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1  | INTRODUC TION

Accurate species identification is the basis for all aspects of taxo-
nomic research and is an important component of workflows in 
biological research, including medicine, ecology and evolutionary 
studies. Many activities, such as studying the biodiversity richness 
of a region, monitoring populations of endangered species, deter-
mining the impact of climate change on species distribution and 
weed control actions depend on accurate identification skills. These 
activities are a necessity for e.g. farmers, foresters, pharmacologists, 

taxonomists, conservation biologists, technical personnel of envi-
ronmental agencies or just fun for laypersons (Austen, Bindemann, 
Griffiths, & Roberts, 2016; Farnsworth et al., 2013). Automating 
the task and making it feasible for non- experts is highly desirable, 
especially considering the continuous loss of biodiversity (Ceballos 
et al., 2015) and of experienced taxonomists (Hopkins & Freckleton, 
2002).

The fast development and ubiquity of relevant information 
technologies in combination with the availability of portable de-
vices such as digital cameras and smartphones resulted in a vast 
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Abstract
1. Accurate species identification is the basis for all aspects of taxonomic research 

and is an essential component of workflows in biological research. Biologists are 
asking for more efficient methods to meet the identification demand. Smart mo-
bile devices, digital cameras as well as the mass digitisation of natural history col-
lections led to an explosion of openly available image data depicting living 
organisms. This rapid increase in biological image data in combination with mod-
ern machine learning methods, such as deep learning, offers tremendous oppor-
tunities for automated species identification.

2. In this paper, we focus on deep learning neural networks as a technology that ena-
bled breakthroughs in automated species identification in the last 2 years. In order 
to stimulate more work in this direction, we provide a brief overview of machine 
learning frameworks applicable to the species identification problem. We review 
selected deep learning approaches for image based species identification and  
introduce publicly available applications.

3. Eventually, this article aims to provide insights into the current state-of-the-art in 
automated identification and to serve as a starting point for researchers willing to 
apply novel machine learning techniques in their biological studies.

4. While modern machine learning approaches only slowly pave their way into the 
field of species identification, we argue that we are going to see a proliferation of 
these techniques being applied to the problem in the future. Artificial intelligence 
systems will provide alternative tools for taxonomic identification in the near 
future.
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number of digital images that are openly available in online data-
bases. Examples highlighting the wealth of images captured by 
researchers and the public are the iNaturalist (675,000 images of 
5,000 species, Van Horn et al., 2017) and the Zooniverse (1.2 million 
images of 40 species; Swanson et al., 2015) databases. Furthermore, 
the mass digitisation of natural history collections has become a 
major goal at museums around the world and has already resulted 
in large digital datasets. For example, the iDigBio portal, a nationally 
funded aggregator of museum specimen data, currently provides 
more than 1.8 million georeferenced images of vascular plant spec-
imens (Willis et al., 2017). Such large image datasets in combination 
with the latest advances in machine learning technologies bring  
automating image based species identification to reality.

Considerable research in the field of computer vision and ma-
chine learning resulted in a plethora of papers proposing and com-
paring methods on automated species identification (Wäldchen & 
Mäder, 2018; Weinstein, 2018). Most of these studies published 
were conducted by technical specialists in computer vision, ma-
chine learning and multimedia information retrieval making the 
proposed methods difficult to access for biologists (Wäldchen & 
Mäder, 2018).

However, machine learning software becomes more and more 
user- friendly enabling people without substantial computer sci-
ence background to individually apply the latest algorithms to 
their problems and datasets. Nonetheless, a basic understand-
ing of the applied technologies and some time to get acquainted 
with them is still required. In this paper, we give a brief intro-
duction into the state- of- the- art in machine learning techniques 

applicable for automated species identification. More specifically, 
we introduce the basic concepts, give an overview of existing ma-
chine learning frameworks, introduce the latest studies applying 
machine learning for species identification and discuss future  
research directions.

2  | MACHINE LE ARNING IN COMPUTER 
VISION

Today, machine learning is the fastest growing field in computer 
science pervading fields as diverse as marketing, health care, 
manufacturing, information security and transportation. The main 
reason for this literal “explosion” of the technique is the availabil-
ity and confluence of three things: (a) faster and more powerful 
computer hardware, i.e. massively parallel processors and gen-
eral purpose graphics processing units (GP- GPUs); (b) software 
algorithms that take advantage of these computational architec-
tures; and (c) almost unlimited amounts of training data for a given 
problem, such as digital images, digitized documents, social media 
posts or observations with geolocation. Machine learning is a form 
of artificial intelligence that can perform a task without being spe-
cifically programmed to solve it. Instead, it learns from previous 
examples of the given task during a process called training. After 
training, the task can be performed on new data in a process called 
inference (Mjolsness & DeCoste, 2001). Machine learning espe-
cially helps in extracting information from large amounts of con-
tinuously growing data and is particularly useful for applications 

F IGURE  1 Typical human and computer vision pipeline for species identification. The machine learning platform takes in an image and 
outputs the confidence scores for a predefined set of classes
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where the data is difficult to model analytically, for instance, ana-
lyzing image and video content.

Computer vision is a field of computer science that deals with 
gaining understanding and insights from digital images and videos. 
From the perspective of engineering, it seeks to automate tasks that 
the human visual system can do (Sonka, Hlavac, & Boyle, 2014). A 
computer vision machine learning pipeline consists of two phases: 
feature extraction and classification. Figure 1 shows a computer vi-
sion pipeline for plant species identification as an example explain-
ing basic computer vision terminology. Solutions for image based 
species identification tasks are manifold and were comprehensively 
surveyed before, e.g. by Cope, Corney, Clark, Remagnino, and Wilkin 
(2012); Moniruzzaman, Islam, Bennamoun, and Lavery (2017); 
Seeland, Rzanny, Alaqraa, Wäldchen, and Mäder (2017); Wäldchen 
and Mäder (2018); Weinstein (2018).

