

Cu(II) MOF/ 

4-EP b* 0.068 
3.4 

(11%/1.5) 
3.7 1.2 - - - - 

* 4-EP = 4-ethylpyridine. a Using EBIB as initiator. b Using bromoacetonitrile as initiator. c Conversion  

determined by GC-MS. The theoretical number averaged molecular mass Mn,theo was calculated as 

MMinitiator + MMmonomer × ([monomer]0/[initiator]0) × conversion. The Mn,theo was presented in ×103.  d

Determined by SEC according to the equation S1 based on PMMA calibration (×103) in THF (for 

PDMAEMA and PMMA) or NMP (for P4VP and P2VP). e Determined by SEC using PMMA 

standard. f macroinitiator 0/ 0/ 0/ 0/ 0 at

in 50 vol % methanol (P4VP and PDMAEMA) or DMF (P2VP and PMMA). 
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The improved efficiency with 4-ethylpyridine and bromoacetonitrile is in line with enhanced 

polymerization behavior of vinylpyridines compared to DMAEMA or the TEA/MMA system, 

advocating the versatility of PRDRP catalyzed by the Cu(II) MOF. Time-dependent SEC 

chromatograms and polymer properties of the homopolymers obtained during the kinetic analysis 

using Cu2(bdc)2(dabco) as photocatalyst (Figure 6.5 d-f, 6.6f) are shown in Figure S10 and Table S3. 

Although the slightly higher Ɖ resulted from the crude extraction without precipitation, the increasing 

MW according to reaction time and conversion can be clearly observed with monodistributed 

molecular weight distribution, indicating the living chain end and limited nucleophilic substitution 

which replaces the bromide chain end with pyridine groups.

6.2.4 Stability of Cu2(bdc)2(dabco)  
The electrochemical measurements suggested the stability of the MOF under photoirradiation 

(Figure 6.3b). Moreover, the conservation of the MOF structure during each polymerization was 

confirmed by PXRD (Figure 6.7a). Variations in relative peak intensities were attributed to the 

incorporation of the guest molecules in the host nanochannel.37 Actually, due to the monomer 

incorporation in the porous framework, BET profiles showed decreased specific surface area 

(m2/g)/pore volume (cc/g) from 2280/0.91 to 230/0.15, 560/0.25, 450/0.29 and 1050/0.36 after 

polymerization with P4VP, P2VP, PDMAEMA and PMMA, separately (Figure 6.7b). Interestingly, 

the decrease corresponds to the coordination ability of the used monomer (i.e. 4VP > 2VP > 

DMAEMA > MMA). 
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Table 6.2 Residual Cu concentration (mg/g) in the polymer products synthesized via CuBr2 and 

Cu2(bdc)2(dabco) catalysis. a

CuBr2/PMDETA (mg/g) b Cu2(bdc)2(dabco) (mg/g) c

Initial Bulk d 0.85 9.2 

P4VP - 2.5 

P2VP - 1.3 

PDMAEMA 8.7 0.26 

PMMA 0.53 0.062 

a Determined via ICP-OES. bThe as-synthesized polymer was extracted by DCM, and, after removing 

the solvent by vacuum, the dry residue was analyzed by ICP. c The as-synthesized polymer was 

dissolved in DCM, and the suspension was isolated via centrifugation to remove the Cu(II) MOF. 

After drying by vacuum, the residue was analyzed by ICP-OES. d The theoretical Cu amount in the 

initial bulk solution. 

6.2.5 Proposed Mechanism of Cu-MOF Catalyzed Photopolymerization  
The photocatalytic nature of Cu(II) MOF was strongly supported by both UV/Vis absorption 

(Figure 6.1) and photo-electrochemical analysis (Figure 6.3). Irradiating the MOF by light caused 

reduction of comprised Cu(II) to Cu(I), promoting controlled polymerization by ATRP in an ARGET-

type process. Moreover, under irradiation, nucleophilic monomers (or additives, such as TEA and 4-

ethylpyridine) further supported the (re)generation of activators (Scheme 6.2).83 The faster 

polymerization and enhanced control in polymerization of vinylpyridines was related to their stronger 

coordination, which enhanced the light-absorption property of the monomer–Cu(II) complex. 

Polymerization rate in the presence of additives followed the same trend: 4-ethylpyridine, which 

mimics 4VP, gave faster reaction than TEA, which mimics DMAMEA. The reduction of Cu(II) in a 

mixture with P2VP has been described in the literature albeit at elevated temperature.258 Nevertheless, 

irradiation might be able to provide the required energy for photoreduction of Cu(II). Overall, the 

photoreduction of Cu(II) is proceeding without pyridine or external amine addition as shown via CV 

(Figure 6.3), but pyridine or amine supported reduction might take place as well. 
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6.3 Conclusion  

The MOF Cu2(bdc)2(dabco) was used for the controlled photopolymerization under visible light, 

without the need for external photoinitiators. N-containing monomers and additives (i.e. 4VP, 2VP, 

TEA, and 4-ethylpyridine) had a dual/synergistic effect on the MOF-mediated polymerization. On one 

hand, these compounds acted as reducing agents under irradiation. On the other hand, the formation of 

monomer-MOF complexes improved the photoabsorption properties of the MOF, which could harvest 

more visible light. The photoabsorption properties improved when stronger coordinating monomers 

were used, with 4VP > 2VP > DMAMEA > MMA. Interestingly, the rate of photopolymerization 

followed the same trend. The effect of the monomer coordination was reversible, as the original Cu(II) 

MOF could be recovered by simple washing with solvent. Cu2(bdc)2(dabco) presented a well 

reversible Cu(II)/Cu(I) redox behavior, with Eo = -0.084 V vs. SCE, suggesting excellent catalytic 

activity in ATRP. Photoreduction of Cu(II) to the active Cu(I) was also well reversible as traced by 

chronoamperometry under intermittent light irradiation. Controlled photopolymerization of highly 

nucleophilic monomers was achieved with the Cu(II) MOF, synthesizing polymers with predictable 

MW and low Ɖ, ranging from 1.2 to 1.4. After reaction, the catalyst was easily recycled for several 

polymerizations, avoiding significant contamination of catalytic ions. Moreover, photoreaction was 

temporally controlled, exploiting the stimuli-responsive redox nature of the Cu(II) MOF.  
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7. Dispersion of MOF Nanoparticles with Enhanced 

Photocatalytic Performance 

7.1 Introduction 
In the previous chapters, MOFs as highly-crystalline porous materials have been demonstrated as 

outstanding heterogeneous catalysts with promising catalytic performance, adjustable photo-

absorption and highly compatible property for controlled polymerization, realizing the synthesis of 

various unique and challenging (co)polymers. However, the formation of polymer-MOF composite to 

contribute a bilateral improvement in both polymer and MOF area is the main consideration in this 

Chapter.     

It is well known that the catalytic property can be profoundly improved through decreasing particle 

size or increasing dispersibility,209, 325-326 but unfortunately the innate coordinated inorganic property 

makes MOF crystals usually brittle and easily aggregated or clogged which inevitably retards mass 

transfer, reduces interfacial area, and then hampers the catalytic capability.327-328 Many solutions have 

been developed to conquer this long-term problem, such as synthesis of nanoscale MOFs with 

superstructures,329-331 integration of MOF particle into membranes or films using extra binders or hot-

pressing strategy,327 and surface functionalization of MOF particles with dispersible polymer 

brushes.149, 173, 259-260 However, these newly established strategies still suffer from a trade-off. Namely, 

the extremely small size with high surface energy frequently results in synthetic difficulty and less 

long-term stability,332 and the incorporated binders/grafted polymers may cover and/or block the 

catalytically active sites.173, 259-260 Thus, the performance of the designed composites is conversely 

restricted. Hence, a more facile and general strategy to circumvent these struggles and enable the 

potential catalytic property of MOFs is highly desirable. 

Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) has attracted increasing interest owing 

to the pH and temperature responsive property.270, 333 The chain conformation is strongly dependent on 

its lower critical solution temperature (LCST) and the corresponding solvent polarity. For instance, 

extended polymer chains can be observed in acidic/good solvent or when temperature below the LCST, 

and vice versa. Most interestingly, the amine group from each DMAEMA monomer enables 

coordination binding to metals or metallic ions,334 serving as a potential stabilizer for universal MOFs. 

To avoid the adversely reduction of surface active sites on MOFs by using highly mobile, free-formed 

polymer chains, the surface-anchored polymer brushes are utilized in this study due to the constrained
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67-Co with loading mass between 18-36 wt% attached on P-pollen were investigated to demonstrate 

the universality of current strategy (Table 7.1). The high compatibility between the functional polymer 

tentacle immobilized on P-pollen and the different metal cations on MOFs strongly advocate the 

feasibility of current strategy. The association and preservation of the specific MOF structure was 

confirmed by FE-SEM and PXRD (Figure 7.5). 

