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Abstract

Background: Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed for
understanding and managing processes involved in the carbon cycle and supporting international policies for climate
change mitigation and adaption. Furthermore, these products provide important baseline data for the development
of sustainable management strategies to local stakeholders. The use of remote sensing data can provide spatially
explicit information of AGB from local to global scales. In this study, we mapped national Mexican forest AGB using
satellite remote sensing data and a machine learning approach. We modelled AGB using two scenarios: (1) extensive
national forest inventory (NFI), and (2) airborne Light Detection and Ranging (LIDAR) as reference data. Finally, we
propagated uncertainties from field measurements to LiDAR-derived AGB and to the national wall-to-wall forest AGB
map.

Results: The estimated AGB maps (NFI- and LiDAR-calibrated) showed similar goodness-of-fit statistics (R?, Root
Mean Square Error (RMSE)) at three different scales compared to the independent validation data set. We observed
different spatial patterns of AGB in tropical dense forests, where no or limited number of NFI data were available, with
higher AGB values in the LiDAR-calibrated map. We estimated much higher uncertainties in the AGB maps based

on two-stage up-scaling method (i.e,, from field measurements to LiDAR and from LiDAR-based estimates to satel-
lite imagery) compared to the traditional field to satellite up-scaling. By removing LiDAR-based AGB pixels with high
uncertainties, it was possible to estimate national forest AGB with similar uncertainties as calibrated with NFI data
only.

Conclusions: Since LiDAR data can be acquired much faster and for much larger areas compared to field inventory
data, LIDAR is attractive for repetitive large scale AGB mapping. In this study, we showed that two-stage up-scaling
methods for AGB estimation over large areas need to be analyzed and validated with great care. The uncertainties in
the LiDAR-estimated AGB propagate further in the wall-to-wall map and can be up to 150%. Thus, when a two-stage
up-scaling method is applied, it is crucial to characterize the uncertainties at all stages in order to generate robust
results. Considering the findings mentioned above LiDAR can be used as an extension to NFI for example for areas
that are difficult or not possible to access.
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Background

Tropical intact and regrowth forests have the highest car-
bon (C) uptake of the world’s forests. They account for
around 70% of global gross forest sink [1]. At the same
time tropical forests are nearly carbon-neutral taking into
account C-emissions from tropical deforestation with the
highest uncertainties in C-stocks and -fluxes compared to
other biomes [1]. The status of tropical forests and their
temporal dynamics can be assessed by measuring differ-
ent structural tree parameters (e.g., vegetation height,
canopy cover, stem volume and AGB). AGB, defined as
the total amount of aboveground living organic matter
in vegetation and expressed as oven-dry tons per unit
area [2], is one of the crucial parameter to assess terres-
trial aboveground C-stocks and -fluxes. Since vegetation
biomass affects a range of ecosystem processes such as
carbon and water cycling, energy fluxes, and thus affects
local and regional climate, accurate AGB information is
required for developing sustainable forest management
strategies.

Traditionally, vegetation structural parameters are
assessed using forest inventory data. These measure-
ments are demanding in terms of costs and resources,
and thus are limited in space and time. With rapid
advances in information technology vegetation param-
eters can be estimated using remote sensing methods. In
particular, in tropical forests remote sensing data provide
spatially consistent information for areas that are difficult
to access. Moreover, in contrast to point measurements
spatial continuous AGB maps can improve estimates of
carbon flux [3].

In the past 20 years a number of studies aiming at
AGB estimation using remote sensing data have been
published. These studies reach from local [e.g., 4] over
national [5-7] to continental [8] and intercontinental
scales [9-12]. In general, remote sensing data from opti-
cal, Synthetic Aperture Radar (SAR), and LiDAR sensors
or a combination of these sensors are used to estimate
AGB. Optical remote sensing data (e.g., Landsat, Sen-
tinel-2, MODIS) are sensitive to vegetation density
[5], which relates to AGB but saturates at high biomass
[e.g., 13, 14]. Disadvantages in using optical data for
AGB estimation are frequent cloud cover over the trop-
ics, and strong dependence on environmental, seasonal
and acquisition conditions (e.g., solar zenith angle) [15].
Alternatively, SAR sensors can be used for the estima-
tion of woody vegetation parameters [e.g., 16, 17—24]. For
instance, Hame et al. [22] showed that with L-band SAR
data estimation of biomass in tropical forests was nearly
as good as with optical imagery. Microwave signals (with
a spectral range between 1 cm and 1 m) have the capa-
bility to penetrate into vegetation, and thus to probe the
three-dimensional vegetation structure. Additionally,
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microwaves are particularly useful for weather independ-
ent applications, as long wavelengths penetrate clouds.
Limitations of radar data for AGB estimation are satura-
tion at middle-high biomass levels (depending on wave-
length) as well as strong dependence on environmental
conditions (e.g., rainfall, freezing, different moisture
conditions). A way to delineate precise 3D information
about the objects on the earth’s surface (trees, buildings)
and the topography is the usage of LiDAR. Laser pulses
sent from a LiDAR sensor are capable to penetrate forest
canopy, and to provide information on the vertical struc-
ture (e.g., height, canopy volume). LiDAR data can be
used to delineate very accurate estimates of AGB without
signal saturation. Accordingly, LiDAR is a key informa-
tion source for assessing carbon stocks including tropi-
cal forests [25]. Zolkos et al. [26] compared more than 70
studies for AGB estimation and concluded that airborne
LiDAR methods provide a higher accuracy compared to
SAR or optical data. However, airborne LiDAR data is
limited to a small spatial coverage.

