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Abstract10

A classic example for the application of quasilinear theory to electromagnetic wave-particle11

interactions, the saturation of the parallel proton firehose instability, is usually consid-12

ered in the long-wavelength approximation although for β‖,p . 25 this instability is dom-13

inated by anomalous cyclotron resonance which invalidates a macroscopic treatment [Gary14

et al., 1998]. To relax the long-wavelength approximation, Seough et al. [2015] solved the15

microscopic weak turbulence kinetic equation to model the temperature anisotropy re-16

duction of the firehose also in the resonant regime. However, the employed moment-kinetic17

approach assumes the preservation of the initially bi-Maxwellian shape of the underly-18

ing proton velocity distribution throughout the saturation process, leading to poor re-19

sults for low β‖,p. In this work, we lift the limitations of the moment-kinetic approach20

and we demonstrate that allowing for distribution deformation due to anomalous cyclotron-21

resonant scattering greatly improves the predictions of the kinetic quaslinear model ex-22

cept for cases of very strong firehose growth. We conclude that quasilinear theory can23

be a valid model for studying the parallel firehose saturation even in the strongly cyclotron-24

resonant regime as long as the initial temperature anisotropy is not too large.25

1 Introduction26

Due to its low collisionality, the solar wind medium can easily develop and main-27

tain significant temperature anisotropies, providing a source of free energy which may28

drive various kinetic instabilities. From spacecraft measurements, it has long been known29

that the temperature anisotropies observed in the solar wind are clearly constrained to30

a certain parameter space whose bounds are identified as signatures of active instabil-31

ities [Gary et al., 2001; Kasper et al., 2002; Bale et al., 2009]. As soon as the anisotropy32

of the plasma locally exceeds a certain threshold, an instability is excited which will act33

to isotropize the plasma, hence preventing the temperature from becoming even more34

anisotropic and keeping the plasma at a marginally stable state.35

For anisotropies T⊥,p > T‖,p, the proposed instability mechanisms are the elec-36

tromagnetic ion cyclotron (EMIC) instability, which is propagating parallel to the back-37

ground magnetic field with finite frequency, and the mirror instability which is purely38

growing and has k⊥ 6= 0 (see, e.g., Sagdeev and Shafranov [1961]; Gary and Lee [1994];39

Southwood and Kivelson [1993] and references therein). The opposite anisotropy, T‖,p >40

T⊥,p, can drive the parallel proton firehose instability (PFHI) which has finite frequency,41

and the oblique firehose (OFHI) which – similar to the mirror instability – is non-propagating42

and only grows for θ > 0◦ (see, e.g., Quest and Shapiro [1996]; Gary et al. [1998]; Hellinger43

and Matsumoto [2000] and references therein).44

Marginal stability conditions of these instabilities have been derived from linear45

kinetic theory and have been used to fit the bounds of the observed proton temperature46

anisotropies in the solar wind [Hellinger et al., 2006]. For β‖,p � 1, a good match is47

found with the firehose and the mirror thresholds in the fluid approximation. The agree-48

ment with the fluid threshold even improves when also accounting for electron and mi-49

nor ion temperature anisotropies [Chen et al., 2016]. However, for β‖,p ∼ O(1), the ob-50

served anisotropy bounds in the T‖,p > T⊥,p regime do not match the linear predictions51

for the two firehose modes. Moreover, for β‖,p & 2 the anisotropy boundary roughly52

follows the oblique firehose threshold although the PFHI is more easily excited when β‖,p <53

10. Similarly, in the T⊥,p > T‖,p regime, the anisotropies seem to follow the mirror in-54

stability threshold although the EMIC instability should be active at significantly lower55

anisotropies.56

Understanding the apparent failure of the parallel propagating instabilities, EMIC57

and PFHI, to constrain proton temperature anisotropies in the solar wind, poses a chal-58

lenge which still requires further investigation. Several solutions have been suggested to59

resolve this issue, such as the inclusion of electron temperature anisotropies [Michno et al.,60

2014; Shaaban et al., 2017] or minor ion anisotropies [Matteini et al., 2012]. Yoon et al.61
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[2014] gives a concise review of possible explanations and puts forth another approach62

imposing a time-varying background magnetic field.63

Isenberg et al. [2013] follows yet another path and argues that bi-Maxwellian dis-64

tributions can never be stable with respect to cyclotron-resonant interactions. Thus, us-65

ing bi-Maxwellian thresholds for the EMIC instability, which is strongly driven by cy-66

clotron resonance, is misleading. Instead, the stable state is set by vanishing ion cyclotron67

resonant particle scattering, yielding a threshold which lies well above the mirror thresh-68

old, thus explaining the discrepancy in the solar wind data.69

In line with the findings of Isenberg et al. [2013] for the EMIC instability, Astfalk70

and Jenko [2017] showed that in the low-β‖,p regime, the saturation of the parallel pro-71

ton firehose growth is mainly driven by anomalous cyclotron-resonant diffusion and not72

by macroscopic temperature anisotropy reduction. Hence, the argument of Isenberg et al.73

[2013] applies to the PFHI as well which may explain why the PFHI apparently does not74

constrain the proton temperature anisotropy in the low-β‖,p regime in the solar wind.75

