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Abstract 1ii

Abstract

The channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical
nanomachine. It catalyzes the biosynthesis of tryptophan from serine and indole glycerol phos-
phate. As a single macromolecule, it possesses two distinct catalytic subunits and implements
13 different elementary reaction steps. A complex pattern of allosteric regulation is involved
in its operation. The catalytic activity in a subunit is enhanced or inhibited depending on the
state of the other subunit. The gates controlling arrival and release of the ligands can become
open or closed depending on the chemical states. The intermediate product indole is directly
channeled within the protein from one subunit to another, so that it is never released into the
solution around it.

In this thesis, the first single-molecule kinetic model of the enzyme is proposed and analyzed.
All its transition rate constants are extracted from available experimental data, and thus, no
fitting parameters are employed. Numerical simulations reveal strong correlations in the states of
the active centers and the emergent synchronization of intramolecular processes in tryptophan
synthase. Moreover, the effects of allosteric interactions are studied using modified in silico
models with permanent and without any allosteric activations. The unmodified model of the
native enzyme with transient activations significantly outperforms both modified models in
terms of mean turnover times. An explanation is derived from the comparison of turnover time
distributions showing a desynchronization of the two subunits in the modified models leading
to cycles with long turnover times.

Thermodynamic data is used to calculate the rate constant for the reverse indole channeling,
which has not been observed in experiments thus far. Using the fully reversible single-molecule
model, the stochastic thermodynamics of the enzyme is examined. The Gibbs energy landscape
of the internal molecular states is determined and the production of entropy and its flow within
the enzyme are analyzed. The current methods describing information exchange in bipartite sys-
tems are extended to arbitrary Markov networks and applied to the kinetic model of tryptophan
synthase. They allow the characterization of the information exchange between the subunits
resulting from allosteric cross-regulations and channeling.

The last part of this work is focused on chemical reaction networks of metabolites and en-
zymes. Algebraic semigroup models are constructed based on a formalism that emphasizes the
catalytic function of reactants within the network. These models admit a notion of successive
and simultaneous functions not only of individual enzymes, but of any subnetwork. This in-
cludes the catalytic function of the whole reaction network on itself. The function is then used to
decide whether the network is self-sustaining and a natural discrete dynamics is utilized to iden-
tify the maximal self-sustaining subnetwork. Then, a correspondence between coarse-graining
procedures and semigroup congruences respecting the functional structure is established. A
family of congruences that leads to a rather unusual coarse-graining is constructed: The net-
work is covered with local patches in a way that the local information on the network is fully
retained, but the environment of each patch is no longer resolved. Whereas classical coarse-
graining procedures would fix a particular local patch and delete detailed information about
the environment, the algebraic approach keeps the structure of all local patches and allows the
interaction of functions within distinct patches.



iv Zusammenfassung

Zusammenfassung

Das Enzym Tryptophan Synthase ist ein ausgezeichnetes Beispiel einer molekularen Fabrik auf
der Nanoskala. Es katalysiert die Biosynthese der essentiellen Aminosédure Tryptophan aus Serin
und Indol-glycerolphosphat. Der katalytische Zyklus des Molekiils beinhaltet mindestens 13 El-
ementarreaktionen, die in den katalytischen Zentren seiner zwei Untereinheiten stattfinden. Die
Katalyse beruht zudem auf zahlreichen allosterischen Wechselwirkungen sowie der Ubertragung
des Intermediats Indol durch einen intramolekularen Tunnel.

In dieser Arbeit wird das erste kinetische Modell eines einzelnen Tryptophan Synthase
Molekiils konstruiert und analysiert. S&mtliche Reaktionskonstanten sind aus der Literatur
bekannt, wo-durch das Modell keine freien Parameter enthilt. Numerische Simulationen zeigen
starke Korrelationen zwischen den Zustdnden der Katalysezentren sowie die Ausbildung von
Synchronisation zwischen den intramolekularen Prozessen im Enzym. Des Weiteren werden die
Effekte der allosterischen Wechselwirkungen durch den Einsatz von Modifikationen des Modells
in silico, welche die Wechselwirkungen vollstdndig unterdriicken bzw. permanent aktivieren, un-
tersucht. Es zeigt sich, dass das native Enzym eine erhelblich grofiere Reaktionsgeschwindigkeit
aufweist als beide Modifikationen. Durch eine Analyse der Histogramme der Umsatzzeiten
einzelner Zyklen lasst sich diese Beobachtung auf eine selten auftretende Desynchronisation der
Katalysezyklen in den Untereinheiten, welche zu sehr langen Umsatzzeiten fiihrt, zurtickfithren.

Die thermodynamischen Eigenschaften des Modells werden mithilfe der stochastischen Ther-
modynamik untersucht. Zunachst wird die experimentell unzugangliche Reaktionskonstante fiir
die Rickiibertragung des Indols aus thermodynamischen Messdaten rekonstuiert. Die freie En-
thalphie aller chemischen Zusténde des Molekiils, die Entropieproduktion sowie der Entropiefluss
werden berechnet. Methoden, die den Informationsaustausch in bipartiten Markovnetzwerken
charakterisieren, werden auf beliebige Markovnetzwerke verallgemeinert. IThre Anwendung auf
das kinetische Modell der Tryptophan Synthase fiihrt zu einer Charakterisierung des Informa-
tionsaustauschs zwischen den Untereinheiten des Enzyms.

Der abschlielende Teil der Arbeit befasst sich mit chemischen Reaktionsnetzwerken von
Metaboliten und Enzymen. Ausgehend von einem Formalismus, der die katalytische Funktion
von Reaktanten des Netzwerks hervorhebt, werden algebraische Modelle konstruiert. Es handelt
sich dabei um Halbgruppen, welche aufeinanderfolgende und simultane katalytische Funktio-
nen von Enzymen und von Unternetzwerken erfassen. Die Funktion des Netzwerkes auf sich
selbst wird genutzt, um hinreichende und notwendige Bedingungen fiir seine Selbsterhaltung
zu formulieren. Die Definition einer natiirlichen Dynamik auf den Netzwerken erlaubt auch
die Bestimmung des maximalen selbsterhaltenden Unternetzwerkes. AnschlieBend werden die
algebraischen Modelle dazu genutzt, um eine Korrespondenz zwischen Halbgruppenkongruen-
zen und Skaleniibergéngen auf den Reaktionsnetzwerken herzustellen. Insbesondere wird eine
Art von Kongruenzen erortert, welche dem Ausspuren der globalen Struktur des Netzwerkes
unter vollstandiger Beibehaltung seiner lokalen Komponenten entspicht. Wéhrend klassische
Techniken eine bestimmte lokale Komponente fixieren und séamtliche Informationen iiber ihre
Umgebung ausspuren, sind bei dem algebraischen Verfahren alle lokalen Komponenten zugleich
sichtbar und eine Verkniipfung von Funktionen aus verschiedenen Komponenten ist problemlos
moglich.
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Introduction