Table 7.1 Incorporated Amount of MOF a in the MOF@P-pollen composites b

 Type of Metallic Ion 
Amount of 

Metallic Ion (mg/g) 

Incorporated 

MOF (%) 

MOF-74-Zn 

Zn 

99.2 24.6 

MOF-5 155 23.0 

Zn2(bdc)2(dabco) 113 24.9 

Cu2(bdc)2(dabco) 

Cu 

62.9 28.3 

Cu(bdc) 58.5 36.4 

HKUST-1 55.3 17.5 

ZIF-67 Co 65.4 24.5 

PDMAEMA@ 

Cu2(bdc)2(dabco) c
Cu 3.37 1.5 

a Determined via ICP-OES. b Grafted PDMAEMA was characterized by SEC with MW of 67,800 and 

Ɖ = 1.2 (Mtheo = 30,400, conversion = 98.4%, initiation efficiency (fini) = 44.8%). c The PDMAEMA 

brushes cut from P-pollen were utilized directly as the free-formed polymer chains to incorporate 

Cu2(bdc)2(dabco) nanoparticles. 
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The catalytic activity of the composite was evaluated via the calculation of turnover number 

(TON) and turnover frequency (TOF). Within these conditions, the best activity was achieved by 

Cu2(bdc)2(dabco)@P-pollen in DCM irradiated by visible light at RT, with ~93% conversion in 10 h, 

giving TON  and TOF of  2078 and 208 h-1 respectively, which are, to the best of our knowledge, the 

highest values among the ever reported heterogeneous catalysts for CuAAC at RT without the addition 

of reducing agents.173, 286-288 Such surprisingly high activity suggests that the present MOF composite 

is effective for the liquid-phase photocatalytic reaction.  

It is reasonable that such unexpected high catalytic activity is ascribed to the well-dispersed MOF 

nanocrystals in DCM solvent, the non-blocked, highly-accessible catalytic sites distributed by 

PDMAEMA brushes in solution. To further demonstrate our hypothesis, control experiments by using 

Cu2(bdc)2(dabco) catalyst was conducted under the same condition, with only ~ 33 % conversion in 

DCM after 10 hr, giving an activity (TOF: 74.3 hr-1) lower than that of Cu2(bdc)2(dabco)@P-pollen 

(Figure 7.7d). The aggregated MOF crystals with less accessible Cu sites are responsible to the 

retarded catalytic capacity. Because the condensed-graft PDMAEMA brushes have a stronger ability 

to disperse the MOF crystals, catalytic reaction were also conducted by using 

Cu2(bdc)2(dabco)@PDMAEMA as catalyst (without pollen pivot), regardless of the excellent 

dispersion in DCM (Figure 7.3h), the slowest reaction rate was detected with merely ~23% conversion 

after 10 hr (TOF: 53 hr-1). Presumably, the highly-dissolved polymer chains which enhanced 

dispersion with the sacrifice of accessible catalytic sites due to the freely-jointed/folding 

conformation, lead to even lower activity than that of Cu2(bdc)2(dabco). Since the pollen grain is inert 

to the catalytic reaction, the extremely high activity observed in Cu2(bdc)2(dabco)@P-pollen should be 

a result of the synergy effect from hierarchical hollow pollen structure with improved light-harvesting 

ability, favorable mass transfer, and most importantly, the enhanced accessibility of catalytic site by 

providing a pivot to grafted polymer tentacles.329, 331

Blank experiments were conducted as negative control to confirm the inert ability of applied pollen 

grain and PDMAEMA to reaction under the photoirradiation. Therefore, the Cu2(bdc)2(dabco) is 

believed to be the only catalyst (Figure 7.9a). Since the PDMAEMA brush features LCST effect, the 

Cu2(bdc)2(dabco)@P-pollen-mediated CuAAC was also conducted at 65 ºC, a temperature higher than 

the critical point (Figure 7.9b).333 Instead of thermal active phenomenon presented by blank condition 

and Cu2(bdc)2(dabco) nanocrystals (TOF: 802 hr-1), the Cu2(bdc)2(dabco)@P-pollen MOF served as a 

thermal switch which deactivated the reaction (TOF: 243 hr-1) at temperature higher than the LCST 

due to seriously collapsed PDMAEMA blocking the catalytic sites temporarily from reagents. It is 

worth mentioning that the activity can be restored at RT. The thermal-responsive catalytic activity 

strongly points out that the synergy between 2D grafted PDMAEMA tentacles on pollen pivots and 
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Table 7.3 Residual Cu concentration (mg/g) in the click products synthesized via different catalytic 

composites. a

Initial Bulk (mg/g)
b
 Outcome Product (mg/g)

c

Cu2(bdc)2(dabco) 0.45 0.017 (16.9 ppm) 

Cu2(bdc)2(dabco)@P-pollen 0.45 0.012 (10.5 ppm) 

PDMAEMA@Cu2(bdc)2(dabco) 0.45 0.016 (15.8 ppm) 

a Determined via ICP-OES. b The theoretical Cu amount in the initial bulk solution. The initial bulk 

contains the same amount of Cu ions contributed by different catalytic composites. c The as-

synthesized click product was dissolved in methanol, and the suspension was isolated via 

centrifugation to remove the catalytic composites. After drying by vacuum, the product was analyzed 

by ICP-OES. 

The spatial-control reactivity is a characteristic feature of photoreaction; that is, the reaction is 

on/off controlled using intermittent light irradiation and dark treatment. The Cu2(bdc)2(dabco)@P-

pollen-mediated photoclick reaction proceeded much faster under light irradiation, and in contrast, 

very limited activity was detected during the “dark” periods, which could be explained by Cu(I) 

remaining in the system (Figure 7.10b). As a result, the photo responsive-property of the  

Cu2(bdc)2(dabco)@P-pollen was confirmed by the temporal-controlled CuAAC. 

7.2.7 Visible Light-Triggered Dye Degradation via Cu2(bdc)2(dabco)@P-pollen  
The present catalyst can be extended to other photocatalysis reactions with switchable catalytic 

activity. The photodegradation of Rhodamine B (RhB) was employed as another model reaction. The 

reaction process can be readily monitored by UV-vis spectra, recording the change of characteristic 

absorbance at 554 nm (assigned to RhB). As shown in Figure 7.11a, the catalyst in DCM achieved 

quantitative degradation in 165 min, while the catalysis was switched “off” in toluene, giving only 

~20% degradation in the same period (Figure 7.11b). The pseudo-first-order rate constant (k) 

estimated from time-dependent UV-vis spectra revealed that the catalytic activity was modulated by 

more than two orders of magnitude on dynamic controlled aggregation/dispersion of MOF 

nanocrystals (kDCM = 1.26 hr-1; ktoluene = 0.09 hr-1).  
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it is the highest value among reported heterogeneous catalytic composites for CuAAC at RT without 

extra reducing agents.  This surprisingly high reactivity results from the well-distributed 

heterogeneous MOF particles and the non-blocked, widely-accessible catalytic sites distributed by 

PDMAEMA brushes in solution. Besides, the synergy effect resulting from hierarchical hollow 

structure of pollen grains which improved the light-harvesting ability, enforced the mass transfer, and 

enhanced the approachability of reagents towards catalytic centers realizes the currently best catalytic 

performance with highest TOF. The enhanced reactivity and environment-responsive dispersibility can 

be duplicated in dye degradation test as well. Considering the highly versatile preparation procedure, 

the current approach may open up new perspectives in developing “smart” MOF heterogeneous 

catalysts in the future. 

As a result, MOFs are new-emerging porous materials going to revolutionize fundamental polymer 

science. With the utilization of MOFs, the controlled polymerization can be carried out directly inside 

in confined nanochannels, synthesizing accommodated polymers with high MW but remaining low Ɖ

and high living end functionality as well as refined microstructure. As shown in the present thesis, the 

advantageous properties of MOF crystals highlight the resemblance to biomacromolecules equipping 

with the capacity to precisely control polymers over architectures, compositions and functionalities. 

The observed (photo)catalytic property of Cu(II)-based MOF can further expand the applicability of 

conventional RDRP with wider monomer feasibility, improved reusability and adjustable 

polymerization speed. On the other hand, the MOF solids can be released from the historical limitation 

of easy agglomeration and poor dispersibilityle via association with polymer brushes. Instead of 

freely-jointed polymer chains, polymer brushes grafted from hollow pollen pivots are applied to avoid 

the adverse retardation on catalytic performance. Following this concept, the adjustable dispersibility 

of various MOFs including MOF-5, MOF-74, Cu(bdc), HKUST-1, ZIF 67 and M2(bdc)2(dabco) (M = 

Cu or Zn) can be now achieved in liquid phase. Owing to the improved dispersibility and reorganized 

combination, the enhanced photocatalytic property in response to applied environment can be 

confirmed by visible light-triggered photoclick coupling reaction and photodegradation of organic dye. 

The abovementioned progresses advocate the perfect complementary properties between low 

dimensional polymer products and highly crystalline MOF solids, highlighting the great potential of 

this combing concept for improvement in technological, academic and industrial applications. 

However, there are still unclear observations requiring more investigation to disclose detailed 

mechanisms and to be able to further expand the scale in the future. For example, Cu2(bdc)2(dabco), as 

an advantageous heterogeneous catalyst for ARGET ATRP, to get more insight on molecule 

transformation will be very helpful to deduce the catalytic pathway and reveal the host-guest 

interaction on the molecular level. For instance, how the microstructure switches between the active 

Cu(I) and deactive Cu(II) state, and how association happens between bdc linkers, abducted 
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monomers and initiating/propagating molecules. With more knowledge of structural transformation, 

the tailored catalysts can be specifically designed and employed to give materials with promising 

performance and unanticipated properties. Therefore, the initiator-functionalized Cu2(bdc)2(dabco) can 

be fabricated and utilized as a host for compartmentalized polymerization such as in the case of 

Zn2(bdc)2(dabco). Furthermore, due to the distinct reversible photocatalytic property of 

Cu2(bdc)2(dabco) in ARGET ATRP polymerization, a all-in-one polymerization system can be 

devised to conduct controlled polymerization without additional catalysts ligands and reducing agents, 

resulting in an ultimately controlled polymerization.   

