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2Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
3CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

(Received xx; revised xx; accepted xx)

High-Z impurities in magnetic confinement devices are prone to develop density varia-
tions on the flux-surface, which can significantly affect their transport. In this paper, we
generalize earlier analytic stellarator calculations of the neoclassical radial impurity flux
in the mixed-collisionality regime (collisional impurities and low-collisionality bulk ions)
to include the effect of such flux-surface variations. We find that only in the homogeneous
density case is the transport of highly collisional impurities (in the Pfirsch-Schlüter
regime) independent of the radial electric field. We study these effects for a Wendelstein
7-X (W7-X) vacuum field, with simple analytic models for the potential perturbation,
under the assumption that the impurity density is given by a Boltzmann response to a
perturbed potential. In the W7-X case studied, we find that larger amplitude potential
perturbations cause the radial electric field to dominate the transport of the impurities.
In addition, we find that classical impurity transport can be larger than the neoclassical
transport in W7-X.

1. Introduction

At fusion-relevant temperatures, heavy impurities in high ionisation states, “high-Z
impurities”, emit a significant amount of radiation, and even a tiny fraction of impurity
ions radiate enough power to seriously challenge the power balance in a reactor. High-Z
impurities thus cannot be allowed to accumulate in the center of a magnetic-confinement
fusion reactor.

In tokamaks, impurities are expelled from the core of the reactor by neoclassical
transport if their temperature gradient is sufficiently large – a phenomenon known as
temperature screening. In stellarators, the outlook has been more pessimistic, as the radial
transport is not independent of the radial electric field, and an inward pointing electric
field is predicted for a stellarator reactor, which would transport impurities inwards
(Hirsch et al. 2008).

However, recent analytical results on neoclassical stellarator impurity transport have
shown that when the plasma is in a mixed-collisionality regime – where the bulk ions
are at low collisionality (1/ν or

√
ν regimes) and the impurity ions are collisional – the

radial impurity flux becomes independent of the electric field, which allows temperature
screening to be effective in stellarators (Newton et al. 2017; Helander et al. 2017a).
This is due to a cancellation between the flux driven by impurity parallel flow and the
ion thermodynamic forces. A similar cancellation is also found in the regimes where
both ions and impurities are collisional (Braun & Helander 2010), although in this
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case, thermodiffusion is usually inward unless the effective charge is very small, so no
temperature screening occurs (Rutherford 1974).

Additionally, high-Z impurities are sensitive to flux-surface variations in the elec-
trostatic potential, in response to which they can develop density variations on flux-
surfaces. Such variations can have large effects on the neoclassical transport, as has been
demonstrated analytically (Angioni & Helander 2014; Calvo et al. 2018) and numerically
(Angioni et al. 2014; Garćıa-Regaña et al. 2017; Mollén et al. 2018) for tokamaks and
stellarators. Turbulent transport is also know to be affected by these variations, see for
example Mollén et al. (2012, 2014); Angioni et al. (2014).

In this work, we generalize the analytical calculation in (Newton et al. 2017) to account
for flux-surface variation of the impurity density in stellarators, using a fluid description
for the impurities and solving for the ion distribution function in the 1/ν regime. Our
expression for the impurity flux agrees with that in Calvo et al. (2018), where the same
problem is treated fully kinetically. Like Calvo et al. (2018), we find that the effect
of the radial electric field can be large even when the amplitude of the potential flux-
surface variation is small relative to the temperature. In addition, we find that classical
transport can dominate over the neoclassical transport for collisional impurities in certain
stellarator geometries.

The remainder of this paper is organised as follows: in Sec. 2, we present the equations
describing the impurities, and relate the friction force acting on the impurities to their
flux-surface density variations and the resulting radial flux. In Sec. 3, we introduce the
ion-impurity collision operator and obtain an explicit expression for the ion-impurity
friction force. In Sec. 4, we consider simplifying limits of the equations presented in the
previous sections, and derive expressions for transport coefficients in those limits. Sec. 5
treats the classical transport, and shows why it is important in Wendelstein 7-X. Finally,
in Sec. 6, we apply our results to study a test-case based on a Wendelstein 7-X vacuum
field.

2. Impurity equations

In this section, we present equations to model the impurities, starting from momentum
balance and ending with expressions for calculating the flux along the magnetic field and
across the flux-surface.

The impurities are assumed to be collisional enough to be in the Pfirsh-Schlüter
regime and thus have a Maxwellian velocity distribution, with the density not necessarily
constant on flux-surfaces. For such a species in steady-state, the momentum equation is

∇pz = ZenzE + ZeΓz ×B +Rz (2.1)

where the z species subscript refers to the impurities, Z is the impurity charge-number,
e the proton charge, pz the impurity pressure, nz the impurity density, Γz the impurity
particle flux, B the magnetic field, E the electric field, and Rz is the friction force acting
on the impurities. By projecting (2.1) onto the magnetic field direction b = B/B, with
B = |B|, we obtain

∇‖pz = ZenzE‖ +Rz‖. (2.2)

From (2.2), we see that pressure (and thus density) variation along the field-line is set up
by forces associated with the parallel electric field and friction – both of which increase
with the impurity charge number. The friction force can be calculated using kinetic
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information of all other species, as

Rz = mz

∑
a

∫
d3v vC[fz, fa], (2.3)

where fa is the distribution function of a species “a”. We will restrict ourselves to the
case where only collisions between a bulk ion species i and the impurities matter: the
electron contribution to the friction force can be neglected as small in the electron-ion
mass ratio.

In order to simplify the kinetic calculations required to determine fi, we will assume
that Z � 1, so that the effects that lead to pressure variation on the flux-surface can be
significant for the impurities while being small for the bulk ions. In the Z � 1 limit, the
ions and impurities will have undergone temperature equilibration if (Helander 1998)

ρ∗ν̂ii
Z
� 1, (2.4)

where ρ∗ = ρi/L, with L the profile length-scale and ρi = vTimi/eB the ion thermal
gyroradius, with mi the ion mass and vTi =

√
2Ti/mi the ion thermal speed; ν̂ii =

nie
4 lnΛL‖/(T

2
i ε

2
012π3/2) is the ion collisionality, where ni is the bulk-ion density, the

bulk ions are assumed to have Z = 1; L‖ is the length-scale of Φ-variations parallel to B,
where we assume that the inductive electric field is small, so that E = −∇Φ; ε0 is the
vacuum permittivity and lnΛ the Coulomb-logarithm. Equation 2.4 is practically always
satisfied in a magnetized plasma, so we will assume that Tz = Ti is a flux-function, and
(2.2) thus becomes an equation for the flux-surface variation of nz.

