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Supplementary Methods 

MD simulation  

As described in [1], the MD simulation of α-synuclein was performed using the Amber12 force field with 
the TIP4P-D water model. The simulation started from an extended conformation of α-synculein, 
solvated in an ~ 100 × 100 × 100 Å3 box containing ~ 40000 water molecules and 0.1 M NaCl. The system 
was initially equilibrated at 300 K and 1 bar for 1 ns, then production run at 300 K and 1 bar was 
performed in the NPT ensemble with the Anton specialized hardware at 2.5 fs time step. Nonbonded 
interactions were truncated at 12 Å and the Gaussian split Ewald method with a 64 × 64 × 64 Å mesh was 
used to account for the long-range part of the electrostatic interactions. The MD frames were saved at 
10 ps intervals. 

MD-based autocorrelation functions 

Second-order orientational autocorrelation functions (ACF) between nuclei A and B (H-H for proton 
relaxometry or N-H for nitrogen relaxation) were calculated from the MD trajectory as [2]: 
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where 𝐷𝑞,0
(2) (𝛺)  are the elements of the Wigner rotation matrix, <…> means ensemble averaging, the 

asterisk means complex conjugation, C0 is the normalization constant (equal to C(0)), Ω s are different 
sets of Euler angles specifying the orientation of the AB vector with respect to the laboratory coordinate 
frame, r is the AB distance, and subscripted 0 and t denote the initial and final time moments at which r 
and Ω are calculated. To calculate spin relaxation rates, the relevant H-H or N-H ACFs were converted to 
spectral density functions through Fourier transformations. An exponential window function with a 
correlation time of 200 ns was applied to all ACFs to ensure that the artificially long components of 
motions in the MD trajectory do not affect the spectral density functions at very low frequencies. The 
ACFs were also fitted to multi-exponential decay functions, 

𝐶(𝑡) = ∑ 𝑆𝑖2 exp(− 𝑡
𝜏𝑖

)𝑖  (eq. S2) 

with i= 1, 2, 3, 4, 5 or 6, where S2
i and τi represented the squared order parameters and correlation times 

corresponding to different motions, respectively, and ∑𝑆𝑖2 = 1. To evaluate the noise level in the ACFs, 
the MD trajectory was split into three (non-overlapping) sub-trajectories, each of 5 µs duration, and the 
ACFs were calculated separately for each sub-trajectory. The standard deviation between the three ACFs 
represented the noise level in the ACF of the whole trajectory. 
 
Simulated proton relaxometry profiles 
Fourier transformation of each pair of inter-proton ACFs provided individual spectral densities at 
different frequencies. The first 2-µs of the H-H ACFs were taken for Fourier transformation, as a result, 
spectral densities from 0 to 50 GHz at 0.5 MHz intervals were obtained. R1 of all non-exchangeable CH3, 
CH2 and CHα protons were then calculated from the spectral densities, J(ω), through the equation , 
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in which 𝐽(𝜔) = 𝜏𝑅
1+𝜔𝐻

2 𝜏𝑅
2 . The magnetization decay functions of all CH3, CH2 and CHα protons were then 

simulated as: 
𝑀(𝑡) = 𝑀0 exp (−𝑅1𝑡)  (eq. S4) 
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for t ranging from 0 to 1 s, and then the collective (experimentally detectable) magnetization decay 
function Mc was obtained from the average of magnetization decays of all protons. Finally, Mc was fitted 
with a double exponential decay function, 

𝑀𝑐(𝑡) = 𝑀0 (𝑤𝑎 exp(−𝑅𝑎𝑡) + 𝑤𝑏  exp (−𝑅𝑏𝑡)) + 𝑀ℎ𝑓   (eq. S5a) 

as it was done for the experimental data [3] (the fit was in all cases very good, with a reduced χ2 of about 
10−5), and the collective relaxation rate was defined as: 

⟨𝑅1⟩  =   𝑤𝑎𝑅𝑎 + 𝑤𝑏𝑅𝑏  (eq. S5b) 

where wa, Ra, Rb and Mhf were fitting parameters (wb=1- wa). The calculations were repeated for proton 
Larmor frequencies of 0.1, 0.5, 1, 2, 3, 5, 10, 15, 20 30 and 50, corresponding to the range of available 
experimental data [3]. For R1 calculation at ω=0.1 MHz, J(0.1MHz) and J(0.2MHz) were approximated by 
J(0). The resulting R1 dispersion profile was then fitted to the following equation: 
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which includes a single correlation time, or 
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with two correlation times. The 〈𝐸2〉 was fixed to 2.4 × 1010 s−2, as previously calculated with CORMA [3-4]. 
 