The purpose of this work is to further verify this claim and to shed more light on the76

temperature anisotropy reduction during the PFHI saturation.77

In kinetic theory, the saturation and simultaneous temperature anisotropy reduc-78

tion of the PFHI is usually modeled by means of quasilinear theory (QLT). The quasi-79

linear firehose saturation in the long-wavelength limit is a standard textbook problem80

and has been explored extensively in the past [Shapiro and Shevchenko, 1964; Davidson81

and Völk , 1968; Davidson, 1972; Yoon, 1995]. A macroscopic treatment may give good82

estimates for the final temperature and energy saturation levels in the case of high β‖,p.83

However, in the regime β‖,p . 25 where the dynamics is dominated by cyclotron res-84

onance [Gary et al., 1998], it is not applicable. To lift the restrictions of the long-wavelength85

approximation, Seough and Yoon [2012] and Seough et al. [2015] followed a more gen-86

eral approach, termed moment-kinetic theory where the microscopic weak turbulence ki-87

netic equation is employed to self-consistently evolve the temperature anisotropy of a firehose-88

unstable system in time while co-evolving the wave spectra generated by the instabil-89

ity. A comparison with fully-kinetic PIC simulations revealed that for β‖,p = 10, the90

approach produces good agreement with the observed saturation levels while for β‖,p ∼91

O(1) there is still a clear offset. Seough et al. [2015] proposed two possible explanations92

for this discrepancy:93

(1) QLT does not include nonlinear wave-wave interactions. However, Quest and94

Shapiro [1996] found that strong wave-wave interactions can be present during the PFHI95

growth suppression which redistribute the energy in the wave spectrum and interfere with96

the quasilinear saturation.97

(2) The chosen moment-based approach does not allow for a non-Maxwellian de-98

formation of the initially bi-Maxwellian particle velocity distribution. It assumes that99

the distribution preserves its bi-Maxwellian shape throughout the saturation process while100

only its macroscopic temperature components T‖,p, T⊥,p can change.101

In light of the fact that Seough et al. [2015] report significant dumbbell-like defor-102

mation of the velocity distribution in PIC simulations which, in line with the findings103

of Matteini et al. [2006], gets more pronounced for decreasing β‖,p, and accounting for104

the results of Astfalk and Jenko [2017] that anomalous cyclotron-resonant diffusion can105

play a crucial role in the growth suppression, we conclude that the latter of the two ex-106

planations asks for a careful inspection. To address this point, we embedded LEOPARD,107

a linear kinetic dispersion relation solver for arbitrary gyrotropic distributions [Astfalk108

and Jenko, 2017], in the kinetic quasilinear framework which allows us to relax the as-109

sumption of bi-Maxwellian preservation in the moment-kinetic approach. This new full-110

f approach enables the inclusion of effects due to distribution deformation caused by lin-111

ear wave-particle interactions. We use this method to revisit the applicability of kinetic112

QLT to the saturation of the PFHI by examining the growth suppression in six exem-113

plary PFHI setups.114

The presented work is structured as follows. In section 2, we list the equations used115

in the quasilinear approach and briefly discuss their implementation in the new quasi-116

–3–



Confidential manuscript submitted to JGR-Space Physics

linear solver QLEO. In section 3.1, we benchmark the QLEO code with results from a117

quasilinear moment-kinetic treatment. And in section 3.2, we compare the outcomes of118

our full-f quasilinear approach with the results of a moment-kinetic analysis and with119

1D3V hybrid-kinetic simulations. Section 4 concludes the discussion.120

2 Kinetic quasilinear theory and its implementation121

Collisionless magnetized plasmas are able to carry a rich variety of kinetic eigen-122

modes which can be characterized by their corresponding kinetic dispersion relation ω(k).123

As long as the field amplitudes of the kinetic modes are small compared to the background124

fields, they are well described in the framework of linear kinetic theory. Linear disper-125

sion relations provide information not only on the real frequency spectrum of the modes126

but also on their linear stability. If the plasma is not in thermal equilibrium, but a source127

of free energy is present, eigenmodes of the system eventually tap this source and their128

frequency acquires a positive imaginary part which is identified as the temporal growth129

rate γ(k) of the mode – an instability occurs. However, it is obvious that the resulting130

exponential growth of the mode cannot proceed indefinitely. As soon as the amplitudes131

reach a certain magnitude, the assumptions of linear theory get invalidated and nonlin-132

ear physics may take over. Usually, the instability is self-destructive, i.e. it exhausts the133

energy source that feeds it. So, the transition from the linear stage of growth to the non-134

linear regime goes hand in hand with the saturation of the linearly-unstable mode. The135

nonlinear regime is then dominated by nonlinear wave-particle and wave-wave interac-136

tions which pave the way for strong particle energization and the onset of turbulence.137

The complexity of nonlinear kinetic physics hardly allows a thorough investigation138

of the underlying processes. However, to get insight into the saturation mechanism, a139

perturbative expansion can be used – the weak turbulence kinetic theory of wave-particle140

interactions which applies when the energy in the spectrum of excited modes is small com-141

pared to the total energy in the plasma. Accounting only for the zero- and first-order142

in the expansion, the so-called quasilinear model can be constructed which has been suc-143

cessfully applied to numerous microscopic and macroscopic instabilities. The underly-144

ing assumption of QLT can be found in many standard textbooks on kinetic plasma physics145

and shall not be discussed in depth here. We only note that this approach enables us146

to describe how the particle velocity distribution reacts to the initially unstable mode147

spectrum due to linear wave-particle interactions, ultimately leading to a stabilization148

of the parallel firehose-unstable system. Under the assumption of slow temporal changes,149

the time evolution of the distribution function can then be described by the parallel weak150

turbulence kinetic equation (see, e.g. Davidson [1972]) which, in normalized units, reads151

