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High-Z impurities in magnetic confinement devices are prone to develop density varia-
tions on the flux-surface, which can significantly affect their transport. In this paper, we
generalize earlier analytic stellarator calculations of the neoclassical radial impurity flux
in the mixed-collisionality regime (collisional impurities and low-collisionality bulk ions)
to include the effect of such flux-surface variations. We find that only in the homogeneous
density case is the transport of highly collisional impurities (in the Pfirsch-Schliiter
regime) independent of the radial electric field. We study these effects for a Wendelstein
7-X (W7-X) vacuum field, with simple analytic models for the potential perturbation,
under the assumption that the impurity density is given by a Boltzmann response to a
perturbed potential. In the W7-X case studied, we find that larger amplitude potential
perturbations cause the radial electric field to dominate the transport of the impurities.
In addition, we find that classical impurity transport can be larger than the neoclassical
transport in W7-X.

1. Introduction

At fusion-relevant temperatures, heavy impurities in high ionisation states, “high-Z
impurities”, emit a significant amount of radiation, and even a tiny fraction of impurity
ions radiate enough power to seriously challenge the power balance in a reactor. High-Z
impurities thus cannot be allowed to accumulate in the center of a magnetic-confinement
fusion reactor.

In tokamaks, impurities are expelled from the core of the reactor by neoclassical
transport if their temperature gradient is sufficiently large — a phenomenon known as
temperature screening. In stellarators, the outlook has been more pessimistic, as the radial
transport is not independent of the radial electric field, and an inward pointing electric
field is predicted for a stellarator reactor, which would transport impurities inwards
(Hirsch et al.||2008)).

However, recent analytical results on neoclassical stellarator impurity transport have
shown that when the plasma is in a mixed-collisionality regime — where the bulk ions
are at low collisionality (1/v or /v regimes) and the impurity ions are collisional — the
radial impurity flux becomes independent of the electric field, which allows temperature
screening to be effective in stellarators (Newton et al.||2017; Helander et al.||[2017a)).
This is due to a cancellation between the flux driven by impurity parallel flow and the
ion thermodynamic forces. A similar cancellation is also found in the regimes where
both ions and impurities are collisional (Braun & Helander| [2010), although in this
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case, thermodiffusion is usually inward unless the effective charge is very small, so no
temperature screening occurs (Rutherford|1974]).

Additionally, high-Z impurities are sensitive to flux-surface variations in the elec-
trostatic potential, in response to which they can develop density variations on flux-
surfaces. Such variations can have large effects on the neoclassical transport, as has been
demonstrated analytically (Angioni & Helander|2014; (Calvo et al[2018) and numerically
(Angioni et al.|[2014; |Garcia-Regana et al.||2017; Mollén et al.|[2018) for tokamaks and
stellarators. Turbulent transport is also know to be affected by these variations, see for
example Mollén et al.| (2012, 2014])); |Angioni et al.| (2014).

In this work, we generalize the analytical calculation in (Newton et al.[2017)) to account
for flux-surface variation of the impurity density in stellarators, using a fluid description
for the impurities and solving for the ion distribution function in the 1/v regime. Our
expression for the impurity flux agrees with that in |Calvo et al.|(2018), where the same
problem is treated fully kinetically. Like (Calvo et al.| (2018]), we find that the effect
of the radial electric field can be large even when the amplitude of the potential flux-
surface variation is small relative to the temperature. In addition, we find that classical
transport can dominate over the neoclassical transport for collisional impurities in certain
stellarator geometries.

The remainder of this paper is organised as follows: in we present the equations
describing the impurities, and relate the friction force acting on the impurities to their
flux-surface density variations and the resulting radial flux. In we introduce the
ion-impurity collision operator and obtain an explicit expression for the ion-impurity
friction force. In we consider simplifying limits of the equations presented in the
previous sections, and derive expressions for transport coefficients in those limits.
treats the classical transport, and shows why it is important in Wendelstein 7-X. Finally,
in we apply our results to study a test-case based on a Wendelstein 7-X vacuum
field.

2. Impurity equations

In this section, we present equations to model the impurities, starting from momentum
balance and ending with expressions for calculating the flux along the magnetic field and
across the flux-surface.

The impurities are assumed to be collisional enough to be in the Pfirsh-Schliiter
regime and thus have a Maxwellian velocity distribution, with the density not necessarily
constant on flux-surfaces. For such a species in steady-state, the momentum equation is

Vp, =Zen,E+ Zel', x B+ R, (2.1)

where the z species subscript refers to the impurities, Z is the impurity charge-number,
e the proton charge, p, the impurity pressure, n, the impurity density, I, the impurity
particle flux, B the magnetic field, E the electric field, and R, is the friction force acting
on the impurities. By projecting onto the magnetic field direction b = B/B, with
B = |B|, we obtain

VHpZ = ZGTLZEH + RzH' (2.2)

From ([2.2)), we see that pressure (and thus density) variation along the field-line is set up
by forces associated with the parallel electric field and friction — both of which increase
with the impurity charge number. The friction force can be calculated using kinetic
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information of all other species, as
R.=m.) /d3v vC(fz, fal, (2.3)

where f, is the distribution function of a species “a”. We will restrict ourselves to the
case where only collisions between a bulk ion species ¢ and the impurities matter: the
electron contribution to the friction force can be neglected as small in the electron-ion
mass ratio.