The signals from optical, SAR, or LiDAR sensors are
commonly compared to the field-estimated AGB using
semi-empirical regression models or machine learning
algorithms to extrapolate over the entire remote sensing
imagery. As mentioned above the plot estimates of AGB
are limited in time and space, and might thus not repre-
sent the full spectrum of vegetation types or AGB [27].
Alternatively, very high resolution (VHR) (< 2 m) remote
sensing data from airborne LiDAR or optical sensors can
be used as reference data for up-scaling to larger area.
Currently, many large scale mapping efforts both for AGB
estimation and forest cover delineation have been applied
a two-stage up-scaling method (i.e., from field measure-
ments to LiDAR strips or VHR optical imagery and from
LiDAR-, VHR-based estimates to satellite imagery) [9, 10,
28-30]. One important step in the two-stage up-scaling
method is error propagation analysis. As showed in [31,
32], ignoring the field to LiDAR error can underestimate
the uncertainty in the final satellite-based AGB map by a
factor of three or more. Therefore, an uncertainty map at
pixel level is important for the interpretation of the AGB
map.

In this study, we estimated forest AGB in Mexico at
national scale, where both extensive NFI (~ 15,000 plots)
(Spanish acronym INFyS) and country-wide airborne
LiDAR data were available. As spatial predictors to esti-
mate AGB over Mexico we used satellite imagery from
the Advanced Land Observing Satellite Phased Array
type L-band Synthetic Aperture Radar (ALOS PAL-
SAR), Landsat and the Shuttle Radar Topography Mis-
sion (SRTM), since a fusion of optical and SAR imagery
provides more accurate estimates of AGB compared to
single sensor type data [6, 7, 33, 34]. We estimated AGB
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at national scale using two modelling scenarios: (1) using
INFyS data collected over the country with systematic
sampling as calibration data for satellite imagery, (2)
using airborne LiDAR-based AGB as calibration data
for satellite imagery. Both national AGB products were
validated with INFyS data that were not used for model
calibration. Furthermore, we conducted an error propa-
gation analysis for both scenarios and estimated uncer-
tainties at pixel level using Monte Carlo simulations. This
kind of comprehensive comparison between NFI and
LiDAR data as reference for a large scale AGB mapping
with satellite imagery including an error propagation
analysis have not been conducted before. This gap needs
to be addressed, especially in the context of the upcom-
ing missions designed for global vegetation monitoring
(e.g., NISAR, GEDI, BIOMASS, Tandem-L).

Methods
Study area and field data
Approximately one-third of Mexico is covered by for-
ests resulting in 65 million ha [35] with a variety of for-
est types (deciduous and coniferous forests, mangroves,
cloud forests, and tropical dry and rain forests) (Fig. 1).
These forests are located at different topographies (from
coastal plain in the Yucatan peninsula to mountainous
regions in central part of the country).

The National Forestry Commission of Mexico (CONA-
FOR) has established a systematic nationwide network
of forest inventory plots (Fig. 1). In this study, NFI data
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collected between 2004 and 2011 were used. One sam-
pling plot represents a single circular plot with a radius of
56.42 m covering an area of 1 ha and comprising four sub-
plots with an area of 400 m? each (0.04 ha). For temper-
ate and tropical forests different sampling designs were
used (Fig. 2). Each circular plot was sampled using rec-
tangular grid with a distance between single plots vary-
ing from 5 km (tropical/temperate forests) to 20 km (arid
regions) resulting in 28,869 plots, while most of the plots
were sampled twice during the mentioned 7 year period.
Within each sub-plot different structural tree parameters
(e.g., diameter at breast height, mean tree height etc.)
were measured. AGB was calculated for each sub-plot
(total sampled area of 0.16 ha) using 339 species- and
genus-specific allometric models and wood densities [36]
and then extrapolated to 1 ha. From all available INFyS
data, plots with less than four sub-plots measurements
were discarded (1786 plots). Further, for the plots com-
prising two temporal measurements (either 2004—-2007
or 2008-2011) the temporal average was calculated. This
step was conducted in order to reduce imprecision due
to geolocation errors or inaccurate measurements result-
ing in 15,982 plots. Finally, inventory plots located on
steep slopes (> 15°) were also excluded from the analysis
(8441 plots), as they can be located in SAR layover and
shadow areas and often show high geolocation errors. In
total 7541 forest inventory plots were used for AGB map-
ping and product validation. From 7541 plots, 332 plots
were used for AGB estimation along the LiDAR strips.
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Fig. 1 Land use and vegetation map of Mexico from the Mexican National Institute for Statistics and Geography (INEGI) Series IV [61]
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Fig. 2 INFyS sampling plot design for a temperate and b tropical forests

The remaining 7209 field plots were divided into calibra-
tion (67%) and validation (33%) data sets based on bio-
mass intervals. For this, the NFI data set were split into
ten biomass classes with an interval of 30 t/ha, 67% from
each class were selected randomly for calibration and the
remaining plots were used for validation. An overview of
the whole procedure can be found in Fig. 4.

Remote sensing data

Airborne LiDAR data

Small footprint discrete-return airborne LiDAR data
were collected by NASA’s G-LiHT imager [37] in April-
May 2013 over the entire country resulting in 1123 strips
(Fig. 1). The average pulse density was approximately
6 returns/m? The data were acquired during leaf-off con-
ditions. From the topography-normalized point clouds
88 plot-aggregated LiDAR metrics as described in [38—
40] were calculated at 1 ha scale. These LiDAR metrics
correspond to the vertical structure of a target and were
used as predictor variables to estimate AGB along the
LiDAR strips (“Estimation of errors in the field-estimated
AGB” section).

