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Abstract

The channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical
nanomachine. It catalyzes the biosynthesis of tryptophan from serine and indole glycerol phos-
phate. As a single macromolecule, it possesses two distinct catalytic subunits and implements
13 different elementary reaction steps. A complex pattern of allosteric regulation is involved
in its operation. The catalytic activity in a subunit is enhanced or inhibited depending on the
state of the other subunit. The gates controlling arrival and release of the ligands can become
open or closed depending on the chemical states. The intermediate product indole is directly
channeled within the protein from one subunit to another, so that it is never released into the
solution around it.

In this thesis, the first single-molecule kinetic model of the enzyme is proposed and analyzed.
All its transition rate constants are extracted from available experimental data, and thus, no
fitting parameters are employed. Numerical simulations reveal strong correlations in the states of
the active centers and the emergent synchronization of intramolecular processes in tryptophan
synthase. Moreover, the effects of allosteric interactions are studied using modified in silico
models with permanent and without any allosteric activations. The unmodified model of the
native enzyme with transient activations significantly outperforms both modified models in
terms of mean turnover times. An explanation is derived from the comparison of turnover time
distributions showing a desynchronization of the two subunits in the modified models leading
to cycles with long turnover times.

Thermodynamic data is used to calculate the rate constant for the reverse indole channeling,
which has not been observed in experiments thus far. Using the fully reversible single-molecule
model, the stochastic thermodynamics of the enzyme is examined. The Gibbs energy landscape
of the internal molecular states is determined and the production of entropy and its flow within
the enzyme are analyzed. The current methods describing information exchange in bipartite sys-
tems are extended to arbitrary Markov networks and applied to the kinetic model of tryptophan
synthase. They allow the characterization of the information exchange between the subunits
resulting from allosteric cross-regulations and channeling.

The last part of this work is focused on chemical reaction networks of metabolites and en-
zymes. Algebraic semigroup models are constructed based on a formalism that emphasizes the
catalytic function of reactants within the network. These models admit a notion of successive
and simultaneous functions not only of individual enzymes, but of any subnetwork. This in-
cludes the catalytic function of the whole reaction network on itself. The function is then used to
decide whether the network is self-sustaining and a natural discrete dynamics is utilized to iden-
tify the maximal self-sustaining subnetwork. Then, a correspondence between coarse-graining
procedures and semigroup congruences respecting the functional structure is established. A
family of congruences that leads to a rather unusual coarse-graining is constructed: The net-
work is covered with local patches in a way that the local information on the network is fully
retained, but the environment of each patch is no longer resolved. Whereas classical coarse-
graining procedures would fix a particular local patch and delete detailed information about
the environment, the algebraic approach keeps the structure of all local patches and allows the
interaction of functions within distinct patches.
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Zusammenfassung

Das Enzym Tryptophan Synthase ist ein ausgezeichnetes Beispiel einer molekularen Fabrik auf
der Nanoskala. Es katalysiert die Biosynthese der essentiellen Aminosäure Tryptophan aus Serin
und Indol-glycerolphosphat. Der katalytische Zyklus des Moleküls beinhaltet mindestens 13 El-
ementarreaktionen, die in den katalytischen Zentren seiner zwei Untereinheiten stattfinden. Die
Katalyse beruht zudem auf zahlreichen allosterischen Wechselwirkungen sowie der Übertragung
des Intermediats Indol durch einen intramolekularen Tunnel.

In dieser Arbeit wird das erste kinetische Modell eines einzelnen Tryptophan Synthase
Moleküls konstruiert und analysiert. Sämtliche Reaktionskonstanten sind aus der Literatur
bekannt, wo-durch das Modell keine freien Parameter enthält. Numerische Simulationen zeigen
starke Korrelationen zwischen den Zuständen der Katalysezentren sowie die Ausbildung von
Synchronisation zwischen den intramolekularen Prozessen im Enzym. Des Weiteren werden die
Effekte der allosterischen Wechselwirkungen durch den Einsatz von Modifikationen des Modells
in silico, welche die Wechselwirkungen vollständig unterdrücken bzw. permanent aktivieren, un-
tersucht. Es zeigt sich, dass das native Enzym eine erhelblich größere Reaktionsgeschwindigkeit
aufweist als beide Modifikationen. Durch eine Analyse der Histogramme der Umsatzzeiten
einzelner Zyklen lässt sich diese Beobachtung auf eine selten auftretende Desynchronisation der
Katalysezyklen in den Untereinheiten, welche zu sehr langen Umsatzzeiten führt, zurückführen.

Die thermodynamischen Eigenschaften des Modells werden mithilfe der stochastischen Ther-
modynamik untersucht. Zunächst wird die experimentell unzugängliche Reaktionskonstante für
die Rückübertragung des Indols aus thermodynamischen Messdaten rekonstuiert. Die freie En-
thalphie aller chemischen Zustände des Moleküls, die Entropieproduktion sowie der Entropiefluss
werden berechnet. Methoden, die den Informationsaustausch in bipartiten Markovnetzwerken
charakterisieren, werden auf beliebige Markovnetzwerke verallgemeinert. Ihre Anwendung auf
das kinetische Modell der Tryptophan Synthase führt zu einer Charakterisierung des Informa-
tionsaustauschs zwischen den Untereinheiten des Enzyms.

Der abschließende Teil der Arbeit befasst sich mit chemischen Reaktionsnetzwerken von
Metaboliten und Enzymen. Ausgehend von einem Formalismus, der die katalytische Funktion
von Reaktanten des Netzwerks hervorhebt, werden algebraische Modelle konstruiert. Es handelt
sich dabei um Halbgruppen, welche aufeinanderfolgende und simultane katalytische Funktio-
nen von Enzymen und von Unternetzwerken erfassen. Die Funktion des Netzwerkes auf sich
selbst wird genutzt, um hinreichende und notwendige Bedingungen für seine Selbsterhaltung
zu formulieren. Die Definition einer natürlichen Dynamik auf den Netzwerken erlaubt auch
die Bestimmung des maximalen selbsterhaltenden Unternetzwerkes. Anschließend werden die
algebraischen Modelle dazu genutzt, um eine Korrespondenz zwischen Halbgruppenkongruen-
zen und Skalenübergängen auf den Reaktionsnetzwerken herzustellen. Insbesondere wird eine
Art von Kongruenzen erörtert, welche dem Ausspuren der globalen Struktur des Netzwerkes
unter vollständiger Beibehaltung seiner lokalen Komponenten entspicht. Während klassische
Techniken eine bestimmte lokale Komponente fixieren und sämtliche Informationen über ihre
Umgebung ausspuren, sind bei dem algebraischen Verfahren alle lokalen Komponenten zugleich
sichtbar und eine Verknüpfung von Funktionen aus verschiedenen Komponenten ist problemlos
möglich.
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Introduction

Historically, the understanding of biological systems has been successively improved by
the interplay of system reduction and integration of the reduced pieces. The reduction
was, in most cases, enabled through the refinement of experimental techniques and the re-
sulting possibility to observe smaller constituents of the system such as organs, cells, cell
organelles, protein complexes, metabolites and ultimately the structure of DNA. Such
constituents form a hierarchy resulting from the inclusion of smaller parts into larger
structures. For example, cell organelles are included in cells and cells are included in
organs. The goal of integration is concerned with the reconstruction of the properties
of a particular structure from the properties of its lower level constituents. Each time
new lower level structures have been discovered, the scientific community has spent much
effort on formulating theories that achieve the integration of the newly found structures.

However, until the advent of molecular biology, for the lower level structures such
as cells and cell organelles general interaction laws could not be formulated. Only phe-
nomenological models adjusted to the respective experimental situation with experimen-
tally determined parameters were available. Molecular biology, for the first time, allowed
to envision that precise statements about biological systems could be made based on first
principles. After all, the exact physical laws governing the structure and dynamics of
molecules had been discovered in the early 20th century. The experimental accessibility
- and thus the potential knowledge - of all molecular parts of an organism marks an im-
portant milestone in the biological science: it is the completion of the reduction program
and the end of a conceptual dichotomy between reductive and integrative ways of thought.

Meanwhile, the integration of lower level structures is far from being completed and is
a main driving force in the life sciences. It is a recurring theme in numerous publications,
where complex behavior is explained in terms of interactions of simpler lower-level con-
stituents. The integrative branch of molecular biology is now known as systems biology.
It seeks to combine high-throughput data on the numbers, interactions and even time-
evolution of metabolites, proteins, lipids, mRNA and DNA in a cell in order to develop
detailed in silico models of the whole cell.