(for the protons):152

∂f̃p

∂t̃
= Re

(
i
4

∑
+,−

∞∫
−∞

dk̃‖

((
1− k̃‖ṽ‖

ω̃∗

)
1
ṽ⊥

∂
∂ṽ⊥

+
k̃‖
ω̃∗

∂
∂ṽ‖

)
× (1)153

δB̃2
k|ω̃|

2/k̃2‖

ω̃±1−k̃‖ṽ‖

((
1− k̃‖ṽ‖

ω̃

)
ṽ⊥

∂f̃p
∂ṽ⊥

+
k̃‖ṽ

2
⊥

ω̃
∂f̃p
∂ṽ‖

))
.154

The meaning of the quantities and the used normalizations and can be found in appendix155

A: . The sum
∑

+,− runs over right-hand (+) and left-hand (−) polarized modes and156

∗ denotes complex conjugation. Please note that the wavenumber integral is to be un-157

derstood as a principal value integral, since there are singularities in the integration in-158

terval. Moreover, Eq. 1 holds for growing modes only, i.e. Im(ω̃) = γ̃k > 0, and has159

to be analytically continued accordingly when including damped modes with γ̃k ≤ 0,160

i.e. contributions from the poles have to be added in the usual way, following Landau’s161

prescription (see, e.g., Landau [1946]).162

The PFHI exhibits the fastest growth for parallel propagation but also grows for163

θ 6= 0. However, Eq. 1 is restricted to parallel propagation, thus, effects due to higher164

dimensionality will not be included here.165
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Solving Eq. 1 requires knowledge of the temporal changes of the wave energy spec-166

trum δB̃2
k. It can be evolved in time according to:167

∂δB̃2
k

∂t̃
= 2γ̃kδB̃

2
k. (2)168

The new quasilinear solver QLEO solves this closed set of equations numerically, using169

an explicit Euler method where the velocity distribution is sampled on a two-dimensional170

velocity grid, ṽ‖×ṽ⊥. The real frequency ω̃k and the temporal growth rate γ̃k, required171

in Eqs. 1 and 2, are constantly updated by feeding the distribution function into the dis-172

persion relation solver LEOPARD at each time step.173

For the evaluation of the wavenumber integral in Eq. 1, we refrained from perform-174

ing a direct numerical integration. Instead, we implemented a more efficient method which175

can be briefly summarized as follows: At each time step, the frequency spectrum ω̃k, the176

growth rate spectrum γ̃k, and the magnetic energy spectrum δB̃2
k are interpolated with177

natural cubic splines over the whole wavenumber range. This turns the integral into a178

piecewise rational function and allows a piecewise analytical evaluation of the integral.179

A pitfall here is that the denominator of the integrand, which turns into a cubic func-180

tion of k̃‖, can have zeros within the considered wavenumber interval. This introduces181

poles which have to be accounted for accordingly and may require analytic continuation.182

After evaluating the integral for each piece of the integration interval, its principal val-183

ues and the contributions from the poles are simply added up. The integration is per-184

formed on an equidistant, adaptive grid which is adjusted at each time step to cover all185

unstable modes, ranging from the unstable mode with lowest k̃‖ to the unstable mode186

with highest k̃‖.187

The derivatives of the velocity distribution showing up in Eq. 1 are computed by188

employing a local exponential fit function which is more suitable than applying conven-189

tional central difference methods and gives better stability of the code.190

To ensure symmetry, we always include back- and forward-propagating modes when191

evaluating the weak turbulence kinetic equation, picking out the right polarity for each192

case. The PFHI which destabilizes the whistler branch is driven by anomalous cyclotron193

resonance, hence it requires the presence of right-hand polarized whistler modes.194

3 Application of the quasilinear full-f approach195

3.1 Validation with moment-kinetic approach196

In a series of papers, Seough and Yoon [2012]; Seough et al. [2014, 2015] applied197

kinetic QLT to study the saturation of the PFHI and the EMIC instability. One major198

assumption used in these studies was the preservation of the velocity distribution’s bi-199

Maxwellian shape throughout the saturation process. This allowed for a moment-kinetic200

approach where only the macroscopic quantities β‖ and β⊥, with β = 8πnkBT/B
2
0 , are201

advanced in time instead of evolving the full velocity distribution. The corresponding202

evolution equation for each beta component can be derived from the weak turbulence203

kinetic equation, Eq. 1, by replacing f̃p with a bi-Maxwellian, i.e.204

f̃p =
1√

β‖,pβ⊥,p
exp

(
−
ṽ2‖

β‖,p
− ṽ2⊥
β⊥,p

)
, (3)205
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and by taking the second velocity moments
〈
ṽ2‖ · (...)

〉
and

〈
ṽ2⊥ · (...)