Simulated 15N relaxation rates 
Second-order orientational ACFs for the 134 individual backbone N-H vectors of α-synuclein (all residues 
except M1 and prolines 108, 117, 120, 128 and 138) were calculated from the MD trajectory. Next, 
individual ACFs were converted to spectral density functions at different frequencies through Fourier 
transformation, as described above. Only the first 30-ns of the N-H ACFs, during which the ACFs generally 
decayed below 0.5% of the initial value, were taken for Fourier transformation. Then, 15N longitudinal (R1) 
and transverse (R2) auto-relaxation rates and transverse cross-correlated relaxation rates (CCR, ηxy) were 
calculated as: 
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4𝜋𝑟𝑁𝐻

3   and 𝑐 =  𝛾𝑁Δ𝜎 𝐵0
√3

. The effective NH bond length of 1.04 Å was used to account for 

zero-point vibrations [5] and the 15N CSA tensor magnitudes (Δσ) were set to -170 ppm. The angle θ 
between NH bond vectors and the main axis of the 15N CSA tensors was set to 22.5° [6]. To optimize the 
scaling factors for the correlation times and/or the order parameters corresponding to different motions 
present in the MD-derived N-H ACFs, the spectral density functions at angular frequency ω were first 
calculated using the best-fit parameters obtained with three-exponential decay function as: 
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and subsequently the relaxation rates R1 and R2 were predicted through equations 7a-b. The optimal 
temporal and order parameter scaling factors were then obtained through minimization of the relative 
root mean square of deviation (rmsd) between the experimental and predicted relaxation rates, as: 
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Experimental 15N relaxation rates  
15N R1 and R2 rates, 1H,15N heteronuclear NOE and transverse cross-correlated relaxation rates (CCR, ηxy) 
of α-synuclein were measured at a proton Larmor frequency of 600 MHz (and in case of R2, also at 800 
MHz) using AVANCE-III Bruker (Karlsruhe, Germany) spectrometers. The uniformly 15N-labeled NMR 
sample contained ~ 1 mM α-synuclein at pH 5.0 dissolved in 10% D2O/90% H2O. The temperature was 
set to 25 °C. The pH and temperature were identical to those used for experimental proton relaxometry 
experiments [3]. 15N R1 rates were measured using conventional pulse sequence schemes with ten 
relaxation delays between 10 and 1000 ms [7]. 15N R2 rates were obtained using a CPMG-based scheme 
with a τcp of 1 ms and relaxation delays of 12, 32, 52, 72, 92, 112, 132, 152 and 172 ms [7]. R1 and R2 
relaxation rates were determined by fitting the corresponding peak intensities to a single exponential 
decaying function. Errors in relaxation rates were estimated from 500 Monte Carlo (MC) simulation runs 
for which the fit residuals were taken as the random noise. Steady-state hetNOEs were obtained by 
comparison of peak intensities between saturated and reference spectra, where the duration of 
saturation block and the total recycle delay in the hetNOE were 5 and 8 s, respectively. The R1, R2 and 
hetNOE measurements were performed in FID-interleaved manner. The CCR rates were measured using 
relaxation delays of 100, 150 and 200 ms [8]. The exchange-free R2 rates, R2

0, were derived from CCR as 
described in [9]. Reduced spectral density mapping analysis of 15N relaxation rates [10] was made using an 
in-house MATLAB script.  

Single-molecule fluorescence spectroscopy 

Labeling of α-synuclein with Alexa Fluor 488 and 594 for single-molecule FRET measurements. A 
double-cysteine variant of α-synuclein (S42C and T92C) was reduced with 1,4-Dithiothreitol (DTT) and 
subsequently purified by RP-HPLC using a Reprosil Gold C18 column with a water-acetonitrile (ACN) 
gradient (Solvent A: 0.1% TFA, Solvent B: ACN; gradient: 5-50% B in 30 min). The protein was labeled 
with the donor dye Alexa Fluor 488 maleimide in 6 M guanidinium chloride (GdmCl), 100 mM sodium 
phosphate, pH 7.3, overnight at 4°C at a molar ratio of dye to protein of 0.7:1. The reaction was stopped 
by adding DTT. A gradient of 37-42% B over 30 min was chosen to separate unlabeled, singly and doubly 
donor-labeled protein on the Reprosil Gold C18 column. Singly labeled material was further labeled with 
the acceptor dye Alexa Fluor 594 maleimide at a molar ratio of dye to protein of 5:1 for 4 h at room 
temperature. Unreacted dye was quenched with DTT. Purification of donor-acceptor labeled protein was 
achieved by RP-HPLC as described above. The mass of donor/acceptor-labelled α-synuclein was 
confirmed by ESI-MS. 