Overall, through introducing MOFs into ARGET ATRP the thesis may pave the way towards 

ultimately controlled polymerization with refined properties in MW control, end group fidelity, 

stereoregularity and expanded monomer components. Moreover, the long-term dispersibility issue of 

MOF crystals can be efficiently eased via the reorganized association towards polymer brushes to give 

environment-responsive controllability with promising catalytic performance.  
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Appendices 

Appendix I. List of Abbreviations 
13C-NMR  carbon nuclear magnetic resonance 
1H-NMR  proton nuclear magnetic resonance 
2VP  2-vinylpyridine 
4VP  4-vinylpyridine 
AIBN  2,2’-azobis(2-methylpropionitrile) 
ATRP  atom transfer radical polymerization 
ATR-FTIR  attenuated total reflection fourier transform infrared 
BIBB  α-bromoisobutyryl bromide 
bdc  terephthalic acid 
BzMA  benzyl methacrylate 
CuAAC  copper (I) catalyzed azide-alkyne cycloaddition 
CUS  coordinatively unsaturated sites 
dabco  diazabicyclo[2.2.2]octane 
DP  degree of polymerization 
DCM  dichloromethane 
DLS  dynamic light scattering 
DMAEMA  N,N-dimethylaminoethyl methacrylate 
DMF  N,N-dimethylformamide 
DNA  desoxyribonucleic acid 
EBIB  ethyl α-bromoisobutyrate 
EDTA  ethylenediaminetetraacetic acid disodium salt 
equiv  equivalents 
f  initiator efficiency 
GC-MS  gas chromatography-mass spectrometry 
ICP-OES  inductively coupled plasma-optical emission apectrometry 
IBA  isobornyl acrylate 
IBMA  isobornyl methacrylate 
KATRP  rate coefficient of ATRP polymerization 
kact  rate coefficient of activation 
kdeact  rate coefficient of deactivation 
kp  rate coefficient of propagation 
kt  rate coefficient of termination 
λ  wavelength 
LCST  lower critical solution temperature 
LED  light-emitting diode 
MeOH  methanol 
MMA  methyl methacrylate 
M  mol/L 
Mn  number-average molecular weight 
Mw  weight-average molar mass 
MPTS  3-mercaptopropyl)trimethoxysilane 
MOF  metal organic framework 
N3  azide termination 
PDI (Đ)  polydispersity index 
pH  -log c(H+) 
PMDETA  N,N,N’,N”,N”-pentamethyldiethyltriamine 
PS  polystyrene 
PSD  pore size distribution 
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PSM  post-synthetic modification 
PXRD  powder X-ray diffraction 
RDRP  reversible deactivation radical polymerization 
RT  room temperature 
SCE  saturated calomel electrode 
SBU  specific secondary building unit 
SEC  size exclusion chromatography 
SEM  scanning electron microscopy 
SSA  specific surface area 
TEA  triethylamine 
TEM  transmission electron microscopy 
TGA  thermo gravimetric analysis 
THF  tetrahydrofuran 
TPV  total pore volume 
UV  ultra-violet 
UV/Vis  ultra-violet/visible 
vol %  volume % 
wt %  weight % 
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Appendix II. Applied Materials 
Materials. All reagents, catalyst and solvents were used as received unless otherwise noted. Methyl 

methacrylate (MMA, Alfa Aesar, 99%), ethyl methacrylate (EMA, Alfa Aesar, 98%) benzyl 

methacrylate (BzMA, Alfa Aesar, 98%) isobornyl methacrylate (IBMA, Acros, 85-90%), styrene (St, 

Acros, 99%), 4-vinylpyridine (4VP, Sigma Aldrich, ≥95 %), 2-vinylpyridine (2VP, Alfa Aesar, 97%), 

2-(dimethylamino)ethyl methacrylate (DMAEMA, Sigma Aldrich, 98%), poly(ethylene glycol) 

methyl ether methacrylate (OEGMA, Sigma Aldrich, average Mn 300), isobornyl acrylate (IBA, Alfa 

Aesar, 85%) and isoprene (Sigma Aldrich, >99 %) were filtered through a basic aluminum oxide 

(Brockman type I, Acros, 50-200 µm, 60 A) column to remove inhibitor. 2,2’-Azobis 

(isobutyronitrile) (AIBN, Sigma-Aldrich, 98 %) was recrystallized from methanol. Ethyl α-

bromoisobutyrate (EBIB, Sigma Aldrich, 98%), 1,1,4,7,7-pentamethyldiethylentriamine (PMDETA, 

Acros, >98%), CuBr2 (Alfa Aesar, 99%), bromoacetonitrile (Sigma Aldrich, 97%), 4-ethylpyridine 

(Sigma Aldrich, 98%), α-bromoisobutyryl bromide (Sigma Aldrich, 98%), triethylamine (TEA, Roth, 

≥99.5%), 2-Aminoterephthalic acid (NH2bdc, Sigma Aldrich, 99%), 4-diazabicyclo[2.2.2]octane 

(dabco, Alfa Aesar, 97%), (3-Mercaptopropyl)trimethoxysilane (MPTS, Sigma-Aldrich, 95%), 

Cu(NO3)2∙3H2O (Sigma-Aldrich, ≥ 99.9%), Zn(NO3)2∙6H2O (Sigma Aldrich, ≥98%), Zn(OAc)2·2H2O 

(Sigma-Aldrich, 99.9%), Co(NO3)2∙6H2O (Sigma-Aldrich, ≥ 99.9%), 2,5-dihydroxyterephtalic acid 

(H4dobdc, Sigma-Aldrich, 98%), 1,2,4-benzenetricarboxylic acid (H3btc, Sigma-Aldrich, ≥ 99%), 2-

methylimidazole (Hmim, Sigma-Aldrich, 99%), sodium azide (Roth, ≥ 98%), 3-Bromo-1-propanol 

(Sigma Aldrich, 97%), 4-pentyn-1-ol (Alfa Aesar, 97%), 1,4-terephthalic acid (H2bdc, Alfa Aesar, 

>98%), copper(II) acetate monohydrate (Roth, ≥ 98%), NaNO3 (Acros, ACS grade), 

ethylenediaminetetraacetic acid disodium salt (EDTA-Na2, Sigma Aldrich, > 99%), 

dimethylformamide (DMF, VWR, ACS grade), methanol (MeOH, Fisher Scientific, for analysis), 

tetrahydrofuran (THF, VWR, HPLC grade), toluene (Fisher, HPLC grade), 1,4-dioxane (Acros, 99.5%, 

extra dry over molecular sieve), dichloromethane (DCM, Sigma-Aldrich, HPLC grade), ethanol 

(J.T.Baker, HPLC grade), diethyl ether (Sigma-Aldrich, ACS grade), acetone (J.T.Baker, HPLC grade) 

and acetic acid (Merck, 100% anhydrous for analysis) were used as received. Rape pollen grains were 

purchased from Yier Biofarm (Shandong, China), washed intensively with KOH, acetic acid and 

methanol to remove the intine layer; the washed pollen was dried under RT, and stored at 4 ºC. As 

light source, a 50 W LED chip (Bridgelux BXRA-50C5300; λ > 410nm) connected to a home-made 

circuit and cooling system is utilized. The emission spectrum is shown in Figure S9.
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Appendix III. Applied Methods 
Nuclear Magnetic Resonance (NMR) Spectroscopy. NMR spectroscopy is a prevalent technique to 

determine the chemical structure of a molecule, revealing the number and the chemical environment of 

hydrogen (1H-NMR) or carbon (13C-NMR) atoms within a molecule. The technique is fundamentally 

based on the Zeeman Effect. Namely, via the application of an external magnetic field, the spins of 

atom nuclei split into distinct energy levels, for example, two energy levels exist in 1H and 13C atoms. 

In the solution state NMR, once the well-dissolved molecules are exposured to a strong magnetic field 

(around 2-10 Tesla, T), spins of the nuclei realign and process along the magnetic field direction. 

Subsequently, a short radio pulse with frequency characteristic to the nucleus is applied to irradiate the 

molecules to unbalance the equilibrium between two energy levels. After absorption of energy, some 

nuclei are promoted to a higher energetic level, and retreat back to the equilibrium state while the 

radiation cycle is terminated. The energy released during the cycle can be detected and recorded by the 

radiofrequency detector. The electronic microenvironment of the nucleus, including electron number, 

density and distribution, differentiates the strength of magnetic field and the resonating frequency of 

corresponding nucleus. The variation in the resonance energy serves as a molecular fingerprint can be 

observed by series chemical shift in comparison to a reference compound.   

In the present thesis, the 1H-NMR and 13C-NMR spectra were recorded at ambient temperature at 400 

MHz for 1H and 100 MHz for 13C with a Bruker Ascend400 at a concentration of 1 wt % for proton, 

and 10 wt % for carbon analysis. 

Nitrogen Physisorption. Nitrogen physisorption is a widely employed and powerful tool to analyze 

the pore feature of a porous material. The measurement reveals information coming from three basic 

parts: the specific surface area (SSA), the total pore volume (TPV), and the pore size distribution (PSD) 

of a material. Generally, the adsorbed volume of the adsorbate (N2) on the adsorbent (in the present 

thesis MOFs complexes) is measured according to the relative pressure (p/p0) of the adsorptive. 