2 .1  | Feature extraction

Feature extraction transforms the raw data into meaningful repre-
sentations for a given classification task. Images are typically com-
posed of millions of pixels with associated colour information each. 
The high dimensionality of these images is reduced by computing ab-
stract features, i.e. a quantified representation of the image retaining 
relevant information for the classification problem (e.g. shape, tex-
ture or colour information) and omitting irrelevant. Traditionally, fea-
tures to be extracted were designed by domain experts in a typically 
long term and rather subjective manual process. For instance, it was 
observed that humans are sensitive to edges in images. Many well- 
known computer vision algorithms follow this pattern and use edge 

or gradient based features, e.g. the scale invariant feature transform 
(SIFT). SIFT is a widely adopted approach for object detection and 
image comparison that efficiently detects and describes characteris-
tic and scale invariant keypoints within images that provided a huge 
improvement over earlier approaches (Lowe, 2004). In the following 
section, we refer back to feature extraction and discuss how it has 
evolved in the age of deep learning.

2 . 2  | Classification

The output of feature extraction is typically a vector (cp. x in 
Figure 1), which is than mapped to a score of confidence using a clas-
sifier. Depending on the application, the score is either compared to 
a threshold solely deciding whether an object is present or not (e.g. 
presence of a plant or animal in the image), or it is compared to other 
scores to distinguish object classes (e.g. species name). Prominent 
classification methods are machine learning algorithms such as sup-
port vector machines, Random Forest and artificial neuronal net-
work (ANN).

3  | DEEP LE ARNING NEUR AL NET WORKS

The features extracted from images refer to what the model “sees 
about an image” and their choice is highly problem-  and object- 
specific. In the past, manually deriving characteristic features was es-
sential for classification performance, but also was a labour- intensive 
and subjective expert task. Furthermore a lot of feature cannot be 
extracted manually correctly so far. Therefore, a procedure allowing 

F IGURE  2 Comparison between biological and artificial neuron and networks
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to automatically determining suitable features for a problem with-
out a given logic was a sought- after for a long time. Artificial neural 
networks automate the feature extraction step by learning a suitable 
representation of the data from a collection of examples and devel-
oping a robust model themselves. This automated feature extraction 
proofs to be highly accurate for computer vision tasks and state- of- 
the- art models in image classification, object detection and image 
retrieval rely on it (Bengio, Courville, & Vincent, 2013).

Deep learning builds upon widely utilised ANN, which are math-
ematical models using learning algorithms inspired by biological 
neural networks, the central nervous systems of animals and in par-
ticular their brain. The human brain contains on average 86 billion 
neurons (Azevedo et al., 2009). Each biological neuron consists of 
a cell body, a collection of dendrites that bring electrochemical in-
formation into the cell and an axon that transmits electrochemical 
information out of the cell. A neuron produces an output along its 
axon, it fires when the collective effect of its inputs reaches a certain 
threshold. The axon from one neuron can influence the dendrites 
of another neuron across junctions called synapses. Some synapses 
will generate a positive effect in the dendrite encouraging its neuron 
to fire and others will produce a negative effect discouraging the 
neuron from firing (see Figure 2).

Artificial neural networks emulate this processing functionality 
of the brain. Unlike a biological brain, where any neuron can connect 
to any other neuron within a certain physical distance, artificial neu-
ral networks consist of a finite and predefined number of layers and 
connections (cp. Figure 2). Therefore, layers are made up of a num-
ber of interconnected nodes that contain an activation function. The 
leftmost layer of the depicted network is called the input layer and 
the rightmost layer is called the output layer. The layers in between 
are called hidden layers. While shallow learning neuronal networks 
consist of a single or at maximum two hidden layers, deep learning 
neuronal networks consist of multiple hidden layers, which together 
form the majority of the artificial brain. The leftmost layer in the 
stack is responsible for the collection of raw data. Each neuron of 
the leftmost layer stores information and passes it to the next layer 
of neurons and so on. When trained, the network forms a hierarchy 
of image features with increasing complexity starting with low- level 

image concepts close to the input layer to high- level image concepts 
close to the output layer. As data moves from the lowest layer to 
the highest layer more abstracted information is collected at increas-
ing scales from small edges, to object parts and eventually to entire  
objects (LeCun, Bengio, & Hinton, 2015).

The network class, that is applicable to deep learning of images, 
is the convolutional neural network (CNN). CNNs are comprised 
of one or more convolutional layers followed by one or more fully 
connected layers as in a traditional multilayer neural network (see 
Figure 3). The architecture of a CNN is designed to take advantage 
of the 2D structure of an input image. Local connections and tied 
weights followed by some form of pooling result in translation in-
variant features.

Work on CNNs has been conducted since the early eighties 
(Fukushima & Miyake, 1982). CNNs saw their first successful real- 
world application in the LeNet (LeCun, Bottou, Bengio, & Haffner, 
1998) for hand- written digit recognition. Despite these initial suc-
cesses, the use of CNNs did not gather momentum until substantial 
improvements in parallel computing systems came together with 
various new techniques for their efficient training. The watershed 
was the contribution of Krizhevsky, Sutskever, and Hinton (2012) to 
the prestigious ImageNet Challenge (ILSVRC) in 2012. The proposed 
CNN, called AlexNet, won the competition by reducing the clas-
sification error from 26% to 15%. In the following years, architec-
tures continuously evolved with the most prominent being VGGNet 
(Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), 
and ResNet (He, Zhang, Ren, & Sun, 2016). Figure 4 shows how the 
classification error continuously decreased with ResNet being the 
first architecture to beat human accuracy in the given classification 
task (Russakovsky et al., 2015).