Single-molecule fluorescence spectroscopy. 
Single-molecule fluorescence measurements were conducted on a MicroTime 200 confocal microscope 
(PicoQuant, Germany). Labeled molecules were excited with a diode laser (LDH-D-C-485, PicoQuant, 
Germany) in continuous-wave mode. Emitted fluorescence was collected by the objective (UplanApo 
60x/1.20W, Olympus) and filtered (HQ500LP, Chroma Technology) before passing the confocal pinhole 
(100 µm diameter). The emitted photons were then sorted into four channels, first by a polarizing beam 
splitter and then by a dichroic mirror (585DCXR, Chroma) for each polarization. Donor and acceptor 
emission was filtered (ET525/50m or HQ650/100m, respectively, Chroma Technology) and then focused 
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on a τ-SPAD avalanche photodiode (PicoQuant). The arrival time of every detected photon was recorded 
with a HydraHarp 400 counting module (PicoQuant).  

FRET efficiency and intramolecular distances. Fluorescence bursts from individual molecules were 
identified by combining successive photons separated by inter-photon times of less than 150 μs and 
retaining the burst only if the total number of photons detected after donor excitation was greater than 
40. Transfer efficiencies for each burst were calculated according to E=nA/(nA+nD), where nD and nA are 
the numbers of donor and acceptor photons, respectively, corrected for background, acceptor direct 
excitation, channel crosstalk, differences in detector efficiencies, and quantum yields of the dyes [11]. The 
histogram of transfer efficiencies was fitted with two empirical peak functions, using a normal 
distribution for both the donor-only and the FRET populations. Mean values of transfer efficiency 〈𝐸〉 
corresponding to the unfolded population were related to the distance information by solving 
numerically 

〈𝐸〉  =  ∫ 𝐸(𝑟)𝑃(𝑟)𝑐𝑟 (eq. S10) 

for which we assumed for P(r) the distance distribution of a random walk (Gaussian) chain, 
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where R is the root-mean-squared distance between the dyes. The mean distance inferred in this way 
was robust to the choice of polymer models to within 6 % when distance distributions for a worm-like 
chain[12]  
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or an excluded volume chain[13]  
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were used (lc is the contour length of the chain and Z is a normalization factor). Note that the distribution 
of transfer efficiency observed for the peak in the histogram (Figure S3) is dominated by shot noise, 
because the dynamics of inter-dye distance fluctuations is faster than the average interphoton time, and 
can thus not be used to infer a distance distribution directly [14]. Finally, to account for the length of dye 
linkers and compare the experimental data with simulations, R was rescaled to the distance between 
residues m and n according to  

𝑅𝑚,𝑖 = 𝑅 |𝑚−𝑖|0.5 
|𝑚−𝑖+2𝑠|0.5 (eq. S12) 

with l = 4.5 corresponding to the effective number of amino acid residues equivalent to one of the dyes 
with its linker [15].  

Reconfiguration times from FRET-FCS. Autocorrelation curves of acceptor and donor channels and cross-
correlation curves between acceptor and donor channels were computed from the measurements and 
analyzed as described previously [16]. The data were fitted over different time windows, from 1 µs to 5 µs 
(to assess the robustness of the fit), according to 
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and 
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where N is the mean number of molecules in the confocal volume, cAB, cCD, cCD2 and cT are the amplitudes 
related to photon antibunching (AB), chain dynamics (CD) and triplet blinking of the dyes (T), τAB, τCD, τCD2 
and τT are the corresponding relaxation times, f is the fraction of protein associated with the relaxation 
time τCD (for simplicity, brightness of the two fractions was considered to be identical). The relaxation 
times were extracted by fitting the three curves globally to eq. S13, assuming the same values of τCD but 
distinct triplet times  for the three correlations. Assuming that chain dynamics can be described as a 
diffusive process in the potential of mean force derived from the sampled distance distribution P(r) [17], 
we convert τCD and τCD2 to the reconfiguration time of the chain, τr 