Measurements are usually conducted at 77 K under atmosphere pressure to ensure the equilibrium of 

N2 gas, and only weak interactions like Van der Waals interaction occur between the adsorbate and the 

adsorbent, rendering the physisorption behavior and forming multilayer adsorption. During the 

analysis, nitrogen is gradually and slowly dosed into a measured tube containing the sample, and the 

adsorbed volume is recorded against to the relative pressure and stop while (p/p0) reaching 1.0. 

Subsequently, the desorption isotherm is recorded by lowering the pressure again, presenting the 

corresponding hysteresis. The recorded points represent the characteristic isotherm of adsorption, and 

the shape of adsorption-desorption isotherm shows the specific interactions between adsorbates and 

adsorbent as well as the pore morphology (size and shape). The porous structures are categorized by 

the IUPAC into three groups based on the internal diameter (d): micropores (d < 2 nm), mesopores (2 
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Size Exclusion Chromatography (SEC). SEC is applied to evaluate the molecular weight and the 

polydispersity (Ɖ) of a polydispersed polymer in a relative concept. Basically, a polymer solution is 

fractionated via passing through a column with stationary phase comprised of highly interpenetrated 

polystyrene resin and pore sizes ranging from 10 to 1000 Å. Depending on the hydrodynamic volume 

and specific molecular interaction within the pores, the retention time of polymer chains inside the 

column varies. Usually, the elution of polymers with larger hydrodynamic volumes is earlier than the 

smaller ones due to the less preference towards small pores. The elution of the polymer can be 

detected with a refractive index (RI) or an UV detector against to elution volume. According to the 

obtained eluograms, the molecular weight of investigated polymers can be determined in comparison 

to a calibration curve of a standard polymer with low Ɖ and narrow molecular weight distribution by 

using the following equation: 

                                                Equation S1 

where  is the total elution volume,  is the volume of stationary phase,  is the volume held in the 

colum pores and  is the free volume outside of the pores. 

In the present thesis, SEC was conducted in either THF or NMP as mobile solvent. While THF was 

applied, SEC was measured in THF with toluene as internal standard at 25 °C using a column system 

by PSS SDV 1000/10000/1000000 column (8 x 300 mm, 5 µm particle size) with a PSS SDV pre-

column (8 x 50 mm), a SECcurity RI detector and a SECcurity UV/VIS detector and a calibration with 

PMMA or PS standards from PSS. On the other hand, SEC was conducted in NMP (Fluka, GC grade) 

with 0.05 mol L-1 LiBr and BSME as internal standard at 70 °C using a column system by PSS GRAM 

100/1000 column (8 x 300 mm, 7 µm particle size) with a PSS GRAM precolumn (8 x 50 mm) and a 

Shodex RI-71 detector and a PMMA or PS calibration with standards from PSS. The polydispersity is 

defined as Ɖ = Mw/Mn. The theoretical number averaged molecular mass Mn,theo was calculated as 

MMinitiator + MMmonomer × ([monomer]0/[initiator]0) × conversion. 

Dynamic light scattering (DLS). Dynamic light scattering (DLS) is a facile technique to detect 

hydrodynamic diameters of molecules in a given solution. Through DLS, the particle size distribution 

is estimated by tracing the random changes in light scattering intensity from a suspension or 

solution. DLS is most commonly used to analyze nanoparticles with size between submicrons to 

nanometers. In a suspension, small particles are continuously moving in a random and thermal-state 

way, the so-called Brownian motion. Through simulation, the random particle motion can be related to 

particle size, resulting in the Stokes-Einstein equation which connects the diffusion coefficient 

measured by dynamic light scattering to particle size: 
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where Dh is the hydrodynamic diameter (two times of radius), Dt is the translational diffusion 

coefficient (obtained from DLS), kB is Boltzmann’s constant (1.38 x 10-23 J/K), T is temperature and 

η is dynamic viscosity. To evaluate the hydrodynamic diameter in a reliable way, the temperature is 

one of the most critical parameter, since it appears directly in the equation and influences the viscosity 

as well. Referring to the equation, the outcome particle size is determined in the form of sphere with 

the calculated hydrodynamic diameter. Worth to mention, the hydrodynamic radius is not exactly the 

same as the radius of gyration. To converse hydrodynamic sizes to radii of gyration, the specific chain 

conformations shall be considered as well, such as chain stiffness, degree of branching and the 

comprised ration between random coil, hard sphere, globular and dendrimer. 

In the present thesis, DLS measurements of the highly diluted aqueous dispersions were performed at 

25°C using the Zetasizer Nano-ZS (Malvern Instruments, United Kingdom). 

Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). SEM 

characterization is based on the analysis of different radiations resulted from the interaction between 

incident electron and material surface, in most of the cases, from secondary and backscattered 

electrons. Therefore, via probing the number and energy of the interacting electrons together with a 

proper detector, the morphology of a given sample can be visualized. Furthermore, combining the 

information resulting from secondary and backscattered electrons, a more detailed topology and 

intrinsic structure can be disclosed. That is, once interacting with the incident electrons, valence 

electrons of a detecting material undergo emission and produce secondary electrons. Due to the low 

energy and limited transmitting ability, only the secondary electrons generated approximately to the 

surface can be detected, exhibiting the surface morphology. By contrast, backscattered electrons with 

higher energy can transmit through the material and represent electrons scattered from the atoms, 

illuminating information from the solid insight. The number of backscattered electrons correlates 

directly to the atomic number (i.e. mass) of material-comprised atoms, resulting in a brighter image 

with heavier elements. 

Component and qualitative information of the sample can be detected by EDX. When, the incident 

electrons excite electrons from an inner shell of atoms, the emission electrons generate specific 

radiation referring to individual elements, by which qualitative measurement and elemental mapping 

can be achieved to investigate the local distribution of elements in a material.  

In the present thesis, the SEM images were performed on a FE-SEM (Field Emission SEM) LEO 1550 

Gemini instrument using field emission source to liberate electrons. Samples for EDX were placed on 
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carbon coated aluminum holder and measured without any additional coating. For FE-SEM 

measurements, non-conductive samples were sputtered with Au/Pt in advance.  

Fourier Transform Infrared Spectroscopy (FTIR). Fourier transform (FT) infrared (IR) 

spectroscopy is a facile and non-destructive technique to identify laser-excited molecular structures 

using the unique vibration and/or rotation as fingerprints. One basic requirement to receive 

rotations/oscillations FTIR signal is a variable dipole moment of a molecule while exposing to laser. 

Therefore, existence of specialized functionalities and comprised components in a material or in the 

associated microenvironment can be distinguished through FTIR. The IR spectrum is based on 

scanning of the illuminated laser energy with the percentage of beam transmitted through or absorbed 

by the material against the frequency-proportional wavenumber (cm-1). In comparison to reference 

substance, the position and relative intensity of the signals provides insight into the molecular 

structure of materials in a complexed way.  

FT-IR spectra were directly recorded on a FTS 6000 spectrometer equipped with an attenuated total 

reflection (ATR) cell (BioRad).  

Gas Chromatography-Mass Spectrometry (GC-MS). Combining two powerful techniques, GC-MS 

is able to identify and quantify compounds in a comprehensive fashion. The only requirement for the 

technique is the material must be volatilizable, since once the sample is injected, volatilization is the 

first step conducted in the GC chamber. The sample is carried and passed through a stationary column 

in its gas form, and via different association affinity, the comprised compounds can be preliminarily 

separated. Upon compounds leaving the GC column, the conjugated MS is applied to fragment the 

molecule in a recognizable way by electron impact. The charged fragments are then detected, and by 

browsing through a database the obtained spectrum can be referred to an individual molecule. Due to 

the reproducibility of MS fragmentation patterns, the quantitative measurements are also feasible via 

GC-MS. 

In the present thesis, all GC-MS analyses were performed under an Agilent Technologies 5975 gas 

chromatograph equipped with a MS detector and a capillary column (HP-5MS, 30 m, 0.25 mm, 0.25 

micron). Besides, the installed database launched by National Institute of Standards and Technology 

(NIST) was used as references. 

Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). ICP-OES is a methodology 

based on the element-characteristic atom spectra, serving as a complementary alternative of 

conventional elementary analysis. Typically, a material is first separated by passing through a column, 

and then the ions emission induced by argon plasma is applied to quantitatively identify a material 

composition. When exposing the analysis to an external plasma energy, the comprised atoms are 
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excited and then emitted with radiation (i.e. spectrum rays). The radiation spectra are corresponded to 

specific photon absorption and referred to individual atoms. The comprised elements type and amount 

are deduced by the position and the intensity of the outcome photon irradiations. The plasma source is 

usually provided by ionizing argon under high frequency current to produce plasma with high electron 

density and temperature (10000K) for the excitation-emission of comprised compounds. Through the 

determination of plasma-induced optical emission, the ICP-OES is predominant over conventional 

atomic absorption spectrophotometers due to the high sensitivity, expanded usability to other atoms 

which are used to be challenging (i.e. P, B, Zr, Ta, etc.), and improved stability.   

In the present thesis, the ICP-OES measurements were conducted on Perkin Elmer Optima 8000, 

calibrated with standard solutions containing the targeting element. 

Ultraviolet-Visible Spectroscopy (UV-Vis). UV-Vis spectroscopy is prevalently used to determine 

the photo- and electrical properties or conjugating state of a material either in solution or solid state. 