4  | GET STARTED WITH DEEP LE ARNING

The difficulty in applying the latest machine learning algorithms has 
initially slowed down their application in ecology and taxonomy re-
search. However, in the meantime, a large number of deep learn-
ing frameworks is publicly available allowing everybody with a basic 

F IGURE  3 Basic architecture of convolutional neural network (CNN). CNNs are comprised of one or more convolutional layers followed 
by one or more fully connected layers
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understanding of the machine learning concepts and some experi-
ence in script- based programming the training of new models. Due 
to a large variety of competing frameworks, a careful decision is sug-
gested not only to select a package suitable to the problem at hand, 
but also to the background and skill set of the user. Fundamental con-
ditions concern the supported operating system and the program-
ming language a user prefers for setting up the training and analyzing 
the results. Since frameworks become more and more universal in 
these regards, other relevant points are the ease of prototyping and 
model tuning, mechanisms for the deployment of trained models, 
the size of the community supporting a framework and its scalability 
across multiple machines in order to reduce training times. All mod-
ern frameworks support CNN network architectures, provide pre-
trained model zoos ready to be applied to individual problems, and 
support graphic processing units (GPU) in order to speed up training.

Table 1 lists the five currently most popular frameworks in terms 
of GitHub stars, a common method for measuring the relevance of 

open- source software. While all five and many other frameworks 
are suitable to train a new model, we want to emphasise two of 
them specifically. If you are just starting out with deep learning, a 
solid selection is Keras on top of TensorFlow. Keras offers an addi-
tional graphical interface to TensorFlow and simplifies many steps. 
TensorFlow itself is being instructed in Python, is backed by Google, 
has a very good documentation, and there is a lot of educational 
material, such as tutorials and videos available on the internet guid-
ing you in first steps. The second recommendation is MXNet as an 
alternative that supports the largest number of languages amongst 
the compared frameworks, e.g. r, Python, c++ and Matlab. If you are 
familiar with any of these languages this might be very helpful and 
simplify the training of a deep learning model. MXNet is backed by 
Amazon and also popular because it scales very well, i.e. to train a 
model with multiple GPUs and multiple computers, which makes it 

suitable for large- scale problems.
Another interesting development is cloud platforms that offer 

anything needed to get started with deep learning. For example, 
the Google Cloud Machine Learning platform released in 2016 
gives users access to a web service for the training of models using 
TensorFlow. The service offers pretrained models of various ar-
chitectures. Similar services are offered by Amazon Web Services 
(AWS), Wolfram Mathematica, Mathworks MATLAB and others.

Although CNNs are now clearly the top performers in most image 
based species identification tasks, the exact architecture is not the 
most important determinant in getting a good solution. When com-
paring studies that apply the same model architecture to a similar 
problem, they may report significantly differing results. A key aspect 
that is often overlooked is that expert knowledge about the task 
to be solved can provide advantages that go beyond “adding more 
layers to a CNN”. Researchers that obtain good performance when 
applying deep learning algorithms often differentiate themselves in 
aspects beyond the network architecture, like specific preprocess-
ing and augmentation of training data that requires an in- depth un-
derstanding of the studied phenomena and data (Litjens et al., 2017).

F IGURE  4 Top- 5 Classification error rates of ImageNet Visual 
Recognition Challenge. In 2012, for the first time a deep neural 
network architecture (AlexNet) won the challenge
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Package Interface Languages Platform GitHub Starsa

tensorflow Python (Keras), c/c++, java, 
go, r

Linux, macOS, 
Windows

91,107

caffe2 Python, Matlab Linux, macOS, 
Windows

30,471

keras Python, r on top of MXNet, 
TensorFlow, CNTK

26,213

Microsoft cognitive 
toolkit

Python (Keras), c++, 
coMMand line, brainscriPt

Linux, Windows 13,951

aPache MXnet c++, Python, julia, Matlab, 
javascriPt, go, r, scala, Perl

Linux, macOS, 
Windows, AWS, 
Android, iOS, JS

13,234

aRetrieved March 3, 2018. The Caffe2 stars include those of its predecessor. 

TABLE  1 Overview of the most 
common software packages for the 
training of convolutional neural networks 
(CNNs).
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Augmentation and preprocessing are, of course, not the only 
contributors to accurate and robust models. For example, design-
ing architectures incorporating unique task- specific properties can 
obtain better results than straightforward CNNs. Two examples are 
multi- view and multi- scale networks. Cropping different parts of an 
image will provide different contributing information. Patches with 
small scale areas can provide details of the organism (e.g. teeth or 
vein structure of plant leaves), while patches depicting large- scale 
areas can provide information surrounding the organism. Other, 
often underestimated, parts of network design are the network 
input size and receptive field (i.e. the area in input space that con-
tributes to a single output unit). Input sizes should be selected con-
sidering for example the required resolution and context to solve a 
problem (Litjens et al., 2017).

5  | RECENT RESE ARCH STUDIES 
USING DEEP LE ARNING FOR SPECIES 
IDENTIFIC ATION

Recent works on automated species identification can be divided 
into two categories: lab- based investigations and field- based in-
vestigations (Martineau et al., 2017). In a lab- based condition there 
is a fixed protocol for image acquisition. This protocol governs the 
sampling, its placement and the material used for the acquisition. 
Lab- based setting is often used by biologist that brings the speci-
men (e.g. insects or plants) to the lab for inspecting them, to identify 
them and mostly to archive them. In this setting, the image acquisi-
tion can be controlled and standardised. In contrast to field- based 
investigations, where images of the specimen are taken in- situ 
without a controllable capturing procedure and system. For field- 
based investigations, typically a mobile device or camera is used for 
image acquisition and the specimen is alive when taking the picture 
(Martineau et al., 2017). In the field of insect identification, the lab- 
based setting is still the most widely used setup and the position-
ing of the insects is made mostly manual with a constrained pose. 
Also automated plankton identification is mostly done with micro-
scopic images in the lab. In contrast, automated mammal and fish 
identification are done by taking images under field site condition 
(Weinstein, 2018). Automated plant identification is required under 

field as well as under lab conditions (Wäldchen, Rzanny, Seeland, & 
Mäder, 2018).