In order to simplify the kinetic calculations required to determine f;, we will assume
that Z > 1, so that the effects that lead to pressure variation on the flux-surface can be
significant for the impurities while being small for the bulk ions. In the Z > 1 limit, the
ions and impurities will have undergone temperature equilibration if (Helander|[1998)

PV
Z
where p, = p;/L, with L the profile length-scale and p; = vpym;/eB the ion thermal
gyroradius, with m; the ion mass and vp; = /27;/m; the ion thermal speed; ; =
n;et In AL/ (T?e21273/2) is the ion collisionality, where n; is the bulk-ion density, the
bulk ions are assumed to have Z = 1; L is the length-scale of @-variations parallel to B,
where we assume that the inductive electric field is small, so that E = —V®; ¢ is the
vacuum permittivity and In A the Coulomb-logarithm. is practically always
satisfied in a magnetized plasma, so we will assume that T, = T; is a flux-function, and
thus becomes an equation for the flux-surface variation of n,.
Furthermore, if A = Z2p,05; < 1, as in the conventional drift-kinetic ordering, the
friction force in becomes smaller than the other terms (Helander|/1998). To zeroth
order in A, the density in is then given by a Boltzmann response to ¢

n, = Nye 2¢®/T- (A< 1) (2.5)

<1, (2.4)

where N, is a flux-function. If the density variation of all species is given by ,
quasi-neutrality forces the density and potential to also be flux-functions. For significant
density variation to arise on a flux-surface, the behaviour of at least one species must thus
deviate from ; several different mechanisms have been considered in the literature:

In [Helander| (1998)), A = O (1), so the impurities themselves set up their own flux-
surface variation to balance the flux-surface variation of the friction force and electric
field. This was generalized in [Filop & Helander| (1999) to include centrifugal forces.

Additionally, heating can introduce a fast particle population, which may not have a
density variation according to and thus leads to an electric field tangential to the
flux surface, which the impurity density in responds to. Such effects were considered
in |[Kazakov et al.|(2012)) and |Angioni & Helander| (2014)), and are often more important
than the variations set up by the impurities themselves.

Furthermore, in stellarators, helically trapped particles drifting due to the radial
electric field can cause flux-surface density asymmetries that, in turn, causes an electric
field (Garcia-Regana et al.|[2017). This electric field then affects the impurities. This
mechanism has been investigated numerically in |Garcia-Regana et al.| (2017)), and was
found to significantly affect the transport in the Large Helical Device (LHD) and TJ-
II stellarators, but does not appear to have a major effect in Wendelstein 7-X (W7-X)
due to the neoclassical optimization reducing the radial extent of such helically trapped
orbits.

Out of these mechanisms, the latter two are expected to be more important. For the
sake of generality, we will however allow @ and A to be arbitrary, as long as the tangential
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variation in @ (which we denote by @), is of magnitude e®/T; ~ Z~' so that its effect
can be neglected for the bulk ions. In and later sections, we will consider the case
when A < 1, with @ centered around extrema of B.

2.1. Radial impurity fluz
Regardless of the mechanisms that determine the spatial variation of n,, we can
calculate the perpendicular flux of the Maxwellian impurities by applying Bx to (2.1]),
resulting in
BxVp,=Bx Zen,E+ ZeB’I', | + B x R... (2.6)
This expression contains the flux in both the diamagnetic and radial directions. The
flux-surface averaged radial flux becomes

Ze (T, - V) = <B;W’-RZ>

B xV B xV (2.7)
+ Ze <nz><1/) . E> — <Xw . sz>»

B? B?

where v is an arbitrary flux-surface label and (-) denotes the flux-surface average. Here,
the first term on the right is the classical flux, and the second one is the radial flux due
to the E x B-drift. As there is no radial current in steady-state (i.e. V x B - V1 = 0),
we have
(BxVy-VX)=0 (2.8)

for any single-valued function X. The last term of can thus be rewritten as
<pZB x Vi - VB*2>, which is the radial flux due to the magnetic drift of a Maxwellian
species. The two latter terms in thus correspond to the neoclassical flux, and will
be denoted by (I, - Vy)NC.

Following Calvo et al.| (2018), we obtain a flux-friction relation by introducing the
function uff] defined through the magnetic differential equation

B -V(n.w) =B x Vi -V(n,B7?), (2.9)
so that
Ze (L, - V)N© = (B - [Zen.wV® + wTin.VInn.))
= (BwRy)
where we have used parallel force-balance to relate the gradients to the friction force

R.)|. An expression for R, is presented in To calculate the friction force, we must
however know the parallel impurity flux, which is the subject of the next section.