Furthermore, if ∆ ≡ Z2ρ∗ν̂ii � 1, as in the conventional drift-kinetic ordering, the
friction force in (2.2) becomes smaller than the other terms (Helander 1998). To zeroth
order in ∆, the density in (2.2) is then given by a Boltzmann response to Φ

nz = Nze
−ZeΦ/Tz , (∆� 1) (2.5)

where Nz is a flux-function. If the density variation of all species is given by (2.5),
quasi-neutrality forces the density and potential to also be flux-functions. For significant
density variation to arise on a flux-surface, the behaviour of at least one species must thus
deviate from (2.5); several different mechanisms have been considered in the literature:

In Helander (1998), ∆ = O (1), so the impurities themselves set up their own flux-
surface variation to balance the flux-surface variation of the friction force and electric
field. This was generalized in Fülöp & Helander (1999) to include centrifugal forces.

Additionally, heating can introduce a fast particle population, which may not have a
density variation according to (2.5) and thus leads to an electric field tangential to the
flux surface, which the impurity density in (2.2) responds to. Such effects were considered
in Kazakov et al. (2012) and Angioni & Helander (2014), and are often more important
than the variations set up by the impurities themselves.

Furthermore, in stellarators, helically trapped particles drifting due to the radial
electric field can cause flux-surface density asymmetries that, in turn, causes an electric
field (Garćıa-Regaña et al. 2017). This electric field then affects the impurities. This
mechanism has been investigated numerically in Garćıa-Regaña et al. (2017), and was
found to significantly affect the transport in the Large Helical Device (LHD) and TJ-
II stellarators, but does not appear to have a major effect in Wendelstein 7-X (W7-X)
due to the neoclassical optimization reducing the radial extent of such helically trapped
orbits.

Out of these mechanisms, the latter two are expected to be more important. For the
sake of generality, we will however allow Φ and ∆ to be arbitrary, as long as the tangential
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variation in Φ (which we denote by Φ̃), is of magnitude eΦ̃/Ti ∼ Z−1 so that its effect
can be neglected for the bulk ions. In Sec. 4 and later sections, we will consider the case
when ∆� 1, with Φ̃ centered around extrema of B.

2.1. Radial impurity flux

Regardless of the mechanisms that determine the spatial variation of nz, we can
calculate the perpendicular flux of the Maxwellian impurities by applying B× to (2.1),
resulting in

B ×∇pz = B × ZenzE + ZeB2Γz,⊥ +B ×Rz. (2.6)

This expression contains the flux in both the diamagnetic and radial directions. The
flux-surface averaged radial flux becomes

Ze 〈Γz · ∇ψ〉 =

〈
B ×∇ψ
B2

·Rz

〉
+ Ze

〈
nz
B ×∇ψ
B2

·E
〉
−
〈
B ×∇ψ
B2

· ∇pz
〉
,

(2.7)

where ψ is an arbitrary flux-surface label and 〈·〉 denotes the flux-surface average. Here,
the first term on the right is the classical flux, and the second one is the radial flux due
to the E × B-drift. As there is no radial current in steady-state (i.e. ∇×B · ∇ψ = 0),
we have

〈B ×∇ψ · ∇X〉 = 0 (2.8)

for any single-valued function X. The last term of (2.7) can thus be rewritten as〈
pzB ×∇ψ · ∇B−2

〉
, which is the radial flux due to the magnetic drift of a Maxwellian

species. The two latter terms in (2.7) thus correspond to the neoclassical flux, and will

be denoted by 〈Γz · ∇ψ〉NC
.

Following Calvo et al. (2018), we obtain a flux-friction relation by introducing the
function w†, defined through the magnetic differential equation

B · ∇(nzw) = −B ×∇ψ · ∇(nzB
−2), (2.9)

so that

Ze 〈Γz · ∇ψ〉NC
= 〈B · [Zenzw∇Φ+ wTinz∇ lnnz]〉
=
〈
BwRz‖

〉 (2.10)

where we have used parallel force-balance to relate the gradients to the friction force
Rz‖. An expression for Rz‖ is presented in Sec. 3. To calculate the friction force, we must
however know the parallel impurity flux, which is the subject of the next section.

2.2. Parallel impurity flux

From (2.6), we get the impurity flux in the B × ∇ψ-direction (denoted with a ∧
subscript) as

Γz∧ =
B ×∇ψ
ZeB2

(
Zenz

∂Φ

∂ψ
+
∂pz
∂ψ
− Rz · ∇ψ
|∇ψ|2

)
. (2.11)

In a confined plasma, the radial fluxes and thus the radial friction will be small, so we can
neglect Rz · ∇ψ in (2.11) and neglect the radial flux in the impurity continuity equation
∇ · Γz = 0. The parallel impurity flux Γz,‖ thus satisfies

B · ∇(Γz‖B
−1) = −∇ · Γz∧. (2.12)

† Note that Calvo et al. (2018) defines U1 instead of w; they are related through U1 = wnz/Nz.
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In the Z � 1 limit, (2.12) thus becomes (recalling eΦ̃/T ∼ Z−1)

B · ∇(Γz‖B
−1) = −d 〈Φ〉

dψ
B ×∇ψ · ∇

( nz
B2

)
− Ti
Ze
B ×∇ψ · ∇

(
1

B2

∂nz
∂ψ

)
, (2.13)

where we have retained ∂nz

∂ψ to account for the fact that steady-state impurity density

profiles tend to be Z times larger than those of the bulk ion, i.e. ∂ψnz/nz ∼ Zdψni/ni ∼
ZdψTi/Ti (Helander & Sigmar 2005; Calvo et al. 2018).

In the ∆� 1 limit, we can use (2.5) to obtain an explicit expression for ∂ψnz, resulting
in

Γz‖ ≡ nzVz‖ = wnz

(
d 〈Φ〉
dψ

+
Ti

ZeNz

dNz
dψ

)
B +BKz, (∆� 1) (2.14)

where Kz(ψ) is an integration constant, and we have dropped O
(
Z−1

)
terms.

3. Parallel friction force

With the parallel impurity flux from the previous section, we now have everything
needed to calculate the ion-impurity parallel friction.