How dramatically deep learning has improved classification ac-
curacy is impressively demonstrated in the results of the PlantCLEF 
challenges, a plant identification competition hosted since 2011 as 
an international evaluation forum (http://www.imageclef.org/). At 
each year, a larger and more complex image dataset stimulates the 
evaluation of competing methods uncovering strengths and weak-
nesses (Joly et al., 2016). Table 2 synthesises the results of the seven 
preceding challenges. Identification performance improved year 
after year despite the task becoming more complex by increasing 
the number of species, adding images and introducing image per-
spectives (from single leaves to flowers, fruits, barks, branches). 
Additionally, a tremendous gain in classification accuracy is visible 
in 2015, which is attributed to the adoption of deep learning CNN’s.

Deep learning neural networks have also greatly improved model 
performance across a wide variety of animal taxa, from underwater 
marine specimen classification, such as fishes, zooplankton and cor-
als over insects, such as moths and ants to large mammals. Table 3 
aggregates recent studies using deep learning techniques for image 
based animal species identification. Though ecologists are collecting 
vast amounts of high- quality data, image datasets of different animal 
groups are still rarely available making the lack of labelled data the 
major obstacle in applying the latest machine learning techniques.

Deep learning could also improve the digitalization workflow of 
historical collections and herbaria. For example, herbaria all over the 
world have invested large amounts of money and time in collecting 
plant samples. Today, over 3,000 herbaria across 165 countries pos-
sess over 350 million specimens, collected in all parts of the world 
and throughout multiple centuries (Willis et al., 2017). Currently, 
many herbaria are undertaking large- scale digitisation projects to 
simplify access and to preserve delicate specimens. For example in 
the USA, more than 1.8 million imaged and georeferenced vascular 
plant specimens are digitally archived in the iDigBio portal, a nation-
ally funded primary aggregator of museum specimen data (Willis 
et al., 2017). This activity is likely going to be expanded over the 
coming decade. We can look forward to a time when there will be 
huge repositories of taxonomic information, represented by speci-
men images, accessible publicly through the internet. Coupling these 
data with the classification capabilities of CNNs will unlock more of 

TABLE  2 Synthesis of PlantCLEF identification challenge over the last 7 years.

Year Life form #Species Image content #Training images #Testing images mAP

2011 trees 71 leaves 4,004 1,432 0.47

2012 126 8,422 3,150 0.45

2013 trees, herbs 250 leaves, flowers, fruits, bark, 
branches

20,985 5,092 0.61

2014 500 47,815 8,163 0.45

2015* trees, herbs, ferns 1,000 91,759 21,446 0.65

2016 1,000 113,205 4,633 0.82

2017 10,000 1,600,000 25,170 0.92

*In 2015, for the first time a deep neural network architecture won the challenge (mAP=mean average precision).

http://www.imageclef.org/
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the rich potential of natural history collections (Schuettpelz et al., 
2017).

As a first publication in this direction, Carranza- Rojas, Goeau, 
Bonnet, Mata- Montero, and Joly (2017) apply deep learning meth-
ods to large herbarium image datasets. In total, more than 260,000 
scans of herbarium sheets representing more than 1,204 species 
were analysed. The approach reaches a top- 1 species identification 
accuracy of 80% and a top- 5 accuracy of 90%. Given the accurate 
results, the classifier could be used to create a semi-  or fully auto-
mated system helping taxonomists in annotation, classification and 
revision work at herbaria. However, the researchers also found that 
it is currently impossible to directly transfer trained knowledge from 
a herbarium to identification in the field due to the greatly varying 
visual appearance (e.g. strong colour variation and the transforma-
tion of 3D objects after pressing like fruits and flowers).

6  | NE X T GENER ATION FIELD GUIDES 
USING DEEP LE ARNING TECHNIQUES

Despite intensive and elaborate research on automated species 
identification, only very few approaches resulted in usable tools. 
Available applications are typically the product of close interactions 
between computer scientists and end- users, such as ecologists, edu-
cators at schools, land managers and the general public (Table 4).

One example is the Pl@ntNet application, developed in a collab-
oration of the four French research organizations Cirad, INRA, Inria 
and IRD. Pl@ntNet started in 2010 as a joint project with the Tela 
Botanica social network in order to collect plant images and to train 
a visual identification tool. The application allows to submit one or 
several images of an unknown plant and retrieves a list of the most 
similar species. The application was initially restricted to a fraction 
of the European flora (in 2013) and has then incrementally been ex-
tended to the Indian Ocean and South America in 2015, and to North 
Africa in 2016. Since June 2015, Pl@ntNet utilizes deep learning 
techniques, i.e. a CNN pretrained on the ImageNet dataset and pe-
riodically fine- tuned on the growing own dataset. Before that date, 
the service used a traditional workflow based on a combination of 
hand- crafted visual features (Affouard, Goeau, Bonnet, Lombardo, & 
Joly, 2017). In 2014, Joly et al. evaluated the traditional approach on 

about half of the French plant species (2,200 species) showing me-
diocre top- 5 identification rates of up to 69% for single image obser-
vations. An evaluation after introducing deep learning techniques is 
not yet available for comparison. However, Affouard et al., 2017 re-
ported that Pl@ntNet’s user ratings on the Google Play Store, which 
distributes the Android app, increased from 3.2 to 4.3 after the deep 
learning based approach was integrated. Pl@ntNet describes itself 
as being “an image sharing and retrieval application for the identifi-
cation of plants”. One of the main features of Pl@ntNet is that the 
image training set is collaboratively enriched and revised. This means 
user can share their observation with the community on a web plat-
form called IdentiPlante. Each time a user identifies a plant using 
Pl@ntNet and shares this observation, the database of plant images 
grows thereby enriching the training set for the classifier. The result 
is a large- scale image collection publicly available under a Creative 
Common Attribution- ShareAlike 2.0 license.