A remarkable success of systems biology is the identification of the molecular mech-
anisms controlling the circadian rhythm, awarded the Nobel Prize in Physiology and
Medicine in 2017. In gene knockout experiments, Benzer and Konopka were able to iden-
tify a single gene (named period) whose knockout disrupted the circadian rhythm in fruit
flies. Later, Hall, Rosbash and Young could show that the protein encoded by the gene
(also called period) inhibits the transcription of its own gene and thereby forms a feed-
back loop. The period protein is degraded through the influence of sunlight and therefore
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its concentration fluctuates in a 24-hour rhythm driven by the day and night cycle: The
concentration increases during the night (up to some threshold value controlled by the
feedback loop) and decreases during the day (again to some threshold when degradation
rate and synthesis rate cancel each other). In meticulous experimental work, the No-
bel laureates were able to identify other genes and proteins that stabilize the regulatory
network and control the entry of period into the nucleus. One of the many fascinating
aspects about this work is the successful integration of simple chemical reactions governed
by standard rate equations of a set of chemicals into a reaction network that has a signifi-
cant influence on all the levels of organization within the organism: The circadian rhythm
affects chemical characteristics such as hormone levels and metabolism, physical charac-
teristics such as body temperature and blood pressure and even medicinal characteristics
such as the desire for sleep, coordination, reaction times and mood. This means that the
processes influenced by the reaction network based on period span a large interval of time
and length scales emerging from the small time and length scales of individual chemical
reactions involved in the network. In this regard, it is interesting to note that the circa-
dian rhythm within each organism is controlled by a physical process on an astronomical
scale, namely the earth’s rotation with respect to the sun.

The connection of processes on different time and length scales is becoming an in-
creasingly important theme in the life sciences: While in the example discussed above,
the connection between the period reaction network and higher-scale properties has not
been made quantitative, there have been remarkable achievements in constructing quan-
titative in silico multiscale models. An outstanding example is a series of models of the
human heart constructed by Noble et al. [1, 2]. Such models include functionally impor-
tant genes, proteins, metabolites and many details on ion channels at the molecular level.
These are included in models of all the main types of cardiac myocytes, which in turn are
used in three-dimensional reconstructions of the whole organ as an elastic object paying
attention to fiber orientation, sheet structure and the heart nervous system. Using such
advanced models, many pathological states of the heart could be reproduced based on
changes in the protein composition, drug interactions, or mutations of the ion channels.
Moreover, it was possible to study the influence of the heart contraction on the electrical
state of the heart, giving unexpected results on the connection to changes in cell volume.
Along the same lines, arrhythmic behavior was successfully reproduced from models of
the metabolic and electrophysiological processes following energy deprivation.

The period reaction network governing the circadian rhythm and the multiscale heart
models each represent a major theme in system biological thought: At the molecular level,
models of reaction networks of metabolites (called the metabolome), interaction networks
of proteins (proteome), gene regulatory networks (genome) and mRNA expression levels
are being integrated to determine mechanisms and regulatory motives within such net-
works. Such models are based on large amounts of quantitative and qualitative data using
high-throughput techniques that simultaneously monitor the cellular concentrations of a
large number of different chemical species. Modern techniques even allow time-resolved
data to be obtained. However, such approaches are inherently weak at capturing the
emergence of and interactions with larger structures within an organism. In the example
of the heart model, membranes, cells and the three-dimensional structure of the heart
were not deduced from the respective molecular interaction networks, but added “by
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hand”. Moreover, not the full reaction and interaction networks of molecules were taken
into account, but only those important for the higher-scale processes under consideration.
This approach to systems biology is more an “artful crafting” of suitable models and less
a “black-box” approach based on a fixed set of rules. Indeed, many prominent scientists
such as Sydney Brenner [3], Dennis Noble [4] and Laurent Nottale [5] hold the opinion
that there is no preferred scale of causation in nature and that neither the genetic code nor
the molecular interaction network of organisms therefore contain a sufficient description
of the organism.

Such problems are already present at one of the “lower levels” of organization, within
individual proteins and their interactions networks. Does the understanding of individ-
ual proteins provide deeper understanding of protein-protein interactions? How is the
catalytic mechanism of a protein in diluted solutions in vitro or in silico related to its
function in vivo? How important is the role of protein complexes when integrating high-
throughput data without any a priori information on such complexes?

Proteins can be thought as the executive power of the cell. They carry out almost
all functions in the living cell that involve manipulation and modification of the chem-
ical and physical constitution of the cell or its environment. Enzymes catalyze most of
the chemical reactions inside the cell. Through kinetic control they enable metabolic re-
actions to take place in a controlled manner at appropriate rates. Moreover, key steps
such as transcription, splicing and translation are carried out by large complexes. Motor
proteins transport cargo in the cytoplasm or through the cell membrane and perform the
various mechanical motions such as bacterial flagellar locomotion or muscle contraction in
higher organisms. Proteins are crucial for the control of cellular processes. In particular,
they are involved in the responses to external stimuli through signaling networks: Recep-
tor proteins at the cell surface detect stimuli (e.g. from nutrients, poisons or hormones,
but also mechanical stress) and initiate a cascaded response. Therein, several messenger
proteins from a network reminiscent of a calculatory circuit including feedback control
and amplification mechanisms. The circuit either directly initiates a response or leads to
changes in protein biosynthesis through appropriate transcription factors.

All the processes just described heavily rely on the interaction between proteins -
either within complexes or networks. A well-known example of an enzyme complex is
the ribosome, consisting of the small and large subunits, ribosomal RNA and a variety
of additional ribosomal proteins. Even larger structures are focal adhesions with over
50 proteins [6] or the spliceosome including over 200 proteins [7]. These complexes are
sufficiently stable and the components well enough known that they can be studied in
vitro or can already been observed in vivo using classical optical methods. However, the
exact composition of these complexes varies dynamically in the living cell. For example,
the number of proteins making up the spliceosome is known to vary by up to 60 between
different functional states [8]. Such observations on large and well-known complexes seem
to be just the tip of the iceberg concerning the role of enzyme complexes within living
organisms. There is a growing volume of evidence suggesting that many biochemical re-
actions within a cell are catalyzed by multi-enzyme complexes with poorly understood
and highly dynamic higher order structure [9, 10, 11, 12, 13, 14, 15]. These complexes
can implement entire metabolic pathways or significant parts of them. Within a complex,
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intermediate products can be directly channeled [10, 11] to other enzymes for further
processing, resembling the operation of an industrial conveyor belt. Moreover, different
enzymes in a complex are usually coupled through allosteric regulatory loops [15]. Be-
cause of product channeling and multiple allosteric interactions, a complex can operate
in a synchronous manner, exhibiting strong correlations in the turnover cycles of involved
enzymes. Experimental investigations of multi-enzyme complexes encounter difficulties
because the complexes are often transient and only exist in vivo [12].

An interesting class of enzymes are channeling enzymes [16, 17] (see also review [18]).
They are similar in their properties to multi-enzyme complexes, but, in contrast, are
smaller and have a well defined structure. A prototypical example of a channeling en-
zyme is tryptophan synthase [19] (introduced in detail in section 1.1). It catalyzes the
biosynthesis of the essential amino acid tryptophan from serine and indole glycerol phos-
phate (IGP). This enzyme is employed by all bacteria, plants, fungi, but not by higher
organisms and thus, can be a target for the development of antibiotics [20]. Its substrate
IGP is scarce inside the cell and, therefore, high catalytic efficiency is required. Further-
more, an intermediate product (indole) of the synthesis reaction is hydrophobic and can
easily escape through the cell membrane. Therefore, its release into the cytoplasm must
be avoided. Nature has found an elegant solution for these constraints. The entire syn-
thesis encompassing 13 elementary reaction steps is performed within the enzyme with
two different catalytic centers and the intermediate indole is channeled within the protein
from one center to another. Thus, tryptophan synthase is a model for larger and more
difficult to access protein complexes.

In chapter 2, a single-molecule model of tryptophan synthase is constructed. It takes
into account correlations between the states of the two catalytic centers arising through
substrate channeling and mutual allosteric regulation. The stochastic model is formulated
in terms of a Markov network. Because of the extensive experimental data available, all
relevant microscopic rate constants in the model could be directly deduced from the data,
so that no fitting parameters have been employed. Numerical simulations yield direct evi-
dence of the presence of strong correlations and intramolecular synchronization of chemical
processes in tryptophan synthase. They also allow to analyze the role of allosteric regu-
lations in raising the catalytic efficiency of this enzyme. This work has been published in
[21].