〉
of the whole ex-206

pression, yielding207

∂β‖,p

∂t̃
= Re

(
−2i

∑
+,−

∞∫
−∞

dk̃‖
δB̃2

k

k̃2‖

(
ω̃ +

(
β⊥,p

β‖,p
− 1
)

(ω ± 1)
)

(1 + ξ±Z (ξ±))

)
(4)208

∂β⊥,p

∂t̃
= Re

(
i
∑
+,−

∞∫
−∞

dk̃‖
δB̃2

k

k̃2‖

(
β⊥,p

β‖,p
ω̃ − (ω̃∗ ∓ 1)

(
β⊥,p

β‖,p
− 1
)
−209

ω̃√
β‖,pk̃‖

Z(ξ±)
(
β⊥,p

β‖,p
(ω̃∗ − ω ∓ 2)± 1− 1∓ω̃∗

ω̃

(
β⊥,p

β‖,p
− 1
))))

,210

where ξ± = ω̃±1√
β‖,pk̃‖

and Z denotes the plasma dispersion function [Fried and Conte,211

1961].212

A self-consistent moment-kinetic solver can be constructed from Eqs. 4 by coupling213

them to Eq. 2 and using a bi-Maxwellian-based kinetic dispersion relation solver to up-214

date ω̃k and γ̃k at each time step. We used an explicit Euler method to solve Eq. 2 and215

Eqs. 4, and for the dispersion relation we made use of the linear Vlasov solver DSHARK216

[Astfalk et al., 2015]. To perform a first validation of our full-f quasilinear kinetic solver217

QLEO, we benchmarked it against results from this moment-kinetic scheme. This was218

achieved as follows: At each time step, QLEO computes the distribution increment ∆f̃p219

of the distribution f̃p according to Eq. 1. But instead of advancing f̃p by directly adding220

∆f̃p, as would be required in the full-f approach, we compute the corresponding ∆β‖,p221

and ∆β⊥,p by taking the second velocity moment of ∆f̃p. Then, we update β‖,p and β⊥,p222

by adding ∆β‖,p and ∆β⊥,p, and we reset f̃p with a new bi-Maxwellian, adopting the223

updated β‖,p and β⊥,p.224

For the benchmark, we chose an exemplary proton firehose-unstable setup start-225

ing from a bi-Maxwellian distribution with β‖,p = 4.0 and T⊥,p/T‖,p = 0.5, sampled226

on a parallel velocity interval ṽ‖ = [−12.0, 12.0] and a perpendicular velocity interval227

ṽ⊥ = [0.0, 12.0]. We expect the electrons to not contribute much to the saturation of228

the PFHI, thus we keep them isotropic with βe = 1. Furthermore, we assume that the229

Alfvén speed is much lower than the speed of light, i.e. vA/c� 1.230

For the resolution in time, wavenumber space, and perpendicular velocity, numer-235

ical convergence is easily achieved, while the resolution in the parallel velocity compo-236

nent turns out to be the main bottleneck for the numerical performance. Figure 1 shows237

the result of the moment-kinetic analysis for the given setups together with the outcomes238

of the QLEO run for different resolutions in ṽ‖. We plot the time evolution of the beta239

components and the total magnetic energy which is computed via240

δB̃2
tot =

∫
dk̃ δB̃2

k. (5)241

As expected the moment-kinetic run shows an exponential increase of the magnetic field242

amplitude during the initial phase of firehose growth, followed by a saturation of the am-243

plitudes which goes hand in hand with a reduction of the initial temperature anisotropy.244

In the QLEO run, a high ṽ‖-resolution is crucial to achieve good agreement with the moment-245

kinetic saturation curve which seems to be connected with the presence of the poles oc-246

curing in Eq. 1 for ṽ‖ = (ω̃+ 1)/k̃‖. While 64 points in ṽ⊥ direction are sufficient, we247

have to use 8186 points in ṽ‖ direction to find a satisfactory match with the outcomes248

of the moment-kinetic analysis over the whole simulated time interval. For lower reso-249

lutions, QLEO produces good agreement only up to a certain time whereafter it exhibits250

irregular behavior.251

Several other setups were tested as well, yielding similar results, i.e. good agree-252

ment for high ṽ‖-resolution and partly irregular behavior for lower ṽ‖-resolution. Thus,253

we conclude that QLEO can successfully reproduce results of the moment-kinetic approach254

and we note that there is a correlation between the resolution in ṽ‖ and the maximum255

time up to which the code gives reliable results.256
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Figure 1. Results of the QLEO validation with a moment-kinetic quasilinear solver for

β‖,0 = 4.0 and T⊥,0/T‖,0 = 0.5. The figures show the time evolution of the temperature

anisotropy (left) and the total magnetic energy (right) as obtained by the moment-kinetic solver

and by QLEO for different parallel velocity resolutions.
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234

3.2 Comparison with moment-kinetic analysis and hybrid-kinetic sim-257

ulations258

After the successful validation of QLEO with the outcomes of a moment-kinetic259

analysis, we now proceed by relaxing the bi-Maxwellian assumption and allowing the ve-260

locity distribution to deform during the quasilinear saturation process. For comparison,261

we employ the hybrid-kinetic Vlasov code HVM which simulates the fully-nonlinear dy-262

namics of kinetic ions while the electrons are treated as a massless charge-neutralizing263

fluid. HVM has been developed by Valentini et al. [2007] and is based on Mangeney et al.264