Another application demonstrating the potential of machine 
learning techniques for species identification is Merlin Bird ID app 
with the Photo ID function. Merlin Photo ID is a joint project of 
Visipedia, the Cornell Laboratory of Ornithology, Cornell Tech and 
Caltech aiming to identify 650 of North America’s most common 
bird species based on images. The imaged- based identification al-
gorithm uses Google’s TensorFlow deep learning platform, as well as 
citizen science data from the eBird platform to generate a potential 
species lists. The user inputs date, location and an image of the un-
known bird and a suggestion of the most likely candidate appears. 
Similar to Pl@ntNet the image can be resubmitted and is then used 
to improve the algorithm (http://merlin.allaboutbirds.org/photo-id/).

Another popular app for the automated identification of animals 
and plants at species level was launched by iNaturalist.org in sum-
mer 2017. Initially, iNaturalist solely offered crowd- sourced species 
identification. Users post an image of a plant or animal and a commu-
nity of scientists and naturalists identifies it. A taxon is elevated to “research 
grade” once more than 2/3 of the involved identifiers agree in their identifi-
cation of an observation (https://www.inaturalist.org/pages/help#quality).  
iNaturalist recently passed five million observations, with 2.5 million  
of them having reached research grade. In the meantime, the app also 
offers automated identification trained on the database of “research 
grade” observations. The more images are uploaded by users and 
identified by experts the better. In favour of accuracy, the approach 

TABLE  3 Recent studies using deep learning for animal identification. Accuracy is reported for the best performing model per paper 
without manually preprocessing

Taxa #Taxa #Images Architecture Accuracy Study

Mammals 26 32,240 ResNet- 101 69.0% Gomez Villa, Salazar, and Vargas (2017)

Mammals 48 3,200,000 ResNet- 101 93.8% Norouzzadeh et al. (2018)

Ant genra 57 150,088 AlexNet 83.0% Marques et al. (2018)

Aquatic macro- invertebrate 29 11,832 AlexNet 85.6% Raitoharju et al. (2016)

Fishes 23 27,370 –individual– 98.6% Qin, Li, Liang, Peng, and Zhang (2016)

Fishes 15 29,000 –individual– 94.0% Salman et al. (2016)

Insects 10 550 ResNet- 101 98.7% Cheng, Zhang, Chen, Wu, and Yue (2017)

http://merlin.allaboutbirds.org/photo-id/
https://www.inaturalist.org/pages/help#quality


     |  2223Methods in Ecology and EvoluonWÄLDCHEN aND MÄDER

aims to give a confident response about a species’ genus and a more 
cautious response about the species by listing the top ten possi-
bilities. An evaluation shows that genus classification reaches 86% 
accuracy, while top- 10 species accuracy is at 77% (www.inaturalist.
org).

FloraIncognita is an app for automated plant species iden-
tification of Germany’s 2,770 wild flowering taxa launched in 
spring 2018. The app originates from a joint project between the 
Technische Universität Ilmenau and the Max Planck Institute for 
Biogeochemistry in Jena, Germany. In 2017, the same research-
ers released the FloraCapture app supporting interested hobby-
ist and experts in capturing high- quality training observations for 
FloraIncognita. FloraCapture requests contributors to photograph 
plants from at least five precisely defined perspectives. Expert bot-
anists then identify depicted species and share their classification 
with the contributors. Since its launch in 2017, more than 15,000 ob-
servations containing more than 80,000 images of about 1,000 wild 
growing plant species of Germany were collected and are used to 
train the machine learning classifier of the FloraIncognita App. This 
classifier uses currently a cascade of CNNs to automatically iden-
tify unknown species based on two individual images of an unknown 
plant and its geolocation (www.floraincognita.com).

So far, there are no “in- field applications” that carry out the iden-
tification process semi- automatically. To ensure and concretize the 
results it would be useful not only relying on the purely automatic 
identifications. Combining inter- active identification keys with com-
puter vision should be a future alternative to the above mentioned 
identifications apps. This requires very high implementation effort 
and expert knowledge, but achieves more accurate results in the 
end, especially for species that are easy to confuse.

7  | OUTLOOK

Humans are able to widely abstract relationships between con-
cepts and make accurate decisions based on very little informa-
tion. In contrast, deep learning algorithms are still narrow in their 
abstraction and reasoning capabilities, i.e. they need large quanti-
ties of precisely labelled information in order to deliver accurate 
results. The hurdles towards fully automated species identification 
remain high due to the immense labour required for accumulating 
and labelling the necessary datasets. New data collection oppor-
tunities through data mining and citizen scientists will broaden the 
potential sources of labelled ecological data (Weinstein, 2018). 
For example, projects like Zooniverse, iNaturalist, Pl@ntNet and 

Flora Incognita demonstrate how to engage user communities. In 
exchange, automatic species identification could also support ex-
isting citizen science projects. Offering nature enthusiasts the pos-
sibility of automatically identifying species based on photos they 
have taken as part of an observation and afterwards reviewing 
these observation by experts could enhance the completeness and 
quality of the observation database.