As the collisions with electrons can be neglected, the friction force on the impurities
can be expressed as

Rz ≈ Rzi = −Riz = −
∫

d3vmivCiz, (3.1)

where Rab denotes the friction force on species a by species b, and Ciz is the ion-
impurity collision operator. Since mz � mi for high-Z impurities, we can use a mass-ratio
expanded ion-impurity collision operator

Ciz = νDiz (v)

(
L(fi1) +

miv · Vz
Ti

fi0

)
, (3.2)

where Vz = Γz/nz is the flow of the impurities, L is the Lorentz operator (Helander &
Sigmar 2005), fi1 the order ρ∗ part of the ion distribution function, and the collision
frequency νDiz is

νDiz =
nzZ

2e4 lnΛ

4πm2
i ε

2
0v

3
. (3.3)

The lowest order ion distribution function fi0 is taken to be a stationary Maxwell-
Boltzmann distribution, and to calculate the parallel friction force we only need the
gyrophase-independent part of fi1 (which we denote by Fi1). This function is given by
the ion drift-kinetic equation

v‖∇‖Fi1 + vd · ∇fi0 = Ci, (3.4)

where gradients are taken with E = mv2/2 + eΦ and µ = miv
2
⊥/(2B) fixed – although

we will later make use of the fact that the potential energy is approximately constant
over an ion orbit and use the approximate invariants v and λ = v2⊥/(v

2B) as velocity
coordinates.

The collision operator is approximately given by collisions with bulk ions and impuri-
ties, Ci ≈ Ciz + Cii, and we use a model operator for ion-ion collisions

Cii = νDii (v)

(
L(Fi1) +

miv ·U
Ti

fi0

)
, (3.5)
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where U is determined by momentum conservation and the collision frequency is

νDii =
nie

4 lnΛ

4πm2
i ε

2
0v

3
(erf (v/vTi)−G(v/vTi)) , (3.6)

where erf is the error function and G the Chandrasekhar function (Helander & Sigmar
2005).

We will assume that Ci is smaller than the other terms in (3.4) and expand Fi1 =
Fi1(−1) + Fi1(0) + Fi1(1) + . . . in collisionality, so that

v‖∇‖Fi1(−1) = 0 (3.7)

v‖∇‖Fi1(0) + vd · ∇fi0 = Ci[Fi1(−1)] (3.8)

v‖∇‖Fi1(1) = Ci[Fi1(0)]. (3.9)

We solve (3.7), (3.8) and (3.9) as in Newton et al. (2017), except that we allow nz to
vary on the flux-surface, which makes the expressions less compact; the details are thus
relegated to appendices A–D.

The parallel friction force becomes

Riz‖ =
nimi

τiz

(
Vz‖ −

Ti
e

[
Ai1 −

3

2
Ai2

]
Bu−BP (ψ)

)
, (3.10)

where Ai1 = d ln pi
dψ + e

Ti

d〈Φ〉
dψ and A2i = d lnTi

dψ are the ion thermodynamic forces;

τ−1iz = Z2nze
4 lnΛ/(3π3/2m2

i ε
2
0v

3
Ti); P (ψ) is a flux-surface constant defined in (B 2); Vz‖

is obtained from (2.12) combined with the solvability condition to (2.2), as described in
Appendix D; u satisfies the magnetic equation

B · ∇u = −B ×∇ψ · ∇B−2, (3.11)

with u = 0 at the maximum of B.
Equation 3.10 can be used to solve for nz from the parallel momentum equation (2.2),

given a mechanism to set Φ̃. We will not attempt such a daunting task at this time, and
instead consider the ∆ � 1 limit in the following section. In this limit, the form of Vz‖
is known from (2.14), so the parallel friction becomes

Riz,‖
nzτiz
nimi

=

[
nzwB − nzB

〈
wB2

〉
〈B2〉

]
Ti
e

(
e

Ti

d 〈Φ〉
dψ

+
1

ZNz

dNz
dψ

)
+

B − nzB
〈
B2

nz

〉
〈B2〉

Kz

−

[
nzuB − nzB

〈
uB2

〉
〈B2〉

]
Ti
e

[
Ai1 −

3

2
Ai2

]
,

(3.12)
where Kz is determined by the solvability condition, and is given by

Kz(ψ) =−
〈
B2

nz
(1− c4α)

〉−1 〈
(1− c4α)wB2

〉 Ti
e

(
e

Ti

d 〈Φ〉
dψ

+
1

ZNz

dNz
dψ

)
+

〈
B2

nz
(1− c4α)

〉−1 (
c2 +

〈
uB2

〉
[c1 + 1]

) Ti
e
A1i (3.13)

+

〈
B2

nz
(1− c4α)

〉−1(
c3 −

5

2
c2 −

〈
uB2

〉 [
c1η +

3

2

])
Ti
e
A2i,

where α = Z2nz/ni; η ≈ 1.17; the ci are flux-surface constants which depend on the
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magnetic geometry and the impurity density variations on the flux-surface, and are
defined in equations (D 3)–(D 6).

4. Impurities in the ∆� 1 limit

In the ∆� 1 limit, with nz = nz0 +nz1 + . . . and Φ̃ = Φ̃0 + Φ̃1 + . . . , the zeroth-order
parallel momentum equation becomes

Tz∇‖nz0 = −Zenz0∇‖Φ̃0, (4.1)

so the zeroth order impurity density is given by a Boltzmann response to Φ̃0

nz0 = Nz(ψ)e−ZeΦ̃0/Tz , (4.2)

where Nz, sometimes referred to as the pseudo-density, is a flux-function. Here, we assume
that Φ̃0 is known and set by a mechanism unrelated to flux-surface variation in nz. This
is appropriate, since we know that nz0 cannot give rise to a non-zero Φ̃, so that nz gives
no contribution to Φ̃ to this order; recall the discussion below (2.5).

If (4.2) is used to write Φ̃0 in terms of nz0, the first-order parallel momentum equation
becomes

Tznz0∇‖
(
nz1
nz0

+
Ze

Tz
Φ̃1

)
= Rz‖[nz0], (4.3)

which has the solvability condition
〈
n−1z0 BRz‖[nz0]

〉
= 0. This is the same solvability

condition as that of the exact equation (2.2), except with nz → nz0, which implies that
the flux to order ∆1 can be consistently calculated from (2.10) with nz0.