Historically, the understanding of biological systems has been successively improved by
the interplay of system reduction and integration of the reduced pieces. The reduction
was, in most cases, enabled through the refinement of experimental techniques and the re-
sulting possibility to observe smaller constituents of the system such as organs, cells, cell
organelles, protein complexes, metabolites and ultimately the structure of DNA. Such
constituents form a hierarchy resulting from the inclusion of smaller parts into larger
structures. For example, cell organelles are included in cells and cells are included in
organs. The goal of integration is concerned with the reconstruction of the properties
of a particular structure from the properties of its lower level constituents. Each time
new lower level structures have been discovered, the scientific community has spent much
effort on formulating theories that achieve the integration of the newly found structures.

However, until the advent of molecular biology, for the lower level structures such
as cells and cell organelles general interaction laws could not be formulated. Only phe-
nomenological models adjusted to the respective experimental situation with experimen-
tally determined parameters were available. Molecular biology, for the first time, allowed
to envision that precise statements about biological systems could be made based on first
principles. After all, the exact physical laws governing the structure and dynamics of
molecules had been discovered in the early 20th century. The experimental accessibility
- and thus the potential knowledge - of all molecular parts of an organism marks an im-
portant milestone in the biological science: it is the completion of the reduction program
and the end of a conceptual dichotomy between reductive and integrative ways of thought.

Meanwhile, the integration of lower level structures is far from being completed and is
a main driving force in the life sciences. It is a recurring theme in numerous publications,
where complex behavior is explained in terms of interactions of simpler lower-level con-
stituents. The integrative branch of molecular biology is now known as systems biology.
It seeks to combine high-throughput data on the numbers, interactions and even time-
evolution of metabolites, proteins, lipids, mRNA and DNA in a cell in order to develop
detailed in silico models of the whole cell.

A remarkable success of systems biology is the identification of the molecular mech-
anisms controlling the circadian rhythm, awarded the Nobel Prize in Physiology and
Medicine in 2017. In gene knockout experiments, Benzer and Konopka were able to iden-
tify a single gene (named period) whose knockout disrupted the circadian rhythm in fruit
flies. Later, Hall, Rosbash and Young could show that the protein encoded by the gene
(also called period) inhibits the transcription of its own gene and thereby forms a feed-
back loop. The period protein is degraded through the influence of sunlight and therefore



its concentration fluctuates in a 24-hour rhythm driven by the day and night cycle: The
concentration increases during the night (up to some threshold value controlled by the
feedback loop) and decreases during the day (again to some threshold when degradation
rate and synthesis rate cancel each other). In meticulous experimental work, the No-
bel laureates were able to identify other genes and proteins that stabilize the regulatory
network and control the entry of period into the nucleus. One of the many fascinating
aspects about this work is the successful integration of simple chemical reactions governed
by standard rate equations of a set of chemicals into a reaction network that has a signifi-
cant influence on all the levels of organization within the organism: The circadian rhythm
affects chemical characteristics such as hormone levels and metabolism, physical charac-
teristics such as body temperature and blood pressure and even medicinal characteristics
such as the desire for sleep, coordination, reaction times and mood. This means that the
processes influenced by the reaction network based on period span a large interval of time
and length scales emerging from the small time and length scales of individual chemical
reactions involved in the network. In this regard, it is interesting to note that the circa-
dian rhythm within each organism is controlled by a physical process on an astronomical
scale, namely the earth’s rotation with respect to the sun.

The connection of processes on different time and length scales is becoming an in-
creasingly important theme in the life sciences: While in the example discussed above,
the connection between the period reaction network and higher-scale properties has not
been made quantitative, there have been remarkable achievements in constructing quan-
titative in silico multiscale models. An outstanding example is a series of models of the
human heart constructed by Noble et al. [Il 2]. Such models include functionally impor-
tant genes, proteins, metabolites and many details on ion channels at the molecular level.
These are included in models of all the main types of cardiac myocytes, which in turn are
used in three-dimensional reconstructions of the whole organ as an elastic object paying
attention to fiber orientation, sheet structure and the heart nervous system. Using such
advanced models, many pathological states of the heart could be reproduced based on
changes in the protein composition, drug interactions, or mutations of the ion channels.
Moreover, it was possible to study the influence of the heart contraction on the electrical
state of the heart, giving unexpected results on the connection to changes in cell volume.
Along the same lines, arrhythmic behavior was successfully reproduced from models of
the metabolic and electrophysiological processes following energy deprivation.

The period reaction network governing the circadian rhythm and the multiscale heart
models each represent a major theme in system biological thought: At the molecular level,
models of reaction networks of metabolites (called the metabolome), interaction networks
of proteins (proteome), gene regulatory networks (genome) and mRNA expression levels
are being integrated to determine mechanisms and regulatory motives within such net-
works. Such models are based on large amounts of quantitative and qualitative data using
high-throughput techniques that simultaneously monitor the cellular concentrations of a
large number of different chemical species. Modern techniques even allow time-resolved
data to be obtained. However, such approaches are inherently weak at capturing the
emergence of and interactions with larger structures within an organism. In the example
of the heart model, membranes, cells and the three-dimensional structure of the heart
were not deduced from the respective molecular interaction networks, but added “by



hand”. Moreover, not the full reaction and interaction networks of molecules were taken
into account, but only those important for the higher-scale processes under consideration.
This approach to systems biology is more an “artful crafting” of suitable models and less
a “black-box” approach based on a fixed set of rules. Indeed, many prominent scientists
such as Sydney Brenner [3], Dennis Noble [4] and Laurent Nottale [5] hold the opinion
that there is no preferred scale of causation in nature and that neither the genetic code nor
the molecular interaction network of organisms therefore contain a sufficient description
of the organism.

Such problems are already present at one of the “lower levels” of organization, within
individual proteins and their interactions networks. Does the understanding of individ-
ual proteins provide deeper understanding of protein-protein interactions? How is the
catalytic mechanism of a protein in diluted solutions in wvitro or in silico related to its
function in vivo? How important is the role of protein complexes when integrating high-
throughput data without any a priori information on such complexes?