We argue that the quality of an automated identification sys-
tem crucially depends not only on the amount, but also on the 
quality of the available training data. There are no investigations 
on the amount and characteristics of training data required for 
an equivalent classifier so far. Although existing CNN methods 
are able to model a suitable feature representation from images 
of an organism, they still lack the capability to model global re-
lationships between different views, e.g. organs, depicting the 
same individual. Existing CNN based approaches were designed 
to reason based on single images, focusing on capturing the similar 
region- wise patterns within an image but not the structural pat-
terns of an organism seen from multiple views with one or more 
of its organs (Lee, Chan, & Remagnino, 2018). Only few studies 
investigated the potential gain in accuracy by combining different 
organs (e.g. leaves, fruits, flower for plants) or perspectives (e.g. 
head, dorsum and profile for insects) (Lee et al., 2018; Marques 
et al., 2018). Analogous to a biologist that generally tries identi-
fying an organism by observing several organs or a similar organ 
from different viewpoints, an important research direction is an-
alyzing how to increase accuracy by combining different perspec-
tives in an automated identification. Although cameras allow us to 
create persistent copies of real- world objects the projection to a 
planar image sensor inherits a loss of major information about the 
3D structure of the scene and especially its absolute dimensions. 
Knowing an object’s absolute dimensions can be beneficial for 
manifold image based species identification tasks. Size information 
can improve accuracy significantly. Analyzing contextual informa-
tion such as species size in images should find more attention in 
the future (Hofmann, Seeland, & Mäder, 2018). While funding or-
ganizations are willing to support research into the direction of au-
tomated species identification and nature enthusiasts are helpful 
by contributing images, these resources are limited and should be 
efficiently utilised. Researchers as well as enthusiasts miss guid-
ance on how to acquire suitable training images in an efficient way 
(Rzanny, Seeland, Wäldchen, & Mäder, 2017).

The principal challenge in automated species identification arises 
from the vast number of potential species. However, most species 
are not evenly distributed throughout a larger region as they require 

TABLE  4 Prominent examples of automated species identification applications using mobile devices and deep learning techniques

App Plattform Organism Cite

iNaturalist Android/iOS All kind of species from the iNaturalist database https://www.inaturalist.org/

FloraIncognita Android/iOS Plants https://floraincognita.com

Pl@nNet Android/iOS Plants https://identify.plantnet-project.org/

Merlin Photo ID Android/iOS Birds http://merlin.allaboutbirds.org/

http://www.inaturalist.org
http://www.inaturalist.org
http://www.floraincognita.com
https://www.inaturalist.org/
https://floraincognita.com
https://identify.plantnet-project.org/
http://merlin.allaboutbirds.org/
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more or less specific combinations of biotic and abiotic factors and 
resources to be present for their development. Therefore, species 
can be encountered within their specific ranges. Using range maps 
as they appear in- field guides to support manual species identifica-
tion has been state- of- the- art for quite some time (Wittich, Seeland, 
Wäldchen, Rzanny, & Mäder, 2018). In contrast analyzing metadata 
like the location or the time of the image and combining these infor-
mation with the image recognition results has been neglected so far. 
An important research direction would be to tackle the problem of 
image classification with location and time context.

Beyond taxa identification, machine learning could also automate 
trait recognition, such as leaf position, leaf shape, vein structure and 
flower colour from herbaria and natural images. Trait data could be 
gained on a large scale from digital images for taxa which are already 
known but for which no trait data are available so far. Linking traits 
inferred by a deep learning algorithm to databases such as the TRY 
Plant Trait Database can yield powerful new datasets for explor-
ing a range of questions in studies of plant diversity (Soltis, 2017). 
Automated trait recognition and extraction using machine learning 
techniques is an open and unexplored research direction.

8  | CONCLUSION

Building accurate knowledge of the identity, the geographic dis-
tribution and the evolution of living species is essential for a 
sustainable development of humanity as well as for biodiversity 
conservation. Traditionally, identification has been based on mor-
phological diagnoses provided by taxonomic studies. Today, mostly 
experts such as taxonomists and trained technicians can identify 
taxa accurately, because it requires special skills acquired through 
extensive experience. However, the number of taxonomists and 
identification experts is drastically decreasing. Consequently, the 
need for alternative and accurate identification methods applicable 
by non- experts is constantly increasing. Finding automatic methods 
for such identification is an important topic with high expectations.

While modern machine learning approaches only slowly pave 
their way into the field of species identification, we argue that in 
the near future we are going to see a proliferation of these tech-
niques being applied to the problem. Although taxa identification 
by experts would be the preferred way, artificial intelligence sys-
tems will provide alternative tools for identification task. In a few 
years, we will rely on machine algorithms routinely to advance our 
core science while reducing the number of routine identifications 
performed by taxonomist allowing them to focus on experimental 
setup and data analytic. Furthermore, these technologies allow 
for a larger community observing our nature and contributing to 
develop an increasing interest of the society in their environment.

ACKNOWLEG EMENTS

We are funded by the German Ministry of Education and Research 
(BMBF) Grants: 01LC1319A and 01LC1319B; the German Federal 

Ministry for the Environment, Nature Conservation, Building and 
Nuclear Safety (BMUB) Grant: 3514 685C19; and the Stiftung 
Naturschutz Thüringen (SNT) Grant: SNT- 082- 248- 03/2014.

AUTHORS’  CONTRIBUTIONS

J.W. and P.M. were writing the review.

DATA ACCE SSIBILIT Y

We did not analyse any data.

ORCID

Jana Wäldchen  http://orcid.org/0000-0002-2631-1531 

R E FE R E N C E S

Affouard, A., Goeau, H., Bonnet, P., Lombardo, J. C., & Joly, A. (2017). Pl@ 
ntNet app in the era of deep learning. In ICLR 2017 Workshop Track-
5th International Conference on Learning Representations.

