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SUPPORTING MATERIAL 
 

“Bayesian approach to MSD-based analysis of particle motion in live cells” 
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SUPPLEMENTARY METHODS 
 
Simulated particle trajectories. Diffusive single-particle trajectories were simulated in 
3D by drawing random steps in each of the three Cartesian directions from a Gaussian 
distribution with zero mean and standard deviation equal to 2𝐷𝑑𝑡, where 𝐷 is the 
diffusion coefficient and 𝑑𝑡 is the time interval for each step. Confinement of a diffusing 
particle was modeled as a reflecting spherical boundary of radius 𝑅!  centered at the 
initial particle position. Directed flow was modeled by adding a fixed displacement 𝐯𝑑𝑡 
to the diffusive motion at each time step, where 𝐯 is the velocity vector. 
 
Fluorescent markers and bead preparation. mEGFP-UtrCH (1) was subcloned into 
pGEMHE for in vitro transcription as described in Lenart et al (2). Capped mRNAs were 
synthesized from linearized templates using the mMessage mMachine kit (Ambion), and 
dissolved in 11 µl RNase-free water (typically at 1-2 µg/µl). Streptavidin-coated 0.2 µm 
diameter green fluorescent microspheres (Invitrogen) were incubated with biotin-PEG-
OH (MW 3,000) (Iris Biotech GmbH) and 3% BSA in PBS overnight at RT to make 
them inert and electrostatically neutral (3). 
 
Chromosome and bead imaging in starfish oocytes. Chromosomes were imaged as 
previously described (4). For bead imaging, we expressed mEGFP-UtrCH by injecting 
mRNA (1% of the oocyte volume) into oocytes and incubating overnight. After oocytes 
expressed sufficient levels of protein to inhibit actin network contraction, beads were 
injected into oocyte nuclei, and meiotic maturation was triggered by the addition of 10 
µM 1-methyladenine (Sigma). Microscopy was done on a Zeiss LSM780 Axiovert 
confocal microscope using a 40x C-Apochromat 1.2 NA water immersion objective lens. 
 
MSD calculation and error estimation. MSD curves were calculated for each particle 
trajectory according to Eq. 1.  Estimation and regularization of the MSD error covariance 
matrix 𝐂  was carried out as described in Supplementary Note 1 using multiple 
observations of the MSD values as a function of time lag 𝜏. These multiple observations 
came either from MSD curves estimated from different particle trajectories or from MSD 
curves estimated from sub-trajectories within a single particle trajectory, as described in 
the main text and in Supplementary Note 1.2. The multiple observations of the MSD 
values were also used to calculate a mean MSD curve for the model fitting and model 
selection procedure. 
 
Model fitting and model selection. Mean MSD curves obtained from simulated or 
experimental trajectories were fit with the models given in Eqs. 2-5 (as well as additive 
combinations of Eq. 5 with Eqs. 2-4) using the Bayesian approach described in the main 
text. Generalized least squares was implemented by transforming the fitting equation with 
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a transformation matrix 𝐀 equal to the inverse of the Cholesky decomposition of 𝐂, such 
that the resulting equation 𝐀𝐲 = 𝐀𝐟 𝐱;𝛃 + 𝐀𝛜  has uncorrelated errors. In this 
transformed coordinate system, ordinary least squares can be used to obtain the 
maximum likelihood estimate for the parameters. Estimation of 𝛃!,!"# and 𝚺!,!"# for 
each model 𝑓! was carried out in MATLAB  (The MathWorks, Inc., Natick, MA) using 
the function lsqcurvefit. The marginal likelihood and model probability calculations 
were implemented in MATLAB, with the prior probability of the parameters for each 
model assumed to be uniform over a range 𝛽!"

(!"#) and 𝛽!"
(!"#) for each parameter 𝛽!" in 

the set 𝛃!, such that, 
𝑃 𝛃! 𝑀! = !

!!"
(!"#)!!!"

(!"#)
!

 .    

 
As in previous work, we chose the ranges 𝛽!"

(!"#)  and 𝛽!"
(!"#)  to be centered at the 

maximum likelihood estimate of each parameter and to span 200 times the uncertainty 
(standard deviation) in that parameter (5). Thus, parameters with higher uncertainties 
reduce the likelihood of a model more than parameters with smaller uncertainties (6, 7). 
 
 
SUPPLEMENTARY NOTE 1. Noise correlations in MSD curves. 
 
1.1) Origin and effects of correlated noise in MSD curves. 
 