[16a]. Note that τCD and τr differ by only 
6% in the present case because the root-mean-square distance is close to the Förster radius [16a]. 
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Figure S1. Flowchart representation of the approach of this study for investigating IDP dynamics through 
combination of MD simulation, low-field proton relaxometry, single-molecule FRET-nsFCS and high-field 15N spin 
relaxation. It starts with a long MD simulation of the IDP of interest with the optimized force-field and water 
models. The duration of the MD simulation should be at least several microseconds to converge the longest 
dynamics expected for the IDP. Then, a careful analysis of experimental and simulated proton relaxometry profiles 
will provide correlation times of reorientational motions, and thus a global time axis scaling factor for the MD 
trajectory. The temporal adjustment of the MD trajectory can be further supported by single-molecule FRET-nsFCS 
data, which reprot chain reconfiguration dynamics in tens to hundreds of nanoseconds. Following temporal 
adjustment of the MD trajectory, high-field 15N relaxation rates will be employed to detect local flexibility 
limitations in MD and optimizing order parameters at single-residue level. The approach of this study may be called 
“IASMIN”, for the Integrative Approach for Scaling of Molecular dynamic simulation for Intrinsically disordered 
proteiNs. 
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Figure S2. MD-based proton-proton angular autocorrelation functions (ACF). (a) The ACF of a representative H-H 
pair (gray circles), and its best-fit curves to two-, three- or four-exponential decay functions (solid lines). The 
decaying behavior of the ACF during the first 1000 ps is satisfactorily captured only when four exponential terms 
are included.   (b,c) Longest correlation times and corresponding squared order parameters obtained from the fit of 
the MD-based ACFs of methylene and methyl protons (b) and CHα protons (c). A large spread of correlation times 
and order parameters is observed over protein protons. 
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Figure S3. Single-molecule FRET of double-labeled S42C/T92C α-synuclein. (a) FRET efficiency histogram. The mean 
value of the transfer efficiency is 0.64, corresponding to an inter-dye distance of 4.7±0.2, 5.0±0.2, and 4.6±0.2  nm 
assuming a Gaussian, wormlike or a self-avoiding random walk, respectively. The small peak at zero FRET efficiency 
is due to molecules without active acceptor fluorophore. (b) Distance distributions of simple polymer models 
approximate the shape of the probability distribution for the Cα-Cα distance between residues 42 and 92 obtained 
from the MD simulation. The resulting root-mean-square-distances are: 4.6 nm (fit to Gaussian chain, green), 4.5 
nm (fit to wormlike chain, orange), and 4.4 nm (fit to self-avoiding random walk, red).  The root-mean-square 
distance calculated from the simulation data is 4.4±0.2 (black vertical line and gray shaded area). The 
corresponding experimental values are reported for comparison (cyan vertical line and shaded area). 
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Figure S4. Experimental determination of 15N relaxation rates. As typical examples, the intensity decay of three 
residues from the N-terminal, NAC and C-terminal regions (A17, V70 and D121, highlighted in Fig. 1d) in R2 
experiments are shown. 
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Figure S5. Residue-specific cross-correlated relaxation (CCR) rate between 1H,15N dipole-dipole and 15N chemical 
shift anisotropy relaxation of α-synuclein, measured at 600 MHz proton Larmor frequency and 25 °C (green 
circles/lines). The rates calculated from the 16-µs MD trajectory are shown as gray circles, with the error bars 
representing the standard deviation between the rates calculated from three MD sub-trajectories, each of 5 µs 
duration. The predicted rates after rescaling of the MD are shown as orange triangles. 
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Figure S6. Comparison of 15N R2 relaxation rates of α-synuclein, measured at two different protein concentrations 
(1 mM and 150 µM). The 15N relaxation rate measurements were performed at 800 MHz proton Larmor frequency 
and 25 °C. Since highly similar relaxation rates are obtained at these two protein concentrations, the possibility that 
α-synuclein aggregation makes a significant contribution to 15N relaxation rates is excluded. The linear slope of 
1.027-1.045 (95% CI) can be explained by the higher viscosity of the 1 mM α-synuclein sample, compared to the 
more dilute 150 µM sample. If we approximate that the R2 is determined exclusively by J(0) and ignore the small 
contributions from higher frequency terms, then an intrinsic viscosity of 2.21-3.69 cm3/g (95% CI) would be 
required to explain the observed ratio of R2 at two concentrations. The estimated value of intrinsic viscosity for α-
synuclein is comparable to the intrinsic viscosities obtained for a broad range of proteins [18].  
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Figure S7. The exchange-free R2 rates (R2
0) calculated from CCR rates are in close agreement with the R2 rates used 