(2.10)

2.2. Parallel impurity flux

From (2.6, we get the impurity flux in the B x Vi-direction (denoted with a A
subscript) as

B x V¢ oo 9p. R.-VY
I''h=—+|Zen,— —_—
N B ( o0 T o T VeP
In a confined plasma, the radial fluxes and thus the radial friction will be small, so we can
neglect R, - V1 in (2.11)) and neglect the radial flux in the impurity continuity equation

V- I', = 0. The parallel impurity flux I, || thus satisfies

(2.11)

B V(I B™')=-V- L., (2.12)

1 Note that|Calvo et al.|(2018) defines U; instead of wj; they are related through Uy = wn. /N..
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In the Z > 1 limit, (2.12)) thus becomes (recalling e®/T ~ Z~1)

_Mvaw.v<k>_£B x Vi - V( 1 8nz> (2.13)

. -1 P
B-v(Iy57) dy B2)  Ze B? 8y

where we have retained 2 e . to account for the fact that steady-state impurity density
profiles tend to be Z times larger than those of the bulk ion, i.e. Oyn,/n, ~ Zdyn;/n; ~
ZdyT;/T; (Helander & Sigmar|[2005; [Calvo et al.|2018]).

In the A < 1 limit, we can use to obtain an explicit expression for dyn., resulting
in

d(® = T, dN.
dy | ZeN, dy

where K, (v) is an integration constant, and we have dropped O (Z ’1) terms.

FzH = nszH = wn; ( ) B+ BK., (Ak1) (2.14)

3. Parallel friction force

With the parallel impurity flux from the previous section, we now have everything
needed to calculate the ion-impurity parallel friction.

As the collisions with electrons can be neglected, the friction force on the impurities
can be expressed as

Rz ~ Rzi = _Riz = —/dgvm,-'vCiz, (31)

where R,; denotes the friction force on species a by species b, and C;, is the ion-
impurity collision operator. Since m, > m; for high-Z impurities, we can use a mass-ratio
expanded ion-impurity collision operator

Cio =200 (£0f)+ ™5 fa ) (32)

where V, = I', /n, is the flow of the impurities, £ is the Lorentz operator (Helander &
Sigmar|[2005), f;1 the order p, part of the ion distribution function, and the collision
frequency v} is

p n.Z%*InA

Vi = o (3.3)
The lowest order ion distribution function f;p is taken to be a stationary Maxwell-
Boltzmann distribution, and to calculate the parallel friction force we only need the
gyrophase-independent part of f;; (which we denote by Fj;). This function is given by

the ion drift-kinetic equation
UHV”Fﬂ +vq - Vo =0, (3.4)

where gradients are taken with & = mv?/2 + e® and p = m;v? /(2B) fixed — although
we will later make use of the fact that the potential energy is approximately constant
over an ion orbit and use the approximate invariants v and A = v% /(v?B) as velocity
coordinates.

The collision operator is approximately given by collisions with bulk ions and impuri-
ties, C; = C;, + Cy;, and we use a model operator for ion-ion collisions

Cii = v2 (v) </:(Fﬂ) + m’” v fzo) (3.5)
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where U is determined by momentum conservation and the collision frequency is

n;e*ln A
1/5 = W (erf (v/vr;) — G(v/vry)) (3.6)

where erf is the error function and G the Chandrasekhar function (Helander & Sigmar|

2005).

We will assume that C; is smaller than the other terms in (3.4) and expand F;; =
F’L’l(fl) + Fil(O) + Fil(l) + ... in Collisionality, SO that

UI\VI\Fil(—l) =0 (37)
vV Fi0) + va - Vfio = CilFin(-1)] (3.8)
v ViFiay = CilFio)- (3.9)

We solve (3.7)), (3.8) and (3.9) as in [Newton et al| (2017), except that we allow n, to
vary on the flux-surface, which makes the expressions less compact; the details are thus

relegated to appendices [AHD]
The parallel friction force becomes

n;m; T; 3
Ry =— <Vz|| -7 |:Ai1 - 2Ai2:| Bu — BP(T/J)> , (3.10)
where A;; = %wp" + T%%i) and Ag; = dhani are the ion thermodynamic forces;

o= Z%n.e* In A/ (3732 m2edvi,); P(v) is a flux-surface constant defined in (B2); V;
is obtained from (2.12)) combined with the solvability condition to (2.2)), as described in
u satisfies the magnetic equation

B-Vu=—-BxVi- VB2, (3.11)

with © = 0 at the maximum of B.
can be used to solve for n, from the parallel momentum equation ,
given a mechanism to set &. We will not attempt such a daunting task at this time, and
instead consider the A < 1 limit in the following section. In this limit, the form of V
is known from (2.14), so the parallel friction becomes
(%)
n.

n.Tis (B | T; (e d(®) 1 dN,
. = 2 B — ZB — - B - ZB KZ
=l m, [T TP Ty | e\ T A TN, dw ) "B
— |n,uB — nZBW o [Au - 2&'2} )
(3.12)
where K, is determined by the solvability condition, and is given by
B2 ! T, (ed(®) 1 dN
K =—( —(1— 1-— B2 == .
() == () (-anust) T (540 -
B? - 2 L
+ n—(l — c4) (c2+ (uB?)[c1 +1]) zAli (3.13)

B? - 5 31\ T
+ <n(1c4a)> (Cg §Cz—<u32> |:Cl77+2:|> ;Azi,

z

where a = Z?n_/n;; n ~ 1.17; the ¢; are flux-surface constants which depend on the
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magnetic geometry and the impurity density variations on the flux-surface, and are

defined in equations (D 3)-(D ).