Particle motion typically contains a stochastic diffusive component, with each step in the 
particle trajectory representing a single observation of the stochastic process. The 
stochastic nature of diffusion and the finite observation time of the trajectory will result 
in a deviation of the observed MSD curve from the stationary MSD curve even in the 
absence of any error in the particle position measurements (localization error). When a 
trajectory is used to calculate mean square displacement values (as in Eq. 1 of the main 
text), the same set of steps—grouped into different sized windows—is used to calculate 
the MSD value at each time lag 𝜏. In other words, the same observations are reused for 
each calculation. This process leads to strong correlations in the deviations of the 
calculated MSD values from their expected values (Figure 1A in the main text), with any 
individual MSD curve deviating from the analytical form of the MSD that is 
asymptotically correct only in the limit of infinite trajectory length. The deviation of the 
mean MSD curve from the analytical MSD curve is also correlated in 𝜏  because 
averaging MSD curves improves the estimate of the mean but does not eliminate 
correlations. For a purely diffusing particle in the absence of localization error, an 
analytical solution for the noise covariance along the MSD curve has been derived (8, 9) 
and is shown in Figure 1A in the main text. Note that the magnitude of the noise 
correlations increases with larger values of 𝜏. 
 
Over-fitting in the presence of correlated errors occurs because some of these correlated 
fluctuations around the analytical MSD values have shapes that can be fit by the extra 
parameters of models that are more complex than the true model. For example, the 
confined diffusion model can fit correlated noise in pure diffusion MSD curves that 
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causes the curve to trend downward at large time lags, and the diffusion plus flow model 
can fit correlated noise in pure diffusion MSD curves that causes the curve to trend 
upward at large time lags. Fitting by weighted least squares, which ignores correlations, 
rather than by generalized least squares as described in the main text results in a wide 
range of preferred models (Supplementary Figure 1A). Performing generalized least 
squares fitting using the theoretical MSD covariance structure for simple diffusion (8, 9) 
during the model selection process for these pure diffusion simulations eliminates this 
overfitting, resulting in consistent preference for the true model (pure diffusion) 
independent of how many single-trajectory MSD curves are averaged to obtain the mean 
curve (Supplementary Figure 1B). These results demonstrate that accounting for the 
effect of correlated noise is essential for properly analyzing and interpreting MSD curves, 
particularly when the true particle motion is a simple model such as pure diffusion. The 
degree to which correlated noise impacts model selection varies depending on the true 
type of motion and the set of models included in the model selection process.  
 
1.2) Estimating the sample MSD noise covariance matrix. 
 
The noise covariance matrix may be estimated from multiple independent observations of 
the MSD curve, yielding the sample covariance matrix 𝐒. The multiple MSD curves used 
to calculate 𝐒 must be derived from independent, non-overlapping particle trajectories. As 
described in the main text, these independent MSD curves can be obtained either from 
multiple particle trajectories or from splitting a single particle trajectory into multiple 
non-overlapping and independent sub-trajectories. In the latter case, the full trajectory of 
𝑁 − 1 steps (𝑁 position measurements) is divided into 𝐽 non-overlapping sub-trajectories 
of (𝑁 − 1)/𝐽   steps each. In the case of splitting single particle trajectories there is a 
tradeoff between accurate estimation of the covariance matrix (which improves with the 
number of sub-trajectories 𝐽) and the time range spanned by the MSD curve, which is 
limited by the number of steps in the sub-trajectories. Given 𝐽 independent observations 
𝐲(!)

!!!
!

 of MSD values over the same set of time lags, whether from multiple or single 
trajectories, the residuals between each individual MSD curve and the mean MSD curve 
are used to estimate the variance and the covariance of the noise in the MSD estimates. 
For each MSD curve 𝑗, the residual at each time lag 𝜏! is given by, 
 

𝜖!(!) = 𝑦!(!) − 𝑦! ,  (S1) 
 
where 𝑦! = 𝑦!(!)/𝐽! . The entries in the sample covariance matrix 𝐒 for the mean MSD 
curve are then equal to, 
 

S!!! =
!

! !!!
𝜖! ! 𝜖!! !

!
!!!  .  (S2) 

 
 
1.3) Regularizing the sample MSD noise covariance matrix. 
 
When the number of available MSD curves 𝐽 is less than the number of points in the 
MSD curve, the sample noise covariance matrix 𝐒  is typically singular, requiring 
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regularization to obtain a non-singular covariance matrix 𝐂 to carry out generalized least 
squares estimation as described in the main text. We tested multiple regularization 
methods based on an empirical Bayesian shrinkage approach (10-12). The shrinkage 
estimator is a linear combination of the sample covariance matrix and a shrinkage target 
𝐓, 
 

𝐒∗ = 𝜆𝐓+ (1− 𝜆)𝐒 ,  (S3) 
 
where 𝜆  is the shrinkage weight, which is calculated from the uncertainty in 𝐒  as 
described in Schafer & Strimmer (11). As the number of independent curves 𝐽 increases, 
the uncertainty in 𝐒 decreases and the shrinkage weight also decreases so that 𝐒∗ is closer 
to 𝐒. The shrinkage estimator 𝐒∗ is then used as the covariance matrix 𝐂 in GLS fitting of 
the mean MSD curve. 
 