Austen, G. E., Bindemann, M., Griffiths, R. A., & Roberts, D. L. (2016). 
Species identification by experts and non- experts: Comparing im-
ages from field guides. Scientific Reports, 6, 33634. https://doi.
org/10.1038/srep33634

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. 
E., Leite, R. E., … Herculano-Houzel, S. (2009). Equal numbers of neu-
ronal and nonneuronal cells make the human brain an isometrically 
scaled- up primate brain. Journal of Comparative Neurology, 513(5), 
532–541. https://doi.org/10.1002/cne.21974

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: 
A review and new perspectives. IEEE Transactions on Pattern Analysis 
and Machine Intelligence., 35(8), 1798–1828. https://doi.org/10.1109/
TPAMI.2013.50

Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E., & Joly, A. (2017). 
Going deeper in the automated identification of Herbarium speci-
mens. BMC Evolutionary Biology, 17(1), 181. https://doi.org/10.1186/
s12862-017-1014-z

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & 
Palmer, T. M. (2015). Accelerated modern human–induced species 
losses: Entering the sixth mass extinction. Science Advances, 1(5), 
e1400253. https://doi.org/10.1126/sciadv.1400253

Cheng, X., Zhang, Y., Chen, Y., Wu, Y., & Yue, Y. (2017). Pest identification via 
deep residual learning in complex background. Computers and Electronics in 
Agriculture, 141, 351–356. https://doi.org/10.1016/j.compag.2017.08.005

Cope, J. S., Corney, D., Clark, J. Y., Remagnino, P., & Wilkin, P. (2012). 
Plant species identification using digital morphometrics: A review. 
Expert Systems With Applications, 39(8), 7562–7573. https://doi.
org/10.1016/j.eswa.2012.01.073

Farnsworth, E. J., Chu, M., Kress, W. J., Neill, A. K., Best, J. H., Pickering, 
J., … Ellison, A. M. (2013). Next- generation field guides. BioScience, 
63(11), 891–899. https://doi.org/10.1525/bio.2013.63.11.8

Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing 
neural network model for a mechanism of visual pattern recogni-
tion. In S. Amari & M. A. Arbib (Eds.), Competition and cooperation 
in neural nets (pp. 267–285). Berlin, Heidelberg: Springer. https://doi.
org/10.1007/978-3-642-46466-9

Gomez Villa, A., Salazar, A., & Vargas, F. (2017). Towards automatic wild 
animal monitoring: Identification of animal species in camera- trap 
images using very deep convolutional neural networks. Ecological 
Informatics, 41, 24–32. https://doi.org/10.1016/j.ecoinf.2017.07.004

http://orcid.org/0000-0002-2631-1531
http://orcid.org/0000-0002-2631-1531
https://doi.org/10.1038/srep33634
https://doi.org/10.1038/srep33634
https://doi.org/10.1002/cne.21974
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1186/s12862-017-1014-z
https://doi.org/10.1186/s12862-017-1014-z
https://doi.org/10.1126/sciadv.1400253
https://doi.org/10.1016/j.compag.2017.08.005
https://doi.org/10.1016/j.eswa.2012.01.073
https://doi.org/10.1016/j.eswa.2012.01.073
https://doi.org/10.1525/bio.2013.63.11.8
https://doi.org/10.1007/978-3-642-46466-9
https://doi.org/10.1007/978-3-642-46466-9
https://doi.org/10.1016/j.ecoinf.2017.07.004


     |  2225Methods in Ecology and EvoluonWÄLDCHEN aND MÄDER

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for 
image recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition. pp. 770-778.

Hofmann, M., Seeland, M., & Mäder, P. (2018). Efficiently annotating 
object images with absolute size information using mobile devices. 
International Journal of Computer Vision. https://doi.org/10.1007/
s11263-018-1093-3

Hopkins, G., & Freckleton, R. (2002). Declines in the numbers of am-
ateur and professional taxonomists: Implications for conserva-
tion. Animal Conservation, 5(3), 245–249. https://doi.org/10.1017/
S1367943002002299

Joly, A., Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., … Barthélémy, 
D. (2016). A look inside the pl@ntnet experience. Multimedia Systems, 
22(6), 751–766. https://doi.org/10.1007/s00530-015-0462-9

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet clas-
sification with deep convolutional neural networks. In Advances 
in Neural Information Processing Systems., Retrieved fromhttps://
papers.nips.cc/book/advances-in-neural-information-processing- 
systems-25-2012

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 
521(7553), 436.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient- based 
learning applied to document recognition. Proceedings of the IEEE, 
86(11), 2278–2324. https://doi.org/10.1109/5.726791

Lee, S. H., Chan, C. S., & Remagnino, P. (2018). Multi- organ plant clas-
sification based on convolutional and recurrent neural networks. 
IEEE Transactions on Image Processing, 27(9), 4287. https://doi.
org/10.1109/TIP.2018.2836321

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., … Sánchez, 
C. I. (2017). A survey on deep learning in medical image analysis. Medical Image 
Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Lowe, D. G. (2004). Distinctive image features from scale- invariant 
keypoints. International Journal of Computer Vision, 60(2), 91–110. 
https://doi.org/10.1023/B:VISI.0000029664.99615.94

Marques, A. C. R., M Raimundo, M., B Cavalheiro, E. M., FP Salles, L., 
Lyra, C., & J Von Zuben, F. (2018). Ant genera identification using 
an ensemble of convolutional neural networks. PLoS ONE 13(1), 
e0192011. https://doi.org/10.1371/journal.pone.0192011

Martineau, M., Conte, D., Raveaux, R., Arnault, I., Munier, D., & 
Venturini, G. (2017). A survey on image- based insect classifica-
tion. Pattern Recognition, 65, 273–284. https://doi.org/10.1016/j.
patcog.2016.12.020

Mjolsness, E., & DeCoste, D. (2001). Machine learning for science: State 
of the art and future prospects. Science, 293(5537), 2051–2055. 
https://doi.org/10.1126/science.293.5537.2051

Moniruzzaman, M., Islam, S. M. S., Bennamoun, M., & Lavery, P. (2017) Deep 
learning on underwater marine object detection: A survey. In: J. Blanc-
Talon, R. Penne, W. Philips, D. Popescu & P. Scheunders (Eds.) Advanced 
concepts for intelligent vision systems. ACIVS 2017. Lecture Notes in 
Computer Science(Vol. 10617, pp. 150–160). Cham, Switzerland: 
Springer. https://doi.org/10.1007/978-3-319-70353-4_13