4. Impurities in the A < 1 limit

In the A < 1 limit, with n, = n.g+n,1 +... and d = Q;O +q31 + ..., the zeroth-order
parallel momentum equation becomes

T.V|n.0 = —Zen.oV | Po, (4.1)
so the zeroth order impurity density is given by a Boltzmann response to @,
nzo = N.()e™ 2P0/ =, (4.2)

where N, , sometimes referred to as the pseudo-density, is a flux-function. Here, we assume
that @ is known and set by a mechanism unrelated to flux-surface variation in n.. This
is appropriate, since we know that n,o cannot give rise to a non-zero @, so that n, gives
no contribution to @ to this order; recall the discussion below .

If is used to write @ in terms of ng, the first-order parallel momentum equation
becomes

T, Ze
T.n.0V) ( L+ @) = R.[nz0], (4.3)

which has the solvability condition <ngolBRz|‘[nzo]> = 0. This is the same solvability
condition as that of the exact equation , except with n, — n,o, which implies that
the flux to order A' can be consistently calculated from with n.q.

We thus have

(I V)™ = (woBR.nso]) (4.4)

where wy is given by (2.9) but with n, — n.o, and —R; is given by (3.12). The resulting
flux can be written

(r, - vp)N° prod@ 1 edlnN. yodlng nodlnT;

(ny P T Ay ZTN dy T T (4.5)

where

yo___minli g2y meoweB?)
DqS 7262 <ﬂz0> 1207520 <nz0w0(u wO)B > <BQ> <(u wO)B > (46)

M iz —{(w B2
- 2<n20> e >(02+<(Ufwo)32>+01 (uB?) + ¢4 {awoB?))
<nB—(1—C4a)>
z0

NC _ mn; T 5o\ o\ {woB?)

DNZ _Z€2 <n20> 120Tiz0 <nZOwOB > <nZOwOB > <BQ> (47)

s (2) - wos?)
<%‘;(1 — 6404)>

+ <(1 — 04a)woB2>
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(uB?)
(B?)

NC mzanl ) ,
Ze? (n0) nz0TizoZe (nzowouB®) = (nzowoB*)

(4.8)

uz

L () - ()

 Ze2 (n;0) N20Tiz0 (B?)

<nszOBQ>
(B?)

B2

(&

with 7,0 given by the expression for 7;,, but with n, — n,9. From (4.6]), we see that the
flux due to the radial electric field is generally non-zero, but that it vanishes when n,q is

constant on the surface. The non-zero DY can in fact dominate the other neoclassical
transport coefficients, as will be seen in

(
D%_C = miniTy {1 <<nzow0u32> — <nzowoB2> <UB >> (4.9)
(

B2 — (wyB?) (03 - 202 ~ (uB?) [Cl(n ~1)+ ;D :

4.1. Trace limit

The transport coefficients in (4.6) — (4.9) simplify somewhat in the trace limit, where
all the ¢; reduce the expressions in terms of standard functions of geometry. Using (E9)

- , we get that

(B2 (uB?)
(=)

(n.owoB?)  (woB?) | (fs + (uB?))

T
DNC _ mgng Ly ; _ B2
@ Ze? (nz0) N20Tizo (naowo(u —wo) B) +

<nszOBQ>

- (4.10)
B2 1-—f.
(B?) <%> f
2
NC _ mini Ty 2p2\ (woB?)
Dy, = Ze? (nz0) M20Tiz0 <nzowOB > <ﬂ> (4.11)
M20
e . minT; oy (uB?) 2
Dni B Ze? <n20> N20Ti20 <<n20wUUB > <BQ> <n20woB > (412)
(meownB?)  (woB?)| (4 + (uB%)
B2 1—f.
) () 7
ne L minT; oy (uB?) 2
DTi B 2 Ze? <n20> N20Ti20 <<n20wUuB > <BQ> <n20woB > (413)

(naowoB?) (woB?) | (fs + (uB?))
(B2) <372> -7 I+ @n=3)f) ],

nzo

which are the expressions we will use in
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5. Classical transport

Finally, we calculate the classical flux, given by the first term in (2.7)). Using our mass-
ratio expanded collision operator and momentum conservation, the perpendicular friction

becomes
viv-V,
R, = /d%mZ v, (’ULE(le) 7771 lT sz) (5.1)

where v, = v —vb with vy =v - b.

In , only the gyrophase-dependent part of f;; contributes to the first term, and
only the perpendicular impurity flow contributes to the last. The gyrophase dependent
part of fi; (which we denote f;;) is given by (Hazeltine 1973)

fir = —pi - Vi, (5.2)
where the gyroradius vector is
pi = pi(ezsiny + ezcosy) = b x vy /12, (5.3)

with {b, es, e3} an orthonormal set of vectors, and 2; = eB/m;. Thus, we have everything
required to calculate the perpendicular friction, which becomes

3
S Agi| —
2 2}

m;n; nims;

R, =

Ti
Eb X Vw |:A11 - V.1 (54)

Tiz Tiz
Using the same approximations and assumptions as in the neoclassical expressions, we

have V| = eTB (; dé? + ZJl\f dd]i ), and thus obtain

R _ min; BxVyYT; [dlnn; 1dInT; 1 dN, (5.5)
LT YT BT e | a2 dp | ZN, do '
resulting in the classical impurity flux
c _ 1 B x V’ll)
<FZ v¢> 7Z€ < 32 RZ (5 6)
min; . |V|? T; dlnn; 1dInT; 1 dN, '
~ Zen,Ti, \ = B2 e | & 2 dy  ZN, dv
or
dIn N, dlnn; dInT;
r.-v)° =—(n. DS + DS L+ DS L. :
(R 90 = — (o) (05, D5 + 05 A2 4 g T (.7