In chapter 3, the constructed Markov transition network is studied using the theory
of stochastic thermodynamics for the operation of a single enzyme. Thereby, additional
calorimetric data is used to determine the rate constant for reverse channeling that has
not been experimentally observed. The energy landscape is constructed and an analysis
of the entropy production and entropy flow within the enzyme in the nonequilibrium state
corresponding to physiological conditions is performed.

Chapter 4 is focused on the information theoretic aspects of allosteric interactions
between the two enzyme subunits and on the information effects of channeling events.
Recently, a theory of information transfer in bipartite Markov networks has been con-
structed [22, 23, 24]. Bipartite Markov networks are networks whose state space can be
factored as a product space A × B of two subsystems A and B such that all transitions
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change either the state of the A-subsystem or of the B-subsystem, but not both at the
same time. The Markov network models of allosteric proteins have exactly this structure:
The A-subsystem is the catalytic site and the B-subsystem is the allosteric site. A cat-
alyzed reaction changes only the A-state and the binding or unbinding of some allosteric
effector changes only the B-state. The allosteric interaction entails an effect of the B-state
on the catalytic rates of the A-subsystem. This effect is made quantitative in the theory
of information thermodynamics and, thus, it is straightforward to apply the theory to
allosteric proteins. However, when mass transfer between the subsystem A and B takes
place, there is no longer a bipartite structure, because substances leaving one subsystem
immediately arrive in the other subsystem. In such cases, application of the theory is not
straightforward, but it can be extended. This is done in section 4.1. As an illustration, the
extended theory is applied to tryptophan synthase, which has both allosteric interactions
between its two subunits and mass transfer due to indole channeling. The work presented
in chapters 3 and 4 has been published in [25].

Chapter 5 takes a more general perspective on chemical reaction networks. The re-
action networks are modeled by finite and discrete state spaces as in the case of the
tryptophan synthase model. However, the states correspond to sets of metabolites and
not to individual states of a single enzyme. As described in the first paragraphs of this
introduction, high-throughput techniques generate large amounts of data on particular
levels of organization, in particular, on reaction networks of metabolites, interaction net-
works of proteins and genetic regulatory networks. The connection between this data and
the hierarchical organization of biological systems across many scales is an omnipresent
theme in modern systems biology, which has fascinated this author ever since he became
aware of it. The methods in chapter 5 are a non-standard approach to establish such
connections. Focusing on reaction networks of metabolites and the respective catalysts,
algebraic procedures of coarse-graining are proposed as a natural tool to switch between
multiple scales. In this regard, the joint and subsequent functions of single catalysts and
of subnetworks on the reaction network are defined in sections 5.2-5.4. The set of the func-
tions of all subnetworks forms a semigroup under composition. It is then demonstrated
that such semigroups can be used to identify self-sustaining subnetworks (section 5.5).
Finally, biologically meaningful congruences and the resulting coarse-graining procedures
are defined and discussed (section 5.6).
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Chapter 1

Investigated System and Applied
Methods

This chapter introduces the tryptophan synthase enzyme as the main system under in-
vestigation in this thesis and the methods used to study it. In section 1.1, details on
the structure and function of the enzyme are given. In section 1.2, approaches to model
protein kinetics are discussed. Section 1.3 introduces the material on stochastic and in-
formation thermodynamics used in this thesis.

1.1 The Tryptophan Synthase Enzyme

The enzyme tryptophan synthase catalyzes the last two steps in the formation of L-
tryptophan (in the following: tryptophan) from indole glycerol phosphate (IGP) and
L-serine (in the following: serine). It is present only as a dimeric α2β2 bienzyme complex
with linear αββα alignment of the subunits. The α-subunit catalyzes the formation of in-
dole and glyceraldehyde-3-phosphate (G3P) from IGP. Indole is then transferred through
a 25 Å-long tunnel to the β-subunit, where it reacts with serine to form tryptophan (fig-
ure 1.1). To prevent loss or accumulation of the metabolite indole, the reactivity of both
subunits is tightly coupled by allosteric interactions. Binding of both substrates IGP
and serine triggers the closing of the α and β-subunits and thereby significantly enhances
the rate of indole formation. Only after indole channeling to the β-site and reaction with
serine is completed the subunits are opened and the product tryptophan and G3P released.

Tryptophan synthase has been extensively studied since 1946, when first indications
for the biosynthesis of tryptophan from serine were given by Gunsalus [26]. Already in
1958 it was discovered that IGP and serine react to form tryptophan without releasing
indole into the solution [27]. Since 1970, kinetic and structural studies performed by the
groups of Michael F. Dunn (University of California, Riverside) and Ilme Schlichting (Max
Planck Institute for Medical Research, Heidelberg) have created a vast amount of insights
and data on tryptophan synthase. By the late 1990s the most important intermediates
in the enzyme’s cycle have been spectroscopically characterized and the reaction mecha-
nism could be formulated. Since then research was focused on the understanding of the
regulatory pathways synchronizing the α- and β-reactions.

A growing number of X-ray crystallographic structures of the wild-type enzyme and
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mutants thereof with naturally appearing and model ligands has aided to identify the
domains and residues responsible for catalysis and allosteric regulation [28]. In addition,
several kinetic studies involving mutant enzymes and isotopically labeled substrates have
been conducted to identify the rate determining reaction steps and the residues involved
therein. In 2007, a further milestone was set by determining the X-ray crystallographic
structure of tryptophan synthase in its closed and catalytically active conformation [29].
The historical development of research on tryptophan synthase and the interconnection
of experimental results and their implications are reviewed in [19]. Articles that focus on
structural [30] and kinetic [31] properties of tryptophan synthase are also available.

Higher organisms obtain the essential amino acid tryptophan through their diet, while
bacteria, yeasts and molds have a tightly controlled mechanism for its synthesis regulated
by the tryptophan operon. Hence, the elucidation of the mechanisms governing the en-
zyme’s behavior is of interest in areas related to the medicine of infectious disease, plant
defense and herbicide design.

Figure 1.1: Structure of tryptophan synthase with its characteristic elements. The tunnel
for indole channeling is represented by the dashed line. The COMM domain (orange)
serves for allosteric information transfer between the subsites and prevents the escape
of substances at the β-site in the closed conformation. The loops αL2 and αL6 (red)
confer the allosteric communication at the α-site. In the closed conformation they pre-
vent substrate exchange of the α-site with the enzyme environment. A ball and stick
representation is used for the PLP cofactor at the β-site. PDB code: 2J9X.

1.1.1 Structural Features

The α-reaction

At the α-site of tryptophan synthase, indole-3-glycerol phosphate (IGP) is converted to
indole and glycerol-3-phosphate (G3P) (figure 1.2). From X-ray crystallographic studies
it is known that the α-subunit exists in at least two conformations termed as open and



1.1 The Tryptophan Synthase Enzyme 9

closed states [32, 28]. The open state has a low catalytic activity on IGP cleavage and is
structurally characterized by a disordered αL6 loop consisting of the residues α179-α193,
which becomes ordered in the closed conformation and prevents the escape of indole into
solution [33, 34, 32]. Concerning the reaction mechanism for aldolytic cleavage of IGP,
two alternatives have to be taken into account. The first is a series of proton transfers
involving αGlu49 and αAsp60 as acid-base catalysts and the second is a concerted one-
step reaction. Considering the hydrophobic microenvironment of the active site, the latter
mechanism seems to be more likely [35, 36, 29]. Using a specific α-site ligand, transition
state analogues supporting the hypothesis of a concerted mechanism could be synthesized
and analyzed crystallographically [37, 38].

Figure 1.2: Transformation of IGP to indole and G3P catalyzed by the α-site of trypto-
phan synthase

The β-reaction

The β-subunit catalyzes the conversion of indole and serine to tryptophan (figure 1.3).
In the initial state E(Ain), the cofactor pyridoxal phosphate (PLP) is bound to βLys87.
It constitutes the main catalytic site for the complex reaction cycle by binding of the
substrates through their amino groups as aldimines, germinal diamines and quinolines.
So far, nine intermediates have been characterized by UV/Vis spectroscopy, X-ray crys-
tallography and by reaction and comparison with substrate analogues [39, 40, 41]. The
β-reaction is commonly divided in two stages. In stage I, the aminoacrylate E(A-A) is
formed from the internal aldimine E(Ain) with serine with the germinal diamine E(GD1),
the external aldimine E(Aex1) and the quinoline E(Q1) appearing as intermediate states.
In stage II, E(A-A) reacts with indole to give tryptophan and return to the enzyme’s
initial state E(Ain) via two quinolines E(Q2) and E(Q3), an external aldimine E(Aex2)
and a germinal diamine E(GD2). As the first step of this stage, indole is channeled from
the α-site to react with E(A-A). Like the α-subunit, the β-subunit can adopt at least
two different conformations - an activated state with a closed conformation and an in-
active open state. The catalytic cycles of the α- and β-sites are synchronized through
a mechanism wherein conversion of E(Aex1) to E(A-A), via E(Q1), activates the α-site,
whereas conversion of E(Q3) to E(Aex2) brings it back to the inactive open conformation
[41, 42, 43]. In order to accommodate many different intermediates and thereby achieve
reasonable reaction rates, the β-catalytic site possesses a certain structural flexibility,
which is modulated by a monovalent cation (MVC) cofactor [44, 45, 46].