We thus have

〈Γz · ∇ψ〉NC
=

1

Ze

〈
w0BRz‖[nz0]

〉
, (4.4)

where w0 is given by (2.9) but with nz → nz0, and −Rz‖ is given by (3.12). The resulting
flux can be written

〈Γz · ∇ψ〉NC

〈nz0〉
= DNC

Φ

e

Ti

d 〈Φ〉
dψ

− 1

Z
DNC
Nz

d lnNz
dψ

−DNC
ni

d lnni
dψ

−DNC
Ti

d lnTi
dψ

, (4.5)

where

DNC
Φ =

miniTi
Ze2 〈nz0〉nz0τiz0

〈nz0w0(u− w0)B2
〉
−
〈
nz0w0B

2
〉

〈B2〉
〈
(u− w0)B2

〉
(4.6)

+

〈nz0w0B
2〉

〈B2〉

〈
B2

nz0

〉
−
〈
w0B

2
〉〈

B2

nz0
(1− c4α)

〉 (
c2 +

〈
(u− w0)B2

〉
+ c1

〈
uB2

〉
+ c4

〈
αw0B

2
〉)

DNC
Nz

=
miniTi

Ze2 〈nz0〉nz0τiz0

〈nz0w2
0B

2
〉
−
〈
nz0w0B

2
〉 〈w0B

2
〉

〈B2〉
(4.7)

+

〈nz0w0B
2〉

〈B2〉

〈
B2

nz0

〉
−
〈
w0B

2
〉〈

B2

nz0
(1− c4α)

〉 〈
(1− c4α)w0B

2
〉
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DNC
ni

=− miniTi
Ze2 〈nz0〉nz0τiz0Ze

〈nz0w0uB
2
〉
−
〈
nz0w0B

2
〉 〈uB2

〉
〈B2〉

(4.8)

+

〈nz0w0B
2〉

〈B2〉

〈
B2

nz0

〉
−
〈
w0B

2
〉〈

B2

nz0
(1− c4α)

〉 (
c2 +

〈
uB2

〉
[c1 + 1]

)
DNC
Ti

=
miniTi

Ze2 〈nz0〉nz0τiz0

1

2

(〈
nz0w0uB

2
〉
−
〈
nz0w0B

2
〉 〈uB2

〉
〈B2〉

)
(4.9)

−
〈nz0w0B

2〉
〈B2〉

〈
B2

nz0

〉
−
〈
w0B

2
〉〈

B2

nz0
(1− c4α)

〉 (
c3 −

3

2
c2 −

〈
uB2

〉 [
c1(η − 1) +

1

2

]) ,
with τiz0 given by the expression for τiz, but with nz → nz0. From (4.6), we see that the
flux due to the radial electric field is generally non-zero, but that it vanishes when nz0 is
constant on the surface. The non-zero DNC

Φ can in fact dominate the other neoclassical
transport coefficients, as will be seen in Sec. 6.

4.1. Trace limit

The transport coefficients in (4.6) – (4.9) simplify somewhat in the trace limit, where
all the ci reduce the expressions in terms of standard functions of geometry. Using (E 9)
– (E 12), we get that

DNC
Φ =

miniTi
Ze2 〈nz0〉nz0τiz0

〈nz0w0(u− w0)B2
〉

+

〈
w0B

2
〉2〈

B2

nz0

〉 −
〈
uB2

〉
〈B2〉

〈
nz0w0B

2
〉

+

〈nz0w0B
2
〉

〈B2〉
−
〈
w0B

2
〉〈

B2

nz0

〉
 (fs +

〈
uB2

〉)
1− fc

 (4.10)

DNC
Nz

=
miniTi

Ze2 〈nz0〉nz0τiz0

〈nz0w2
0B

2
〉
−
〈
w0B

2
〉2〈

B2

nz0

〉
 (4.11)

DNC
ni

= − miniTi
Ze2 〈nz0〉nz0τiz0

(〈
nz0w0uB

2
〉
−
〈
uB2

〉
〈B2〉

〈
nz0w0B

2
〉

(4.12)

+

〈nz0w0B
2
〉

〈B2〉
−
〈
w0B

2
〉〈

B2

nz0

〉
 (fs +

〈
uB2

〉)
1− fc


DNC
Ti

=
1

2

miniTi
Ze2 〈nz0〉nz0τiz0

(〈
nz0w0uB

2
〉
−
〈
uB2

〉
〈B2〉

〈
nz0w0B

2
〉

(4.13)

+

〈nz0w0B
2
〉

〈B2〉
−
〈
w0B

2
〉〈

B2

nz0

〉
 (fs +

〈
uB2

〉)
1− fc

(1 + (2η − 3)fc)

 ,

which are the expressions we will use in Sec. 6.
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5. Classical transport

Finally, we calculate the classical flux, given by the first term in (2.7). Using our mass-
ratio expanded collision operator and momentum conservation, the perpendicular friction
becomes

Rzi⊥ = −
∫

d3vmiν
D
iz (v)

(
v⊥L(fi1) +

miv⊥v · Vz
Ti

fi0

)
, (5.1)

where v⊥ = v − v‖b with v‖ = v · b.
In (5.1), only the gyrophase-dependent part of fi1 contributes to the first term, and

only the perpendicular impurity flow contributes to the last. The gyrophase dependent
part of fi1 (which we denote f̃i1) is given by (Hazeltine 1973)

f̃i1 = −ρi · ∇fi0, (5.2)

where the gyroradius vector is

ρi = ρi(e2 sin γ + e3 cos γ) = b× v⊥/Ωi, (5.3)

with {b, e2, e3} an orthonormal set of vectors, andΩi = eB/mi. Thus, we have everything
required to calculate the perpendicular friction, which becomes

Rzi⊥ =
mini
τiz

Ti
eB
b×∇ψ

[
A1i −

3

2
A2i

]
− nimi

τiz
Vz⊥. (5.4)

Using the same approximations and assumptions as in the neoclassical expressions, we

have Vz⊥ = Ti

eB

(
e
Ti

d〈Φ〉
dψ + 1

ZNz

dNz

dψ

)
, and thus obtain

Rzi⊥ =
mini
nzτiz

nz
B ×∇ψ
B2

Ti
e

[
d lnni

dψ
− 1

2

d lnTi
dψ

− 1

ZNz

dNz
dψ

]
, (5.5)

resulting in the classical impurity flux

〈Γz · ∇ψ〉C ≡
1

Ze

〈
B ×∇ψ
B2

·Rz

〉
=

mini
Zenzτiz

〈
nz
|∇ψ|2

B2

〉
Ti
e

[
d lnni

dψ
− 1

2

d lnTi
dψ

− 1

ZNz

dNz
dψ

]
,

(5.6)

or

〈Γz · ∇ψ〉C = −〈nz0〉
(

1

Z
DC
Nz

d lnNz
dψ

+DC
ni

d lnni
dψ

+DC
Ti

d lnTi
dψ

)
. (5.7)

The classical flux is often neglected as smaller than the neoclassical flux. To get a
simple estimate of its importance, we take the homogeneous nz limit of (4.5) and (5.6),
so that the ratio of classical to neoclassical flux depends purely on geometry

〈Γz · ∇ψ〉C

〈Γz · ∇ψ〉NC
=

〈
|∇ψ|2
B2

〉 〈
B2
〉(

〈u2B2〉 〈B2〉 − 〈uB2〉2
) . (5.8)

This ratio is indeed small in conventional tokamaks and stellarators (it is ∼ 0.1–0.6
in ASDEX Upgrade, and ∼ 0.1–1 in LHD), but it is ∼ 3–3.5 in a standard W7-X
configuration.