The uptake light source is exactly in the ultraviolet-visible range, and namely, measurements are 

highly related to the color of samples. Due to the electronic transition, the comprised molecules in a 

material are able to interact with light radiation within the matched energy region. Basically for the 

solution state measurement, the UV-Vis spectra are based on scanning of the illuminated light against 

the percentage of beam transmitted through a transparent cuvette with defined thickness and a dilute 

solution in it. The absorbance is depicted by the Beer-Lambert law:  

where A is the  measured absorbance, I1 is the transmitted light intensity, I0 is the initial light intensity, 

ελ is a wavelength-dependent molar absorptivity coefficient (M-1cm-1), c is the analyte concentration 

and l is the path length. To evaluate the absorption behavior in a reliable way, UV-Vis spectroscopy 

has to be conducted within the linear Beer-Lambert law. The nonlinearity usually happens in the 

following conditions: 

(1) high concentrations (> 0.01M) 

(2) particle aggregation 

(3) other coincident emissions in the system (i.e. fluorescence or phosphorescence)   

In the present thesis, the solution state UV-vis measurements were conducted with a T70+ UV/Vis 

Spectrometer (PG Instruments Ltd), and the solid state UV-vis spectra were recorded on UV-

2501PC/2550 (Shimadzu Corporation, Japan) at RT. 
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Powder X-Ray Diffraction (PXRD). PXRD is a widely employed technique to characterize the 

microstructure of crystalline substances. XRD is performed based on the interaction between an 

applied X-ray beam and the electrons of atoms in the material. The X-ray beam is generated by high-

energy electrons, directed to collide on material, and thus deaccelerated, resulting in a continuous X-

ray irradiation from the whole material. The monochromatic X-rays produced by the line-spectrum are 

utilized for the X-ray diffraction identification. Both elastic and inelastic interactions happen under X-

ray exposure, and the inelastic collisions give rise to coherent scattering signals. However, diffraction 

appears only if the X-ray wavelength matches with the lattice distance (d) of measured materials. Once 

the matched wavelength is introduced, considering to the well-defined crystal, a 3D diffraction lattice 

pattern can be detected in a XRD pattern. Referring to the Bragg’s Law, where the constructive 

interference appears when the optical path difference (Δ) is an integral multiple of the wavelength (λ). 

Therefore, positive interference occurs only at specific diffraction angles (ϴ), leading to a distinct 

diffractogram of the investigated material. The characteristic repeating diffraction pattern can be 

mathematically illustrated by Bragg’s Law:  

The association between radiation wavelength, diffraction angle and the lattice spacing in a crystal can 

be demonstrated via this law. 

In the present thesis the PXRD measurements were conducted on a Bruker D8 Advance device with a 

scintillator detector (KeveX Detector) and 2θ between 3.0° and 70.0°. The analysis was conducted 

under a step of 0.05° with a measurement time of 2 second/step and Cu-Kα radiation (λ = 0.154 nm) 

was used. 

Single Crystal X-ray Analyses. Single-crystal X-ray diffraction is a non-destructive analytical 

technique which enables precise determination of crystalline substances, revealing detailed 

information within a unit cell, including cell dimensions, bond-lengths, bond-angles and the 3D atom 

position. X-ray diffraction pattern is based on constructive interference between monochromatic X-

rays and the crystalline material. The monochromatic spectra are generated by a cathode ray tube, 

filtered to eliminate discrete frequencies, collimated to focus, and then directed toward the sample. 

Constructive interference occurs during the process, once irradiation conditions obey Bragg's Law. 

These diffracted X-rays are then detected, processed and counted. By tuning the geometry of the 

incident rays, the orientation of the analyzed crystal and the detector, all possible diffraction signals of 

the lattice can be collected and interpreted to determin the material structure.

In the present thesis, the single crystal X-ray analyses were carried out under the cooperation with 

Professor Dr. Uwe Schilde using a StadiVari diffractometer (Stoe). For X-ray structure determinations 
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the crystals were embedded in perfluoropolyalkylether oil and mounted within a MicroGripper. The 

data collection were performed at 210 K on a STOE StadiVari diffractometer equipped with a four-

circle goniometer (open Eulerian cradle), a Genix Microfocus X-ray source (Mo) with a graded 

multilayer mirror and a Dectris 200 K Pilatus. 
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Appendix IV. Supporting Information to Chapter 4 
Synthesis of Initiator-Functionalized Terephthalic Acid (Brbdc). The initiator-functionalized 

ligand, Brbdc, was first synthesized according to the literature.270 α-bromoisobutyryl bromide (5.92 g, 

25.7 mmol) was added dropwise to the ice-bath-cooled solution of 2-aminoterephthalic acid (4.67 g, 

25.6 mmol) and triethylamine (2.59 g, 25.6 mmol) in dry THF (50 mL) under a nitrogen atmosphere. 

The mixture was then stirred overnight at RT. The salt was removed by centrifugation, and the 

remaining solution was precipitated in toluene. The solid was collected, washed by deionized water 

and acetone. After drying at RT under vacuum, the pure Brbdc was obtained (7.27 g, 22.02 mmol, 

86%).The chemical structure was analyzed by NMR (Figure 4.1), giving 1H NMR (400 MHz, ethanol-

d6): δ = 2.07 (s, 6H, CH3), 7.78 (1H, CH), 8.19 (1H, CH), 8.21 (1H, CH) 9.35 (1H, NH), and 13C NMR 

(100 MHz, ethanol-d6): δ = 30.92 (CH3), 59.06 (C-Br), 120.98 and 119.85 (C2 and C6, 

aromatic),123.52 (C4, aromatic), 131.16 (1C, C3, aromatic), 135.71 (C5, aromatic), 140.92 (C1, 

aromatic), 166.98 and 169.26 (COOH), 170.62 (C=O). 

Fabrication of Native Zn MOFs. The Zn2(bdc)2(dabco) (Znbdc, denoted as 1a) was synthesized 

under solvothermal condition at 85 ºC in DMF,40 and after removing the incorporated guest molecules 

by vacuum at 110 ºC for 20 hours, the porous MOF was obtained. The synthesized MOFs were 

characterized with FE-SEM (Figure S3), nitrogen adsorption/desorption measurements (Chapter 4, 

Figure 4. 3), powder X-ray diffraction (PXRD) (Chapter 4, Figure 4.5). Before polymerization, the 

incorporated guest solvent molecules, DMF, were removed by solvent exchanged with DCM for three 

time and one day a time, and then the incorporated DCM molecules were removed by vacuum at 110 

ºC for 20 hours, giving the solvent-free MOF frameworks as polymerization hosts. 

Fabrication of Initiator-Functionalized Zn MOFs. Brbdc was mixed with H2bdc in specific molar 

ratio, and incorporated uniformly in the MOF framework through co-crystallization in DMF under 

solvothermal condition at 85 °C. Incorporated guest molecules were removed under vacuum at 110 °C 

for 20 hr. The ATRP-oriented MOFs were synthesized with varied amount of Brbdc, i.e., 10% (2a), 

20% (2b) and 50% (2c) compared to bdc. However, the actually incorporated amount of Brbdc was 

determined by inductively coupled plasma optical emission spectrophotometry (ICP-OES). The 

microstructure of 2b and 2c was determined by single-crystal X-ray analysis. All the synthesized 

MOFs were characterized with nitrogen adsorption/desorption measurements (Chapter 4, Figure 4.3), 

powder X-ray diffraction (PXRD) (Chapter 4, Figure 4.5) and Field-emission scanning electron 

microscopy (FE-SEM) (Figure S3). Before polymerization, the incorporated guest solvent molecules, 

DMF, were removed by solvent exchanged with DCM for three time and one day a time, and then the 

incorporated DCM molecules were removed by vacuum at 110 ºC for 20 hours, giving the solvent-free 

MOF frameworks as polymerization hosts. 
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ARGET ATRP in Nanochannel of MOFs. The polymerization of MMA, EMA, BzMA and IBMA 

in native 1a was as follows. In a glass vial 1a (0.8 g) was added to the bulk solution of MMA (3 g, 30 

mmol, 666.7 equiv), ethyl α-bromoisobutyrate (EBIB) (0.116/0.058 g, 0.6/0.3 mmol, 13.3/6.7 equiv), 

CuBr2 (0.01 g, 0.045 mmol, 1 equiv), PMDETA (0.019 g, 0.11 mmol, 2.4 equiv) and dabco (0.02 g, 

0.18 mmol, 4 equiv) under argon. The mixture was kept stirring at RT for 24 hours, ensuring the 

infiltration of monomer in MOF channels. The polymerization was performed at 50 ºC for 12 h under 

argon atmosphere. After termination by exposure to air, the solid product was intensively washed with 

THF for three times, and dried under vacuum. The unincorporated and washed out bulk solution was 

collected to evaluate the incorporation amount of monomer/polymer in MOF hosts. The as-

synthesized PMMA can be obtained after removing the MOF host by 0.5% EDTA-Na2 water 

solution.37 PEMA, PBzMA and PIBMA were synthesized by the same procedures with the condition: 

[MMA]0/[EBIB]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 100:1:0.15:0.36:0.6; 

[EMA]0/[EBIB]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 88:1:0.15:0.36:0.6; 

[BzMA]0/[EBIB]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 57:1:0.08:0.16:0.036 (half amount of initiator was 

applied for the high molecular weight attempt); [IBMA]0/[EBIB]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 

45:1:0.15:0.36:0.6. The same condition was utilized for 2a and 2b hosts, but without addition of EBIB. 