for spectral density analysis, indicating that the deviation from single-Lorentzian behavior (shown in Figure S8) is 
unlikely to be caused by exchange contributions to relaxation rates. The reported slope represents 95% CI. 
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Figure S8. Spectral density analysis of experimental 15N relaxation rates, shown here as J(0) dependence of J(ωΝ) (a, 
green circles) or J(<ωH>) (b, green circles), indicates that fast dynamics of α-synuclein backbone cannot be 
described by single-Lorentzian motions, i.e. motions with a single correlation time (blue curve). The MD-derived 
spectral density functions are shown by gray circles. The comparison between experimental (green circles) and 
simulated (gray circles) spectral density functions point to a general overestimation of J(0) and J(ωN) by MD.  
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Figure S9. The global angular autocorrelation function (ACF) of N-H groups calculated from the MD trajectory (gray 
circles), fitted to a multi-exponential function with 1 to 6 exponential terms (solid lines). Successive addition of the 
exponential terms led to significant improvement in the quality of fit (P-value <0.0001), however inclusion of only 
three exponential terms was sufficient to lower the deviation between the simulation and fitted ACFs below the 
noise level in ACF. As a result, in accord with recent studies of IDP dynamics at multiple fields [19] and temperatures 
[20], we decided to fit residue-specific ACFs with three-exponential decay functions. As shown in the Inset, the fit in 
the first 100 ps of the ACF is sub-optimal when less than four exponential terms are included in the model. The MD-
derived ACF exhibits some irregularities following ~ 30 ns, therefore only the initial 30 ns of the ACF were used for 
fitting.   
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Figure S10. MD-based squared order parameters, S2
slow (a), and correlation times, τslow (b), obtained from the fitting 

of angular autocorrelation functions of individual N-H vectors to a three-exponential decay function. Error bars, 
representing 95% CI, are mostly smaller than the symbol size. The solid lines show averaged values over a five-
residue window. 
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Figure S11. Dependence of the quality of fit between experimental and MD-predicted 15N relaxation rates (R1, R2 
and CCR at 600 MHz and R2 at 800 MHz) on the global time axis (blue triangle) or S2

slow (red triangle) rescaling of the 
MD trajectory. The best agreement between experimental and MD-predicted rates could be achieved after 
temporal adjustment by a factor of 0.55 or S2

slow scaling of 0.20. For S2
slow rescaling, the MD-based S2

slow was 
multiplied by the specified scaling factor, then the order parameters of fast (S2

fast) and intermediate (S2
int) motions 

were accordingly re-scaled to keep ∑𝑆𝑖2 = 1 (i=1,2,3 for fast, intermediate and slow motions). The r.m.s.d was 
calculated as 𝑟𝑟𝑐𝑐 = 𝑐𝑠𝑟𝑡[(�𝑅1,𝑝𝑝𝑝𝑝−𝑅1,𝑝𝑒𝑝
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�)2/4].  
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Figure S12. Optimization of MD-derived order parameters on the basis of 15N relaxation rates, R1 and R2 at 600 
MHz. (a) The best agreement with the experimental 15N relaxation rates could be achieved through global time axis 
rescaling of the MD trajectory and optimization of the MD-derived order parameters. The average N-H 
autocorrelation function (ACF) is shown before (gray curve) and after (orange curve) such rescaling. The gray lines 
demonstrate how much of the N-H orientational memory remains in the MD-derived average ACF after fast (solid 
line) and intermediate (dotted line) motions are completed. The orange lines show the corresponding levels after 
rescaling of the average ACF.  (b) Dependence of the quality of fit on the global time axis rescaling of the MD 
trajectory, while the order parameters are accordingly optimized. An excellent agreement could be achieved with 
time axis scaling factors at or above 1.05. In line with the proton relaxometry and nsFCS data, a time scaling factor 
of 1.05± 0.05 was used during order parameter optimization (shaded area).  
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Figure S13. Cross-validation of optimized MD-based order parameters by R2,800MHz (orange circles) and CCR600MHz 
(purple circles) rates. The predicted rates fit reasonably well to the experimental values.  
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Figure S14. Degree of order parameter rescaling along α-synuclein sequence, reflecting the extent of local flexibility 
limitation in the MD trajectory. As indicated by the sequence dependence of S2

slow scaling factor, the NAC region 
(shaded area) exhibit severe conformational sampling limitation, while the N-terminal residues 1-30 are least 
affected. 
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Table S1.  Comparison of average intramolecular distances from single-molecule FRET and MD 
simulation 