W7-X differs from LHD in that it has been optimized to have a low ratio of parallel to
perpendicular current. To see how this affects the ratio (5.8), we can express the parallel
current in the following way: Charge conservation imposes∇·j = 0, where j is the current
density. Assuming that the equilibrium magnetic field can be written as j × B = ∇p,
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Figure 1: (left) A W7-X standard configuration vacuum field, with (middle) Φ̃ and (right) nz0,

for Φ̃(B) = Φ̃(B0)e−(B−B0)
2/(2σ2) − X with B0 = Bmax, Φ̃(B0) = −10 V and σ = 0.1|Bmax −

Bmin|, Z = 24, 〈nz〉 = 3.472× 1016 m−3, and Ti = Tz = 1 keV. X is an integration constant set

to make 〈Φ̃〉 = 0.

where p is the total pressure p =
∑
a pa, which is assumed to be a flux-function to the

required order, the parallel current density becomes j‖ = uB dp
dψ . The ratio of parallel

and perpendicular current then becomes

j‖

|j⊥|
=

uB

|B ×∇ψ/B2|
, (5.9)

which can be made small by making u/|∇ψ| small, which simultaneously makes (5.8)
large. The classical flux remains large even when nz varies on the flux-surface, as we will
see in the next section.

6. Wendelstein 7-X test case

To explore the implications of the flux-surface variation of nz0 in (4.6)–(4.9), we
consider a scenario where Φ̃ is given by

Φ̃(B) = Φ̃(B0)e−(B−B0)
2/(2σ2) −X, (6.1)

where Φ̃(B0) is the amplitude of the potential, B0 is an extremum of B, σ gives the
width of Φ̃, and X is an integration constant chosen to make 〈Φ̃〉 = 0. The above
Φ̃ is intended to roughly emulate a potential perturbation due fully-circulating fast
(collisionless) particles, although we are primarily interested in (6.1) as a simple test
case, and will not be so concerned with whether it is a realistic fast-particle response.

We take B from a Wendelstein 7-X vacuum field†, and solve the magnetic differential
equations for u and w numerically for this field. The magnetic field in Boozer coordinates
(with ζ, θ being toroidal and poloidal angle, respectively) is visualized in Fig. 1, together
with an example Φ̃ and the resulting nz0 for Z = 24 and 〈nz〉 = 3.472× 1016 m−3.

To investigate the effects of a localized nz distribution, we performed a scan where
the amplitude of the potential perturbation is increased. Specifically, the potential
perturbation is centred at Bmax or Bmin, and the amplitude Φ̃(B0) is scanned from
eΦ̃/Tz = −0.1 to eΦ̃/Tz = 0.1 – where a negative/positive sign corresponds to impurities
accumulating/decumulating at Bmax or Bmin. The ion temperature and density are
Ti = 1 keV and ni = 2 × 1020 m−3; mi is taken as the proton mass. These values give
Z2 〈nz〉 /ni = 0.1, so the impurities are trace. For these parameters, the collisionalities

† We use a W7-X standard configuration at normalized radius rN = 0.6, where
rN =

√
ψt/ψt,LCFS, with ψt the toroidal flux and ψt,LCFS its value at the last-closed flux-surface.

The data is available at (Verified 2018-05-31)
https://github.com/landreman/sfincs/blob/master/equilibria/w7x-sc1.bc

https://github.com/landreman/sfincs/blob/master/equilibria/w7x-sc1.bc
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Figure 2: Transport coefficients, for different potential perturbation amplitudes Φ̃(B0),
for Φ̃ localized around (left) Bmax and (right) Bmin. Ti = 1 keV and ni = 2× 1020 m−3,
σ = 0.1|Bmax − Bmin|, Z = 24, 〈nz〉 = 3.472 × 1016 m−3; DNC refers to the neoclassical
transport coefficients, while D is the sum of classical and neoclassical. At amplitudes
roughly within eΦ̃/Ti ∈ [−0.007, 0], the flux due to an inward radial electric field is
outward but very weak.

are ν̂ii = 0.096 and ν̂zz = 5.55, where we have used L‖ = (G+ ιI)/B00 as a proxy for the
length-scale for parallel variations; here ι is the rotational transform, G and I are related
to the magnetic field and defined in section 2.5 of Helander (2014), B00 is the n = m = 0
Fourier-component of B in Boozer coordinates.

The resulting transport coefficients are shown in Fig. 2. In the figures, D (without
superscript index) refers to the sum of neoclassical and classical D’s. For comparison, we
also show DNC; DNz

is not shown, since DNz
= −DΦ−Dni

, and the Schwarz inequality
causes it to always be non-negative, so that the question of whether impurities accumulate
can be answered without its exact value. As indicated in Sec. 5, classical transport is
dominant for this field configuration at Φ̃ = 0, but we also see that the transport due
to the radial electric field starts to dominate already at eΦ̃(B0)/Ti ∼ 0.02. When the
radial electric field does not dominate, the impurities will be driven outwards when the
temperature gradient is strong enough, i.e. we have temperature screening. Specifically,
temperature screening occurs when dψ lnTi > −Dni

dψ lnni/DTi
≈ 2dψ lnni, and thus

depends on the ratio Dni
/DTi

. This ratio is equal to −2 to within 1% in the Φ̃-amplitude
window when radial electric field does not dominate, so the temperature screening
condition is essentially unaffected, despite the transport coefficients Dni

and DTi
varying

by approximately 25% in this window. We also see that both when B0 = Bmax and
B0 = Bmin, there is a very narrow amplitude range, roughly eΦ̃(B0)/Ti ∈ [−0.007, 0], in
which the impurity flux due to an inward radial electric field is weakly positive.