Satellite imagery

In our study, we used ALOS PALSAR L-band SAR and
Landsat optical data. The L-band SAR data were col-
lected and processed by Japan Aerospace Exploration
Agency (JAXA) in dual-polarization mode (i.e., HH/HV
polarizations). The JAXA pre-processed ALOS PALSAR
backscatter (gamma nought) mosaics were slope-cor-
rected and orthorectified using a digital elevation model

(DEM) [41, 42]. The mosaics feature a pixel spacing of
25 m x 25 m and are provided for free [43]. In the next
step, ALOS PALSAR backscatter images were speckle fil-
tered using the multi-temporal filter after Quegan et al.
[44, 45] with a window size of 7 x 7 pixels. In order to
evaluate the amplitude of speckle, the equivalent num-
ber of looks (ENL) was calculated over homogeneous
areas for original and filtered images using an empiri-
cal approach after [46] (i.e, ENL = mean?/variance).
The ENL was increased by factor 2 both for HH and HV
polarizations indicating a reduction of speckle.

Optical data was used in form of spectral reflectance
(SR) mosaic based on Landsat 5 and 7 ETM + data for
the year 2012. This Landsat SR mosaic was published by
Hansen et al. [47] and is freely accessible [48]. From the
Landsat SR the Normalized Differenced Vegetation Index
(NDVI) was calculated and used as a predictor layer. A
further predictor layer was the Landsat tree cover prod-
uct by Hansen et al. [47] for the year 2010. First inde-
pendent product validations suggest that this tree cover
product features high accuracy. For instance, a valida-
tion study conducted over South America based on VHR
commercial optical imagery showed a strong agreement
with an R? of 0.82 [49]. Finally, altitude and slope infor-
mation obtained from the Shuttle Radar Topography
Mission (SRTM) DEM data version 4.1 [50] were utilized
in AGB modelling. All spatial data sets were aggregated
to 100 m pixel size using block averaging and nearest
neighbour resampling. In total, 16 predictor layers were
used for AGB estimation (“AGB modelling and uncer-
tainty analysis” section) (Table 1).
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Table 1 Remote sensing products used for AGB estimation at national scale

Remote sensing product  Spatial resolution  Acquisition date

Layers

ALOS PALSAR 25m 2007-2010
Landsat 30m 2010-2012
SRTM DEM 30m 2000

SAR backscatter: HH and HV polarization for 2007-2010

Normalized Top-of-atmosphere (TOA) Reflectance: band 3 (red), Band 4 (NIR),
Band 5 (SWIR), Band 7 (SWIR); NSVI; tree cover

Altitude; slope

AGB modelling and uncertainty analysis

As mentioned above, two modelling scenarios were
applied. As NFI data were collected over the whole coun-
try, we developed a model that was calibrated with NFI
data only (scenario 1, “Estimation of AGB and uncertain-
ties at national scale with NFI-AGB as calibration data”
section). In the other scenario, we applied a two-stage
up-scaling method (i.e, from field measurements to
LiDAR strips and from LiDAR-based estimates to satel-
lite imagery) (Fig. 3) (scenario 2, “Estimation of AGB
and uncertainties along the LiDAR strips’, “Estimation
of AGB and uncertainties at national scale with LiDAR-
AGB as calibration data” section). Since NFI data were
collected over forested areas only, we applied a forest
mask to the wall-to-wall AGB maps. For this task, the
Landsat tree cover product for 2010 [47] was used (for-
est = tree cover > 10% according to FAO definition of
forest [51]).

We estimated uncertainties at pixel level for both
scenarios using Monte Carlo simulations. For this, we
introduced an error term in field-estimated AGB (“Esti-
mation of errors in the field-estimated AGB” section) and
propagated it to satellite-estimated AGB (“Estimation of
AGB and uncertainties at national scale with NFI-AGB

as calibration data” section). In the two-stage up-scaling
method, first we propagated errors of field-estimated
AGB to LiDAR-estimated AGB (“Estimation of AGB and
uncertainties along the LiDAR strips” section) and the
latter to satellite-estimated AGB (“Estimation of AGB
and uncertainties at national scale with LiDAR-AGB as
calibration data” section).

Estimation of errors in the field-estimated AGB

The total error of the field-estimated AGB (&g,,) was
composed of three components which were assumed
to be independent and random and were calculated as
follows:

2 2 2 1/2
Efield = (Emeasurement + 8allometry + Ssamplng)

where Emeasurement’ gallometry’ and Ssampling are the measure-
ment error of tree parameters (e.g., diameter at breast
height (dbh) and tree height), allometric model error,
and sampling error, respectively. Chave et al. [52] esti-
mated the measurement error of individual trees in cen-
tral Panama to be 16%. As it averages out at stand level
[52], it was assumed to be 10% in this study [53]. For

species-specific allometric models, we assumed an error
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Fig. 3 Flow chart of the data processing and analysis steps. Blue: first modelling scenario based on NFI data; red: second modelling scenario based
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of 11% [52]. To estimate the sampling error, we approxi-
mated the errors using the study from [54]. In the study
in central Panama, the authors concluded that in order to
estimate AGB for a 50 ha plot with + 10% uncertainty at
least 160 of 0.04 ha plots are needed [54]. This requires
a sampling intensity of 12.8%. By assuming similar vari-
ability in 1 ha pixel, and thus similar sampling intensity,
the number of 0.04 ha plots required to estimate AGB
with + 10% uncertainty will be 3.2. Therefore, the sam-
pling error in our study was 8.9% (10 x /3.2/4). By
summing up each single error term, we suggest that our
field-estimated AGB have an error of around 17%.