Proteins can be thought as the executive power of the cell. They carry out almost
all functions in the living cell that involve manipulation and modification of the chem-
ical and physical constitution of the cell or its environment. Enzymes catalyze most of
the chemical reactions inside the cell. Through kinetic control they enable metabolic re-
actions to take place in a controlled manner at appropriate rates. Moreover, key steps
such as transcription, splicing and translation are carried out by large complexes. Motor
proteins transport cargo in the cytoplasm or through the cell membrane and perform the
various mechanical motions such as bacterial flagellar locomotion or muscle contraction in
higher organisms. Proteins are crucial for the control of cellular processes. In particular,
they are involved in the responses to external stimuli through signaling networks: Recep-
tor proteins at the cell surface detect stimuli (e.g. from nutrients, poisons or hormones,
but also mechanical stress) and initiate a cascaded response. Therein, several messenger
proteins from a network reminiscent of a calculatory circuit including feedback control
and amplification mechanisms. The circuit either directly initiates a response or leads to
changes in protein biosynthesis through appropriate transcription factors.

All the processes just described heavily rely on the interaction between proteins -
either within complexes or networks. A well-known example of an enzyme complex is
the ribosome, consisting of the small and large subunits, ribosomal RNA and a variety
of additional ribosomal proteins. Even larger structures are focal adhesions with over
50 proteins [6] or the spliceosome including over 200 proteins [7]. These complexes are
sufficiently stable and the components well enough known that they can be studied in
vitro or can already been observed in vivo using classical optical methods. However, the
exact composition of these complexes varies dynamically in the living cell. For example,
the number of proteins making up the spliceosome is known to vary by up to 60 between
different functional states [8]. Such observations on large and well-known complexes seem
to be just the tip of the iceberg concerning the role of enzyme complexes within living
organisms. There is a growing volume of evidence suggesting that many biochemical re-
actions within a cell are catalyzed by multi-enzyme complexes with poorly understood
and highly dynamic higher order structure [9, 10, 1], 12], 13|, 14l 15]. These complexes
can implement entire metabolic pathways or significant parts of them. Within a complex,



intermediate products can be directly channeled [10, 1] to other enzymes for further
processing, resembling the operation of an industrial conveyor belt. Moreover, different
enzymes in a complex are usually coupled through allosteric regulatory loops [15]. Be-
cause of product channeling and multiple allosteric interactions, a complex can operate
in a synchronous manner, exhibiting strong correlations in the turnover cycles of involved
enzymes. Experimental investigations of multi-enzyme complexes encounter difficulties
because the complexes are often transient and only exist in vivo [12].

An interesting class of enzymes are channeling enzymes [16] [I7] (see also review [18§]).
They are similar in their properties to multi-enzyme complexes, but, in contrast, are
smaller and have a well defined structure. A prototypical example of a channeling en-
zyme is tryptophan synthase [19] (introduced in detail in section [I.I)). It catalyzes the
biosynthesis of the essential amino acid tryptophan from serine and indole glycerol phos-
phate (IGP). This enzyme is employed by all bacteria, plants, fungi, but not by higher
organisms and thus, can be a target for the development of antibiotics [20]. Its substrate
IGP is scarce inside the cell and, therefore, high catalytic efficiency is required. Further-
more, an intermediate product (indole) of the synthesis reaction is hydrophobic and can
easily escape through the cell membrane. Therefore, its release into the cytoplasm must
be avoided. Nature has found an elegant solution for these constraints. The entire syn-
thesis encompassing 13 elementary reaction steps is performed within the enzyme with
two different catalytic centers and the intermediate indole is channeled within the protein
from one center to another. Thus, tryptophan synthase is a model for larger and more
difficult to access protein complexes.

In chapter [2] a single-molecule model of tryptophan synthase is constructed. It takes
into account correlations between the states of the two catalytic centers arising through
substrate channeling and mutual allosteric regulation. The stochastic model is formulated
in terms of a Markov network. Because of the extensive experimental data available, all
relevant microscopic rate constants in the model could be directly deduced from the data,
so that no fitting parameters have been employed. Numerical simulations yield direct evi-
dence of the presence of strong correlations and intramolecular synchronization of chemical
processes in tryptophan synthase. They also allow to analyze the role of allosteric regu-
lations in raising the catalytic efficiency of this enzyme. This work has been published in
[21].

In chapter [3], the constructed Markov transition network is studied using the theory
of stochastic thermodynamics for the operation of a single enzyme. Thereby, additional
calorimetric data is used to determine the rate constant for reverse channeling that has
not been experimentally observed. The energy landscape is constructed and an analysis
of the entropy production and entropy flow within the enzyme in the nonequilibrium state
corresponding to physiological conditions is performed.

Chapter 4] is focused on the information theoretic aspects of allosteric interactions
between the two enzyme subunits and on the information effects of channeling events.
Recently, a theory of information transfer in bipartite Markov networks has been con-
structed [22] 23, 24]. Bipartite Markov networks are networks whose state space can be
factored as a product space A x B of two subsystems A and B such that all transitions



change either the state of the A-subsystem or of the B-subsystem, but not both at the
same time. The Markov network models of allosteric proteins have exactly this structure:
The A-subsystem is the catalytic site and the B-subsystem is the allosteric site. A cat-
alyzed reaction changes only the A-state and the binding or unbinding of some allosteric
effector changes only the B-state. The allosteric interaction entails an effect of the B-state
on the catalytic rates of the A-subsystem. This effect is made quantitative in the theory
of information thermodynamics and, thus, it is straightforward to apply the theory to
allosteric proteins. However, when mass transfer between the subsystem A and B takes
place, there is no longer a bipartite structure, because substances leaving one subsystem
immediately arrive in the other subsystem. In such cases, application of the theory is not
straightforward, but it can be extended. This is done in section 4.1} As an illustration, the
extended theory is applied to tryptophan synthase, which has both allosteric interactions
between its two subunits and mass transfer due to indole channeling. The work presented

in chapters |3| and 4] has been published in [25].

Chapter 5| takes a more general perspective on chemical reaction networks. The re-
action networks are modeled by finite and discrete state spaces as in the case of the
tryptophan synthase model. However, the states correspond to sets of metabolites and
not to individual states of a single enzyme. As described in the first paragraphs of this
introduction, high-throughput techniques generate large amounts of data on particular
levels of organization, in particular, on reaction networks of metabolites, interaction net-
works of proteins and genetic regulatory networks. The connection between this data and
the hierarchical organization of biological systems across many scales is an omnipresent
theme in modern systems biology, which has fascinated this author ever since he became
aware of it. The methods in chapter [5| are a non-standard approach to establish such
connections. Focusing on reaction networks of metabolites and the respective catalysts,
algebraic procedures of coarse-graining are proposed as a natural tool to switch between
multiple scales. In this regard, the joint and subsequent functions of single catalysts and
of subnetworks on the reaction network are defined in sections[5.2H5.4l The set of the func-
tions of all subnetworks forms a semigroup under composition. It is then demonstrated
that such semigroups can be used to identify self-sustaining subnetworks (section .
Finally, biologically meaningful congruences and the resulting coarse-graining procedures
are defined and discussed (section |5.6]).