[2002]. In the considered PFHI setups, electron-kinetic effects are expected to be insignif-265

icant, thus, the hybrid-kinetic scheme appears to be an appropriate choice. However, since266

the expected length and time scales are close to ion inertial scales, the Hall term is in-267

cluded in the Ohm’s law that governs the fluid electrons, i.e. HVM is used in its HMHD268

limit (Eq. 9 in Valentini et al. [2007]). In HVM, we use a one-dimensional spatial grid269

with periodic boundary conditions which is aligned with a background magnetic field in270

order to allow for parallel wave propagation. The velocity space is three-dimensional and271

the simulation is initialized with bi-Maxwellian velocity distributions with selected ini-272

tial β‖ and β⊥.273

The QLEO runs were performed for six different one-dimensional firehose-unstable274

setups. We studied three cases, (I)–(III), with similar growth rates, γ̃max ∼ 0.04, to check275

applicability for various β‖,p. And in the setups (III)–(VI), we compared four cases with276

fixed β‖,p = 4.0 to study the effect of varying initial anisotropies. Due to numerical con-277

straints, we were restricted to using a comparably low number of grid points in paral-278

lel velocity space. In most cases, we found n‖ = 255 and n⊥ = 64 to be a reasonable279

trade-off between computing time and reliability of the results. A summary of the se-280

tups and the used parameters can be found in table 3.2.281

In figures 2–7, we compare the QLEO results for setups (I)–(VI) with the corre-284

sponding moment-kinetic analysis and the 1D3V HVM simulations.285

The beta components for the QLEO runs and in the HVM simulations are obtained312

by numerically computing the second velocity moment of the distribution function at313

each time step. Similar to the QLEO runs in section 3.1 where we observed a sudden tran-314

sition from regular to irregular behavior at a certain time which was correlated with the315

number of grid points in ṽ‖, we again encountered difficulties in the ∆f̃p estimation which316

were clearly related to the low ṽ‖-resolution. Thus, we only show the QLEO curves up317

to a maximum time within which they appear to be reliable.318
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β‖,p T⊥,p/T‖,p n‖ n⊥ ṽ‖ ṽ⊥ γ̃max

I 15.0 0.847 255 64 [−24.0, 24.0] [0.0, 22.0] 0.041
II 10.0 0.794 255 128 [−20.0, 20.0] [0.0, 18.0] 0.041
III 4.0 0.588 255 64 [−12.0, 12.0] [0.0, 12.0] 0.039
IV 4.0 0.630 255 64 [−12.0, 12.0] [0.0, 12.0] 0.021
V 4.0 0.500 255 64 [−12.0, 12.0] [0.0, 12.0] 0.085
VI 4.0 0.425 255 64 [−12.0, 12.0] [0.0, 8.0] 0.120

Table 1. QLEO velocity distribution parameters for the six setups used in the full-f analysis

and the corresponding initial maximum growth rates.
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Figure 2. Results of the QLEO runs for setup (I) with initial parallel beta β‖,0 = 15.0 and

anisotropy T⊥,0/T‖,0 = 0.847, compared to the outcomes of a moment-kinetic analysis and

hybrid-kinetic simulations with HVM. The figures show the time evolution of the temperature

anisotropy (left) and the total magnetic energy (right).
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Figure 3. Results of the QLEO runs for setup (II) with initial parallel beta β‖,0 = 10.0

and anisotropy T⊥,0/T‖,0 = 0.794, compared to the outcomes of a moment-kinetic analysis and

hybrid-kinetic simulations with HVM. The figures show the time evolution of the temperature

anisotropy (left) and the total magnetic energy (right).
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In the high-anisotropy setups (V) and (VI), shown in figures 6 and 7, an accurate319

comparison with the HVM simulation results is difficult due to the strong oscillatory be-320

havior of the beta components and the magnetic energy, indicating significant particle321

trapping which is not accounted for in the quasilinear approach. However, to guide the322
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Figure 4. Results of the QLEO runs for setup (III) with initial parallel beta β‖,0 = 4.0

and anisotropy T⊥,0/T‖,0 = 0.588, compared to the outcomes of a moment-kinetic analysis and

hybrid-kinetic simulations with HVM. The figures show the time evolution of the temperature

anisotropy (left) and the total magnetic energy (right).
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Figure 5. Results of the QLEO runs for setup (IV) with initial parallel beta β‖,0 = 4.0

and anisotropy T⊥,0/T‖,0 = 0.630, compared to the outcomes of a moment-kinetic analysis and

hybrid-kinetic simulations with HVM. The figures show the time evolution of the temperature

anisotropy (left) and the total magnetic energy (right).

298

299

300

301

eye we inserted the average beta components and magnetic energy levels in the satura-323

tion stage as dashed lines.324

In agreement with Seough et al. [2015], we find that the moment-kinetic analysis325

yields good agreement with the outcomes of hybrid-kinetic simulations for higher β‖,p326

while it overpredicts the anisotropy reduction and the saturation energy levels for lower327

β‖,p. Especially the setups (III)–(VI) with β‖,p = 4.0, shown in figures 4–7, exhibit clear328

offsets between the simulation outcomes and the moment kinetic computations. In com-329

parison, the full-f approach appears to give good results for both low and high β‖,p. In330

all scenarios, it yields a less-pronounced temperature anisotropy reduction than the moment-331

kinetic approach and, except for the high-growth-rate setup (VI), shown in figure 7, gives332

good overall-agreement with the final saturation levels in both the beta components and333

the magnetic field amplitude, even for setup (V), shown in figure 6, where noticeable par-334

ticle trapping is present. Comparing setups (III)–(VI), shown in figures 4–7, we also note335

that the agreement with the simulation outcomes seems to correlate with the strength336

of the initial anisotropy. We observe better agreement for weaker firehose growth where337

almost no pressure anisotropy reduction is present, while for higher initial anisotropies338
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Figure 6. Results of the QLEO runs for setup (V) with initial parallel beta β‖,0 = 4.0 and

anisotropy T⊥,0/T‖,0 = 0.500, compared to the outcomes of a moment-kinetic analysis and

hybrid-kinetic simulations with HVM. The figures show the time evolution of the temperature

anisotropy (left) and the total magnetic energy (right). The dashed lines mark the estimated

average of the final anisotropy and magnetic energy levels of the HVM simulation.
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Figure 7. Results of the QLEO runs for setup (VI) with initial parallel beta β‖,0 = 4.0

and anisotropy T⊥,0/T‖,0 = 0.425, compared to the outcomes of a moment-kinetic analysis and

hybrid-kinetic simulations with HVM. The figures show the time evolution of the temperature

anisotropy (left) and the total magnetic energy (right). The dashed lines mark the estimated

average of the final anisotropy and magnetic energy levels of the HVM simulation.