Under the assumption that our field-estimated AGB
(Field ;) have an error of 17%, we generated 100 reali-

zations of field-estimated AGB (Fie/lo-i;;B) using normally
distributed random values:

Fiel/deBw = Fieldacg,; (1 + Eficld X Xf,’,-) ©)

where the symbol “*” denotes a variable that includes the
estimated error, # is number of Monte Carlo realizations,
i, j is a single pixel, X is a random number from a normal
distribution with mean = 0 and standard deviation = 1.

Estimation of AGB and uncertainties along the LiDAR strips

To estimate AGB along the LiDAR strips, all NFI data
that were located completely within the LiDAR data
were selected (332 plots). Since the difference in acqui-
sition time between NFI and LiDAR data is between
2 and 9 years, significant changes (caused, e.g., by fire
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or deforestation) within the field plots might have
occurred [33]. Consequently, plots for which the residu-
als exceeded a range of two times the residual standard
deviation (20 plots) were excluded from the analysis.
For these 312 field plots 100 Monte Carlo realizations

of field-estimated AGB (Fie%/dA\GB) were generated and
used as response variable. As spatial predictors 88 plot-
aggregated LiDAR metrics (LiDAR,,,,,;.;) were used. We
estimated 100 different LiDAR-AGB calibrated with
Field4gp using a machine learning approach Cubist. Cub-
ist is a hybrid tree-based approach that combines rule-
based regression with linear multivariate models. Based
on the training data a collection of rules is defined. A rule
represents a path through a decision tree, for each rule a
multivariate linear regression is used to calculate a pre-
dicted value. The final prediction is calculated by com-
bining linear models at each node of the trees; therefore,
it is smoothed compared to a single linear model. The
approach is described in Quinlan [55, 56]. Cubist is com-
putational efficient and robust non-parametric model
and was successfully applied to map vegetation structure
metrics (e.g., AGB, tree height) with high retrieval accu-
racy at large spatial scales [57-60].

The 100 LiDAR-AGB estimations for each pixel

(LiDARAGBi J> were calculated:
LiDAR} gy, = cubist (Fiemng,LiDARmem) (3)

From these 100 LiDAR-AGB realizations, 95% confi-
dence interval (CI 95) was calculated:

28,869 NFI plots for
2004-2007 and 2008-2011

T

‘ 27,083 with 4 sub-plots ‘

v

15,982 plots
(mean between 2004-2007/2008-2011)

l

4{ 7,541 plots < 15° slope

[ 7,209 plots outside LIDAR |

Ij 30 t/ha interval...10 density classes }TV

4,794 plots for cal 2,415 plots for val
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‘ 332 plots for LIDAR-AGB
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AGB with
all pixels

271,216
All LiDAR-AGB samples
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68,395 calibrated
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<50%
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Fig. 4 Filtering steps of reference data (both NFI and LiDAR) for calibration of satellite imagery and validation of the AGB maps
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Y Cly75 — Cly5
C195(LiDAR; g, ) = A (4)
The uncertainty for each LiDAR-AGB pixel was
calculated:

C195(LiDAR] g3, )
ELiDAR = : /ATGBL” x 100 (5)
mean (LlDAR AGB,;,)
Estimation of AGB and uncertainties at national scale
with NFI-AGB as calibration data
For the first modelling scenario at national scale (i.e.,
based on NFI data only), we proceed similar as for the
estimation of AGB along the LiDAR strips. The estima-
tion of AGB at national scale was performed using a
machine learning algorithm Cubist [55, 56]. As response
variable we used 100 Monte Carlo realizations of NFI-
estimated AGB (Fieldagp), while satellite data (Sat,,,,)
(“Satellite imagery” section, Table 1) were used as spatial
predictors. 100 AGB maps at national scale based on the
first modelling scenario (Sat_NFI4Gp) were estimated as:

Sﬂt@GBM = cubist (FierEBw,Satlaym) (6)

Based on tIELOO NFI-calibrated national AGB esti-
mates (Sat_NFIlsgg) the 95% confidence interval

(C195 (Sat_NFI ZGBi/)) was calculated (Eq. 4), and the
uncertainty for each pixel was determined:

C195(Sat_NFI}gp, )
———72 % 100. (7)
mean (Sat_NFI XGB,v,)

ESat_NFI =

Finally, we applied the Landsat tree cover product from
2010 [47] to mask areas covered by forests.

Estimation of AGB and uncertainties at national scale

with LiDAR-AGB as calibration data

In the second modelling scenario at national scale, a
two-stage up-scaling method was applied. Similar to the
first modelling scenario, we applied the machine learn-
ing algorithm Cubist [55, 56] and used the same satel-
lite imagery (Sat,.,) as spatial predictors (Table 1).
As model calibration data we used 100 LiDAR-AGB
estimations (LiDAR4gp) that already include the esti-
mated error of field data and the model prediction
error for the LiDAR strips. Accordingly, 100 AGB maps
at national scale based on second modelling scenario
(Sat_LiDAR4gg) were estimated as:

Sat_LiDAR) gz, = cubist (LiIDAR} g, , Satiayers ) (8)
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Again, based on the 100 LiDAR-calibrated national AGB
estimates (Sat_LiDARjgg) the 95% confidence interval

(CI95 (Sat_LmﬁGBU)) was calculated (Eq. 4) and the

uncertainty for each pixel was determined:

C195(Sat_LiDAR} g5, )
——72 x100.  (9)
mean (Sat_LIDAR) g, )