         R42,92 (nm)  

 single-
molecule 

FRET 

MD 

simulationa 

MD 

simulation 

best fitb 

MD 

simulation 

from computed Ec 

Rms distance - 4.4±0.2   

Gaussian chain 4.7±0.2 - 4.6 4.71 

WLCd 4.6±0.2 - 4.5 5.06 

SAWe 4.4±0.2 - 4.4 4.46 

a Mean and standard deviation estimated by subdividing the simulation in 5 µs segments. b Root-mean-squared distance 
estimated from the best fit of the different polymer models to the simulated distance distribution. c Root-mean-squared 
distance estimated with the different polymer models from the mean transfer efficiency computed from the simulated data. d 

Worm-like chain. e Self-avoiding random walk chain 

Table S2. Fitting of the MD-derived global N-H angular autocorrelation function (ACF) of α-synuclein to 
multi-exponential decay functions with up to six exponential terms 

 

 

τ1
a

  

(S2
1) 

τ2  

(S2
2) 

τ3  

(S2
3) 

τ4  

(S2
4) 

τ5  

(S2
5) 

τ6  

(S2
6) 

SSEb 

1-exp 1962±28  

(1) 

- - - - - 7.5160 

2-exp 544±9  

(0.57) 

5122±51 

(0.43) 

- - - - 0.3864 

3-exp 152±3  

(0.27) 

1545±16  

(0.48) 

7321±51  

(0.25) 

- - - 0.0301 

4-exp 41±1  

(0.13) 

512±6  

(0.29) 

2332±20 

(0.41) 

8666±45  

(0.18) 

- - 0.0036 

5-exp 13±0  

(0.08) 

211±3  

(0.17) 

1001±11  

(0.32) 

3321±32  

(0.32) 

10130±63  

(0.12) 

- 0.0005 

6-exp 7±0  

(0.05) 

100±1  

(0.09) 

466±5  

(0.21) 

1619±15  

(0.34) 

4980±62  

(0.25) 

13635±238  

(0.06) 

<0.0001 

a Correlation times (τi) in picosecond. 95% CIs are shown. The fitting error for squared order parameters (S2
i, i=1 to 6) were 

generally <0.01. b Sum of Squared Errors. After successive inclusion of exponential terms from 1 to 6 terms, the quality of fit was 
significantly improved (P-value < 0.0001). Inclusion of only three exponential terms was sufficient to lower the deviation 
between the simulation and fitted ACFs below the noise level in ACF of 0.089. To evaluate the noise level in the ACF, the global 
ACFs were calculated for three non-overlapping MD sub-trajectories, each of 5 µs duration, and the average SSE between them 
and the average ACF was calculated. 
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Table S3. Overall comparison of experimental 15N R1 and R2, 1H,15N heteronuclear NOE and CCR rates of 
α-synuclein with the rates predicted from the 16-µs MD trajectory of α-synuclein, calculated using 
Amber12 force field with sampling interval of 10 ps 

 

 

Experimental 

  

MD-predicted 

  

MD-predicted 

(time-rescaled) b 

MD-predicted 

(S2-rescaled)c 

R1              at 600 MHz (s-1) a 1.39±0.10 1.62±0.07 (0.25) 1.59±0.14 (0.22) 1.75±0.17 (0.39) 

R2              at 600 MHz (s-1)  2.94±0.56 4.16±0.77 (1.38) 2.71±0.51 (0.51) 2.73±0.52 (0.52) 

CCR           at 600 MHz (s-1)  1.81±0.42 2.83±0.56 (1.13) 1.78±0.37 (0.36) 1.78±0.37 (0.36) 

hetNOE    at 600 MHz -0.15±0.17 0.11±0.15 (0.29) -0.10±0.22 (0.20) -0.02±0.17 (0.21) 

R2              at 800 MHz (s-1)  3.30±0.64 5.00±0.95 (1.89) 3.05±0.60 (0.58) 3.07±0.58 (0.59) 

a Errors are standard deviation of the experimental and MD-predicted rates over α-synuclein residues. In parentheses, the 
r.m.s.d. between experimental and MD-predicted rates are shown. b The time axis of the MD trajectory was rescaled by 
multiplying to 0.55. c The MD-based order parameter of the slow motion (S2

slow) was multiplied by 0.20, then the order 
parameters of the fast (S2

fast) and intermediate (S2
inter) motions were accordingly re-scaled to keep ∑𝑆𝑖2 = 1. 
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