The classical flux is often neglected as smaller than the neoclassical flux. To get a
simple estimate of its importance, we take the homogeneous n, limit of (4.5) and (5.6)),
so that the ratio of classical to neoclassical flux depends purely on geometry

v ()@ -
(Vo (B2 (B2) - wB?)?) '

This ratio is indeed small in conventional tokamaks and stellarators (it is ~ 0.1-0.6
in ASDEX Upgrade, and ~ 0.1-1 in LHD), but it is ~ 3-3.5 in a standard W7-X
configuration.

W7-X differs from LHD in that it has been optimized to have a low ratio of parallel to
perpendicular current. To see how this affects the ratio , we can express the parallel
current in the following way: Charge conservation imposes V-3 = 0, where j is the current
density. Assuming that the equilibrium magnetic field can be written as j x B = Vp,
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Figure 1: (left) A W7-X standard configuration vacuum field, with (middle) & and (right) n.o,
for $(B) = &(Bo)e B=50)°/27%) _ X with By = Bumax, #(Bo) = —10V and ¢ = 0.1|Bumax —
Brinl|, Z =24, (n.) = 3.472 x 101 m~3, and T; = T, = 1keV. X is an integration constant set
to make (®) = 0.

where p is the total pressure p = ) p,, which is assumed to be a flux-function to the

required order, the parallel current density becomes j; = uB g—i. The ratio of parallel
and perpendicular current then becomes
] ub (5.9)

il 1B xVe/B?’

which can be made small by making u/|V| small, which simultaneously makes (5.8)
large. The classical flux remains large even when n, varies on the flux-surface, as we will
see in the next section.

6. Wendelstein 7-X test case

To explore the implications of the flux-surface variation of n.o in (4.6)-(4.9), we
consider a scenario where @ is given by

$(B) = &(By)e~(B~B0)*/(29%) _ x (6.1)

where @(BO) is the amplitude of the potential, By is an extremum of B, o gives the
width of &, and X is an integration constant chosen to make <€1~5> = 0. The above
& is intended to roughly emulate a potential perturbation due fully-circulating fast
(collisionless) particles, although we are primarily interested in as a simple test
case, and will not be so concerned with whether it is a realistic fast-particle response.

We take B from a Wendelstein 7-X vacuum fieldf] and solve the magnetic differential
equations for u and w numerically for this field. The magnetic field in Boozer coordinates
(with ¢, 0 being toroidal and poloidal angle, respectively) is visualized in together
with an example @ and the resulting n.o for Z = 24 and (n,) = 3.472 x 101 m~=3,

To investigate the effects of a localized n, distribution, we performed a scan where
the amplitude of the potential perturbation is increased. Specifically, the potential
perturbation is centred at Bpax Or Bmin, and the amplitude @(BO) is scanned from
e®/T, = —0.1 to e®/T, = 0.1 — where a negative/positive sign corresponds to impurities
accumulating/decumulating at Bpax Or Bmin. The ion temperature and density are
T; = 1keV and n; = 2 x 102°m™3; m; is taken as the proton mass. These values give
Z%(n.) /n; = 0.1, so the impurities are trace. For these parameters, the collisionalities

T We use a W7-X standard configuration at normalized radius ry = 0.6, where
rN = \/Vt/V+ Lors, with 1 the toroidal flux and ¢ 1.crs its value at the last-closed flux-surface.
The data is available at (Verified 2018-05-31)
https://github.com/landreman/sfincs/blob/master/equilibria/w7x-scl.bc


https://github.com/landreman/sfincs/blob/master/equilibria/w7x-sc1.bc

Fluz-surface impurity density variation and impurity transport 11

05 0.5
Dy Dy
D, —D,,
e o
NVJ \\\ Nm \\\\
B AN B RN
~ ~ ~<.
_Q i S P N A N
-0.5 : . : -0.5 : : :
005 0 0.05 005 0 0.05
e®(By)/T; e®(By)/T;

Figure 2: Transport coefficients, for different potential perturbation amplitudes @(BO),
for @ localized around (left) Bpayx and (right) Bumin. T = 1keV and n; = 2 x 1020 m~3,
0 = 0.1|Bmax — Bminl, Z = 24, (n.) = 3.472 x 10** m~3; DNC refers to the neoclassical
transport coefficients, while D is the sum of classical and neoclassical. At amplitudes
roughly within eé/Ti € [-0.007,0], the flux due to an inward radial electric field is
outward but very weak.

are U;; = 0.096 and 7., = 5.55, where we have used L = (G +I)/Boo as a proxy for the
length-scale for parallel variations; here ¢ is the rotational transform, G and I are related
to the magnetic field and defined in section 2.5 of Helander| (2014)), By is the n =m =0
Fourier-component of B in Boozer coordinates.