&Sat_LiDAR =

Additionally to the modelling scenario based on all
LiDAR-AGB estimates, we estimated AGB at national
scale using LiDAR-AGB samples with uncertainties
below 50% (Sat_LiDARAGB,,cons0 )} This modelling sce-
nario was conducted in order to prevent the propagation
of high uncertainties of the LIDAR-AGB to the final AGB
map. The threshold of 50% is a trade-off between retain-
ing LiDAR samples for training and keeping the uncer-
tainties of the wall-to-wall map at a low level (i.e., a lower
threshold will lead to a lower number of training data; a
higher threshold will lead to higher uncertainties in the
wall-to-wall map). The number of remaining LiDAR-
AGB samples can be found in Fig. 4. In the next step,
we estimated the uncertainties for AGB map calibrated
with LiDAR-AGB pixels with uncertainties below 50%
(€Sat_LiDARuncert50) (Eq' 9)'

Eventually, all non-forest areas were discarded again
using the Landsat tree cover product from 2010 [47].

Validation of mean forest AGB maps at different scales
Both national AGB maps (based on NFI and LiDAR
training data) were validated at pixel level. For each mod-
elling scenario (ie, NFI- and LiDAR-calibrated AGB
models), we calculated a mean AGB value from 100
Monte Carlo realizations. Goodness-of-fit statistics (R?,
RMSE, bias) were calculated between NFI- and LiDAR-
calibrated mean AGB and the validation data set (“Study
area and field data” section) (Fig. 4).

The validation was also performed at hexagon and state
levels. Accordingly, we built a mesh of hexagons over the
country with an area of 650 km?/hexagon. For each hexa-
gon the modelled AGB (i.e., average of 100 Monte Carlo
realizations) and the AGB based on forest inventory were
extracted. The percentage of the forest cover per hexagon
was considered using as a weighting factor. The forest
areas were obtained from the Mexican National Insti-
tute for Statistics and Geography (INEGI) Land use map
[61], since this map was used to establish the field plots.
The national INEGI Land use map was generated using
visually interpretation of SPOT optical imagery and field
verification at a scale of 1:250,000.

For the validation at state level a similar procedure was
applied. For each federal state, AGB values from the mod-
elled maps and NFI plots were extracted and weighted by
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the forest area delineated from the INEGI Land use map
[61]. Finally, linear regressions and statistics (R?, RMSE,
bias) comparing modelled and field-estimated AGB were
calculated at hexagon and state levels.

Results

Estimation of AGB and uncertainties along the LiDAR strips
In order to apply a two-stage up-scaling method (“Esti-
mation of AGB and uncertainties at national scale with
LiDAR-AGB as calibration data” section), we first esti-
mated AGB along the LiDAR strips with the Cub-
ist machine learning algorithm. We propagated the
estimated field error (17%) to the AGB modelling run-
ning 100 Monte Carlo simulations (Eq. 3). From the 100
AGB estimations, we calculated the mean AGB, CI 95,
and the uncertainty for each single LiDAR pixel and plot-
ted the simulation results against field-estimated AGB
(Fig. 5a—c).
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Although the correlation between the mean estimated
AGB (from Monte Carlo) and field-estimated AGB was
strong (Fig. 5a), the uncertainties in the LiDAR-AGB
were very high and went up to 200% (Figs. 5¢, 6¢). The
absolute AGB uncertainties (in our case CI 95) increased
with increasing AGB (Fig. 5b). However, the highest rela-
tive uncertainties were found in areas with low biomass
(Fig. 5¢), as in these areas small absolute deviations easily
result in large relative uncertainties (Eq. 5).

Discrepancies between modelled and reference data
are caused by different factors. First, the high variations
in 100 LiDAR-AGB estimates (expressed in CI 95 and
uncertainties) can be caused by a low amount of train-
ing data (i.e., 312 field plots were used to extrapolate
AGB for more than 270,000 LiDAR samples), so that each
model run produced diverse results. Second, the time
lag between the acquisitions of LIDAR and NFI data was
between 2 and 9 years, which introduces the potential
for changes between both data acquisitons. Third, the
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sampled area of NFI data of 0.16 ha was extrapolated to
1 ha, i.e, for some plots an area of 0.16 ha may be not
representative for the 1 ha plot. Fourth, small inventory
plots (4 subplots with 0.04 ha size) are more affected by
geolocation errors, since they may not reflect the spatial
variability in the surrounding area. As reported in [26],
the errors in LiDAR-estimated AGB decrease exponen-
tially with a decreasing plot size, due to spatial averaging
of errors [62]. Finally, a universal AGB model developed
for different forest types can produce additional errors in
the prediction results.

Field-estimated AGB (used for calibration of LiDAR
metrics) and the modelled mean LiDAR-AGB showed
similar distribution with a mean AGB around 40-50 t/
ha, a standard deviation (SD) of 30-40 t/ha, and a maxi-
mum AGB up to 150-160 t/ha (Fig. 6a, b). In the mean
LiDAR-AGB, however, there were fewer pixels featuring
a low AGB (e.g., less than 10 t/ha) compared to the field-
estimated AGB. This is caused by the ensemble model
of decision trees [34, 63, 64], where single predictions of
each tree are averaged. These models in general tend to
shift the lowest and highest values towards the mean.
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As mentioned above (“Estimation of AGB and uncer-
tainties at national scale with LiIDAR-AGB as calibra-
tion data” section), we used LiDAR-AGB samples as
calibration data for satellite imagery. For this, we used all
LiDAR-AGB samples (271,216 1 ha LiDAR samples) as
well as LIDAR-AGB pixels with uncertainties below 50%
(68,395 1 ha LiDAR samples).