Chain Extension with Isobornyl Methacrylate (IBMA). The accommodated homopolymers 

obtained from 1a/2a-b were utilized as macroinitiators to form block copolymers comprised with 

IBMA. [IBMA]0/[m ]0/[CuBr2]0/[PMDETA]0/[dabco]0 In a glass vial 

CuBr2 (1.27 mg, 0.0057 mmol, 2.5 equiv), PMDETA (2.0 mg, 0.0114 mmol, 5 equiv) and dabco (2.6 

mg, 0.0228 mmol, 10 equiv) was added to the IBMA solution (1.4 g, 6.2 mol, 2700 equiv) under 

stirring. Subsequently, the mixture was added to the macroinitiators, for example, the PMMA obtained 

from L-1a with Mn = 43,800 (100 mg, 0.0023 mmol, 1 equiv). The polymerization was performed at 

under Argon. The reaction was quenched by THF, the solution was passed 

through a neutral aluminum oxide column, precipitated in methanol, and then dried under vacuum.

Single Crystal X-ray Structure determinations of 2a and 2b. For X-ray structure determinations the 

crystals were embedded in perfluoropolyalkylether oil and mounted within a MicroGripper. The data 

collection were performed at 210 K on a STOE StadiVari diffractometer equipped with a four-circle 

goniometer (open Eulerian cradle), a Genix Microfocus X-ray source (Mo) with a graded multilayer 

mirror and a Dectris 200 K Pilatus detector (2b: 3102 frames, Δω=0.5°, 10 s exposure time per frame; 

2c: 2373 frames, Δω=0.5°, 15 s exposure time per frame). The data were corrected for absorption and 

for Lorentz and polarization effects using the program X-Area. The structures were solved by direct 

methods using SHELXS-2013/1 and refined by full-matrix least squares on F using the program 

SHELXL-2014/7.346* For the visualization the program DIAMOND was used.* All non-hydrogen 

atoms were refined anisotropically with the exception of the carbon atoms of the dabco moiety in 2b. 
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The dabco ligand was found to be rotationally disordered about the nitrogen axis (see CIF files for 

details). The hydrogen atoms were placed in their expected positions with C−H distances of 0.94 Å 

and 1.08 Å (AFIX 43 and AFIX 23). The hydrogen atom on the phenyl ring was refined as riding with 

Uiso(H) = 1.2  Ueq(C). The hydrogen atoms of the ethylene moiety of dabco were taken into account 

but their coordinates, s.o.f and U were fixed. The unit cell contains channels filled with disordered 

solvent molecules. In spite of several attempts, no chemically reasonable solution could be received 

for the solvent species in the channels of the crystal material. Very high displacement parameters, high 

estimates and partial occupancy due to the disorder make it impossible to determine accurate atomic 

positions for the molecules. PLATON/SQUEEZE* calculated the solvent-accessible void volume and 

the corresponding number of electrons in the unit cell [2b: 2483 Å3, 56.7 % of the total cell volume, 

548 electrons, agreeing with about a half of a DMF molecule (0.428x40x32=548); 2c: 2530 Å3, 64.8 

% of the total cell volume, 530 electrons, also agreeing with about a half of a DMF molecule 

(0.552x40x24=530)]. The contribution of the disordered solvent species was subtracted from the 

structure factor calculations by the SQUEEZE instruction of PLATON. CCDC 1579809 (2b) and 

CCDC 1579776 (2c) contain the supplementary crystallographic data for this paper and can be 

obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request /cif. Crystal structure determination of complex 2b: crystal data: 

Zn2(bdc)2(dabco)· 3.44 DMF; M = 863.52 g/mol; crystal dimensions: 0.08 x 0.11 x 0.30 mm; 

tetragonal: a = b = 15.0812(5) Å, c = 19.2621(8) Å; V = 4381.0(3) Å3; T = 210 K; space group: 

I4/mcm (no. 140); Z = 4; 43453 reflections measured; 1048 unique (Rint = 0.0821); R = 0.0389; wR = 

0.0907 [I > 2σ(I)]. Crystal structure determination of complex 2c: crystal data: Zn2(bdc)2(dabco)

· 4.40 DMF; M = 863.52 g/mol; crystal dimensions: 0.14 x 0.21 x 0.26 mm; hexagonal: a = b = 

21.5725(5) Å, c = 9.6834(3) Å; V = 3902.6(2) Å3; T = 210 K; space group: P6/mmm (no. 191); Z = 3; 

64193 reflections measured; 1383 unique (Rint = 0.0510); R = 0.0273; wR = 0.0744 [I > 2σ(I)]. 

* The method is applied according to (1) Stoe & Cie (2015). X-Area. Darmstadt, Germany; (2) G. M. 

Sheldrick, SHELXS-2013/1, Program for the Crystal Structure Solution, University Göttingen, 

Germany, 2013; (3) M. Sheldrick, SHELXL-2014/7, Program for the Crystal Structure Refinement, 

University Göttingen, Germany, 2014; (4) K. Brandenburg, DIAMOND 4.4.1., Crystal Impact, Bonn, 
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Appendix V. Supporting Information to Chapter 5 
Fabrication of Cu2(bdc)2(dabco) (Cu(II) MOF). Cu2(bdc)2(dabco) was employed as the Cu(II) MOF 

to catalyze polymerization processes demonstrated in this chapter. The Cu(II) MOF was prepared 

under solvothermal condition,34, 310 and after removing of the incorporated guest molecules, the as 

synthesized MOF was characterized with FE-SEM (Chapter 5, Figure 5.1), PXRD (Chapter 5, Figure 

5.2a) and nitrogen adsorption-desorption measurements (Chapter 5, Figure 5.2b). The obtained PXRD 

pattern shows good accordance with the literature, indicating the accurate with pure phase. The 

specific surface area and the pore volume was calculated as 2280 m2/g and 0.91 cc/g, respectively via 

the BET method. The property of the ultrahigh specific surface area reveals the advantage of the given 

Cu(II) MOF as a catalyst for polymerization. Besides, the crystal structure with uniform particle size 

around hundred nm can be observed in the FE-SEM image. 

Cu(II) MOF-Mediated ARGET ATRP. A typical polymerization of BzMA was as follows:347

[BzMA]0/[I]0/[RA]0 = 180:1:2, 50 °C for 6 hr; [styrene]0/[I]0/[RA]0 = 110:1:5, 110 °C for 12 hr;270

[isoprene]0/[I]0/[RA]0 = 805:1:5, 120 °C for 72 hr;348 [4VP]0/[I]0/[RA]0 = 370:1:5, 60 °C for 9 hr.301 In 

a glass vial Cu(II) MOF (0.8 g) was added to the bulk solution of BzMA (13 g). Ethyl α-

bromoisobutyrate (EBIB) (0.078 g) and dabco (0.09 g) were added under stirring. The polymerization 

was performed at 50 ºC for 12 hr under Argon. The reaction was terminated by THF, and after 

removing the Cu(II) MOF by centrifugation, the solution was precipitated in methanol and the 

polymer product was dried under vacuum. For the kinetic analysis, after the reaction was terminated 

by THF at specific time, the solution was centrifuged and the clear suspension was filtered for GC-MS 

to evaluate the monomer conversion. 

Chain Extension with Isobornyl Methacrylate (IBMA). The homopolymers obtained from Cu(II) 

MOF-mediated ARGET ATRP were utilized as macroinitiators for the block copolymer comprised 

with IBMA. [PBzMA-Br/ PS-Br]0/[IBMA]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 1:400:0.4:1:2.4, 50 °C 

for 24 hr; [PI-Br]0/[IBMA]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 1:1100:1.1:2.75:6.6, in 50 vol% dioxane 

at 50 °C for 24 hr; [P4VP-Br]0/[IBMA]0/[CuBr2]0/[PMDETA]0/[dabco]0 = 1:450:0.45:1.13:2.7, in 50 

vol% dioxane at 50 °C for 24 hr. 

Reference ARGET ATRP Polymerization. The conventional homogeneous polymerization of 

BzMA and styrene (St) was as follows. In a glass vial CuBr2 (1.83 mg) and PMDETA (2.9 mg) were 

added to the bulk solution of BzMA (3.0 g) under stirring. Subsequently, ethyl α-bromoisobutyrate 

(EBIB) (0.04 g) and dabco (0.43 mg) was introduced in the solution. The polymerization was 

performed at 50 ºC for 12 hr under Argon. The reaction was terminated by THF, passed through a 

neutral aluminum oxide column, precipitated in methanol and the product was dried under vacuum. 
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Table S2. Polymerization of PBzMA via Cu2(bdc)2(dabco) a with the concentration of 500 ppm Cu(II) 

MOF (approximately 112 ppm Cu(II) ions). 