Mechanisms of Intersite Communication

Three levels of events comprise the allosteric communication in tryptophan synthase.
These consist of loop motions at the α-site (loop αL2 with residues α53 to α60 and loop
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Figure 1.3: The β-reaction cycle catalyzed by tryptophan synthase. Serine reacts with the
internal aldimine E(Ain) and is transformed to aminoacrylate E(A-A) under elimination
of water. E(A-A) incorporates indole to yield the geminal diamine E(GD2) via several
intermediates, which releases tryptophan and returns to the initial state E(Ain).
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αL6 with residues α179 to α193), motions of single residues extending over the bienzyme
complex and motion of the COMM domain (residues β102 to β189). These movements
are correlated, but the extent of concertion has yet to be established. The known com-
munication mechanisms will be described in the above given order.

Figure 1.4: Conformational rearrangements in the α-subunit. The structures of an
indoline-G3P adduct (dark gray, PDB code: 1QOP) with the IGP complex (light gray,
PDB code: 2RHG) are compared. When the enzyme switches to the closed conforma-
tion, the loop αL6 (green) moves towards the substrate IGP. In the process, αThr183
gets pulled by αAsp60 through hydrogen bridge formation and pushes the substrate (yel-
low arrow). At this moment, IGP is able to interact with αGlu49 and αTyr175, which
confer the concerted catalytic cleavage of IGP to G3P and indole. The residues αPhe22,
αLeu100, αLeu127 and αIle232 form a suitable binding pocket for the product indole.
The figure was rendered with VMD and modified with Inkscape.
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Figure 1.5: Hydrogen bonding network in the indoline derivative of the enzyme state
E(Q2/3) (PDB code: 3CEP). When the enzyme adopts its closed conformation accom-
panied by the release of water at the reactive site, the residue βAsp305 rotates towards
βArg141, which in turn moves 4 Å towards βAsp305. βGlu109 moves towards the sub-
strate and forms a hydrogen bond with the indoline ring. The bonding network serves to
stabilize certain intermediates in the closed conformation and is thought to prevent mass
exchange with the environment. Hydrogen bonds are represented by dashed red lines.
The figure was rendered with VMD and modified with Inkscape.

By using α-site ligand derivatives, it was possible to show that during the transition
from the open to the closed conformation the loop αL2 moves towards αL6 and a crucial
hydrogen bond is established between αThr183 on αL6 and αAsp60 on αL2 [29, 47].
αAsp60 then is orients so that it can stabilize charge developing during indole formation
[37, 38] (figure 1.2). The residue αGlu49 is as well involved in proton transfer from C’-OH
leading to the formation of indole via a push-pull mechanism. By X-ray crystallographic
structures it has been shown to adopt two conformations: an inactive state with αGlu49
pointing away from the substrate [39] and the active conformation oriented towards the
indole C’-OH group [48, 49]. This is assumed to be the most important interaction at the
α-site for allosteric communication [30]. The structural details are shown in figure 1.4.
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Figure 1.6: Comparison of the open and closed forms of tryptophan synthase at the
interface between the α- and β-subsites. Red dashed lines denote hydrogen bonds. (A)
Structure of the open state (IGP|Ain) (PDB code: 1QOQ). The open form is characterized
by a disordered αL6 loop (green) and interactions of the αL2 loop with the COMM domain
(blue) via hydrogen bond formation from αPro57 and αAsp60 to βAsn171. IGP is bound
to αGlu49. (B) Structure of the indoline derivative of the closed state (G3P+indole|Q2/3)
(PDB code: 3CEP) The αL6 loop is now ordered and αThr183 interacts with αAsp60
and the substrate (compare with figure 1.4). In addition, αGlu181 forms a hydrogen bond
to βSer178 on the COMM domain. The αL2 loop is closer to the substrate than in the
open conformation thereby enabling interactions between αAsp60 and IGP. The COMM
domain is displaced by one turn thus placing βArg175 in contact to αPro57. The figure
was rendered with VMD and modified with Inkscape.

At the β-site, the β loop (residues β109 to β115) on the COMM domain confers
a highly specific binding site for the substrate’s and intermediates’ carboxylate groups.
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Surprisingly, the main conformational changes occur elsewhere: In the open E(Aex1)
structure, the carboxylate group of βAsp305 binds to the hydroxyl group of the serine
moiety, thereby stabilizes the E(Aex1) intermediate and prevents dehydroxylation by the
acid-base catalytic βGly109 and βLys87 residues. Switching to the closed conformation
leads to a movement of βArg141 by approximately 4 Å towards βAsp305. At this stage,
the hydrogen bridge between βAsp305 and serine is broken and βAsp305 rotates about
100◦ [19]. This leads to an extended hydrogen bonding network between the residues
βArg141, βAsp305, βSer297, βSer299, βAsp138, and βLeu166 [50, 28, 38, 48, 51, 52]
(figures 1.6 and 1.5).

The mobile domain, which has been termed the COMM domain [50], consisting of the
residues β102 to β189 is the key element in synchronization of α- and β-reactions. Its
position defines the closed and open states of the β-subunit and couples to loops αL2 and
αL6. In its open state the β-site is freely accessible from solution [39] while in the closed
state the COMM domain moves towards the PLP cofactor closing the site and establishing
interactions with other parts of the enzyme [38]. Within the COMM domain the helix
βH6 is the main hub for intersite allosteric communication. In the open state, the residue
βAsn171 on βH6 interacts with αAsp60 on αL2, which is part of the α-catalytic center
[30]. When adopting the closed conformation, βArg175 interacts with αAsp60 and also
αPro57. Moreover, hydrogen bridges are formed between βSer178 on βH6 and αGly181
on αL6 [53, 54] (figure 1.7).

The Monovalent Cation (MVC) Cofactor

In 1995, the group of Peracchi discovered that the tryptophan synthase enzyme utilizes a
monovalent cation (MVC) cofactor [55]. It is bound to six carbonyl groups belonging to
the residues βVal231, βGly232, βGly268, βLeu304, βPhe306, and βSer308, which form
a loop around the cofactor [19]. The binding site is positioned 8 Å away from the β
catalytic center [56]. Without the presence of the MVC cofactor, both the catalysis at the
β-subsite and the allosteric communication are impaired. Removing the cofactor renders
the aminoacrylate E(A-A) essentially unreactive towards indole [57]. Interestingly, the
exact choice of the MVC species is rather robust towards size and charge density: Na+,
K+, NH+

4 , Rb+ and Cs+ can serve as MVC cofactors [58, 44] and surprisingly also the
large guanidinium ion [46, 59]. While the mechanistic influence of the cofactor on the
allosteric communication has not yet been clearly worked out, modulation of the β reaction
center has been clarified by analysis of crystal structures with different MVC cofactors.
While the Cs+-bound enzyme E(Cs+) exhibits a binding pocket suited for indole and
derivatives thereof, the pocket is too small in the Na+-bound form E(Na+)[42, 60, 56].
Consistently, the form E(Cs+) favors the closed conformation and allows indole channeling
and incorporation at the β-site and the form E(Na+) favors the open conformation, where
the formation of indole is kinetically hindered and thus a binding pocket for indole is not
needed. In conclusion, the MVC cofactor is able to modulate the enzyme activity and to
discriminate between the open and closed conformations. This is supported by the fact
that for different cofactors different steady-state distributions of the respective enzymatic
species have been measured [45, 61].
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Figure 1.7: Superposition of the structures of open (PDB code: 1KFK) and closed (PDB
code: 2J9X) conformations of tryptophan synthase. The COMM domain performs an
extensive tilting motion, whereas the rest of the β-subunit does not change detectably.
The α-subunit undergoes slight conformational changes. The figure was rendered with
VMD and modified with Inkscape.