Estimation of AGB and uncertainties at national scale

with NFI-AGB as calibration data

Based on the satellite imagery, the 4794 NFI-estimated
AGB samples, and the Cubist machine learning algo-
rithm around 65 Mio. ha of forest land was mapped at
1 ha scale. We propagated the estimated field error (17%)
in the AGB modelling with 100 Monte Carlo simulations
(Eq. 6).

From the 100 AGB estimations, we calculated mean
AGB (Fig. 7), CI 95, and uncertainties (Fig. 8) for each sin-
gle 1 ha pixel. We attributed the last class as AGB > 120 t/
ha, since a signal saturation of SAR and optical data for a
high AGB range occurred [5, 53, 65, 66], and a relatively
small country area possess AGB values higher than 120 t/

Legend
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Fig. 7 National forest AGB map based on NFl-estimated AGB, satellite imagery, Cubist machine learning algorithm, and Monte Carlo analyses
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ha (Fig. 9a). In accordance to [6, 7], the highest forest
AGB were located in the tropical forests of the Yucatan
Peninsula (Fig. 7b) and Chiapas (Fig. 7a) as well as in the
mountain forests of Trans-Mexican Volcanic Belt (close
to Mexico City). Since we applied a forest mask with 10%
tree cover, the AGB in north-central parts of Mexico can
be underestimated. The total forest aboveground carbon
(AGC) was found to be 1.602 PgC (conversion factor of
0.48). This value is close to the Mexican forest carbon
stock according to FAO’s Forest Resource Assessment
2010 (1.688 PgC) [67]. The validation of the map at dif-
ferent scales is presented in section “Validation of forest
AGB maps at different scales”

Most forest areas in Mexico possessed AGB uncertain-
ties lower than 20-30% with a mean of 29.11% (Figs. 8,
9¢). The areas with the highest AGB uncertainties were
found in the states of Oaxaca, Chiapas, and Tabasco
(Fig. 8a). For instance, in the state of Tabasco the highest
uncertainties (higher than 90%) were estimated for man-
grove forests in Pantanos de Centla (Fig. 8a). In the states
of Oaxaca and Chiapas the highest uncertainties (up to
90%) occurred in the dense cloud forests of Sierra Madre

del Sur and Chimalapas tropical forests, respectively. In
contrast, the dense tropical forests of the Yucatan penin-
sula featuring high forest AGB (Fig. 7b) showed relatively
low uncertainties (Fig. 8b) ranging between 20 and 40%.
One reason for the low uncertainties is related to the
dense NFI network covering the entire peninsula.

Similar to the AGB estimation along the LiDAR strips,
the AGB distribution in the national NFI-calibrated map
was different at low and high AGB ranges compared to
the field-estimated AGB (Fig. 9a, b). This is again partly
caused by the characteristics of the ensemble model of
decision trees [34, 63, 64] (see above). Also, SAR and
optical imagery reached saturation level at high AGB
(> 100 t/ha) [5, 53, 65, 66]. The uncertainties in the
national NFI-calibrated AGB map were smaller com-
pared to the LiIDAR-AGB (Figs. 6¢, 9c). These lower vari-
ations can be caused by the fact that for the mapping at
national scale a much larger reference data set were avail-
able compared to the AGB mapping along the LiDAR
strips (4794 plots vs. 312 plots). Accordingly, the regres-
sion models become more robust.
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Fig. 9 a Histogram of field-estimated AGB used for calibration of satellite imagery; b histogram of estimated national forest AGB calibrated with
field-AGB; ¢ histogram of uncertainties in AGB map calibrated with field-AGB

Estimation of AGB and uncertainties at national scale

with LiDAR-AGB as calibration data

Using the same satellite imagery as for the first model-
ling scenario (“Estimation of AGB and uncertainties at
national scale with NFI-AGB as calibration data’, “Esti-
mation of AGB and uncertainties at national scale with

LiDAR-AGB as calibration data” sections) and 271,216
LiDAR-estimated AGB values as calibration data, we
applied the Cubist machine learning algorithm to map
forest AGB in Mexico at 1 ha scale (Fig. 10). Similar to the
NFI-calibrated AGB map, the highest AGB in the LiDAR-
calibrated map occurred in the Yucatan Peninsula,
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Fig. 10 National forest AGB map based on LiDAR-estimated AGB, satellite imagery, Cubist machine learning algorithm, and Monte Carlo analyses
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Chiapas and Trans-Mexican Volcanic Belt. However, in
contrast to the NFI-calibrated map, one of the areas fea-
turing the highest AGB was located in the Chimalapas
and Lacandon tropical forests (Figs. 8a, 10a). Further-
more, the spatial AGB pattern in the Yucatan peninsula
shows clear differences between both maps (Figs. 8b, 10b,
18). Since we applied a forest mask with 10% tree cover,
the AGB in north-central parts of Mexico can be under-
estimated. The total forest aboveground carbon (AGC)
was estimated to be 1374 PgC (conversion factor of 0.48),
and thus lower compared to the NFI-calibrated AGB map
(1602 PgC) as well as compared to the Mexican forest
carbon stock according to FAO’s Forest Resource Assess-
ment 2010 (1.688 PgC) [67]. The validation of the map at
different scales is presented in section “Validation of for-
est AGB maps at different scales”.

When using all LIDAR-AGB values (i.e., with uncer-
tainties up to 200%), the uncertainties in LiDAR-AGB
propagated to the final AGB map. Accordingly, the
national forest AGB map based on all LIDAR-AGB fea-
tured high uncertainties (Fig. 11). Most forest areas in
Mexico showed uncertainties between 60 and 90% with
a mean of 65.86% (Fig. 12c). High uncertainties (> 60%)
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occurred in areas with low forest AGB (< 60-80 t/ha),
while in areas with high forest AGB (> 80 t/ha) the AGB
uncertainties were lower (20-40%) (Figs. 10, 11).