Homopolymer Time (hr) Conv. (%) Mn,theo
b

(x 103) 
Mn,SEC
(x 103) Ɖ 

PBzMA 40 33 12800 31400 1.52 
65 60 23500 40500 1.81 

a Polymerization condition: [BzMA]0/[I]0/[dabco]0 = 220:1:2, 50 ºC. b Conversion determined by GC-

MS. The theoretical number averaged molecular mass Mn,theo was calculated as MMinitiator + MMmonomer

× ([monomer]0/[initiator]0) × conversion. 
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Appendix VI. Supporting Information to Chapter 6 
Fabrication of Cu2(bdc)2(dabco) (Cu(II) MOF). Cu2(bdc)2(dabco) was employed as the Cu(II) MOF 

to catalyze the photopolymerization demonstrated in this study. The Cu(II) MOF was prepared under 

solvothermal condition,34, 310 and after removing of the incorporated guest molecules, the as 

synthesized MOF was characterized with FE-SEM (Chapter 5, Figure 5.1), PXRD (Chapter 6, Figure 

6.7a), and nitrogen adsorption and desorption measurements (Chapter 5, Figure 6.7b). At beginning, 

the crystal structure with uniform particle size around hundred nm can be identified through the FE-

SEM image. The obtained PXRD pattern reveals high accordance with the literature, indicating the 

accurate microstructure formed by the applied metallic ion and organic ligands with in specific ratio. 

The BET surface area and the pore volume were identified as 2280 m2/g and 0.91 cc/g via the BET 

method.  

Electrochemical Characterization of Cu(II) MOF. Electrochemical analyses were performed on a 

PARC 263A potentiostat/galvanostat using a three-electrode cell with deionized water/0.1 M NaNO3

as solvent. The reference electrode was standard calomel (SCE), the counter electrode was a Pt wire, 

and the working electrode was a glassy carbon disc (Metrohm, 3 mm diameter) coated with a film of 

Cu(II) MOF. The MOF was dropcasted from dry acetone or TEA:dry acetone 1:4 mixtures (5 drops of 

a dispersion of 10 mg MOF in 5 mL solvent, sonicated for 30 min before casting). The film was 

protected by dropcasting two drops of a solution of 1 wt% Paraloid B-72 in acetone, which forms a 

porous layer incorporated with 0.02±0.01 mg of MOF.313 Prior to each surface deposition, the 

electrode was polished with a 0.1 µm alumina paste, and rinsed in ultrasonic bath. 

Photoelectrochemistry experiments were performed by illuminating the electrode surface with either a 

UV/Vis lamp or a white LED in a distance of 1 cm.

Cu(II) MOF-Mediated Photopolymerization of 4VP, 2VP, and DMAEMA. The typical 

polymerization equivalents were as follows: [4VP]0/[I]0 = 125:1 for 1 hr; [2VP]0/[I]0 = 370:1 for 2 hr; 

[DMAEMA]0/[I]0 = 500:1 for 12 hr. In a glass vial Cu(II) MOF (0.08 g) was added to the bulk 

solution of monomer (2 g) under Argon, and then ethyl α-bromoisobutyrate (EBIB) (0.03 g) was 

added while stirring. The polymerization was carried out via exposing the reaction mixture to a 50 W 

visible-light LED in a distance of 15 cm. The reaction was terminated at given time by DCM. After 

centrifugation, the polymer product was precipitated in water and the solid product was dried under 

vacuum. For kinetic analysis, the reaction was terminated by DCM at specific time, the solution was 

centrifuged, and the clear suspension was filtered for GC-MS to evaluate monomer conversion.

Cu(II) MOF-Mediated Photopolymerization of MMA. The typical polymerization equivalents were 

as follows: [MMA]0/[I]0 = 325:1 for 24 hr. In a glass vial Cu(II) MOF (0.08 g) was added to the bulk 

solution of MMA (2 g) under Argon, and then ethyl α-bromoisobutyrate (EBIB) or bromoacetonitrile 
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(0.03 g) was added while stirring. Furthermore, TEA (0.124 g) or 4-ethylpyridine (0.131 g) or none of 

them was added. The polymerization was carried out via exposing the reaction mixture to a 50 W 

visible-light LED in a distance of 15 cm. The reaction was terminated at given time by THF. After 

centrifugation, the polymer product was precipitated in methanol, and the solid product was dried 

under vacuum. For kinetic analysis, the reaction was terminated by DCM at specific time, the solution 

was centrifuged, and the clear suspension was filtered for GC-MS to evaluate monomer conversion. 

Chain Extension with Poly(ethylene glycol) Methyl Ether Methacrylate (OEGMA) or Isobornyl 

Acrylate (IBA). The homopolymers obtained from Cu(II) MOF-mediated photopolymerization were 

utilized as macroinitiators for the block copolymer comprised with OEGMA or IBA. 

macroinitiator 0/ 0/ 0/ 0/ 0 at

in 50 vol% methanol (i.e. P4VP and PDMAEMA) or DMF (i.e. P2VP and PMMA).

Synthesis of Reference Polymers. The reference P4VP and P2VP was synthesized through free 

radical polymerization using AIBN as initiator at 60 ºC. The typical polymerization of DMAEMA and 

MMA was carried out by ARGET ATRP as follows. In a glass vial CuBr2 (9.3 mg) and PMDETA 

(17.3 mg) were added to the bulk solution of DMAEMA (3.0 g) under stirring. Subsequently, ethyl α-

bromoisobutyrate (EBIB) (0.025 g) and dabco (18 mg) was introduced in the solution. The 

polymerization was performed at 90 ºC for 24 hours under Argon. The reaction was terminated by 

DCM, the solution was passed through a neutral aluminum oxide column, precipitated in methanol, 

and the product dried under vacuum. The PMMA was synthesized by the same procedure at 50 ºC for 

24 hr.  

Repeated Photopolymerization of 2VP and DMAEMA. The given amount of Cu(II) MOF (0.1 g) 

was utilized to polymerize 2VP and DMAEMA alternatively referring to the reaction condition in 

Cu(II) mediated-photopolymerization, and the polymerization was three times repeated for each 

monomer. The conversion of the given cycle was determined by GC-MS, and the yield was measured 

by the weight of obtained polymer product. After every polymerization, the Cu(II) MOF was washed 

via DCM once a day for 3 days, dried under vacuum, and then the weight increment was recorded 

before the next reaction.    

Calculation of Cu Atom on MOF Surface. Number of total Cu atoms considering a perfect cube 

geometry with approximate side length of 100 nm and Cu atom distance of 0.76 nm: N(Cu cube) ≈ 

(100/0.76)3 ≈ 2278029 atoms 

Number of Cu atoms on the surface considering a perfect square geometry with approximate side 

length of 100 nm and Cu atom distance of 0.76 nm: N(Cu surface) ≈ 6*(100/0.76)2 ≈ 103878 atoms 
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Table S3. Properties of homopolymers obtained during the kinetic evolution of monomer conversion 

analysis using Cu2(bdc)2(dabco). a

Homo 
polym. Point Time Conversion 

(%) 
Mn,theo

b

(×103)
Mn,SEC
(×103) Ɖ

P4VP 

1 15 min 23.2 3000 2400 1.6 

2 30 min 42.4 5500 5900 1.6 

3 45 min 55.6 7200 7300 1.4 

4 60 min 72.7 9500 8050 1.3 

5 75 min 78.7 10200 8600 1.3 
6 90 min 86.2 11200 12600 1.4 

P2VP 

1 20 min 15.1 5900 5100 1.6 

2 35 min 20.7 8200 6300 1.7 

3 65 min 31.7 12500 13300 1.5 

4 80 min 37.1 14600 14400 1.4 

5 95 min 40.9 16100 15300 1.6 
6 110 min 46.2 18200 21000 1.4 

PDMAEMA 

1 3 hr 11.6 9500 11900 1.5 

2 7 hr 15.7 12900 13400 1.4 

3 9 hr 23.4 19200 23100 1.4 

4 12 hr 30.5 25100 30500 1.5 
5 15 hr 35.5 29200 32200 1.4 

PMMA 

1 1.5 hr 10.4 3400 3700 1.4 

2 2.5 hr 17.8 5800 5000 1.4 

3 3 hr 19.5 6300 5500 1.4 

4 3.5 hr 20.5 6700 6400 1.5 

5 4 hr 21.1 6900 7300 1.4 

6 5 hr 22.1 7200 8300 1.4 
7 6 hr 23.3 7600 8800 1.3 

a The polymers obtained from the kinetic studies shown in Figure 6.4 Because the SEC was measured 

after the analysis of GC-MS using the same crude extraction without precipitation, the outcome Ɖ is 

slightly higher. However, the unimodal distribution in each monomer system indicates the living 

polymerization property with limited nucleophilic substitution in the chain end. b Conversion 

determined by GC-MS. The theoretical number averaged molecular mass Mn,theo was calculated as 

MMinitiator + MMmonomer × ([monomer]0/[initiator]0) × conversion. 



Appendices 

131

Appendix VII. Supporting Information to Chapter 7 
Synthesis of Initiator-Functionalized Silane (MPTS-Br). According to literature,270 α-

bromoisobutyryl bromide (5.92g, 25.7 mmol) was added dropwise to the ice-cold-bath of 3-

(mercaptopropyl)trimethoxysilane (5.03 g, 25.6 mmol) and triethylamine (2.59 g, 25.6 mmol) in dry 

toluene (42.5 mL) with stirring. The mixture was then stirred overnight at RT. The salt was removed 

by filtration, and the remaining solution was removed under reduced pressure to give the initiator-

functionalized silane 2-bromothioisobutyrate (MPTS-Br) (85% yield). 1H NMR (400 MHz, CHCl3): δ 

= 3.57 (9H, SiOCH3), 2.95 (2H, SCH2), 1.97 (6H, C(CH3)2Br), 1.74 (2H, CCH2C), 0.78 (2H, CH2Si) 

(Chapter 7, Figure 7.1a).  