1.1.2 Kinetics of Tryptophan Synthase

The reaction cycle involving all known enzyme states is shown in figure 1.8 (with the labels
from figures 1.2 and 1.3). Each subunit is represented by a chain and mutual regulations
are indicated by colored arrows. The following allosteric interactions are highlighted in
the literature [19, 31]

1. The state α-IGP has an activating effect on the formation of β-A-A: the reaction
rate increases 9.7-fold. This result was obtained by Ngo et al. by using α-site
ligands (ASL) that closely resemble the structure of IGP, but cannot be cleaved.
The equilibrium distribution of the predominant β-species β-Aex1 and β-A-A was
then analyzed for the native enzyme with and without different ASL [29].

2. β-A-A in turn activates the formation of α-indole + G3P: the reaction rate increases
27.7-fold. This result was obtained by Brzovic et al. with similar methods as used
by Ngo et al.. By binding serine analogues that could form β-A-A, but did not react
further to the β-site, the rate of IGP cleavage could be measured and compared to
rates with bound serine analogues that could not form β-A-A [42].

3. α-indole + G3P can only form when the enzyme is in the closed state. Therefore
the β-site has to be in one of the following states: E(Q1), E(A-A), E(Q2) or E(Q3)
in order to enable the formation of α-indole + G3P.

4. In the closed conformation, the uptake and release of substrates and products is not
possible. For the actual mechanism of the tryptophan synthase enzyme it has been
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suggested that the states E(Q1), E(A-A), E(Q2) and E(Q3) can exist in the open
conformation [62]. Therefore, for these chemical states, two different conformational
states - open and closed - have to be distinguished. In the former case, mass exchange
with the environment is possible.

5. As discussed in section 1.1.1, the conversion IGP→ G3P + indole most likely takes
place as a concerted one-step reaction and no intermediate steps have to be taken
into account.

open

open/closed (depending on α-site ligand)

closed

α-site

β-site

Ain L-Ser GD1 Aex1 Q1 A-A Q2 Q3 Aex2 GD2 L-Trp Ain

empty IGP IGP
indole
+G3P

G3P G3P empty

Figure 1.8: Allosteric interactions between the two subunits. The transitions empty 

IGP and G3P 
 empty (magenta) in the α-site are blocked (i.e., the gate in the α-subunit
is closed) in the states A-A, A-A + indole and Q3 of the β-site. The transitions IGP 

indole+G3P (light and dark blue) in the α-site are blocked in the states empty, Q1, Aex2

of the β-site. The rate of the transition IGP → indole+G3P (light blue) in the α-site
is enhanced by a factor of 27.7 in the state A-A of the β-site. The transitions Q1 

A-A and Q3 
 Aex2 (green) in the β-site are blocked in the state empty of the α-site.
The transition Q1 → A-A (light green) in the β-site is enhanced by a factor of 9.7 in the
state IGP of the α-site. The changes indole+G3P 
 G3P and A-A 
 indole+A-A (red)
corresponding to indole channeling from the α- to the β-site occur simultaneously and
represent a single stochastic transition.

A simplified scheme of the catalytic cycle of tryptophan synthase with several omitted
states is displayed in figure 1.9. Here, the α-subunit is shown in green and the β-subunit
in blue. The chemical states have the same notations as in figure 1.8. The catalytic cycle
begins with the enzyme in the state where both sites are empty and the gates are open.
Then, the substrate IGP binds to the α-subunit and serine to the β-subunit, where it is
quickly converted to the serine quinoline intermediate Q1. IGP activates the formation
of the α-aminoacrylate A-A and the enzyme adopts the closed conformation, as schemat-
ically shown in figure 1.9b. In the state (IGP,A-A) where both gates are closed, A-A
activates the cleavage of IGP to produce G3P and indole. Indole is then channeled to the
β-site where it reacts with A-A to give the tryptophan quinoline intermediate Q3 that is
converted to tryptophan (Aex2 is the external aldimine of tryptophan in the β-subunit).
In the state (G3P,Aex2) the gates open and the products tryptophan and G3P are re-
leased. Thus the enzyme returns to the initial conformation (empty,empty) and is ready
to start the next cycle.

The kinetic rates for all transitions are given in section 2.2.
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Figure 1.9: Schematic operation of tryptophan synthase. Operation of the machine: Once
substrates are bound (a) at both catalytic sites, IGP activates (b) the formation of A-
A and the enzyme adopts the closed conformation. A-A activates (c) the cleavage of
IGP and indole is channeled (d) to the β-site where it reacts (e) with A-A to give Q3. Q3

undergoes (f) further transformations that return of the enzyme to the open conformation
where tryptophan and G3P are released (g).

1.2 Protein Models and Protein Kinetics

There are several methods to model the structure, dynamics and kinetics of proteins.
Such methods include quantum mechanics (QM), all-atom molecular mechanics (MM) or
molecular dynamics (MD), hybrid QM/MM approaches, coarse-grained structural mod-
els such a Go models and elastic network models and phenomenological models with
strongly reduced state spaces such as discrete Markov chains for chemical reactions, low-
dimensional continuous parametrizations for conformational dynamics or a combination
of both. The methods differ in the phenomena they are able to describe and in the time
scales they are able to address. The most fundamental level is the description of a protein
as a quantum mechanical system providing the full information on its electronic structure.
All-atom molecular dynamics (MD) models contain full information on the coordinates of
the nuclei, but take into account the electronic interactions via ad hoc potentials between
groups of nuclei. In phenomenological models, qualitative or quantitative experimental
data on the protein under consideration governs the choice of the variables in the model.
Often the state space in such models is substantially reduced in comparison to MD models
as many conformational and chemical states are not resolved, but treated as combined
coarse-grained states. The time and length scales of the phenomena under investigation
and the available experimental information determine the choice of the modeling approach.

Electronic processes in proteins take place on time scales of picoseconds, they are
quantum chemical phenomena and have been modeled accordingly [63]. Examples of bio-
logically relevant quantum mechanical processes are photon absorption in light harvesting
complexes, substrate binding, proton and electron tunneling and chemical reactions cat-
alyzed by enzymes. The light harvesting complexes photosystem I (PS I) and photosystem
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II (PS II) play a main role in the transformation of the energy from absorbed photons
into chemical energy and thus have been studied extensively. The absorption spectra of
chlorophyll complexes in PS I and their dependence on the complex geometry have been
determined by semiempirical methods [64]. Recently, the absorption spectrum of PS II
was determined with ab initio methods [65]. Moreover, in the case of PS II, the pathway of
electron absorption could be modeled. It involves 6 cofactors coupled to 4 charge-transfer
states. The characteristic time scales were obtained as well [66]. The [CaMn3(III)Mn(II)]
cofactor of PS II catalyzes the splitting of water and production of oxygen; the mech-
anism of the reaction is still a topic of debate. The magnetic and electronic properties
of the complex were calculated paving the way to a better understanding of the reaction
mechanism [67]. In general, the electronic structure of metal cluster cofactors is impor-
tant for the understanding of many biochemical processes, yet difficult to access. Another
example are iron-sulfur clusters present in various classes of enzymes. Recently, it became
possible to perform ab initio calculations of the energy landscape of [2Fe-2S] and [4Fe-4S]
clusters without any fitting parameters [68]. Quantum chemical models have also been
employed to determine binding energies of CO, NO and O2 to heme molecules [69]. The
study revealed a change in the magnetic structure of the Fe(II) center upon NO binding
as compared to CO and O2 ligands. Proton tunneling [70, 71] and electron tunneling
[72, 73, 74, 75] pathways have been determined. Free energy barriers of chemical reac-
tions in solution are accessible via quantum chemical methods [76]. There have also been
attempts to model the dynamics of whole proteins using density functional theory [77, 78].

However, generally it is not possible to reach time scales relevant for the conforma-
tional dynamics of proteins with using quantum chemical models. A popular approach to
retain the accurate description of electronic processes provided by quantum mechanics and
to simultaneously study the conformational dynamics of a protein is the hybrid quantum
mechanics/molecular mechanics (QM/MM) approach [79, 80, 81]. Thereby, the chemical
reaction center is modeled as a quantum chemical system and the protein backbone by
MM methods. For example, a QM/MM hybrid approach allowed to model the catalytic
reaction of cAMP-dependent protein kinase [82]. The residues in the catalytic pocket
responsible for a substantial reduction of the activation energy as well as residues that
keep the substrates in an appropriate conformation were identified. As another example,
a QM/MM model enabled the identification of a critical arginine residue in the catalytic
mechanism of citrate synthase and allowed to study the interplay of conformational dy-
namics involving the arginine residue and catalytic activity [83]. Similarly, the coupling
of vibrational excitations and catalytic activity in human purine nucleoside phosphory-
lase [84] and the interplay of conformational and electronic states in cytochrome C450
oxidation [85] could successfully be modeled. Hybrid methods also allow to determine
acidity constants, redox potentials and solvation free energies of proteins using ab initio
calculations [86].