Chapter 1

Investigated System and Applied
Methods

This chapter introduces the tryptophan synthase enzyme as the main system under in-
vestigation in this thesis and the methods used to study it. In section details on
the structure and function of the enzyme are given. In section [1.2] approaches to model
protein kinetics are discussed. Section introduces the material on stochastic and in-
formation thermodynamics used in this thesis.

1.1 The Tryptophan Synthase Enzyme

The enzyme tryptophan synthase catalyzes the last two steps in the formation of L-
tryptophan (in the following: tryptophan) from indole glycerol phosphate (IGP) and
L-serine (in the following: serine). It is present only as a dimeric ay/3; bienzyme complex
with linear aff« alignment of the subunits. The a-subunit catalyzes the formation of in-
dole and glyceraldehyde-3-phosphate (G3P) from IGP. Indole is then transferred through
a 25 A-long tunnel to the S-subunit, where it reacts with serine to form tryptophan (fig-
ure . To prevent loss or accumulation of the metabolite indole, the reactivity of both
subunits is tightly coupled by allosteric interactions. Binding of both substrates IGP
and serine triggers the closing of the o and S-subunits and thereby significantly enhances
the rate of indole formation. Only after indole channeling to the S-site and reaction with
serine is completed the subunits are opened and the product tryptophan and G3P released.

Tryptophan synthase has been extensively studied since 1946, when first indications
for the biosynthesis of tryptophan from serine were given by Gunsalus [26]. Already in
1958 it was discovered that IGP and serine react to form tryptophan without releasing
indole into the solution [27]. Since 1970, kinetic and structural studies performed by the
groups of Michael F. Dunn (University of California, Riverside) and Ilme Schlichting (Max
Planck Institute for Medical Research, Heidelberg) have created a vast amount of insights
and data on tryptophan synthase. By the late 1990s the most important intermediates
in the enzyme’s cycle have been spectroscopically characterized and the reaction mecha-
nism could be formulated. Since then research was focused on the understanding of the
regulatory pathways synchronizing the a- and S-reactions.

A growing number of X-ray crystallographic structures of the wild-type enzyme and
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mutants thereof with naturally appearing and model ligands has aided to identify the
domains and residues responsible for catalysis and allosteric regulation [28]. In addition,
several kinetic studies involving mutant enzymes and isotopically labeled substrates have
been conducted to identify the rate determining reaction steps and the residues involved
therein. In 2007, a further milestone was set by determining the X-ray crystallographic
structure of tryptophan synthase in its closed and catalytically active conformation [29].
The historical development of research on tryptophan synthase and the interconnection
of experimental results and their implications are reviewed in [19]. Articles that focus on
structural [30] and kinetic [31] properties of tryptophan synthase are also available.

Higher organisms obtain the essential amino acid tryptophan through their diet, while
bacteria, yeasts and molds have a tightly controlled mechanism for its synthesis regulated
by the tryptophan operon. Hence, the elucidation of the mechanisms governing the en-
zyme’s behavior is of interest in areas related to the medicine of infectious disease, plant
defense and herbicide design.

a-active site

COMM domain

B-active site
with PLP

a-subunit o~
B-subunit

Figure 1.1: Structure of tryptophan synthase with its characteristic elements. The tunnel
for indole channeling is represented by the dashed line. The COMM domain (orange)
serves for allosteric information transfer between the subsites and prevents the escape
of substances at the S-site in the closed conformation. The loops al2 and al6 (red)
confer the allosteric communication at the a-site. In the closed conformation they pre-
vent substrate exchange of the a-site with the enzyme environment. A ball and stick
representation is used for the PLP cofactor at the g-site. PDB code: 2J9X.

1.1.1 Structural Features
The a-reaction

At the a-site of tryptophan synthase, indole-3-glycerol phosphate (IGP) is converted to
indole and glycerol-3-phosphate (G3P) (figure [1.2). From X-ray crystallographic studies
it is known that the a-subunit exists in at least two conformations termed as open and
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closed states [32, 28]. The open state has a low catalytic activity on IGP cleavage and is
structurally characterized by a disordered alL6 loop consisting of the residues a179-a193,
which becomes ordered in the closed conformation and prevents the escape of indole into
solution [33] 34 32]. Concerning the reaction mechanism for aldolytic cleavage of IGP,
two alternatives have to be taken into account. The first is a series of proton transfers
involving aGlu49 and aAsp60 as acid-base catalysts and the second is a concerted one-
step reaction. Considering the hydrophobic microenvironment of the active site, the latter
mechanism seems to be more likely [35], 36 29]. Using a specific a-site ligand, transition
state analogues supporting the hypothesis of a concerted mechanism could be synthesized
and analyzed crystallographically [37, [38].

HO
OPO5’ ﬂ

(L 0D e

: ” OH

IGP indole G3P

Figure 1.2: Transformation of IGP to indole and G3P catalyzed by the a-site of trypto-
phan synthase

The [-reaction

The p-subunit catalyzes the conversion of indole and serine to tryptophan (figure .
In the initial state E(Ain), the cofactor pyridoxal phosphate (PLP) is bound to SLys87.
It constitutes the main catalytic site for the complex reaction cycle by binding of the
substrates through their amino groups as aldimines, germinal diamines and quinolines.
So far, nine intermediates have been characterized by UV /Vis spectroscopy, X-ray crys-
tallography and by reaction and comparison with substrate analogues [39, [40] 41]. The
p-reaction is commonly divided in two stages. In stage I, the aminoacrylate E(A-A) is
formed from the internal aldimine E(Ain) with serine with the germinal diamine E(GD,),
the external aldimine E(Aex;) and the quinoline E(Q;) appearing as intermediate states.
In stage II, E(A-A) reacts with indole to give tryptophan and return to the enzyme’s
initial state E(Ain) via two quinolines E(Q) and E(Qj3), an external aldimine E(Aexs)
and a germinal diamine E(GDy). As the first step of this stage, indole is channeled from
the a-site to react with E(A-A). Like the a-subunit, the [-subunit can adopt at least
two different conformations - an activated state with a closed conformation and an in-
active open state. The catalytic cycles of the a- and S-sites are synchronized through
a mechanism wherein conversion of E(Aex;) to E(A-A), via E(Q;), activates the a-site,
whereas conversion of E(Qj3) to E(Aexs) brings it back to the inactive open conformation
[41], [42] 43]. In order to accommodate many different intermediates and thereby achieve
reasonable reaction rates, the [-catalytic site possesses a certain structural flexibility,
which is modulated by a monovalent cation (MVC) cofactor [44] 45, [46].

