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1 Computational details

The calculations have been performed with the all-electron numeric atom-centered orbitals

code FHI-aims1 using the generalized gradient approximation exchange-correlation PBE

functional2 augmented with the Tkatchenko-Scheffler3 scheme (vdWT S) to correct for long-

range van der Waals interactions. The geometry optimizations were carried out with tight

basis set settings. An exemplary control file including convergence criteria is attached to

the SI. The harmonic vibrations calculations were performed numerically by displacing each

atom by 0.0025 Å in each direction followed by the digitalization of the resulting hessian. 3N-

6 positive frequencies confirmed that all optimizations yielded stable minima. All optimized

structures are included in an archive file attached to the manuscript.

In the theoretical calculations of CCS using projection approximation, a dummy radius

of 1.8 Å for Mo atoms was adopted. Since the Mo atom is always in a center of a tetrahedron,

the adopted Mo radius has a small impact on the overall CCS. A radius of 1.1 Å and 1.51

Å was utilized for hydrogen and oxygen, respectively, as reported previously.4

Additional calculations for HMo4O1−
13 were performed within Gaussian 16.5 Barrier heights

for rotation of the OH rotor in methanol and HMo4O1−
13 were estimated from a coordinate

scan at the B3LYP6,7 and MP28,9 level of theory utilizing the def2-TZVP basis set.10,11 The

initial structure for HMo4O1−
13 was taken from optimization within the FHI-aims program

and subsequently reoptimized within Gaussian 16, and the initial structure for methanol was

optimized directly in Gaussian 16.
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2 Arrival Time Distribution Plots
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Figure S1. Arrival Time Distributions (ATD) for series of HMonO1−
3n+1 (n = 1–8, left) and

MonO2−
3n+1 (n = 2–8, right). With the exception of HMo4O1−

13 , all ATDs show only a single
feature, suggesting a single structure for each ion.
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3 Theoretical CCS of MonO2−
3n+1 and HMonO1−

3n+1

Table S1. Experimental and theoretical CCS for MonO2−
3n+1 species (n = 2–6)

discussed in the manuscript. For n = 5, the theoretical CCS of structures shown
in figure S2 are listed. All CCS values are given in units of Å2.

n Exp Chain Ring Compact
2 71 70 - -
3 93 92 70 -
4 94 113 92 -
5 112 136 (b) 113

(c) 110
(d) 106

-

6 102 157 139 102

Table S2. Experimental and theoretical CCS for HMonO1−
3n+1 species (n = 1–8)

discussed in the manuscript. All CCS values are given in units of Å2.

n Exp Theory
1 45 47
2 63 65
3 79 83
4 90 91
5 93 97
6 98 101
7 108 114
8 118 125
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4 Additional Theoretical IR Spectra for Mo5O2−
16
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Figure S2. Theoretical IR spectra for calculated low-energy structures of Mo5O2−
16 (gray,

b–d) compared to the experimental spectrum collected in He nanodroplets (blue, a). The
structures corresponding to each theoretical spectrum are shown at right. The relative
energies of the structures in kcal mol−1 are also shown at right, with the relative energy
following zero-point correction shown in parentheses.
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5 Additional Theoretical IR Spectra for Mo7O2−
22
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Figure S3. Theoretical IR spectra for calculated low-energy structures of Mo7O2−
22 (gray,

b–e) compared to the experimental spectrum collected in He nanodroplets (blue, a). The
structures corresponding to each theoretical spectrum are shown at right. The relative
energies of the structures in kcal mol−1 are also shown at right, with the relative energy
following zero-point correction shown in parentheses.
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6 IRMPD and Theoretical IR Spectra for Mo8O2−
25
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Figure S4. Theoretical IR spectra for calculated low-energy structures of Mo8O2−
25 (gray,

b–d) compared to the experimental spectrum collected by IRMPD (red, a). The structures
corresponding to each theoretical spectrum are shown at right. The relative energies of the
structures in kcal mol−1 are also shown at right, with the relative energy following zero-point
correction shown in parentheses.
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7 Relative Energy and CCS of Mo8O2−
25 Structures
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Figure S5. Plot of relative energy (PBE + vdWT S) vs. CCS for theoretical structures of
Mo8O2−

25 . The dashed line shows the experimental CCS value, and colored boxes denote cal-
culated values for modified Lindqvist (blue), non-Lindqvist (red), and symmetric structures
(green). Expanded, non-Lindqvist structures are predicted to be the most stable category
of structure and also show good agreement with the epxerimental CCS value.
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