307

308

309

310

311

(setup (V) and setup (VI)), the hybrid-kinetic simulations exhibit increasingly stronger339

reduction of the parallel component than the quasilinear model. Possible explanations340

for this discrepancy will be discussed in section 4.341

The reason why the full-f approach gives less pronounced temperature anisotropy352

reduction than the moment-kinetic approach can be inferred from figures 8 and 9 which353

show exemplary snapshots of the velocity distribution taken from the QLEO runs for the354

high-β‖ setup (I) and the low-β‖ setup (V). In both scenarios, the initially bi-Maxwellian355

distribution (dashed contours) is deformed by cyclotron-resonant diffusion. In setup (I)356

which has β‖ = 15.0, the deformation is more pronounced than in setup (V) which has357

β‖ = 4.0. This may explain why in setup (I) the moment-kinetic approach agrees bet-358

ter with QLEO and HVM than in setup (V). Qualitatively, the distribution deformation359

can be understood as follows: When undergoing cyclotron-resonant interaction with a360

wave, the particles conserve their energy in a reference frame co-moving with the wave’s361
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Figure 8. Snapshots of the velocity distribution from the QLEO run of setup (I) with

β‖,0 = 15.0 and T⊥,0/T‖,0 = 0.847 at different points in time (filled contours). The dashed

lines show the contours of a reference bi-Maxwellian distribution with β‖,p and β⊥,p at the given

point in time. The solid contours mark the single wave characteristics of the fastest growing

mode in the system, according to Eq. 6.
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Figure 9. Snapshots of the velocity distribution from the QLEO run of setup (V) with

β‖,0 = 4.0 and T⊥,0/T‖,0 = 0.5 at different points in time (filled contours). The dashed lines

show the contours of a reference bi-Maxwellian distribution with β‖,p and β⊥,p at the given point

in time. The solid contours mark the single wave characteristics of the fastest growing mode in

the system, according to Eq. 6.

347

348

349

350

351

phase speed (see, e.g., Kennel and Engelmann [1966]). In the limit of weak growth or362

damping, this condition yields the conservation equation363

ṽ2⊥ +

(
ṽ‖ −

ω̃k

k̃‖

)2

≈ const. (6)364

The solid lines in figures 8 and 9 illustrate the contours obeying the conservation equa-365

tion for the dominant mode in the system, i.e. the mode which initially exhibits the strongest366

growth. These contours are also referred to as single wave characteristics. Since the fastest367

growing mode dominates the cyclotron-resonant diffusion in the system, the particles are368

expected to mainly diffuse along these contours. They tend to erase gradients along the369

single wave characteristics which explains why the resonant parts of the velocity distri-370

bution in figures 8 and 9 align with the corresponding contours. And since in figure 8371

the single wave characteristics roughly follow the bi-Maxwellian contours only weakly372

non-Maxwellian deformation occurs which justifies a good applicability of the moment-373

kinetic approach. A clear signature of cyclotron-resonant diffusion is also observed in the374

HVM simulations, as has already been demonstrated for setup (V) in Astfalk and Jenko375

[2017].376

The complex non-Maxwellian shape of the velocity distributions at later times also377

yields more complex dispersion curves. In figures 10 and 11, we compare dispersion curves378

from the quaslinear full-f approach, the moment-kinetic approach, and the HVM sim-379

ulation for setup (V). Please note that due to too-low resolution the HVM dispersion curves380

in figure 11 are not obtained from direct Fourier analysis of the fluctuation spectra but381
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instead they are produced by feeding gyro-averaged velocity distributions from the HVM382

simulations into the dispersion relation solver LEOPARD.383
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Figure 10. Dispersion relations taken from the QLEO runs of setup (V) at different points in

time, compared to the corresponding moment kinetic results.

384

385

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
kdp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ω
/Ω

p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
kdp

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

γ
/Ω

p

HVM, tΩp =0

HVM, tΩp =60

HVM, tΩp =70

HVM, tΩp =80

Figure 11. Dispersion relations based on the gyro-averaged velocity distributions taken from

the HVM runs of setup (V) at different points in time.