Mechanisms of Intersite Communication

Three levels of events comprise the allosteric communication in tryptophan synthase.
These consist of loop motions at the a-site (loop al.2 with residues a53 to a60 and loop
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Figure 1.3: The p-reaction cycle catalyzed by tryptophan synthase. Serine reacts with the
internal aldimine E(Ain) and is transformed to aminoacrylate E(A-A) under elimination
of water. E(A-A) incorporates indole to yield the geminal diamine E(GD,) via several
intermediates, which releases tryptophan and returns to the initial state E(Ain).
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al.6 with residues a179 to «193), motions of single residues extending over the bienzyme
complex and motion of the COMM domain (residues 5102 to $189). These movements
are correlated, but the extent of concertion has yet to be established. The known com-
munication mechanisms will be described in the above given order.

Figure 1.4: Conformational rearrangements in the a-subunit. The structures of an
indoline-G3P adduct (dark gray, PDB code: 1QOP) with the IGP complex (light gray,
PDB code: 2RHG) are compared. When the enzyme switches to the closed conforma-
tion, the loop a6 (green) moves towards the substrate IGP. In the process, aThr183
gets pulled by aAsp60 through hydrogen bridge formation and pushes the substrate (yel-
low arrow). At this moment, IGP is able to interact with aGlu49 and aTyr175, which
confer the concerted catalytic cleavage of IGP to G3P and indole. The residues aPhe22,
aLeul00, aleul27 and alle232 form a suitable binding pocket for the product indole.
The figure was rendered with VMD and modified with Inkscape.



12 1. Investigated System and Applied Methods

COMM domain

BArgl4dl

BSer297

Figure 1.5: Hydrogen bonding network in the indoline derivative of the enzyme state
E(Qgz/3) (PDB code: 3CEP). When the enzyme adopts its closed conformation accom-
panied by the release of water at the reactive site, the residue SAsp305 rotates towards
SArgl4l, which in turn moves 4 A towards SAsp305. SGlul09 moves towards the sub-
strate and forms a hydrogen bond with the indoline ring. The bonding network serves to
stabilize certain intermediates in the closed conformation and is thought to prevent mass
exchange with the environment. Hydrogen bonds are represented by dashed red lines.
The figure was rendered with VMD and modified with Inkscape.

By using a-site ligand derivatives, it was possible to show that during the transition
from the open to the closed conformation the loop al.2 moves towards al.6 and a crucial
hydrogen bond is established between oThr183 on al6 and aAsp60 on aL2 [29, 47].
aAsp60 then is orients so that it can stabilize charge developing during indole formation
137, 138] (figure[L.2). The residue aGlu49 is as well involved in proton transfer from C’-OH
leading to the formation of indole via a push-pull mechanism. By X-ray crystallographic
structures it has been shown to adopt two conformations: an inactive state with aGlu49
pointing away from the substrate [39] and the active conformation oriented towards the
indole C’-OH group [48, 49]. This is assumed to be the most important interaction at the
a-site for allosteric communication [30]. The structural details are shown in figure [1.4]
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COMM domain

Figure 1.6: Comparison of the open and closed forms of tryptophan synthase at the
interface between the a- and [-subsites. Red dashed lines denote hydrogen bonds. (A)
Structure of the open state (IGP|Ain) (PDB code: 1QOQ). The open form is characterized
by a disordered L6 loop (green) and interactions of the al.2 loop with the COMM domain
(blue) via hydrogen bond formation from aPro57 and aAsp60 to SAsnl171. IGP is bound
to aGlu49. (B) Structure of the indoline derivative of the closed state (G3P+indole|Qa/3)
(PDB code: 3CEP) The «aL6 loop is now ordered and oThr183 interacts with aAsp60
and the substrate (compare with ﬁgure. In addition, aGlul81 forms a hydrogen bond
to BSer178 on the COMM domain. The al.2 loop is closer to the substrate than in the
open conformation thereby enabling interactions between aAsp60 and IGP. The COMM
domain is displaced by one turn thus placing SArgl75 in contact to aPro57. The figure
was rendered with VMD and modified with Inkscape.

At the f-site, the [ loop (residues $109 to $115) on the COMM domain confers
a highly specific binding site for the substrate’s and intermediates’ carboxylate groups.
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Surprisingly, the main conformational changes occur elsewhere: In the open E(Aex;)
structure, the carboxylate group of SAsp305 binds to the hydroxyl group of the serine
moiety, thereby stabilizes the E(Aex;) intermediate and prevents dehydroxylation by the
acid-base catalytic SGly109 and SLys87 residues. Switching to the closed conformation
leads to a movement of BArgl4l by approximately 4 A towards SAsp305. At this stage,
the hydrogen bridge between SAsp305 and serine is broken and SAsp305 rotates about
100° [19]. This leads to an extended hydrogen bonding network between the residues
BArgldl, SAsp305, $Ser297, [Ser299, SAspl38, and SLeul66 [0 28, B8 48, 51l 52]

(figures [1.6] and [1.5)).

The mobile domain, which has been termed the COMM domain [50], consisting of the
residues 102 to 189 is the key element in synchronization of a- and f-reactions. Its
position defines the closed and open states of the S-subunit and couples to loops al.2 and
al.6. In its open state the [-site is freely accessible from solution [39] while in the closed
state the COMM domain moves towards the PLP cofactor closing the site and establishing
interactions with other parts of the enzyme [38]. Within the COMM domain the helix
BHG is the main hub for intersite allosteric communication. In the open state, the residue
BAsnl71 on SH6 interacts with aAsp60 on al.2, which is part of the a-catalytic center
[30]. When adopting the closed conformation, SArgl75 interacts with aAsp60 and also
aProb7. Moreover, hydrogen bridges are formed between 5Ser178 on fH6 and aGly181

on aL6 [53, 54] (figure [1.7)).