The resulting transport coefficients are shown in In the figures, D (without
superscript index) refers to the sum of neoclassical and classical D’s. For comparison, we
also show DNC; D N, is not shown, since Dy, = —Dg — D,,,, and the Schwarz inequality
causes it to always be non-negative, so that the question of whether impurities accumulate
can be answered without its exact value. As indicated in classical transport is
dominant for this field configuration at @ = 0, but we also see that the transport due
to the radial electric field starts to dominate already at e®(By)/T; ~ 0.02. When the
radial electric field does not dominate, the impurities will be driven outwards when the
temperature gradient is strong enough, i.e. we have temperature screening. Specifically,
temperature screening occurs when dy InT; > —D,,,dy Inn; /Dy, = 2dy Inn;, and thus
depends on the ratio D,,, /Dr,. This ratio is equal to —2 to within 1% in the d-amplitude
window when radial electric field does not dominate, so the temperature screening
condition is essentially unaffected, despite the transport coeflicients D,,, and D, varying
by approximately 25% in this window. We also see that both when By = Bp.x and
By = Buin, there is a very narrow amplitude range, roughly e®(By)/T; € [-0.007,0], in
which the impurity flux due to an inward radial electric field is weakly positive.

From we also see that most of the variation in D,,, and Dy, comes from the
neoclassical flux. This can partly be understood from the simpler form of the classical
flux , where the dependence on n, is linear, so that the localized n, perturbation
due to @ merely acts as a weight in the geometric factor (n.|V1|?/B?), which here gives
a small effect when integrated over the flux-surface. In contrast, the neoclassical flux
is non-linear in n,, and the total flux through the flux-surface is set by a balance
between inward and outward fluxes at different points on the flux-surface.

To investigate the effects of more localized n.q, we scanned the width of @, while
keeping X and (n.q) constant. For small o, this results in n.o that are very localized
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Figure 3: Transport coefficient for varying o, for & given by (6.1)), with eX/T; = —0.025
and @(By) set to make (@) = 0. The potential is centered around (left) Biax, and (right)
Brin- Unless otherwise stated, quantities have the same value as in
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Figure 4: Figure corresponding to but with n,o concentrated around (or repelled
from) the B = (Buin/2 + Bmax/2) contour.

around the extremum of B. The result is shown in From the figure, we see that
DXC diverges for localized n.o. This is due to the w2 terms in DYC: n,qwp obtained from
is not localized to regions where n,q is localized, which results in a large wg where
N0 is small. In contrast, the D}fic and Dg{,c remains finite, as wqy only appears together
with an 7.0 in those terms. In comparison to the neoclassical transport coefficients, the
classical coefficients are only moderately affected by a more localized n.q, for the same
reasons as discussed in relation to the amplitude scan above.

To see whether this conclusion holds for more general n.q, we let By in be a non-
extremum point (within the flux surface), i.e. By € (Bmin, Bmax)- The resulting density
distributions n,o will be concentrated or repelled from a contours of B, rather than
points, and do not necessarily represent realistic density variations: rather, they provide
simple test cases very different from those considered above, and thus give an indication
of how general the above conclusions are.

For By = Bumin/2 + Bmax/2, the resulting D’s are displayed in Here, the Dg
increases rapidly with the amplitude, and dominates the flux except for a small interval
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Figure 5: Transport coefficient when By is changed from Bmin t0 Bmax. Apart from By,
quantities have the same values as in The black lines indicate potential amplitudes at
which the radial electric field start to dominate: the solid line is where Dg = D,,; + Dr;, the
dashed is where 10D¢ = Dy, + Dr,. Top-right figure: D,,/Dr,, which is within 1% of 2 for
amplitudes where D, + D1, > Dgs (deviations larger than 1% are white in the figure).

about 0. Meanwhile, D7, and D,,, are barely affected, with a slight reduction in magnitude
when the impurities are repelled from By.

To connect this result to when By is an extremum, we scanned By from B, to
Buax. The resulting D’s are shown in Looking at Dg, we see that as we go from
By = Bmin/2 + Bmax/2 (z = 0 in the figure) towards the extrema (z = 1 and z = —1),
Dg tends to become less sensitive to the amplitude.

From the top-right figure in we see that for all By, D,,, /Dy, changes by less
than 1% within the amplitude interval where Dg is small enough to not notably affect
temperature screening (this interval is within or slightly outside the dashed lines, which
show where 10Dg = D,,, + Dr,).

To conclude, it thus appears that strong @ perturbations are likely to lead to strong
impurity accumulation if the radial electric field is pointing inwards, and that the
condition for temperature screening is essentially unchanged from the @ = 0 case when
the @ perturbations are weak enough so that the radial electric field is not dominant.

7. Summary & conclusions

We have derived expressions for the radial flux of high-Z collisional impurities when
the bulk ions are in the 1/v regime. In this limit, the impurity temperature is equilibrated
with the bulk ions, while the impurity density can vary within the flux-surface. We have
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derived an expression for the parallel friction-force acting on the impurities, which can be
used to solve for the impurity density variations on the flux-surface, given a mechanism
for relating the impurity density to the electrostatic potential.