From Fig. 2, we also see that most of the variation in Dni and DTi comes from the
neoclassical flux. This can partly be understood from the simpler form of the classical
flux (5.6), where the dependence on nz is linear, so that the localized nz perturbation
due to Φ̃ merely acts as a weight in the geometric factor

〈
nz|∇ψ|2/B2

〉
, which here gives

a small effect when integrated over the flux-surface. In contrast, the neoclassical flux
(4.5) is non-linear in nz, and the total flux through the flux-surface is set by a balance
between inward and outward fluxes at different points on the flux-surface.

To investigate the effects of more localized nz0, we scanned the width of Φ̃, while
keeping X and 〈nz0〉 constant. For small σ, this results in nz0 that are very localized
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Figure 3: Transport coefficient for varying σ, for Φ̃ given by (6.1), with eX/Ti = −0.025
and Φ̃(B0) set to make 〈Φ̃〉 = 0. The potential is centered around (left) Bmax, and (right)
Bmin. Unless otherwise stated, quantities have the same value as in Fig. 2.
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Figure 4: Figure corresponding to Fig. 2, but with nz0 concentrated around (or repelled
from) the B = (Bmin/2 +Bmax/2) contour.

around the extremum of B. The result is shown in Fig. 3. From the figure, we see that
DNC
Φ diverges for localized nz0. This is due to the w2

0 terms in DNC
Φ : nz0w0 obtained from

(2.9) is not localized to regions where nz0 is localized, which results in a large w0 where
nz0 is small. In contrast, the DNC

ni
and DNC

Ti
remains finite, as w0 only appears together

with an nz0 in those terms. In comparison to the neoclassical transport coefficients, the
classical coefficients are only moderately affected by a more localized nz0, for the same
reasons as discussed in relation to the amplitude scan above.

To see whether this conclusion holds for more general nz0, we let B0 in (6.1) be a non-
extremum point (within the flux surface), i.e. B0 ∈ (Bmin, Bmax). The resulting density
distributions nz0 will be concentrated or repelled from a contours of B, rather than
points, and do not necessarily represent realistic density variations: rather, they provide
simple test cases very different from those considered above, and thus give an indication
of how general the above conclusions are.

For B0 = Bmin/2 + Bmax/2, the resulting D’s are displayed in Fig. 4. Here, the DΦ

increases rapidly with the amplitude, and dominates the flux except for a small interval
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Figure 5: Transport coefficient when B0 is changed from Bmin to Bmax. Apart from B0,
quantities have the same values as in Fig. 2. The black lines indicate potential amplitudes at
which the radial electric field start to dominate: the solid line is where DΦ = Dni + DTi , the
dashed is where 10DΦ = Dni + DTi . Top-right figure: Dni/DTi , which is within 1% of 2 for
amplitudes where Dni +DTi > DΦ (deviations larger than 1% are white in the figure).

about 0. Meanwhile,DTi
andDni

are barely affected, with a slight reduction in magnitude
when the impurities are repelled from B0.

To connect this result to when B0 is an extremum, we scanned B0 from Bmin to
Bmax. The resulting D’s are shown in Fig. 5. Looking at DΦ, we see that as we go from
B0 = Bmin/2 + Bmax/2 (x = 0 in the figure) towards the extrema (x = 1 and x = −1),
DΦ tends to become less sensitive to the amplitude.

From the top-right figure in Fig. 5, we see that for all B0, Dni/DTi changes by less
than 1% within the amplitude interval where DΦ is small enough to not notably affect
temperature screening (this interval is within or slightly outside the dashed lines, which
show where 10DΦ = Dni

+DTi
).

To conclude, it thus appears that strong Φ̃ perturbations are likely to lead to strong
impurity accumulation if the radial electric field is pointing inwards, and that the
condition for temperature screening is essentially unchanged from the Φ̃ = 0 case when
the Φ̃ perturbations are weak enough so that the radial electric field is not dominant.

7. Summary & conclusions

We have derived expressions for the radial flux of high-Z collisional impurities when
the bulk ions are in the 1/ν regime. In this limit, the impurity temperature is equilibrated
with the bulk ions, while the impurity density can vary within the flux-surface. We have
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derived an expression for the parallel friction-force acting on the impurities, which can be
used to solve for the impurity density variations on the flux-surface, given a mechanism
for relating the impurity density to the electrostatic potential.

We considered in detail the trace impurity limit, with the impurity density set bu a
Boltzmann response to an externally imposed the electrostatic potential. Using simple
models for Φ̃ and a W7-X vacuum field, we have seen that large Φ̃ amplitudes can cause
the radial electric field to substantially contribute to the impurity transport, and lead
to impurity accumulation when the radial electric field points inward. For smaller Φ̃
amplitudes, temperature screening can be effective, and the condition for temperature
screening is essentially the same as in the Φ̃ = 0 case, meaning that the temperature
profile should be at least twice as steep as the density profile for screening to happen. In
all cases, the contribution from classical transport is substantial, and even moderate Φ̃
can cause the electric field to dominate if classical transport is not accounted for.

It is however not straightforward to extrapolate from these results to general Φ̃, as the
neoclassical impurity flux does not depend linearly on nz, so the flux from a general nz
flux-surface distribution is not a superposition of fluxes from simpler nz distributions.
Realistic Φ̃ or nz distributions may be needed to evaluate the fluxes accurately, especially
when neoclassical transport is comparable to or stronger than the classical. We refer the
interested reader to Calvo et al. (2018), where an LHD equilibrium with a Φ̃ set up by
particle trapping effects of the bulk ions is considered.
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Appendix A. Solving the ion drift-kinetic equation

In this section, we solve the ion kinetic equation (3.7)–(3.9) for Fi1(−1) and Fi1(0). The
solution follows Newton et al. (2017), but here nz is allowed to vary on the flux-surface.
Since we assume eΦ̃/Ti ∼ Z−1, the potential energy of the bulk ions is approximately
constant on the flux-surface, and we change variables from E , µ to the approximate
invariants v and λ.

We note that since we only use Fi1 to calculate the ion-impurity friction force, we
only need the part of Fi1 that is odd in v‖. We thus split (3.7)–(3.9) into odd and even
equations.