The Monovalent Cation (MVC) Cofactor

In 1995, the group of Peracchi discovered that the tryptophan synthase enzyme utilizes a
monovalent cation (MVC) cofactor [55]. It is bound to six carbonyl groups belonging to
the residues fVal231, 5Gly232, SGly268, SLeu304, fPhe306, and $Ser308, which form
a loop around the cofactor [19]. The binding site is positioned 8 A away from the 8
catalytic center [56]. Without the presence of the MVC cofactor, both the catalysis at the
[-subsite and the allosteric communication are impaired. Removing the cofactor renders
the aminoacrylate E(A-A) essentially unreactive towards indole [57]. Interestingly, the
exact choice of the MVC species is rather robust towards size and charge density: Na¥t,
KT, NHf, Rb" and Cs* can serve as MVC cofactors [58, [44] and surprisingly also the
large guanidinium ion [46, 59]. While the mechanistic influence of the cofactor on the
allosteric communication has not yet been clearly worked out, modulation of the 3 reaction
center has been clarified by analysis of crystal structures with different MVC cofactors.
While the Cs*-bound enzyme E(Cs™) exhibits a binding pocket suited for indole and
derivatives thereof, the pocket is too small in the Na*-bound form E(Na™)[42, 60, 56].
Consistently, the form E(Cs™) favors the closed conformation and allows indole channeling
and incorporation at the §-site and the form E(Na™) favors the open conformation, where
the formation of indole is kinetically hindered and thus a binding pocket for indole is not
needed. In conclusion, the MVC cofactor is able to modulate the enzyme activity and to
discriminate between the open and closed conformations. This is supported by the fact
that for different cofactors different steady-state distributions of the respective enzymatic
species have been measured [45] 61].
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COMM domain
open
closed

a-subunit

closed
B-subunit
open
closed

Figure 1.7: Superposition of the structures of open (PDB code: 1KFK) and closed (PDB
code: 2J9X) conformations of tryptophan synthase. The COMM domain performs an
extensive tilting motion, whereas the rest of the S-subunit does not change detectably.
The a-subunit undergoes slight conformational changes. The figure was rendered with

VMD and modified with Inkscape.

1.1.2 Kinetics of Tryptophan Synthase

The reaction cycle involving all known enzyme states is shown in ﬁgure (with the labels
from figures and . Each subunit is represented by a chain and mutual regulations
are indicated by colored arrows. The following allosteric interactions are highlighted in

the literature [19} [31]

1. The state a-IGP has an activating effect on the formation of g-A-A: the reaction
rate increases 9.7-fold. This result was obtained by Ngo et al. by using a-site
ligands (ASL) that closely resemble the structure of IGP, but cannot be cleaved.
The equilibrium distribution of the predominant -species -Aex; and [-A-A was
then analyzed for the native enzyme with and without different AST [29].

2. [-A-A in turn activates the formation of a-indole + G3P: the reaction rate increases
27.7-fold. This result was obtained by Brzovic et al. with similar methods as used
by Ngo et al.. By binding serine analogues that could form §-A-A; but did not react
further to the (-site, the rate of IGP cleavage could be measured and compared to
rates with bound serine analogues that could not form (-A-A [42].

3. a-indole + G3P can only form when the enzyme is in the closed state. Therefore
the [-site has to be in one of the following states: E(Q;), E(A-A), E(Q2) or E(Q3)
in order to enable the formation of a-indole + G3P.

4. In the closed conformation, the uptake and release of substrates and products is not
possible. For the actual mechanism of the tryptophan synthase enzyme it has been



16 1. Investigated System and Applied Methods

suggested that the states E(Q;), E(A-A), E(Q2) and E(Q3) can exist in the open
conformation [62]. Therefore, for these chemical states, two different conformational
states - open and closed - have to be distinguished. In the former case, mass exchange
with the environment is possible.

5. As discussed in section the conversion IGP — G3P + indole most likely takes
place as a concerted one-step reaction and no intermediate steps have to be taken
into account.

B-site

l Ain |—> L-Ser |==| GD; |==| Aex, |==| Q@ [==| AA |—| Q —»( Qs J—»l Aex; |—> GD, |==| L-Trp |==| Ain
J

a-site

[ open

() open/closed (depending on a-site ligand)

[ closed

Figure 1.8: Allosteric interactions between the two subunits. The transitions empty =
IGP and G3P = empty (magenta) in the a-site are blocked (i.e., the gate in the a-subunit
is closed) in the states A-A, A-A + indole and Q3 of the [-site. The transitions IGP =
indole+G3P (light and dark blue) in the a-site are blocked in the states empty, Q1, Aexo
of the (-site. The rate of the transition IGP — indole+G3P (light blue) in the a-site
is enhanced by a factor of 27.7 in the state A-A of the (-site. The transitions Q; =
A-A and Q3 = Aexy (green) in the [-site are blocked in the state empty of the a-site.
The transition Q; — A-A (light green) in the -site is enhanced by a factor of 9.7 in the
state IGP of the a-site. The changes indole+G3P = G3P and A-A = indole+A-A (red)
corresponding to indole channeling from the a- to the f-site occur simultaneously and
represent a single stochastic transition.

A simplified scheme of the catalytic cycle of tryptophan synthase with several omitted
states is displayed in figure [1.9] Here, the a-subunit is shown in green and the [-subunit
in blue. The chemical states have the same notations as in figure [I.§ The catalytic cycle
begins with the enzyme in the state where both sites are empty and the gates are open.
Then, the substrate IGP binds to the a-subunit and serine to the S-subunit, where it is
quickly converted to the serine quinoline intermediate Q;. IGP activates the formation
of the a-aminoacrylate A-A and the enzyme adopts the closed conformation, as schemat-
ically shown in figure [[.9b. In the state (IGP,A-A) where both gates are closed, A-A
activates the cleavage of IGP to produce G3P and indole. Indole is then channeled to the
[-site where it reacts with A-A to give the tryptophan quinoline intermediate Qs that is
converted to tryptophan (Aexs is the external aldimine of tryptophan in the S-subunit).
In the state (G3P,Aexs) the gates open and the products tryptophan and G3P are re-
leased. Thus the enzyme returns to the initial conformation (empty,empty) and is ready
to start the next cycle.