The QM/MM hybrid methods can successfully take into account small-scale conforma-
tional motions at the catalytic site, but are not capable of reproducing domain motions in
proteins as they take place on time scales of micro- to milliseconds. In many cases, insights
into protein function can be gained without quantum chemical descriptions, but purely
from the conformational dynamics of the protein [87]. All-atom molecular dynamics (MD)
simulations trace the motions of all protein and solvent atoms using phenomenologically



1.2 Protein Models and Protein Kinetics 19

adjusted force fields. MD simulations played a major role in the determination of the
catalytic mechanism of F1-ATPase. After the determination of the protein structures
of the main chemical and conformational states of the catalytic cycle by protein crys-
tallography, MD simulations have been used to interpolate between the structures in a
biologically meaningful way and thereby provided a dynamical model of the functioning of
F1-ATPase [88, 89]. Moreover, the ATP binding affinities in the different conformational
states of the F1-ATPase β-subunits were determined using MD and an analysis of the
thermodynamics of the simulated trajectories. This provided the solution to a dispute
concerning the reaction mechanism [90]. Another example of the success of MD is the
insight into the activity of Src tyrosine kinases, whose activated forms are known to be
oncogenes [91]. Src kinases posses a catalytic domain, an SH2 peptide binding domain at
the N-terminus of the catalytic domain and an SH3 binding domain at the C-terminus. In
the inactive state, the SH2 and SH3 domains are tightly bound and block the entrance to
the catalytic center [92]. Using MD simulations, it was possible to clarify the activation
mechanism of the kinase: The catalytic domain possesses an activation segment that in-
duces rearrangements in the SH2 domain and thereby weakens the SH2/SH3-interactions
through long-range allosteric interactions. This leads to an increased accessibility of the
catalytic center [93, 94].

The time scales accessible with molecular dynamics simulations are typically on the
order of nanoseconds [95]. Using specifically designed computer architectures, a 1 mil-
lisecond trajectory was calculated for small proteins [96], breaking the previous record of
a 10 microsecond trajectory [97] by a 100-fold. Yet, even such state of the art simula-
tion techniques cannot reach the time scales of protein folding or large domain motions
in molecular machines which often take place on the order of milliseconds and seconds
[98, 99, 100]. To model such phenomena, coarse-grained molecular dynamics methods
are available [101]. Thereby, groups of atoms, whole amino acid residues or even pro-
tein domains are grouped together to single particles and the dynamics is determined by
potentials between such coarse-grained particles. The potentials can be introduced ad
hoc, derived from all-atom potentials [102, 103], from statistical analysis of protein struc-
ture data [104] or adjusted to the native structure of the protein (Go models) [105, 106].
Coarse-grained molecular dynamics leads to a 103-fold [107] to 107-fold [108] speedup in
computation time as compared to all-atom MD. A particularly attractive field for the
application of structure-based models is protein folding [109]. Such models were used to
generate a large amount of folding trajectories for different proteins allowing a statistical
analysis of the folding pathways and generating new deep insights into the process of
protein folding [110, 111, 112]. Protein dynamics around the native state can be studied,
for example, with elastic network models [113, 114]. In these computationally very effi-
cient models, all amino acid residues are replaced by single point particles and particles
within a given cutoff range interact through harmonic potentials. Using such models, it
was possible to simulate the whole catalytic cycle of HCV helicase [115], to study the al-
losteric interactions in myosin-V [116] and even to simulate global ribosome motions [117].

If the full structure of a protein is not available, it is possible to construct a state
space from kinetic measurements and other experimental insights and to determine the
transition rate constants between the states experimentally. The state space can con-
sist of different chemical and conformational states [118]. The chemical state space is
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usually finite and discrete corresponding to the space of chemical intermediates occur-
ring in the catalytic cycle. If the conformational motions are faster than the chemical
reactions, then the conformational states can be absorbed into the chemical states yield-
ing a discrete state Markov model. For example, the motor protein kinesin has been
modeled in [119] as a Markovian process on a discrete state space determined by the
chemical states of both legs. Hereby, each leg can adopt three different states (empty,
ADP-bound and ATP-bound) resulting in nine different states. If the conformational
motions are slower than the chemical reaction, the conformational motions are described
by a drift process on a low-dimensional manifold given by collective coordinates. An
example is a model of F1-ATPase, where the rotatory motion is characterized by a con-
tinuous coordinate and the chemical states of the protein are discrete corresponding to
the bound ligands (empty, ADP-bound and ATP-bound) [120]. Other phenomenological
models for F1-ATPase [121, 122], kinesin [123, 119], myosin V , [124], dynein [125] and
flagellar motors [126] have been constructed. Any protein model with discrete chemi-
cal states and Markovian transitions between them is a phenomenological model in this
sense. Phenomenological models are well suited to study global aspects of proteins such
as thermodynamic efficiency or the mechanochemical coupling in protein motors [127].

In principle, the modeling approaches with higher temporal and spatial resolution can
be converted to models with lower resolution via coarse-graining. Thereby, certain sub-
spaces of the state space are lumped together into coarse-grained states. If the dynamics
within the coarse-grained states is much faster than the transitions between them, i.e.
there is a separation of time scales, then a Markovian dynamics on the full state space
transforms into a Markovian dynamics on the coarse-grained state space. For example,
applying the Born-Oppenheimer approximation to a quantum mechanical description of
a protein and integrating out the electronic degrees of freedom leads to a molecular dy-
namics model. Replacing the centers of mass of certain domains in the MD model and
integrating out the fast atomic motions within such domains leads to coarse-grained mod-
els. The transformed dynamics is necessarily stochastic as the exact position within the
coarse-grained states cannot be traced and the transitions between coarse-grained states
occur at random with some given transition probability rates in discrete spaces or as a
diffusive processes in continuous spaces. Even at the quantum mechanical level there
are already sources of stochasticity in the dynamics due to the uncertainty relation. The
stochasticity introduced through coarse-graining is, however, fundamentally different from
quantum mechanical uncertainty, because it is not forced a priori by natural law.

1.3 Stochastic Thermodynamics

Classically, thermodynamics is applicable only to large systems with macroscopic state
variables such as temperature, internal energy and entropy. The changes of the state
variables are deterministic and can be associated with the quantities of work, heat and
entropy production. In order for the variables to be well-defined, their fluctuations are
required to be negligibly small.

Microscopic systems such as single proteins and mesoscopic systems such as reaction
networks with low numbers of reactants are subject to large stochastic fluctuations and
thus the classical theory of thermodynamics is not applicable to these systems. However,
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it has become possible to assign thermodynamic quantities to such systems and to quantify
the amount of work, entropy production and entropy flow for individual transitions and
thus for stochastic trajectories. A historically pivotal point is the work of Schnakenberg,
who generalized thermodynamic forces and fluxes to microscopic systems with fluctuating
dynamics arbitrarily far from equilibrium [128]. In near-to-equilibrium situations, he
recovered the Onsager reciprocity relations. The theory was extended in the subsequent
decades to include a stochastic interpretation of energetics for driven systems and led to
first-law-equalities [129]. Moreover, the discovery of stochastic violations of the second law
[130] led to the formulation of fluctuation theorems [131, 132] that reveal a symmetry for
the entropy production of a system at steady-state. Jarzynski proved a relation between
the average work required to drive a system in a nonequilibrium regime and the free
energies between the initial and final states [133]. This relation was refined by Crooks [134]
and extended by others [135, 136]. These culminated efforts led to a thorough definition
of a stochastic entropy and the second law [137, 138]. A further development has been
the closely related field of information thermodynamics [139, 140]. Since the foundations
of stochastic thermodynamics are formulated in terms of probabilistic processes, the hole
machinery of information theory is at hand and enables investigations of measurement
feedback and information transfer in bipartite systems [23]. Thorough and technical
treatments of stochastic thermodynamics are available in a review article by Seifert [141]
and a monograph by Sekimoto [142].