In the next modelling scenario we used only LiDAR-
AGB pixels with uncertainties below 50% (henceforth
LiDAR-AGB_50%). The majority of the pixel with uncer-
tainties > 50% were located in areas with low forest AGB
(“Estimation of AGB and uncertainties along the LIDAR
strips” section). For this reason, the forest AGB map
calibrated with LiDAR-AGB_50% possessed higher AGB
values than the map calibrated with all LIDAR-AGB pix-
els (Figs. 10, 12, 14). The highest AGB occurred in the
Yucatan Peninsula, Chiapas and Trans-Mexican Vol-
canic Belt. The total forest aboveground carbon (AGC)
was 1966 PgC (conversion factor of 0.48), and thus
higher than the NFI-calibrated AGB map (1602 PgC), the
LiDAR-calibrated AGB with all LIDAR-AGB pixels (1374
PgC) as well as Mexican forest carbon stock according
to FAO’s Forest Resource Assessment 2010 (1.688 PgC)
[67]. The validation of the map at different scales is pre-
sented in section “Validation of forest AGB maps at dif-
ferent scales”
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Fig. 11 Estimated uncertainties (incl. error in field data, model prediction errors: NFI to LIDAR and LiDAR to satellite imagery) based on all LIDAR-
estimated AGB, satellite imagery, Cubist machine learning algorithm, and Monte Carlo analyses
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Fig. 12 National forest AGB map based on LiDAR-estimated AGB (with uncertainties < 50%), satellite imagery, Cubist machine learning algorithm,

When LiDAR-AGB_50% were used, the uncertainties
in the national forest AGB map were reduced by 20-40%
compared to the map calibrated with all LIDAR-AGB
(Figs. 11, 13, 14c, d). In contrast to the AGB map cali-
brated with all LIDAR-AGB pixels, here the areas with
low forest AGB showed similar uncertainties as the areas
with high AGB ranging between 20 and 40%. The high-
est uncertainty (> 80%) in the forest AGB map calibrated
with LiIDAR-AGB_50% were found in the mangrove for-
ests of Tabasco in Pantanos de Centla, which is similar
to the NFI-calibrated AGB map (Figs. 8a, 13a). Further-
more, similar high AGB uncertainties were estimated in
the north-eastern part of Mexico (state Coahuila). Possi-
ble reasons for this could be a combination of factors: (1)
no LiDAR strips and only few NFI plots were available for
this region, (2) and steep topography that effected radar
backscatter.

As mentioned previously, the forest AGB map cali-
brated with all LiDAR-AGB pixels showed lower AGB
values as the map calibrated with LIDAR-AGB_50%. Fig-
ure 14a and b showed that the histogram of the map cali-
brated with LIDAR-AGB_50% was shifted towards higher

AGB values. The opposite shift towards lower uncertain-
ties was observed in the national forest AGB map that
was calibrated with LIDAR-AGB_50% (Fig. 14c, d).

Validation of forest AGB maps at different scales

The first validation was conducted at pixel level. Three
maps were validated independently using forest inventory
plots that were not used for model calibration (Fig. 15). The
goodness-of-fit statistics were similar for all three AGB
maps with similar values for R? and RMSE, but a lower
bias for the AGB map calibrated with LiDAR-AGB_50%
(Fig. 15b, c). Obviously, all three maps underestimated
the AGB in the upper range (i.e., 100-120 t/ha). This can
be caused by the fact that SAR and optical imagery satu-
rated at high AGB level, and thus became less sensitive for
AGB. Furthermore, only a small amount of training data
for areas with high AGB was available. This fact caused an
underrepresentation of high AGB during the training pro-
cess. Also, as already mentioned above, tree-based models
tend to underestimate in the high range and to overesti-
mate in the low range [34, 64]. Finally, temporal mismatch
between the reference and satellite data could degrade the
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Fig. 13 Estimated uncertainties (incl. error in field data, model prediction errors: NFI to LiDAR and LiDAR to satellite imagery) based on LiDAR-
estimated AGB (with uncertainties < 50%), satellite imagery, Cubist machine learning algorithm, and Monte Carlo analyses

model performance (e.g., potential change within the field
plots, as was shown in [33]).

The second validation scale was the hexagon level.
Due to spatial aggregation improved correlations were
observed. All maps showed similar goodness-of-fit sta-
tistics (Fig. 16a—c). At hexagon level a slight underesti-
mation of AGB is visible, as the most of the dots in the
scatterplots were located below the 1:1 line.

At the state scale the NFI- and LiDAR-calibrated AGB
maps correlated clearly with field-estimated forest area
weighted AGB (Fig. 17). However, all three AGB maps
showed underestimation of the forest AGB for all federal
states. The smallest deviation from the 1:1 line (and the
smallest RMSE) was found for the AGB map calibrated
with LIDAR-AGB_50%.