We considered in detail the trace impurity limit, with the impurity density set bu a
Boltzmann response to an externally imposed the electrostatic potential. Using simple
models for @ and a W7-X vacuum field, we have seen that large 7 amplitudes can cause
the radial electric field to substantially contribute to the impurity transport, and lead
to impurity accumulation when the radial electric field points inward. For smaller &
amplitudes, temperature screening can be effective, and the condition for temperature
screening is essentially the same as in the & = 0 case, meaning that the temperature
profile should be at least twice as steep as the density profile for screening to happen. In
all cases, the contribution from classical transport is substantial, and even moderate &
can cause the electric field to dominate if classical transport is not accounted for.

It is however not straightforward to extrapolate from these results to general @, as the
neoclassical impurity flux does not depend linearly on n,, so the flux from a general n,
flux-surface distribution is not a superposition of fluxes from simpler n, distributions.
Realistic @ or n. distributions may be needed to evaluate the fluxes accurately, especially
when neoclassical transport is comparable to or stronger than the classical. We refer the
interested reader to |Calvo et al.| (2018), where an LHD equilibrium with a ® set up by
particle trapping effects of the bulk ions is considered.
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Appendix A. Solving the ion drift-kinetic equation

In this section, we solve the ion kinetic equation 7 for Fj;(—1) and Fjy(g). The
solution follows [Newton et al.| (2017)), but here n, is allowed to vary on the flux-surface.
Since we assume e®/T; ~ Z~!, the potential energy of the bulk ions is approximately
constant on the flux-surface, and we change variables from &, u to the approximate
invariants v and .

We note that since we only use Fj; to calculate the ion-impurity friction force, we
only need the part of Fj; that is odd in v). We thus split 7 into odd and even
equations.

Denoting the odd (even) part of the distribution function with a minus (plus) super-
script, the order ! equations become

v\lvl\Fz‘Jlr(q) =0 (A1)
oV =0 (A2)
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which simply states that Fj;(_1) is constant along field-lines,
Fi—1y = Fi-1y(lo), (A3)

where [y is an arbitrary point on the field line. In the trapped region, this implies that
Fi;(fl) = 0, since it must vanish at bounce-points. In the passing region, F;;(_1(lo) is
set by solvability conditions to the next order equations.

To order ©°, we have that

vV Ey i1(0) — =C; [Fa-n) (A4)
WV ) +va - Vo = Cf [Fa). (A5)

In the passing region, the odd and even part of Fj;(_1)(lp) can be determined by acting

with <U% .. > on equations (A 4)—(A 5|, resulting in

B __
<U|q Facn] ) =0 (A6)
B B
<U|Oi+[Fi1(—1)]> = <v|’vd : V¢> Oy fio =0, (A7)
where the latter equality follows from writing vg - Vi) = v)(b x V¢) - V (ﬁ> The odd
and even parts of the collision operator are
CH[X) = (v +vR)cx+ (A8)
Cr X = 08 +v2)ex + B0y wbuy v, (A9)

with £ = Qv]‘lj 9 )\UH oy [Equation A 6[ implies that Fl( 1) is constant in A, so that

C’j [Fi1(-1)] 0 in the passing reglon The same argument applies to F.; (1) unless

there is a parallel impurity flow in ) to order 7! to act as a source in (A 6]). Such
order 7! flows cannot arise in the mlxed collisionality regime, so F; 1) = = 0 (Newton

et al.|2017). However, to make the Fj; formulas in this section apply for any impurity
collisionality, we will nevertheless allow for F’ I( 1) # 0 below, as it turns out to not be

(-1 together with Fl(O)
0y We note that . can be formally solved by integrating along a
field-line; using ! to denote the distance along the field line, we have

inconvenient to calculate F.;

To solve for F (

Fﬁ(o)m_Fﬁ(o>(lo)+/dl/ [CH[Fy ()] —va- Vo)), (A 10)

Y
lo

where the integration constant Fiz(o)(lo) again is set by the solvability condition of

the next-order equation. Taking Iy to be a bounce-point, B(ly) = 1/A, we have that
FI(O) (lp) = 0 in the trapped region. To determine Fﬁ(o)(lo) the passing region, we again

act with <U% .. > on the next-order odd equation, which gives
B __
<1]|Ci [Fil(O)]> =0. (A11)

Note that this is essentially the same equation as (A 6]). Thus, the total distribution
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Fi1 = Fii0) + Fii(—1) can be written on the same form as Fj;(g), but with an order o1

contribution to the integration constant F; (ly) ~ Fii(fl)(lo) + Fl(O)( 0)- As such, it is
in some sense irrelevant whether parts of V| are order © ~Lor 99, as Fii0) + Fii-1) 1s
not affected by the way this decomposition of V) is done.

Inserting (A 9)) into gives the following equation for the integration constant

Fiy(lo) = Fyy )(lo) + Fl(O)(ZO)

0 __
o5 Fa () (412)

- 2<{1 +mfu)}1}|> (i<[1+yl:l()l)] 94(Z,A)> %{;0 + f10< iUl n Z’%El)vz'i»

in the passing region. To account for the vg-V f;o term, we have introduced the geometric
function (Nakajima et al.|[1989)

1
g1\ 1) = UH/ dl’ (b x Vi) - V <U|> . (A13)
Note that C;7[Fj; _1] = 0 in this region. In the trapped region, on the other hand,

F7(lo) =0 but C [Fy1(-1)] # 0. However, the C;' [F;; (- 1)] -term nevertheless gives no
contribution to the parallel flow or friction force in this region (Helander et al.|[20170)).