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Packer, C., 
& Clune, J. (2018). Automatically identifying wild animals in camera 
trap images with deep learning. Proceedings of the National Academy 
of Sciences 115:E5716–E5725. arXiv preprint arXiv:1703.05830. 
https://doi.org/10.1073/pnas.1719367115

Qin, H., Li, X., Liang, J., Peng, Y., & Zhang, C. (2016). DeepFish: Accurate  
underwater live fish recognition with a deep architecture. Neurocomputing, 
187, 49–58. https://doi.org/10.1016/j.neucom.2015.10.122

Raitoharju, J., Riabchenko, E., Meissner, K., Ahmad, I., Iosifidis, A., 
Gabbouj, M., & Kiranyaz, S. (2016). Data enrichment in fine-grained 
classification of aquatic macroinvertebrates. In 2nd Workshop on 
Computer Vision for Analysis of Underwater Imagery (CVAUI), 2016 (pp. 
43–48). Cancun: IEEE. https://doi.org/10.1109/cvaui.2016.020

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-
Fei, L. (2015). Imagenet large scale visual recognition challenge. 
International Journal of Computer Vision, 115(3), 211–252. https://doi.
org/10.1007/s11263-015-0816-y

Rzanny, M., Seeland, M., Wäldchen, J., & Mäder, P. (2017). Acquiring 
and preprocessing leaf images for automated plant identification: 
Understanding the tradeoff between effort and information gain. 
Plant methods, 13, 97.

Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J., & Harvey, 
E. (2016). Fish species classification in unconstrained underwater 
environments based on deep learning. Limnology and Oceanography: 
Methods, 14(9), 570–585.

Schuettpelz, E., Frandsen, P. B., Dikow, R. B., Brown, A., Orli, S., Peters, M., … 
Dorr L. J. (2017). Applications of deep convolutional neural networks to 
digitized natural history collections. Biodiversity Data Journal, 5, e21139. 
Advance online publication. https://doi.org/10.3897/bdj.5.e21139

Seeland, M., Rzanny, M., Alaqraa, N., Wäldchen, J., & Mäder, P. (2017). 
Plant species classification using flower images—A comparative 
study of local feature representations. PLoS ONE, 12(2), e0170629. 
https://doi.org/10.1371/journal.pone.0170629

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks 
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Soltis, P. S. (2017). Digitization of herbaria enables novel research. 
American Journal of Botany, 104(9), 1281–1284. https://doi.
org/10.3732/ajb.1700281

Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and 
machine vision 4th edn. Stamford, CT: Cengage Learning.

Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A., & Packer, C. 
(2015). Snapshot Serengeti, high- frequency annotated camera trap 
images of 40 mammalian species in an African savanna. Scientific 
Data, 2, 150026. https://doi.org/10.1038/sdata.2015.26

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … 
Rabinovich, A. (2015). Going deeper with convolutions. The IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR).

Van Horn, G., Mac Aodha, O., Song, Y., Shepard, A., Adam, H., Perona, P., 
& Belongie, S. (2017). The iNaturalist Challenge 2017 Dataset. arXiv 
preprint arXiv:1707.06642.

Wäldchen, J., & Mäder, P. (2018). Plant species identification using com-
puter vision techniques: A systematic literature review. Archives of 
Computational Methods in Engineering, 25(2), 507–543. https://doi.
org/10.1007/s11831-016-9206-z

Wäldchen, J., Rzanny, M., Seeland, M., & Mäder, P. (2018). Automated 
plant species identification—Trends and future directions. PLoS 
Computational Biology, 14(4), e1005993. https://doi.org/10.1371/
journal.pcbi.1005993

Weinstein, Ben G. (2018). A computer vision for animal ecology. Journal of Animal 
Ecology, 87(3), 533–545. https://doi.org/10.1111/1365-2656.12780

Willis, C. G., Ellwood, E. R., Primack, R. B., Davis, C. C., Pearson, K. D.,  
Gallinat, A. S., … Sparks, T. H. (2017). Old plants, new tricks: Phenological 
research using herbarium specimens. Trends in Ecology & Evolution, 32(7), 
531–546. https://doi.org/10.1016/j.tree.2017.03.015

Wittich, H. C., Seeland, M., Wäldchen, J., Rzanny, M., & Mäder, P. (2018). 
Recommending plant taxa for supporting on- site species identifica-
tion. BMC Bioinformatics, 19, 190.

How to cite this article: Wäldchen J, Mäder P. Machine 
learning for image based species identification. Methods Ecol 
Evol. 2018;9:2216–2225. https://doi.org/10.1111/2041-
210X.13075

https://doi.org/10.1007/s11263-018-1093-3
https://doi.org/10.1007/s11263-018-1093-3
https://doi.org/10.1017/S1367943002002299
https://doi.org/10.1017/S1367943002002299
https://doi.org/10.1007/s00530-015-0462-9
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TIP.2018.2836321
https://doi.org/10.1109/TIP.2018.2836321
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1371/journal.pone.0192011
https://doi.org/10.1016/j.patcog.2016.12.020
https://doi.org/10.1016/j.patcog.2016.12.020
https://doi.org/10.1126/science.293.5537.2051
https://doi.org/10.1007/978-3-319-70353-4_13
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1016/j.neucom.2015.10.122
https://doi.org/10.1109/cvaui.2016.020
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.3897/bdj.5.e21139
https://doi.org/10.1371/journal.pone.0170629
https://doi.org/10.3732/ajb.1700281
https://doi.org/10.3732/ajb.1700281
https://doi.org/10.1038/sdata.2015.26
https://doi.org/10.1007/s11831-016-9206-z
https://doi.org/10.1007/s11831-016-9206-z
https://doi.org/10.1371/journal.pcbi.1005993
https://doi.org/10.1371/journal.pcbi.1005993
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1016/j.tree.2017.03.015
https://doi.org/10.1111/2041-210X.13075
https://doi.org/10.1111/2041-210X.13075