The kinetic rates for all transitions are given in section [2.2]
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Figure 1.9: Schematic operation of tryptophan synthase. Operation of the machine: Once
substrates are bound (a) at both catalytic sites, IGP activates (b) the formation of A-
A and the enzyme adopts the closed conformation. A-A activates (c) the cleavage of
IGP and indole is channeled (d) to the 8-site where it reacts (¢) with A-A to give Q3. Qs
undergoes (f) further transformations that return of the enzyme to the open conformation
where tryptophan and G3P are released (g).
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1.2 Protein Models and Protein Kinetics

There are several methods to model the structure, dynamics and kinetics of proteins.
Such methods include quantum mechanics (QM), all-atom molecular mechanics (MM) or
molecular dynamics (MD), hybrid QM /MM approaches, coarse-grained structural mod-
els such a Go models and elastic network models and phenomenological models with
strongly reduced state spaces such as discrete Markov chains for chemical reactions, low-
dimensional continuous parametrizations for conformational dynamics or a combination
of both. The methods differ in the phenomena they are able to describe and in the time
scales they are able to address. The most fundamental level is the description of a protein
as a quantum mechanical system providing the full information on its electronic structure.
All-atom molecular dynamics (MD) models contain full information on the coordinates of
the nuclei, but take into account the electronic interactions via ad hoc potentials between
groups of nuclei. In phenomenological models, qualitative or quantitative experimental
data on the protein under consideration governs the choice of the variables in the model.
Often the state space in such models is substantially reduced in comparison to MD models
as many conformational and chemical states are not resolved, but treated as combined
coarse-grained states. The time and length scales of the phenomena under investigation
and the available experimental information determine the choice of the modeling approach.

Electronic processes in proteins take place on time scales of picoseconds, they are
quantum chemical phenomena and have been modeled accordingly [63]. Examples of bio-
logically relevant quantum mechanical processes are photon absorption in light harvesting
complexes, substrate binding, proton and electron tunneling and chemical reactions cat-
alyzed by enzymes. The light harvesting complexes photosystem I (PS I) and photosystem
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IT (PS II) play a main role in the transformation of the energy from absorbed photons
into chemical energy and thus have been studied extensively. The absorption spectra of
chlorophyll complexes in PS I and their dependence on the complex geometry have been
determined by semiempirical methods [64]. Recently, the absorption spectrum of PS II
was determined with ab initio methods [65]. Moreover, in the case of PS II, the pathway of
electron absorption could be modeled. It involves 6 cofactors coupled to 4 charge-transfer
states. The characteristic time scales were obtained as well [66]. The [CaMng(III)Mn(II)]
cofactor of PS II catalyzes the splitting of water and production of oxygen; the mech-
anism of the reaction is still a topic of debate. The magnetic and electronic properties
of the complex were calculated paving the way to a better understanding of the reaction
mechanism [67]. In general, the electronic structure of metal cluster cofactors is impor-
tant for the understanding of many biochemical processes, yet difficult to access. Another
example are iron-sulfur clusters present in various classes of enzymes. Recently, it became
possible to perform ab initio calculations of the energy landscape of [2Fe-2S] and [4Fe-4S]
clusters without any fitting parameters [68]. Quantum chemical models have also been
employed to determine binding energies of CO, NO and O to heme molecules [69]. The
study revealed a change in the magnetic structure of the Fe(II) center upon NO binding
as compared to CO and O, ligands. Proton tunneling [70, [71] and electron tunneling
[72, 73] [74], [75] pathways have been determined. Free energy barriers of chemical reac-
tions in solution are accessible via quantum chemical methods [76]. There have also been
attempts to model the dynamics of whole proteins using density functional theory [77, [78].

However, generally it is not possible to reach time scales relevant for the conforma-
tional dynamics of proteins with using quantum chemical models. A popular approach to
retain the accurate description of electronic processes provided by quantum mechanics and
to simultaneously study the conformational dynamics of a protein is the hybrid quantum
mechanics/molecular mechanics (QM/MM) approach [79] 80, 81]. Thereby, the chemical
reaction center is modeled as a quantum chemical system and the protein backbone by
MM methods. For example, a QM/MM hybrid approach allowed to model the catalytic
reaction of cAMP-dependent protein kinase [82]. The residues in the catalytic pocket
responsible for a substantial reduction of the activation energy as well as residues that
keep the substrates in an appropriate conformation were identified. As another example,
a QM /MM model enabled the identification of a critical arginine residue in the catalytic
mechanism of citrate synthase and allowed to study the interplay of conformational dy-
namics involving the arginine residue and catalytic activity [83]. Similarly, the coupling
of vibrational excitations and catalytic activity in human purine nucleoside phosphory-
lase [84] and the interplay of conformational and electronic states in cytochrome C450
oxidation [85] could successfully be modeled. Hybrid methods also allow to determine
acidity constants, redox potentials and solvation free energies of proteins using ab initio
calculations [86].

The QM /MM hybrid methods can successfully take into account small-scale conforma-
tional motions at the catalytic site, but are not capable of reproducing domain motions in
proteins as they take place on time scales of micro- to milliseconds. In many cases, insights
into protein function can be gained without quantum chemical descriptions, but purely
from the conformational dynamics of the protein [87]. All-atom molecular dynamics (MD)
simulations trace the motions of all protein and solvent atoms using phenomenologically
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adjusted force fields. MD simulations played a major role in the determination of the
catalytic mechanism of F{-ATPase. After the determination of the protein structures
of the main chemical and conformational states of the catalytic cycle by protein crys-
tallography, MD simulations have been used to interpolate between the structures in a
biologically meaningful way and thereby provided a dynamical model of the functioning of
F1-ATPase [88, 89]. Moreover, the ATP binding affinities in the different conformational
states of the F;-ATPase [-subunits were determined using MD and an analysis of the
thermodynamics of the simulated trajectories. This provided the solution to a dispute
concerning the reaction mechanism [90]. Another example of the success of MD is the
insight into the activity of Src tyrosine kinases, whose activated forms are known to be
oncogenes [91]. Src kinases posses a catalytic domain, an SH2 peptide binding domain at
the N-terminus of the catalytic domain and an SH3 binding domain at the C-terminus. In
the inactive state, the SH2 and SH3 domains are tightly bound and block the entrance to
the catalytic center [92]. Using MD simulations, it was possible to clarify the activation
mechanism of the kinase: The catalytic domain possesses an activation segment that in-
duces rearrangements in the SH2 domain and thereby weakens the SH2/SH3-interactions
through long-range allosteric interactions. This leads to an increased accessibility of the
catalytic center [93] [94].