Appendix B. Parallel friction force

Once U) and V| are known, we can use (A 10) and (A12) to directly evaluate the
parallel friction force acting on the impurities. From our mass-ratio expanded ion-
impurity collision operator (3.2) and the self-adjointness of the Lorentz operator, we

have
1 VZ
Ry :/dSUm¢U||V£(U) (m 4] fio — >

_nzmz (V I — Z [Ail - ;Am] Bu — BP(¢)> ’

T’L z

(B1)

where u satisfies the magnetic equation (3.11)) and P is a flux-function which contains
the contribution from the integration constant F; (Io)

UUHVQ(U)FH (lo). (B2)

P (1) can be evaluated using (A 12)) and partial integration in A

_ (BU)) (aBV,)) T; Alz — 5 Ay T; Agi
P(y) = B2 1+ B by + ) by + o 57

bs (B3)

)
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where we have introduced

ma <BZ> o' l/BrmLx 1
by = — " /1 d 4 zz
1 niﬂ{VZZ 0 Y sz/ Vﬁ
D + VDg
/ )+ (Y
B2 oo 1/Bmax [ < B 4>:|
by = LILAC N e Z fio / dA A Vi
D
niTi{vis} Jo )+ <V15 >
VD
.- ma <B2> ood f /1/Bmaxd)\)\{g4 < % 4>}
TR T AR
mr (B2) [ vis 1/ Bmas 1
by= ———-—:— dvvtv¥ L2 i / dAANV————
4 Z2n, T v} Jo vUVD vD oo 0 2
D w <§>+ uﬁg

with £ = v - b/v. The velocity average {-} is defined as

{F@»Esjwﬂwdmen%ﬂﬁ

where z = v/vr;.
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(B4)

(B5)

(B8)

To have the boundary terms from the partial integration disappear in (B 3)), we have
defined Iy through B(lp) = Bmax- This makes our choice of Iy continuous when going
from the trapped to the passing region, and thus ensures that Fj (ly) is zero at the

trapped-passing boundary A = 1/Byax.

Appendix C. Momentum restoring term U

The momentum restoring term in the ion-ion model collision operator (3.5) is calculated

so that ion-ion collisions conserve momentum. Specifically, we have

1 .
U - - d3 “F
=gy | e
Inserting F;; from (A 10) and using (A 12)), we get

(BUj) (1~ a1)
T,

== ([a2 + (uB?)] Ay, + {ag, ~ gaz - <uBQ>n} Am) +as (aBVy)).

where we have defined the geometry-impurity dependent flux-surface constants

ar = TB) T Gt /I/Bmdi ——
1 — 73 VU VD Jio
nT{v} Jo 0 )+

RN ©

B e
BTy ot Vi o o

1
{
mr (B%) * ur /1/Bmade[<g4>+
N
|

(C1)
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mr (B2) \ 1/ B 1
a4 = -3 T / dvv*y; fzo/ d)\)\iﬂ. (C6)
ZnTi{vi} GEXET)

Appendix D. Solvability condition and K,

Equation 2.12| specifies V| up to a flux-function K. (c.f. (2.14))). This K. can be
determined from solvability condition of (2.2]), which states that

=0. D1
(25— D)
Inserting (3.10]), the solvability condition becomes

n;m; T; 3

nzT_Z <<BVZ”> " [A“ - 2Ai2] (uB?) — <B2>P(z/))) =0. (D2)

In the A < 1 limit, we can insert our expression for V,, (2.14)), to solve for K. This
results in (3.13)), where we have defined

c1 =bi+ac; = c1=0b1/(1—a1), (D3)
co = by + ascq, (D4)
c3 = bz + azey, (D5)
cq = by + aycq, (D6)

for the sake of compactness.

Appendix E. Trace impurity limit of some expressions

In the trace impurity limit, « = Z?n. /n; < 1, the a;, b; and c;’s simplify considerably,
yielding an expression for K, in terms of standard geometry functions. Specifically,

a1 =by = fo, (E1)
az = by = f,, (E2)
=1, (3-n), (B3
bs = fs, (E4)
a4=‘§§Z§ , (E5)
by = J;C{”{V/” (E6)

Note that a4 and by only appear in terms containing «, which are negligible in the
trace-limit. Here,

s [
_3(B%) (VP X (ga)
fo =2 /0 =g (ES)

are standard functions of geometry.
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With this, we have that

o=l (E9)

Coy = 1isf’ (ElO)

=t s (5-0)) (B11)
B f. {Viz2/yii £. {Viz

04_a< L{)yigD +1—fc{u%>’ (E12)

and K, becomes

K. (2)

T f nfe 3 d () E13)
:;Z [fs + <UB2>] <|:1 —Cfc + 1} Ay — [1 _cfc + 2} A2i> — W <u}B2>7
which results in the friction-force
Tiz B? d (o
Ri. sl K n<w< BQ>> B d<¢> (E14)
<UB2> 1 1 fc Tz
(I A [ e I
3 (ub?) 3 1 1 nfe 3]\ T
_ 5 <B2> _§'U/+ nz<B2> - <B2> [fs+<uBQ>} |:1f(,+2:| B;Azg,
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