1.3.1 Stochastic Thermodynamics of Chemical Systems

Consider a Markov process on a discrete state space X. Denote the states of X by x, x′, ...
and let wx,x′ be the transition probability rate for a transition from the state x′ to x. The
probability to find the system in the state x at time t is denoted by p(x; t). Its time
evolution is given by the equation

d

dt
p(x; t) =

∑
x′∈X

[wx,x′p(x
′; t)− wx′,xp(x; t)]. (1.3.1)

This equation is known as a master equation. The time derivative of p(x; t) depends only
on p(x; t), because the process is Markovian, i.e. memoryless. Using the probability fluxes
Jx,x′ defined as

Jx,x′ = wx,x′p(x
′; t)− wx′,xp(x; t), (1.3.2)

the master equation can be rewritten as

d

dt
p(x; t) =

∑
x′∈X

Jx,x′ . (1.3.3)

Any Markov process on a discrete state space X can be represented as a directed graph
with vertex set X and edges from vertex x′ to vertex x labeled by wx,x′ . Such graphs are
called Markov networks.

The kinetics of a single protein molecule can be modeled as a Markov network. In this
case, X is the space of chemical or conformational states and the transition probability
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rates wx,x′ are given by the zeroth order reaction rate constants for transitions not involv-
ing any additional reactants or derived from higher order reaction rate constants by fixing
the concentrations of all additional reactants involved. It is crucial that the transitions
between states are memoryless. As discussed in the previous section, a discrete state
space can be obtained by the coarse-graining of conformational degrees of freedom and
therefore a separation of time scales is necessary. This is the case when X is the state
of chemical states of the protein and the chemical reactions are considerably slower than
the conformational motions. The phenomenological models with discrete state spaces
discussed in the previous section are examples of such Markov network models.

The master equation 1.3.1 is formally identical to a classical kinetic rate equation
where p(x; t) is replaced by the concentration of the chemical species x at time t. There
is, however, a substantial difference between the two descriptions: Concentrations are
macroscopic variables and the classical kinetic rate equation describe deterministically
the evolution of these variables. A single enzyme therefore cannot be described by classi-
cal rate equations. At any given time, the single enzyme is in exactly one state x ∈ X and
jumps between the states according to the given transition probability rates wx,x′ . This
is a stochastic process whose realizations are random walks on the corresponding Markov
network. The probability distribution of the process, however, evolves deterministically
according to the master equation. The description via a master equation contains more
information than the corresponding classical rate equations. For example, the stochastic
model of a single enzyme allows to determine the turnover time distribution, whereas the
corresponding deterministic rate equations only yield the mean value of this distribution
(see chapter 2).

A central quantity for stochastic processes is the Shannon entropy S. At time t it is
given by

S(t) = −
∑
x

p(x; t) ln p(x; t). (1.3.4)

Note that there alternative definitions of entropy for chemical reaction networks taking
into account the statistical factors due to the indistinguishability of molecules of the same
chemical species [143]. However, the most commonly used definition is the one given in
equation 1.3.4. The time derivative of S(t) is given by

d

dt
S =

1

2

∑
x,x′

Jx,x′ ln
p(x′; t)

p(x; t)
. (1.3.5)

It can be split as

d

dt
S = σ − h, (1.3.6)

where

σ =
1

2

∑
x,x′

Jx,x′ ln
wx,x′p(x

′; t)

wx′,xp(x; t)
(1.3.7)
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is the entropy production and

h =
1

2

∑
x,x′

Jx,x′ ln
wx,x′

wx′,x
(1.3.8)

is the entropy flow. The units of the entropy production and the entropy flow are [en-
ergy · temperature−1· time−1]. There is a difference between the Shannon entropy of
an arbitrary stochastic process and the Shannon entropy of a physical process described
by a master equation. In the latter case the Shannon entropy should be defined as
S(t) = −kB

∑
x p(x; t) ln p(x; t) (kB is the Boltzmann constant) to allow a physical inter-

pretation of the splitting dS/dt = σ − h. Therefore, throughout the text, the Shannon
entropy and all quantities derived thereof such as σ and h will be given in units of kB.

The entropy flow, the entropy production and the time derivative of the Shannon
entropy are sums of contributions from single transitions σx,x′ , hx,x′ and sx,x′ :

σ =
1

2

∑
x,x′

σx,x′ , with σx,x′ = Jx,x′ ln
wx,x′p(x

′; t)

wx′,xp(x; t)
, (1.3.9)

h =
1

2

∑
x,x′

hx,x′ , with hx,x′ = Jx,x′ ln
wx,x′

wx′,x
, (1.3.10)

dS/dt =
1

2

∑
x,x′

sx,x′ , with sx,x′ = Jx,x′ ln
p(x′; t)

p(x; t)
. (1.3.11)

The entropy production σx,x′ is the product of the probability flux Jx,x′ with the gen-
eralized force ln(wx,x′p(x

′; t)/wx′,xp(x; t)) [128]. This is based on the expression for the
entropy production in phenomenological thermodynamics. This connection is discussed
in appendix A. By Jensen’s inequality for convex functions, the entropy production is
always nonnegative. It vanishes only under equilibrium conditions.

In an equilibrium state with equilibrium probability distribution peq(x; t), the principle
of microscopic reversibility imposes the vanishing of all fluxes Jx,x′ , i.e. the transitions
from x to x′ have the same probability to occur as transitions from x′ to x. This implies

wx,x′peq(x
′; t) = wx′,xpeq(x; t) (1.3.12)

for all pairs of states x, x′ by equation 1.3.2. This leads to the condition on the quotient
wx,x′/wx′,x known as detailed balance

wx,x′

wx′,x
= exp

(
F (x′)− F (x)

kBT

)
, (1.3.13)

where F (x) is the free energy of the state x, kB is the Boltzmann constant and T is
the system’s temperature. Detailed balance gives an interpretation of the entropy flow
hx,x′ = Jx,x′ ln(wx,x′/wx′,x). Using equation 1.3.13 one can write

hx,x′ =
Jx,x′(F (x′)− F (x))

kBT
(1.3.14)
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and thus hx,x′ is the heat flux from the system to the environment for the transition be-
tween x and x′.

The rates wx,x′ are constants and therefore the condition 1.3.13 holds not only at
equilibrium, but for any probability distribution. For any cycle (i.e. a closed path) Γ on
the Markov network, equation 1.3.13 implies

∏
Γ

wx,x′

wx′,x
= exp

(∑
Γ

F (x′)− F (x)

kBT

)
= 1. (1.3.15)

More generally, transitions can be coupled to reservoirs, such as chemical reservoirs
if the respective transition involves the release or binding of some chemical or thermal
reservoirs that correspond to cooling or heating of the system in the respective transition.
Then the equation of detailed balance needs to be modified as

wx,x′

wx′,x
= exp

(
F (x′)− F (x) + Fx,x′

kBT

)
, (1.3.16)

where Fx,x′ is a contribution due to the coupling to a reservoir. For coupling to a chem-
ical reservoir, Fx,x′ corresponds to the sum of Gibbs free energies of chemicals supplied
by the reservoir. Fx,x′ can also be a mixed term due to coupling to several reservoirs.
Schnakenberg established a relationship between the Fx,x′ terms due to local coupling
and the thermodynamic forces they create [128]. Multiplying the quotients wx,x′/wx′,x
over a cycle Γ in the network gives

∏
Γ

wx,x′

wx′,x
= exp

(∑
Γ

F (x′)− F (x) + Fx,x′

kBT

)
= exp

(
1

kBT

∑
Γ

Fx,x′

)
. (1.3.17)

where the second equality is obtained from equation 1.3.15. The force FΓ =
∑

Γ Fx,x′
corresponds to the macroscopic forces driving the cycle (see appendix A).

Having defined the entropy and free energy for a Markov network with arbitrary
probability distribtion, other state variables can be defined under the same conditions
using the classical thermodynamical identities as they are required to coincide with the
classically defined variables in equilibrium. For example, the internal energy U of the
system, defined as the expectation value of the energy U = 〈E〉, is related to the free
energy via F = U − TS. Then the non-equilibrium free energy is

F = 〈E〉+ T 〈ln p(x)〉, (1.3.18)

where −〈ln p(x)〉 is the Shannon entropy from equation 1.3.4. The other state variables
are defined analogously.

An important field for applications of stochastic thermodynamics is provided by bio-
chemical reaction networks [144, 143, 145, 146, 121, 147, 148, 149, 150, 151, 152]. All
living systems operate far from equilibrium and and reactants are often present in small
numbers in biological cells. At the level of single macromolecules, protein motors use
chemical potential gradients to perform work in a strongly fluctuating environment. To
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investigate these small biochemical systems from a thermodynamic point of view, methods
from stochastic thermodynamics have been widely used [149, 150, 151, 152]. Stochastic
thermodynamics has provided a general description of the coupling of chemical reservoirs
to the work extraction by molecular motors [153, 118, 154, 155] and to particular motors
like the F1-ATPase [121, 147, 148, 156, 122] and walkers such as kinesins and myosins
[157, 158, 119, 159, 160]. Moreover, the theory has been experimentally confirmed by the
application of nonequilibrium methods to precise determinations of free energy landscapes
of biomolecules [161, 162, 163].