We found that shrinkage to a target that is a diagonal matrix with the mean MSD variance 
along the diagonal (“Target B” in Schafer & Strimmer (11)) performs best when low 
numbers of observed MSD curves are available (Supplementary Figure 1C). This method 
performs nearly as well as using the analytical covariance matrix in the case of normal 
diffusion (compare Supplementary Figure 1B and 1C). It gives model preferences that are 
nearly indistinguishable from those obtained using the analytical covariance matrix when 
10 or more MSD curves are used and on average continues to prefer the true pure 
diffusion model down to 4 independent MSD curves (Supplementary Figure 1C), which 
we found was the minimum number of curves that could be used to reliably obtain a non-
singular covariance matrix. 
 
 
SUPPLEMENTARY NOTE 2. Effect of particle heterogeneity on model selection. 
 
2.1) Heterogeneity in velocity. 
 
For particles undergoing directed motion, the contribution of the directed motion to the 
MSD curve is given by Eq. 5 in the main text: 𝑀𝑆𝐷! 𝜏 = 𝑣!𝜏!. If there is heterogeneity 
in the value of 𝑣 for each particle, such that each particle 𝑗 of 𝐽 total particles has a 
velocity 𝑣!, then the mean MSD curve takes the form, 
 

𝑀𝑆𝐷! 𝜏 = !
!

𝑣!!𝜏!
!
!!! = !

!
𝜏! 𝑣!!

!
!!!  .  (S4) 

 
This mean MSD curve has the same quadratic dependence on 𝜏 as the original MSD 
curve for directed motion, with an effective 𝑣 for the heterogeneous population given by, 
 

𝑣!"" =
!
!

𝑣!!
!
!!!  .  (S5) 

 
In this case, the directed motion model will still be a good fit to the heterogeneous MSD 
curve, but the 𝑣!!! parameter is biased toward the larger magnitude velocities in the 
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particle population and will be greater than the mean velocity in the population (see 
Figure 3B in the main text). Sub-classification of particles is required to remove the 
effect of heterogeneity on the observed mean velocity, as described in the main text. 
 
2.2) Heterogeneity in diffusion coefficient. 
 
For particles undergoing pure diffusion, the contribution of the diffusive motion to the 
MSD curve is given by Eq. 2 in the main text: 𝑀𝑆𝐷! 𝜏 = 6𝐷𝜏. If there is heterogeneity 
in the value of 𝐷 for each particle, such that each particle 𝑗 of 𝐽 total particles has a 
diffusion coefficient 𝐷!, then the mean MSD curve takes the form, 
 

𝑀𝑆𝐷! 𝜏 = !
!

6𝐷!𝜏
!
!!! = !

!
6𝜏 𝐷!

!
!!!  .  (S6) 

 
This mean MSD curve has the same linear dependence on 𝜏 as the original MSD curve 
for pure diffusion, with an effective 𝐷 for the heterogeneous population given by, 
 

𝐷!"" =
!
!

𝐷!
!
!!!  .  (S7) 

 
In this case, the pure diffusion model will still be a good fit to the heterogeneous MSD 
curve, and the 𝐷!""  parameter is equal to the mean diffusion coefficient of the 
population. 
 
2.3) Heterogeneity in confinement radius. 
 
For particles undergoing confined diffusion, the contribution of the diffusive motion to 
the MSD curve is given by Eq. 4 in the main text: 𝑀𝑆𝐷!" 𝜏 = 𝑅!! 1− 𝑒!!!"/!!

!
. If 

there is heterogeneity in the value of 𝑅!  for each particle, such that each particle 𝑗 of 𝐽 
total particles has a confinement radius 𝑅!!, then the mean MSD curve takes the form, 
 

𝑀𝑆𝐷!" 𝜏 = !
!

𝑅!!! 1− 𝑒!!!"/!!
!
!!