386

387

From the red curves in figure 10, we infer that during the firehose saturation in the388

QLEO run the unstable wavenumber range is slowly extending towards higher and higher389

k̃‖. At the same time, the low-k̃‖ modes get stabilized. Furthermore, while the velocity390

distribution aligns with the single wave characteristics of the most unstable mode, a strong391

suppression sets in around this mode which first leads to a flattening of the growth peak392

and later causes the formation of a plateau and a two-growth-peak structure. Meanwhile,393

the real frequencies stay mostly unaffected which is expected since they do not depend394

on the detailed structure but only on the gross properties of the velocity distribution.395

Similar to the full-f analysis, the moment-kinetic run (blue curves in figure 10) also396

exhibits a stabilization of the low-k̃‖ modes. For both approaches, the growth rates of397

these modes evolve in the same way, it is only later that they start to deviate. For modes398

with k̃‖ . 0.2, we expect high parallel resonance velocities ṽres & 6.0. In figure 9, we399

notice that at such high parallel velocities there is only weak deviation from a bi-Maxwellian400

distribution, thus explaining the similar early evolution of the modes. For high-k̃‖ modes,401

which resonate with particles at lower parallel velocities, stronger deviations between the402

two approaches are expected and observed. For the moment kinetic analysis, we do not403
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see an extension of the unstable wavenumber range to higher k̃‖ but a shrinking to smaller404

k̃‖. Also, there is no formation of a low-growth-rate plateau which, in the full-f analy-405

sis, was apparently caused by the strong cyclotron-resonant diffusion.406

The evolution of the dispersion properties based on velocity distributions extracted407

from the hybrid-kinetic simulation and depicted in figure 11, shows similarities with the408

foregoing but also some obvious discrepancies. During the firehose saturation in the HVM409

run, the unstable wavenumber range again stretches out to higher k̃‖ while the growth410

at low k̃‖ gets suppressed. Also, we observe the development of a two-growth-peak struc-411

ture. However, the growth suppression happens more quickly, reducing the growth rates412

faster than in the quasilinear full-f scenario. Also, we do not see the formation of a low-413

growth-rate plateau. Instead, the structure of the dispersion curve assumes a more com-414

plex shape in the later stage. Around t̃ = 70.0 and k̃‖ ∼ 0.4, the unstable branch splits415

into two, yielding a branch with a low-k̃‖ growth peak and one with a high-k̃‖ growth416

peak which exhibits a somewhat lower frequency than the corresponding branches at ear-417

lier times. Later, the growth peak at high k̃‖ gets strongly damped away and only the418

low-k̃‖ branch still shows weak instability which eventually disappears for t̃ & 80.0, while419

at the same time the QLEO runs still exhibit significant growth. The implications of the420

observed discrepancies are briefly discussed in section 4.421

Finally, to examine the validity of our numerical scheme, we analyzed the conser-422

vation properties for our different setups. The closed system, Eqs. 1 and 2, obeys an en-423

ergy conservation law in the form of424

d

dt

(
β⊥,p + 0.5β‖,p + δB2

tot

)
= 0. (7)425

In setups (I)–(V), we find that the total energy in the systems is well conserved within426

a limit of < 0.5% while in setup (VI) the energy increases by ∼ 6%.427

4 Discussion and conclusion428

It has long been known that despite its traditional reputation of being a macro-429

scopic fluid-like instability, the PFHI often requires a fully-kinetic treatment. While for430

β‖,p � 1, the fluid approximation may be applicable, the regime β‖,p . 25, which is431

especially relevant for the solar wind, asks for a careful inclusion of particle resonance432

effects.433

As long as we are only concerned with the linear dispersion properties of a firehose-434

unstable system, the step from a macroscopic to a microscopic picture is an easy one since435

existing numerical dispersion relation solvers can be employed to overcome the non-analytic436

nature of kinetic theory. However, if the growth saturation of the firehose instability is437

to be studied in the framework of quasilinear theory, a fully-kinetic treatment is chal-438

lenging which is why standard textbooks and classic monographs consider the quasilin-439

ear firehose saturation in the fluid limit only.440

Seough et al. [2015] went beyond the traditional fluid ansatz by numerically solv-441

ing the self-consistent set of kinetic quasilinear equations for various firehose-unstable442

systems. However, their investigations were restricted to a moment-kinetic approach where443

the bi-Maxwellian shape of the distribution is preserved throughout the saturation pro-444

cess. This limitation, which was necessary to simplify the numerical treatment, obscured445

to which extent the PFHI saturation can be understood in the limits of QLT or whether446

other nonlinear effects have to be taken into account too. We lifted this limitation by447

allowing for a non-Maxwellian deformation of the velocity distribution.448

We applied the moment-kinetic and a full-f approach to six firehose-unstable se-449

tups and compared the predicted temperature anisotropy reduction and magnetic en-450

ergy saturation levels to outcomes of fully-nonlinear hybrid-kinetic simulations. While451

the moment-kinetic analysis showed an increasing offset for decreasing β‖,p, the QLEO452

code produced good agreement also in the low-β‖,p regime as long as the initial anisotropy453

was not too high.454

–13–



Confidential manuscript submitted to JGR-Space Physics

However, when comparing the temporal changes in the dispersion properties of the455

quasilinear full-f runs and the HVM simulations for the intermediate-growth setup (V),456

we found that in the fully-nonlinear hybrid-kinetic model the firehose growth was sup-457

pressed faster than in the QLEO runs. Although not reported here, we found a similar458

discrepancy also for the lowest-anisotropy scenario, setup (IV). This suggests that QLT459

does not fully cover the microscopic physics that governs the firehose growth suppres-460

sion even for cases which show otherwise excellent agreement for the saturation levels461

of the macroscopic beta components and the magnetic energy between QLEO and the462

hybrid-kinetic simulations. The good agreement may be explained by the fact that the463

initially most unstable mode strongly dominates the cyclotron-resonant diffusion and the464

subsequent changes in the dispersion properties during the saturation process only slightly465

modulate the shaping of the velocity distribution.466

In contrast to the setups (I)–(V), the pressure anisotropy reduction in the high-471

anisotropy case, setup (VI), with initial maximum growth rate γ̃max = 0.12, showed no-472

ticeable disagreement between the QLEO results and the hybrid-kinetic simulations. We473

found that the total energy in this setup is not as well conserved as in the other cases474

which points to a failure of the numerical scheme. However, we suggest that the prob-475

lem may also be due to a failure of the QLT model itself. As a weak turbulence theory,476

the model applies only when the amplitude of the electromagnetic fluctuations in the sys-477

tem is small compared to the thermal energy of the plasma. In the considered setup, the478

ratio δB2
k/Etherm reached a level of ∼ 2% which does not seem to strongly violate the479

assumption. However, nonlinear wave-wave coupling may be triggered by the modes with480

highest amplitudes, disrupting the quasilinear approximation. Looking at the time evo-