Denoting the odd (even) part of the distribution function with a minus (plus) super-
script, the order ν̂−1 equations become

v‖∇‖F+
i1(−1) = 0 (A 1)

v‖∇‖F−i1(−1) = 0, (A 2)
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which simply states that Fi1(−1) is constant along field-lines,

Fi1(−1) = Fi1(−1)(l0), (A 3)

where l0 is an arbitrary point on the field line. In the trapped region, this implies that
F−i1(−1) = 0, since it must vanish at bounce-points. In the passing region, Fi1(−1)(l0) is

set by solvability conditions to the next order equations.
To order ν̂0, we have that

v‖∇‖F+
i1(0) = C−i [Fi1(−1)]. (A 4)

v‖∇‖F−i1(0) + vd · ∇fi0 = C+
i [Fi1(−1)]. (A 5)

In the passing region, the odd and even part of Fi1(−1)(l0) can be determined by acting

with
〈
B
v‖
. . .
〉

on equations (A 4)–(A 5), resulting in〈
B

v‖
C−i [Fi1(−1)]

〉
= 0 (A 6)〈

B

v‖
C+
i [Fi1(−1)]

〉
=

〈
B

v‖
vd · ∇ψ

〉
∂ψfi0 = 0, (A 7)

where the latter equality follows from writing vd · ∇ψ = v‖(b×∇ψ) · ∇
(
v‖
Ωi

)
. The odd

and even parts of the collision operator are

C+
i [X] = (νDii + νDiz )LX+ (A 8)

C−i [X] = (νDii + νDiz )LX− +
mifi0
Ti

v‖(ν
D
ii U‖ + νDizVz‖), (A 9)

with L =
2v‖
v2B

∂
∂λλv‖

∂
∂λ . Equation A 6 implies that F+

i1(−1) is constant in λ, so that

C+
i [Fi1(−1)] = 0 in the passing region. The same argument applies to F−i1(−1), unless

there is a parallel impurity flow in (A 9) to order ν̂−1 to act as a source in (A 6). Such
order ν̂−1 flows cannot arise in the mixed-collisionality regime, so F−i1(−1) = 0 (Newton

et al. 2017). However, to make the Fi1 formulas in this section apply for any impurity
collisionality, we will nevertheless allow for F−i1(−1) 6= 0 below, as it turns out to not be

inconvenient to calculate F−i1(−1) together with F−i1(0).

To solve for F−i1(0), we note that (A 5) can be formally solved by integrating along a

field-line; using l to denote the distance along the field line, we have

F−i1(0)(l) = F−i1(0)(l0) +

l∫
l0

dl′

v‖

[
C+[F1(−1)]− vd · ∇fi0(l′)

]
, (A 10)

where the integration constant F−i1(0)(l0) again is set by the solvability condition of

the next-order equation. Taking l0 to be a bounce-point, B(l0) = 1/λ, we have that
F−i1(0)(l0) = 0 in the trapped region. To determine F−i1(0)(l0) the passing region, we again

act with
〈
B
v‖
. . .
〉

on the next-order odd equation, which gives〈
B

v‖
C−i [Fi1(0)]

〉
= 0. (A 11)

Note that this is essentially the same equation as (A 6). Thus, the total distribution
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Fi1 ≈ Fi1(0) + Fi1(−1) can be written on the same form as Fi1(0), but with an order ν̂−1

contribution to the integration constant F−i1 (l0) ≈ F−i1(−1)(l0) + F−i1(0)(l0). As such, it is

in some sense irrelevant whether parts of Vz‖ are order ν̂−1 or ν̂0, as Fi1(0) + Fi1(−1) is
not affected by the way this decomposition of Vz‖ is done.

Inserting (A 9) into (A 11) gives the following equation for the integration constant
F−i1 (l0) = F−i1(−1)(l0) + F−i1(0)(l0)

∂

∂λ
F−i1 (l0) (A 12)

=− mv2

2
〈[

1 +
νD
iz(l)

νD
ii

]
v‖

〉 (1

e

〈[
1 +

νDiz (l)

νDii

]
g4(l, λ)

〉
∂fi0
∂ψ

+
1

Ti
fi0

〈
B

[
U‖ +

νDiz (l)

νDii
Vz‖

]〉)
,

in the passing region. To account for the vd ·∇fi0 term, we have introduced the geometric
function (Nakajima et al. 1989)

g4(λ, l) = v‖

∫ l

l0

dl′ (b×∇ψ) · ∇
(

1

v‖

)
. (A 13)

Note that C+
i [Fi1(−1)] = 0 in this region. In the trapped region, on the other hand,

F−i1 (l0) = 0 but C+
i [Fi1(−1)] 6= 0. However, the C+

i [Fi1(−1)]-term nevertheless gives no
contribution to the parallel flow or friction force in this region (Helander et al. 2017b).

Appendix B. Parallel friction force

Once U‖ and Vz‖ are known, we can use (A 10) and (A 12) to directly evaluate the
parallel friction force acting on the impurities. From our mass-ratio expanded ion-
impurity collision operator (3.2) and the self-adjointness of the Lorentz operator, we
have

Riz‖ =

∫
d3vmiv‖ν

D
iz (v)

(
miv‖Vz‖

Ti
fi0 − F−i1

)
=
nimi

τiz

(
Vz‖ −

Ti
e

[
Ai1 −

3

2
Ai2

]
Bu−BP (ψ)

)
,

(B 1)

where u satisfies the magnetic equation (3.11) and P is a flux-function which contains
the contribution from the integration constant F−i1 (l0)

P (ψ) ≡ τiz
Bni

∫
d3vv‖ν

D
iz (v)F−i1 (l0). (B 2)