The time scales accessible with molecular dynamics simulations are typically on the
order of nanoseconds [95]. Using specifically designed computer architectures, a 1 mil-
lisecond trajectory was calculated for small proteins [96], breaking the previous record of
a 10 microsecond trajectory [97] by a 100-fold. Yet, even such state of the art simula-
tion techniques cannot reach the time scales of protein folding or large domain motions
in molecular machines which often take place on the order of milliseconds and seconds
[98, 99, [100]. To model such phenomena, coarse-grained molecular dynamics methods
are available [I0I]. Thereby, groups of atoms, whole amino acid residues or even pro-
tein domains are grouped together to single particles and the dynamics is determined by
potentials between such coarse-grained particles. The potentials can be introduced ad
hoc, derived from all-atom potentials [I02} 03], from statistical analysis of protein struc-
ture data [L04] or adjusted to the native structure of the protein (Go models) [105] [106].
Coarse-grained molecular dynamics leads to a 103-fold [107] to 107-fold [108] speedup in
computation time as compared to all-atom MD. A particularly attractive field for the
application of structure-based models is protein folding [109]. Such models were used to
generate a large amount of folding trajectories for different proteins allowing a statistical
analysis of the folding pathways and generating new deep insights into the process of
protein folding [I10l ITT], T12]. Protein dynamics around the native state can be studied,
for example, with elastic network models [I13] 114]. In these computationally very effi-
cient models, all amino acid residues are replaced by single point particles and particles
within a given cutoff range interact through harmonic potentials. Using such models, it
was possible to simulate the whole catalytic cycle of HCV helicase [115], to study the al-
losteric interactions in myosin-V [I16] and even to simulate global ribosome motions [I17].

If the full structure of a protein is not available, it is possible to construct a state
space from kinetic measurements and other experimental insights and to determine the
transition rate constants between the states experimentally. The state space can con-
sist of different chemical and conformational states [118]. The chemical state space is
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usually finite and discrete corresponding to the space of chemical intermediates occur-
ring in the catalytic cycle. If the conformational motions are faster than the chemical
reactions, then the conformational states can be absorbed into the chemical states yield-
ing a discrete state Markov model. For example, the motor protein kinesin has been
modeled in [I19] as a Markovian process on a discrete state space determined by the
chemical states of both legs. Hereby, each leg can adopt three different states (empty,
ADP-bound and ATP-bound) resulting in nine different states. If the conformational
motions are slower than the chemical reaction, the conformational motions are described
by a drift process on a low-dimensional manifold given by collective coordinates. An
example is a model of F1-ATPase, where the rotatory motion is characterized by a con-
tinuous coordinate and the chemical states of the protein are discrete corresponding to
the bound ligands (empty, ADP-bound and ATP-bound) [120]. Other phenomenological
models for Fi-ATPase [121} 122], kinesin [123, 119], myosin V , [124], dynein [125] and
flagellar motors [126] have been constructed. Any protein model with discrete chemi-
cal states and Markovian transitions between them is a phenomenological model in this
sense. Phenomenological models are well suited to study global aspects of proteins such
as thermodynamic efficiency or the mechanochemical coupling in protein motors [127].

In principle, the modeling approaches with higher temporal and spatial resolution can
be converted to models with lower resolution via coarse-graining. Thereby, certain sub-
spaces of the state space are lumped together into coarse-grained states. If the dynamics
within the coarse-grained states is much faster than the transitions between them, i.e.
there is a separation of time scales, then a Markovian dynamics on the full state space
transforms into a Markovian dynamics on the coarse-grained state space. For example,
applying the Born-Oppenheimer approximation to a quantum mechanical description of
a protein and integrating out the electronic degrees of freedom leads to a molecular dy-
namics model. Replacing the centers of mass of certain domains in the MD model and
integrating out the fast atomic motions within such domains leads to coarse-grained mod-
els. The transformed dynamics is necessarily stochastic as the exact position within the
coarse-grained states cannot be traced and the transitions between coarse-grained states
occur at random with some given transition probability rates in discrete spaces or as a
diffusive processes in continuous spaces. Even at the quantum mechanical level there
are already sources of stochasticity in the dynamics due to the uncertainty relation. The
stochasticity introduced through coarse-graining is, however, fundamentally different from
quantum mechanical uncertainty, because it is not forced a priori by natural law.

1.3 Stochastic Thermodynamics

Classically, thermodynamics is applicable only to large systems with macroscopic state
variables such as temperature, internal energy and entropy. The changes of the state
variables are deterministic and can be associated with the quantities of work, heat and
entropy production. In order for the variables to be well-defined, their fluctuations are
required to be negligibly small.

Microscopic systems such as single proteins and mesoscopic systems such as reaction
networks with low numbers of reactants are subject to large stochastic fluctuations and
thus the classical theory of thermodynamics is not applicable to these systems. However,
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it has become possible to assign thermodynamic quantities to such systems and to quantify
the amount of work, entropy production and entropy flow for individual transitions and
thus for stochastic trajectories. A historically pivotal point is the work of Schnakenberg,
who generalized thermodynamic forces and fluxes to microscopic systems with fluctuating
dynamics arbitrarily far from equilibrium [128]. In near-to-equilibrium situations, he
recovered the Onsager reciprocity relations. The theory was extended in the subsequent
decades to include a stochastic interpretation of energetics for driven systems and led to
first-law-equalities [129]. Moreover, the discovery of stochastic violations of the second law
[130] led to the formulation of fluctuation theorems [131} [132] that reveal a symmetry for
the entropy production of a system at steady-state. Jarzynski proved a relation between
the average work required to drive a system in a nonequilibrium regime and the free
energies between the initial and final states [133]. This relation was refined by Crooks [134]
and extended by others [135] [136]. These culminated efforts led to a thorough definition
of a stochastic entropy and the second law [137, [138]. A further development has been
the closely related field of information thermodynamics [139, [140]. Since the foundations
of stochastic thermodynamics are formulated in terms of probabilistic processes, the hole
machinery of information theory is at hand and enables investigations of measurement
feedback and information transfer in bipartite systems [23]. Thorough and technical
treatments of stochastic thermodynamics are available in a review article by Seifert [141]
and a monograph by Sekimoto [142].

1.3.1 Stochastic Thermodynamics of Chemical Systems

Consider a Markov process on a discrete state space X. Denote the states of X by x, 2/, ...
and let w, . be the transition probability rate for a transition from the state 2’ to . The
probability to find the system in the state z at time ¢ is denoted by p(z;t). Its time
evolution is given by the equation

d /. )
Ep(x, t) = g{[w%x/p(x i 1) — Wy op(x;t)]. (1.3.1)

This equation is known as a master equation. The time derivative of p(z;t) depends only
on p(z;t), because the process is Markovian, i.e. memoryless. Using the probability fluxes

Jz o defined as

oz = Wy wp(2'5 ) — Wy op(x3 1), (1.3.2)

the master equation can be rewritten as

d
Zp(ait) = > Jaw (1.3.3)
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Any Markov process on a discrete