Discussion

Since NFI data are labor intensive and time consuming,
and thus limited in time and space (i.e., point measure-
ments), many remote sensing based applications use
very high resolution data as reference to assess AGB.
For instance, airborne LiDAR can drastically increase

the number of reference data [68, 69]. In this study, we
showed that LiDAR-based AGB should be used with
great care for further up-scaling to satellite imagery.
Although the NFI-calibrated and LiDAR-calibrated AGB
maps showed similar validation results at three spatial
scales, the LiDAR-calibrated AGB maps contain much
larger uncertainties compared to the NFI-calibrated
map. In this study, the uncertainties in the LiDAR-based
AGB were much higher than the errors in the field data.
These errors were propagated further to the wall-to-wall
map. This resulted in very high variation of the national
LiDAR-calibrated AGB. To reduce uncertainties and vari-
ations in the LiDAR-calibrated AGB map, we removed
reference LiDAR-AGB pixels with high uncertainties.
Consequently, the national forest AGB map calibrated
with LiDAR-AGB_50% showed similar uncertainties
(20—-40%) as the forest AGB map calibrated with NFI data
only. For further exploitation of an AGB map (e.g., deci-
sion making, modelling of C-fluxes) as well as to identify
variance of the estimated AGB, a proper characterization
of uncertainties and its analysis is a crucial step.
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Furthermore, both AGB maps (NFI- and LiDAR-cal-  Chimalapas and Lacandon forests due to the lack of
ibrated) showed different spatial patterns of AGB. For independent reference data. Different AGB distributions
instance, the AGB estimates of dense tropical forests in  were observed in the Yucatan peninsula as well (Fig. 18b),
Oaxaca and Chiapas (Chimalapas and Lacandon for-  although a dense NFI network and LiDAR strips were
ests) showed a difference of 50-100 t/ha (Fig. 18a). The  available here.
underestimation of AGB of the NFI-calibrated map can Both AGB maps showed an underestimation at high
be caused by the fact that no or a limited number of AGB level compared with field-plot estimates (Fig. 15).
NFI plots were available for these areas. However, we The reasons as already discussed above are related to the
could not independently validate both AGB maps for model characteristics and the insufficient sensitivity of
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the satellite data for AGB at high levels (Fig. 15). These
shortcomings can be partly solved through bias-cor-
rection approaches [34, 63] as well as through a greater
amount of high quality reference data for high AGB
intervals. Regarding satellite data the use of multi- or
hyper-temporal imagery can potentially help to mitigate
the signal saturation issue [70, 71]. Furthermore, the
future P-band SAR mission BIOMASS [72] will provide
data with a higher saturation level in forest covered areas.
Eventually, considerable deviations between the AGB
maps were observed in areas with steep slopes (beside
the Yucatan peninsula) (Fig. 18). Accordingly, advanced
terrain-correction methods for SAR imagery [e.g., 73, 74]
and new accurate DEM products (e.g., TanDEM-X DEM)
should be analyzed and included to further improve AGB
estimations for mountainous regions.

Since there are several studies aiming at national
AGB mapping for Mexico [6, 7, 12], a comprehensive

comparison of the different products available is desir-
able. There is a clear need to support Mexico’s local
authorities (e.g., CONAFOR, CONABIO) to identify and
understand similarities and discrepancies of the different
AGB maps as well as the source of errors.

An important issue in forest AGB mapping in Mexico
is the agreement on a forest definition or a forest covered
area of interest, respectively. For instance, in [6] the total
AGC varied by 44% (2.21 PgC vs. 1.53 PgC), depend-
ing on whether a forest mask was applied. Rodriguez-
Veiga et al. [7] applied different forest mask to calculate
national forest AGC and concluded that total national
forest AGC varied by 31% (lowest forest AGC of 1.47 PgC
vs. highest forest AGC of 1.92 PgC). Therefore, a consist-
ent and accurate national forest mask is crucial to assess
national forest carbon stocks.
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Conclusion

The results of this study indicated that ignoring errors
in the LiDAR-estimated AGB can lead to much higher
uncertainties in the final wall-to-wall AGB map com-
pared to the field to satellite up-scaling. Although the
delineated forest AGB products showed similar good-
ness-of-fit statistics at different scales compared to the
validation NFI data set (Figs. 15, 16, 17), we computed
clearly higher uncertainties in the LiDAR-calibrated
AGB map compared to the NFI-calibrated map. When
we removed LiDAR-estimated pixel with high uncertain-
ties, we could estimate national forest AGB with similar
uncertainties as with NFI data.

Furthermore, we observed different spatial patterns
of AGB in regions where no or only a limited number
of NFI data were available (conservation areas in tropi-
cal forests (e.g., Chimalapas and Lacandon forests). A set
of independent field plots for these regions would help
to analyze and validate the presented results. Moreover,
AGB at high level (> 100 t/ha) was underestimated in
both modelling scenarios. We suggest that a greater num-
ber of high quality field data in dense tropical forest can
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mitigate this issue. Furthermore, the implementation of
dense time series of satellite data will help to improve the
model results. Thus, the forthcoming L-band missions
(NISAR and SAOCOM) and in particular ESA’s P-band
mission BIOMASS are of great interest.

Since LiDAR data can be acquired for much larger
areas than field inventory data, LiDAR is an extremely
important tool for repetitive reference data acquisitions
over large areas, in particular in areas where the amount
of NFI data are limited (e.g., restricted or inaccessible
areas). Furthermore, in contrast to point measurements
of field data, LiDAR captures spatial variability, which is
beneficial at heterogeneous tropical forests. Neverthe-
less, we showed here that a two-stage up-scaling method
needs to be analyzed and validated with great care. Field
inventory is an essential tool to measure and observe eco-
logical processes at local scale as it can provide a higher
level of data richness when compared to LiDAR. We
believe though that LiDAR can be used as an extension
to NFI, for example, for areas that are difficult or not pos-
sible to access. Therefore, future research can investigate
an integration of airborne LiDAR data into field inven-
tory for forests carbon stock assessments (e.g., a trade-
off between map accuracy (i.e., user requirements) and
resulting costs (i.e., number of NFI and LiDAR data)).
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