P (ψ) can be evaluated using (A 12) and partial integration in λ

P (ψ) =

〈
BU‖

〉
〈B2〉

b1 +

〈
αBVz‖

〉
〈B2〉

b4 +
Ti
e

A1i − 5
2A2i

〈B2〉
b2 +

Ti
e

A2i

〈B2〉
b3 (B 3)
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where we have introduced

b1 =
mπ

〈
B2
〉

niTi{νizD }

∫ ∞
0

dvv4νizD fi0

∫ 1/Bmax

0

dλλ
1

〈ξ〉+
〈
νD
iz

νD
ii
ξ
〉 (B 4)

b2 =
mπ

〈
B2
〉

niTi{νizD }

∫ ∞
0

dvv4νizD fi0

∫ 1/Bmax

0

dλλ

[
〈g4〉+

〈
νD
iz

νD
ii
g4

〉]
〈ξ〉+

〈
νD
iz

νD
ii
ξ
〉 (B 5)

b3 =
mπ

〈
B2
〉

niTi{νizD }

∫ ∞
0

dvv4
miv

2

2Ti
νizD fi0

∫ 1/Bmax

0

dλλ

[
〈g4〉+

〈
νD
iz

νD
ii
g4

〉]
〈ξ〉+

〈
νD
iz

νD
ii
ξ
〉 (B 6)

b4 =
mπ

〈
B2
〉

Z2nzTi{νizD }

∫ ∞
0

dvv4νizD
νizD
νDii

fi0

∫ 1/Bmax

0

dλλ
1

〈ξ〉+
〈
νD
iz

νD
ii
ξ
〉 , (B 7)

with ξ = v · b/v. The velocity average {·} is defined as

{F (v)} ≡ 8

3
√
π

∫ ∞
0

dxF (x)x4e−x
2

, (B 8)

where x = v/vTi.
To have the boundary terms from the partial integration disappear in (B 3), we have

defined l0 through B(l0) = Bmax. This makes our choice of l0 continuous when going
from the trapped to the passing region, and thus ensures that F−i1 (l0) is zero at the
trapped-passing boundary λ = 1/Bmax.

Appendix C. Momentum restoring term U‖
The momentum restoring term in the ion-ion model collision operator (3.5) is calculated

so that ion-ion collisions conserve momentum. Specifically, we have

U‖ =
1

ni{νiiD}

∫
d3vv‖ν

ii
DF
−
i1 . (C 1)

Inserting F−i1 from (A 10) and using (A 12), we get〈
BU‖

〉
(1− a1)

=
Ti
e

([
a2 +

〈
uB2

〉]
A1i +

[
a3 −

5

2
a2 −

〈
uB2

〉
η

]
A2i

)
+ a4

〈
αBVz‖

〉
.

(C 2)

where we have defined the geometry-impurity dependent flux-surface constants

a1 =
mπ

〈
B2
〉

niTi{νiiD}

∫ ∞
0

dvv4νiiDfi0

∫ 1/Bmax

0

dλλ
1

〈ξ〉+
〈
νD
iz

νD
ii
ξ
〉 (C 3)

a2 =
mπ

〈
B2
〉

niTi{νiiD}

∫ ∞
0

dvv4νiiDfi0

∫ 1/Bmax

0

dλλ

[
〈g4〉+

〈
νD
iz

νD
ii
g4

〉]
〈ξ〉+

〈
νD
iz

νD
ii
ξ
〉 (C 4)

a3 =
mπ

〈
B2
〉

niTi{νiiD}

∫ ∞
0

dvv4
miv

2

2Ti
νiiDfi0

∫ 1/Bmax

0

dλλ

[
〈g4〉+

〈
νD
iz

νD
ii
g4

〉]
〈ξ〉+

〈
νD
iz

νD
ii
ξ
〉 (C 5)
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a4 =
mπ

〈
B2
〉

Z2nzTi{νiiD}

∫ ∞
0

dvv4νDizfi0

∫ 1/Bmax

0

dλλ
1

〈ξ〉+
〈
νD
iz

νD
ii
ξ
〉 . (C 6)

Appendix D. Solvability condition and Kz

Equation 2.12 specifies Vz‖ up to a flux-function Kz (c.f. (2.14)). This Kz can be
determined from solvability condition of (2.2), which states that〈

BRz‖

nz

〉
= 0. (D 1)

Inserting (3.10), the solvability condition becomes

nimi

nzτiz

(〈
BVz‖

〉
− Ti

e

[
Ai1 −

3

2
Ai2

] 〈
uB2

〉
−
〈
B2
〉
P (ψ)

)
= 0. (D 2)

In the ∆� 1 limit, we can insert our expression for Vz‖, (2.14), to solve for Kz. This
results in (3.13), where we have defined

c1 = b1 + a1c1 =⇒ c1 = b1/(1− a1), (D 3)

c2 = b2 + a2c1, (D 4)

c3 = b3 + a3c1, (D 5)

c4 = b4 + a4c1, (D 6)

for the sake of compactness.

Appendix E. Trace impurity limit of some expressions

In the trace impurity limit, α ≡ Z2nz/ni � 1, the ai, bj and ck’s simplify considerably,
yielding an expression for Kz in terms of standard geometry functions. Specifically,

a1 = b1 = fc, (E 1)

a2 = b2 = fs, (E 2)

a3 = fs

(
5

2
− η
)
, (E 3)

b3 = fs, (E 4)

a4 =
fc
α

{νizD }
{νiiD}

, (E 5)

b4 =
fc
α

{νizD
2
/νiiD}

{νizD }
. (E 6)

Note that a4 and b4 only appear in terms containing α, which are negligible in the
trace-limit. Here,

fc =
3
〈
B2
〉

4

∫ 1/Bmax

0

dλ
λ

〈ξ〉
(E 7)

fs =
3
〈
B2
〉

4

∫ 1/Bmax

0

dλ
λ 〈g4〉
〈ξ〉

, (E 8)

are standard functions of geometry.
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With this, we have that

c1 =
fc

1− fc
, (E 9)

c2 =
fs

1− fc
, (E 10)

c3 =
fs

1− fc

[
1 + fc

(
3

2
− η
)]

, (E 11)

c4 =
fc
α

(
{νizD

2
/νiiD}

{νizD }
+

fc
1− fc

{νizD }
{νiiD}

)
, (E 12)

and Kz becomes

Kz(ψ)

〈
B2

nz

〉
=
Ti
e

[
fs +

〈
uB2

〉]([ fc
1− fc

+ 1

]
A1i −

[
ηfc

1− fc
+

3

2

]
A2i

)
− d 〈Φ〉

dψ

〈
wB2

〉
,

(E 13)

which results in the friction-force

Riz,‖
τiz
nimi

=

w − 〈
wB2

〉
nz

〈
B2

nz

〉
B

d 〈Φ〉
dψ

(E 14)

+

〈uB2
〉

〈B2〉
− u+

 1

nz

〈
B2

nz

〉 − 1

〈B2〉

[fs +
〈
uB2

〉] [ fc
1− fc

+ 1

]B
Ti
e
Ai1

−

3

2

〈
uB2

〉
〈B2〉

− 3

2
u+

 1

nz

〈
B2

nz

〉 − 1

〈B2〉

[fs +
〈
uB2

〉] [ ηfc
1− fc

+
3

2

]B
Ti
e
Ai2,
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