!!!  .  (S8) 
 
Unlike the models above, this mean MSD curve does not have the same 𝜏 dependence as 
the original MSD curve for confined diffusion and can no longer be described by the 
confined diffusion model with a single effective confinement radius. At low 
heterogeneity in 𝑅! , the confined diffusion model may still describe this behavior better 
than the other tested models if the long-time plateau region in the MSD is still present, in 
which case this model may still be preferred by Bayesian inference (see Figure 3B in the 
main text), but with large variability in model parameters due to the increased apparent 
noise in the mean MSD. 
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SUPPLEMENTARY FIGURE 1. Accounting for noise covariance in MSD curves. 
 

 
 
(A) Model probabilities obtained using weighted least squares fitting (ignoring noise 
covariance). Mean MSD curves with 100 points were calculated by averaging a variable 
number (shown on the x-axis) of independently simulated trajectories undergoing pure 
diffusion with the same parameters as in Figure 1A in the main text. The resulting model 
probabilities are shown as means and standard deviations over 40 repetitions of the 
simulations and inference procedure. The model probabilities can also be converted into a 
misclassification rate (bottom panel), where incorrect classification is defined as 
occurring when the probability of the true D model is less than 0.8 for a given mean MSD 
curve.  
 
(B) Model probabilities obtained using generalized least squares (GLS) fitting 
(accounting for noise covariance) of the simulated trajectories undergoing pure diffusion 
as in (A), using the analytical form of the noise covariance (8, 9) (as shown in Figure 1A 
of the main text) as the covariance matrix 𝐂. Light blue shading indicates the range over 
which the true model (pure diffusion, D) can be resolved given the simulated 
experimental parameters. 
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(C) Model probabilities obtained using GLS fitting as in (B), but using the regularized 
sample noise covariance matrix (see Supplementary Note 1.2 and 1.3) as the covariance 
matrix 𝐂. 
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SUPPLEMENTARY FIGURE 2. Effect of localization error on model inference. 
 

 
 
(A) Model probabilities for simulated trajectories undergoing diffusion plus flow with 
time sampling interval 𝑑𝑡 = 2.5 s, total time 𝑇 = 300 s, 𝐷 = 0.005 µm2/s, and 𝑣 = 0.03 
µm/s. Localization error is also simulated at each time step by drawing an ‘observed’ 
particle position from a Gaussian distribution centered on the simulated ‘true’ position, 
with standard deviation 𝜎! as shown along the x-axis. MSD curves with 30 points (up to a 
𝜏!"# of 75 s) were calculated for datasets of 30 independently simulated trajectories, the 
resulting model probabilities are shown as means and standard deviations over 50 
repetitions of the simulations and inference procedure, and misclassification rate (bottom 
panel) is defined using a 0.8 probability threshold as in Figure 2A of the main text. Light 
blue shading indicates the range of localization errors over which the true model 
(diffusion plus flow, DV) can be resolved given the simulated experimental parameters. 
Here only models that do not include a constant term were included in the fitting process 
to illustrate the effect of ignoring localization error. Note that localization error does not 
have a significant effect on model probabilities until its contribution to the analytical 
MSD curve, 𝑀𝑆𝐷!"# 𝜏 = 6𝐷𝜏 + 𝑣!𝜏! + 6𝜎!!, for diffusion plus flow with localization 
error (see main text) becomes comparable to the contributions from diffusive motion and 
directed motion, which occurs when 6𝜎!!  ~  6𝐷𝜏 + 𝑣!𝜏!. At higher levels of localization 
error, an overly-complex model (DAV) is selected because the appropriate models 
accounting for localization error are not present. 
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(B) Model probabilities for trajectories simulated as in (A), but now including models 
with an additional constant term 6𝜎!! to model localization error (as described in the main 
text) in the set of fit models. For example, “DVE” refers to a model including a diffusion 
term, a velocity term, and a localization error term with MSD equation as given in the 
legend for (A) above. Testing this full set of models with and without the localization 
error terms restores the ability to resolve the correct physical process (diffusion plus 
flow) even at high levels of localization error.  
 
  



	
   10	
  

SUPPLEMENTARY FIGURE 3. Resolving confined diffusion with sampling 
limitations. 
 

 
 
Additional sampling limitation tests to accompany Figure 3A in the main text. 
Trajectories are simulated as in Figure 3A (left panel) but at a fixed confinement radius 
𝑅!  = 1.5 µm and systematically varying one of the sampling parameters. “S” represents a 
stationary-particle model including only a constant term, as described in the main text. 
 
(A) The number of trajectories per dataset 𝑛 is varied from 30 down to 4, as in Figure 
2B (left panel) in the main text. 
 
(B) The total trajectory time 𝑇 is varied from 300 s down to 40 s (from 120 steps to 16 
steps per trajectory), as in Figure 2B (center panel) in the main text. The number of points 
in the MSD curves is held constant at 1/4 of the number of steps in the trajectory. 
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