Figure 12. Time evolution of the magnetic energy spectrum (left) and the contribution of

low- and high-k modes (right), observed in the HVM simulations of the high-anisotropy setup

(VI). The wavenumber k̃lim separates the initially unstable (low-k) from the initially stable (high-

k) part of the spectrum.

467

468

469

470

481

lution of the magnetic energy spectrum taken from the HVM simulations of setup (VI),482

shown in figure 12 (left), we see that after the modes in the unstable wavenumber range483

have grown to high-enough amplitudes, nonlinear wave-wave coupling leads to the for-484

mation of sidebands at higher wavenumbers which are (odd) harmonics of the initially485

unstable wavenumber range. In figure 12 (right), we compare the magnetic energy in the486

initially unstable wavenumber range with the energy content in modes with higher wavenum-487

bers. We observe a strong growth in the high-k energy which is connected with the ap-488

pearing sidebands. However, the growth saturates well below the energy level of the low-489

k modes which may suggest that this effect only slightly modulates the dynamics in the490
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system. However, studying the relative importance of nonlinear wave-wave coupling is491

beyond the scope of this work but may be addressed systematically in a future project.492

Another limitation of QLT is that of slow temporal changes in the distribution func-493

tion, i.e.494

δ ∼ 1

f0

df0
dt
/γmax � 1. (8)495

For setup (VI), we estimated δ ∼ 10% which appears to be a more severe violation than496

the foregoing. For the setups (I)–(IV), we find δ ∼ 0.1%, for the setup (V) we have δ ∼497

1%. Also, setup (VI) showed significant particle trapping which further violates the quasi-498

linear approximation. Thus, the high-anisotropy setup (VI) may indeed be outside the499

range of validity of QLT. We conclude that kinetic QLT is a valid approach for model-500

ing the temperature anisotropy reduction only if the initial firehose instability growth501

is not too strong.502

Finally, our findings also confirm the results of Astfalk and Jenko [2017], namely503

that for β‖,p ∼ O(1), strong cyclotron-resonant scattering is a main driver for the fire-504

hose stabilization, which is why the moment-kinetic approach fails in this regime since505

it cannot properly account for the distribution deformation due to the resonant diffu-506

sion. At the same time, the reduction of the macroscopic temperature anisotropy is rel-507

atively weak which indicates that in the solar wind the PFHI may not be the dominant508

player in constraining the anisotropy when 2 . β‖,p . 10. However, being restricted509

to a one-dimensional analysis, we can gain only limited insight into the challenging prob-510

lem of temperature anisotropy regulation in the solar wind. In a two-dimensional setup,511

PFHI modes with different propagation angles can grow simultaneously which yields more512

complex diffusion dynamics. The presence of obliquely propagating waves is expected513

to enhance the diffusion [Karimabadi et al., 1992], causing a stronger anisotropy reduc-514

tion [Gary et al., 1998]. This is further complicated by the fact that the OFHI may be515

excited as well which Hellinger and Trávńıček [2008] found to be a very efficient mech-516

anism for temperature anisotropy reduction. The competition between the PFHI and517

the OFHI has been studied in Hellinger and Matsumoto [2001] with two-dimensional hybrid-518

kinetic simulations. In this work, the nonlinear evolution of the OFHI was observed to519

behave in a rather non-quasilinear manner, as was also found in Hellinger and Matsumoto520

[2000]. Thus, even a two-dimensional generalization of the presented quasilinear full-f521

approach may be of very limited applicability in such more realistic scenarios.522

Similarly, the competition between the EMIC instability and the mirror instabil-523

ity which is driven by the opposite temperature anisotropy, T⊥,p > T‖,p, may be out524

of reach for such a scheme. However, due to the apparent similarities between the PFHI525

and the EMIC instability the presented quasilinear scheme promises to give interesting526

insights into the EMIC instability saturation in a purely parallel setup. This may be ad-527

dressed in a follow-up project.528

A: Meaning of the quantities and used normalizations529

The velocity components parallel and perpendicular to the background magnetic530

field B0, i.e. v‖ and v⊥, are normalized according to ṽ = v/vA with the Alfvén veloc-531

ity vA = B0/
√

4πnpmp where np is the proton number density and mp is the proton532

mass. For the (complex) frequency we use ω̃ = (ωk + iγk)/Ωp with the proton gyro533

frequency Ωp = eB0/mpc where e denotes the proton’s charge. The time is also nor-534

malized with respect to the proton gyro frequency, i.e. t̃ = tΩp. The parallel wavenum-535

ber is given in units of the proton inertial length dp = vA/Ωp such that k̃‖ = k‖dp.536

For the magnetic energy in each mode, we write δB̃2
k = δB2

k/B
2
0dp. The velocity dis-537

tribution is normalized with respect to f̃p = fpv
3
A/np.538
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