Synthesis of 3-Azido-Propanol. Sodium azide (4.6 g, 70.8 mmol, 1.5 equiv) was placed in a 250 mL 

flask and dissolved in a mixture of acetone (72 mL) and deionized water (12.0 mL). 3-Bromo-1-

propanol (3.92 mL, 44.8 mmol, 1.0 equiv) was added, and the mixture was refluxed overnight. 

Acetone was evaporated under reduced pressure at RT, and then deionized water (60 mL) was added. 

The aqueous phase was extracted with diethyl ether (3 x 60 mL). The extracted organic mixture was 

dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to give 3-

azido-1-propanol as yellow oil (3.81 g, 37.7 mmol, 84% yield). 1H NMR (400 MHz, CHCl3): δ = 3.72 

(t, 1H, OH), 3.43 (t, 2H, CH2OH), 1.82 (p, 4H, N3-CH2CH2)349 (Chapter 7, Figure 7.8a)

Preparation of PDMAEMA-Functionalized Pollens (P-pollen). Via using different concentration of 

grafted initiator, for example, 0.5, 1, 2, 3 and 5 wt %, the pollen grains with varied grafting density 

were prepared (as shown in the ICP-OES result in Chapter 7, Figure 7.1b). Typically, the washed 

pollen (0.1 g) was immersed into a solution of the MPTS-Br (5 wt %) in toluene (10 mL), and the 

mixture was gently refluxed for 24 h. The MPTS-Br functionalized pollen was washed by toluene (3 x 

10 ml) and dried under vacuum at RT. After the initiator-functionalized pollen was fabricated, SI-

ARGET ATRP was carried out to graft PDMAEMA from the pollen surface. DMAEMA (0.5 g, 31.75 

mmol), CuBr2 (0.0013 g, 0.0056 mmol), PMDETA (0.0023 g, 0.13 mmol), dabco (0.012 g, 0.0001 

mmol) and anhydrous methanol (0.5 ml) were introduced into a 5 mL vial and mixed. Then the 5% 

initiator-functionalized pollen (0.5 g) was added into the mixture, and the polymerization was 

conducted at 65 ºC for 24 h with conversion 98%. The PDMAEMA-grafted pollen was washed and re-

suspended by DCM. The grafted PDMAEMA brushes were cut from P-pollens by 1% NaOH, and 

characterized by 1H NMR (400 MHz, CHCl3): δ = 4.04 (2H, OCH2), 2.55 (2H, CH2N), 2.26 (6H, 

N(CH3)2), 2.05-1.63 (2H, CH2C main chain), 1.42-0.73 (3H, CCH3), and SEC: MW of 67,800 (Ɖ = 

1.2) (Figure S11).  

Fabrication of Cu2(bdc)2(dabco). Cu2(bdc)2(dabco) was employed as a Cu(II)-based MOF to 

catalyze the photocatalytic reactions demonstrated in this chapter. The Cu2(bdc)2(dabco) was prepared 
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under solvothermal condition,34, 310 and after removing of the non-coordinated molecules by washing 

with DMF and DCM, the as-synthesized Cu2(bdc)2(dabco) was characterized with FE-SEM (Chapter 

7, Figure 7.3b),  PXRD (Chapter 7, Figure 7.3c), and then remained in DCM. 

Fabrication of Cu(bdc). The Cu(bdc)2 was synthesized by solvothermal condition according to 

literature.242, 350 H2bdc (166 mg, 1.0 mmol) and Cu(NO3)2∙3H2O (242 mg, 1.0 mmol) was dissolved 

separately in 10 mL DMF. The metal ion solution was poured into the ligand solution stirring at RT 

for 2 hr, and then the mixture was refluxed at 100 °C for 2 days. The forming precipitate was collected 

by centrifugation, and after removing the non-coordinated molecules by washing with DMF and DCM, 

the Cu(bdc) was obtained. The synthesized MOF was characterized with FE-SEM and PXRD (Chapter 

7, Figure 7.5a), and remained in DCM before utilization. 

Fabrication of HKUST-1. The HKUST-1 was synthesized according to literature at RT.192 H3btc 

(500 mg, 2.4 mmol) and Cu(OAc)2∙H2O (860 mg, 4.31 mmol) was dissolved separately in 12 mL 

DMF-ethanol-water mixture (volume ratio = 1:2:3). The metal ion solution was poured into the ligand 

solution stirring at RT overnight. The forming precipitate was collected by centrifugation, and after 

removing the non-coordinated molecules by washing with DMF and DCM, the HKUST-1 was 

obtained. The synthesized MOF was characterized with FE-SEM and PXRD (Chapter 7, Figure 7.5b), 

and remained in DCM before utilization. 

Fabrication of Zn2(bdc)2(dabco). The Zn2(bdc)2(dabco) was synthesized under solvothermal 

condition at 85 ºC for 24 hr in DMF,40 and after removing the non-coordinated molecules by washing 

with DMF and DCM, the Zn2(bdc)2(dabco) MOF was obtained. The synthesized MOF was 

characterized with FE-SEM and PXRD (Chapter 7, Figure 7.5c) and then remained in DCM before 

utilization.

Fabrication of MOF-5. The MOF-5 was synthesized according to literature at RT.351 H2bdc (0.5 g, 3 

mmol) and TEA (0.85 mL) were dissolved in 40 mL of DMF. Zn(OAc)2·2H2O (1.7 g, 7.7 mmol) was 

dissolved in 50 mL of DMF, and then added to the organic mixture stirred overnight. The forming 

precipitate was collected by centrifugation, and after removing the non-coordinated molecules by 

washing with DMF and DCM, the MOF-5 was obtained. The as-synthesized MOF-5 was 

characterized with FE-SEM and PXRD (Chapter 7, Figure 7.5d), and remained in DCM before 

utilization.

Fabrication of MOF-74-Zn. The MOF-74-Zn was synthesized according to literature at RT.351

H4dobdc (239 mg, 1.2 mmol) and Zn(OAc)2·2H2O (686 mg, 3.1 mmol) was dissolved separately in 20 

mL DMF. Then the ligand solution was added into the zinc salt solution stirred overnight. The forming 

precipitate was collected by centrifugation, and after removing the non-coordinated molecules by 
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washing with DMF and DCM, MOF-74-Zn was obtained. The as-synthesized MOF-74 was 

characterized with FE-SEM and PXRD (Chapter 7, Figure 7.5e), and remained in DCM before 

utilization. 

Fabrication of ZIF-67. The ZIF-67 was synthesized according to literature at RT.352 Hmim (5.5 g, 

0.067 mol) was dissolved in 20 mL water, and Co(NO3)2∙6H2O (0.45 g, 1.54 mmol) was dissolved in 

3 mL water, separately. The metal ion solution was poured into the ligand solution stirred overnight. 

The forming precipitate was collected by centrifugation, and after removing the non-coordinated 

molecules by washing with water and methanol, the ZIF-67 was obtained. The synthesized MOF was 

characterized with FE-SEM and PXRD (Chapter 7, Figure 7.5f), and remained in DCM before 

utilization.  

Incorporation of MOFs on P-pollen (MOFs@P-pollen). The as-synthesized P-pollen (0.1 g) was 

suspended in DCM (10 ml), and various MOFs (0.1 g) were added individually. The mixture was 

gently shacked overnight. The non-incorporated MOF particles were removed by low-speed 

centrifugation, and the suspension was dried under reduced pressure at RT, giving MOFs@P-pollen. 

The incorporated amount of each MOF in the MOFs@P-pollen composite was determined by ICP-

OES using the comprised metallic ions in individual MOF framework (Chapter 7, Table 7.1). The as-

prepared MOF@P-pollen composites were characterized by PXRD and FE-SEM comparing to the 

native MOFs (Chapter 7, Figure 7.5). 

Cu2(bdc)2(dabco)-mediated Photoclick reaction. The given amount of Cu2(bdc)2(dabco) was 

utilized to catalyze click reaction under visible light in DCM or toluene. Typically, Cu2(bdc)2(dabco) 

(0.002 g) was add to the mixture of 4-pentyn-1-ol (0.231 g, 2.75 mmol), 3-azido-1-propanol (0.275 g, 

2.75 mmol) and solvent (0.5 ml). After 30-min stirring, the click reaction was carried out by exposing 

the reaction mixture to a 50 W visible-light LED in a distance of 15 cm. The conversion rate at the 

given time was determined by GC-MS. Alternatively referring to the reaction condition catalyzed by 

native Cu2(bdc)2(dabco), Cu2(bdc)2(dabco)@P-pollen (0.0071 g) and PDMAEMA@Cu2(bdc)2(dabco) 

(0.133 g) were utilized separately as different type of Cu2(bdc)2(dabco) composite to catalyze the 

photoclick reaction.

Repeated photoclick reaction in DCM and Toluene. The given amount of Cu2(bdc)2(dabco)@P-

pollen (0.0071 g) was utilized to catalyze photoclick reaction in DCM and toluene alternatively 

referring to the reaction condition in Cu2(bdc)2(dabco)-mediated photoclick reaction, and the reaction 

was three times repeated for each solvent. The conversion of the given cycle was determined by GC-

MS, and yield was measured by the weight of obtained triazole product. After each reaction, 

Cu2(bdc)2(dabco)@P-pollen was washed with methanol (3 x 5 ml), dried under vacuum at RT, and 

then utilized for the next reaction.    
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