1.3.2 Information Thermodynamics

The Shannon entropy plays a central role in the study of the thermodynamics of stochastic
processes. However, the information theoretic character of the Shannon entropy of a
Markov network has not been discussed so far. It becomes clearly visible when two
systems are coupled by correlations as will be illustrated now. Correlations between a
system X and a measurement device M are created, for example, during measurement
processes. The information gained through measurement can then be used to extract
additional work from the system. For the sake of readability, the time-dependence of all
quantities is not written out explicitly in this section. In other words, the measurement
changes the probability distribution p(x) on X to a conditional probability distribution
p(x|m) depending on the outcome m (a state of M) after measurement. This changes the
Shannon entropy S(X) of X to a conditional entropy S(X|M) given by

S(X|M) =
∑
x

∑
m

p(m)p(x|m) ln p(x|m) (1.3.19)

and changes the free energy F = 〈E〉+TS(X) (equation 1.3.18) to F = 〈E〉+TS(X|M)
by an amount of T (S(X) − S(X|M)). The quantity S(X) − S(X|M) is known as mu-
tual information I(X,M). Using the definition of conditional probabilities and p(x) =∑

m p(m)p(x|m), it is more conveniently written as

I(X,M) =
∑
x

∑
m

p(x,m) ln
p(x,m)

p(x)p(m)
, (1.3.20)

where p(x,m) is the joint probability distribution of X and M , i.e. the probability to find
X and M in the states x and m at the same time. Equation 1.3.20 shows that the mutual
information is symmetric in its arguments, i.e. I(X,M) = I(M,X). Moreover, equa-
tion 1.3.20 shows that the mutual information depends on the correlations established
by the measurement. If the systems remain uncorrelated, i.e. if p(x,m) = p(x)p(m),
then I(X,M) vanishes, S(X) = S(X|M) and no new information is obtained through
the measurement. If, however, p(x,m) 6= p(x)p(m), then I(X,M) is strictly positive and
the entropy S(X|M) is lower than S(X) leading to a higher free energy of X enabling X
to perform more work. This surplus of free energy can be extracted through appropriate
feedback protocols [164]. The resetting of the measurement device is achieved by destroy-
ing the correlations between X and M and thus requires at least the amount I(X,M) of
work. More details, the application to complete measurement-feedback-reset cycles and
the confirmation of Landauer’s principle within this framework can be found in [164].
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For the rest of this chapter, the idea sketched above is applied to coupled systems
with continuous information exchange following [22, 23, 24]. Let A and B be two systems
with discrete and finite state spaces and let A×B the joint system with the correspond-
ing product state space, i.e. with states (a, b), where a and b are states of A and B,
respectively. A and B will be referred to as subsystems with the respective marginal
probability distributions pA(a) =

∑
b p(a, b) and pB(b) =

∑
a p(a, b). Assume that A× B

has Markovian dynamics described by a master equation

d

dt
p(a, b; t) =

∑
a′,b′

[wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t)], (1.3.21)

where wb,b
′

a,a′ is the transition probability rate from (a′, b′) to (a, b). Assume further that
A and B do not undergo simultaneous transitions, but can have an effect on each others
transition rates, i.e. the rate of a transition from a′ to a depends on the current state b
and vice versa. This means that the transition probability rates can be rewritten as

wb,b
′

a,a′ =


wb,b

′
a if a = a′

wba,a′ if b = b′

0 if a 6= a′ and b 6= b′
(1.3.22)

and the fluxes can be written as

J ba,a′ = wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t) if b = b′, (1.3.23)

J b,b
′

a = wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t) if a = a′. (1.3.24)

Such a system is called bipartite as the corresponding Markov network is a bipartite
network. Physically, one can think of this system as two subsystems A and B that
continuously perform measurements on each other, while each of the subsystems also has
an internal dynamics. This affects the apparent entropy productions σA and σB in both
subsystems. These are defined as follows: Suppose that the subsystem A is observed
without the knowledge of the subsystem B, i.e. there is no access to the joint probability
distribution p(a, b), but only to pA(a). The apparent entropy production σA assigned to
the subsystem A is

σA =
1

2

∑
a,a′,b

J ba,a′ ln
wba,a′pA(a′)

wba′,apA(a)
. (1.3.25)

Similarly,

σB =
1

2

∑
a,b,b′

J b,b
′

a ln
wb,b

′
a pB(b′)

wb
′,b
a pB(b)

. (1.3.26)

The time derivative dI(A,B)/dt of the mutual information

I(A,B) =
∑
a,b

p(a, b) ln
p(a, b)

pA(a)pB(b)
(1.3.27)
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can be split into two terms

d

dt
I(A,B) = iA + iB (1.3.28)

with

iA =
1

2

∑
a,a′

∑
b

J ba,a′ ln
pB(b|a)

pB(b|a′)
(1.3.29)

iB =
1

2

∑
b,b′

∑
a

J b,b
′

a ln
pA(a|b)
pA(a|b′)

. (1.3.30)

As shown in detail in chapter 4 for general Markov networks, the information fluxes iA and
iB and the apparent entropy productions σA and σB obey the second-law-like inequalities

σA − iA ≥ 0, (1.3.31)

σB − iB ≥ 0. (1.3.32)

Moreover, dI(A,B)/dt vanishes in a steady-state and thus iA = −iB. This means
that the mutual measurement process can change the apparent entropy production in the
system A by iA. In particular, σA can be negative, it is only bound by σA ≥ iA. Such a
reduction in entropy production must be compensated by the a flow of information from
the system B. The splitting 1.3.28 of dI(A,B)/dt and the inequalities 1.3.31 and 1.3.32
were derived by Horowitz and Esposito [164]. In chapter 4, the theory is generalized to
arbitrary Markov networks and applied to the tryptophan synthase enzyme.

The union of information theory with stochastic thermodynamics is by now on a
solid foundation. It has been recognized that processes driven by thermal or chemical
gradients are formally treated in the same way as processes driven by information. Seifert
and Barato have made the notion of “information reservoirs” precise [165] and Mandal
and Jarzynski have provided an example of a process that extracts work from information
stored in a linear array of zeros and ones [166]. Fluctuation theorems were proven for
processes with information transfer [167].



28 1. Investigated System and Applied Methods



Chapter 2

Markov Network Model

In this chapter, the single-molecule Markov network model of tryptophan synthase is
constructed. In section 2.1, the previous kinetic models of tryptophan synthase using
classical chemical rate equations are briefly reviewed. It is concluded that in the case
of tryptophan synthase, it is more natural to use a single-molecule model than models
valid for a homogeneous mixture of many copies of the enzyme. The experimental data
available in the literature is presented in section 2.2 and analyzed in section 2.3. The
Markov network model is constructed in section 2.4 and the results such as the turnover
time distribution and quantifications of correlations and synchronization are presented in
section 2.5, followed by a discussion in section 2.6. This work has been published in [21].

2.1 Previous Kinetic Models

Kinetic models for tryptophan synthase have been proposed in almost all the kinetic stud-
ies referred to throughout the text. In most of the cases, not the whole reaction cycle,
but only the reactions under experimental investigation were modeled. Classical kinetic
rate equations were used to deduce the respective rate constants (see section 2.2). To
the author’s knowledge, only the models [168] by Lane and Kirschner (1983) and [169] by
Anderson, Miles and Johnson (1991) model of the full cycle of either one subunit or of the
whole enzyme. Both models are based on classical kinetic rate equations. They have the
drawback that, in effect, the two catalytic centers in the same enzyme are treated as two
different and statistically independent chemical species such that both the allosteric in-
teractions and the indole channeling take place between the ensembles of chemical species
and not within a single enzyme. Thus, in such models, correlations within a single enzyme
could not be considered.

Lane and Kirschner provided a detailed model [168] for the catalytic cycle of the
β-subsite using only the β2 homodimeric enzyme. They have taken into account the
following chemical species: E(Aex1), E(Q1), E(A-A), E(Q2), E(Q3) and E(Aex2), which
were the only species that detectably accumulated during the experiment. In the ex-
periments, the α-subunit was not needed to complete the enzymatic cycle as indole was
added to the reaction mixture. The influence of the α-subunit in the native α2β2 form
was discussed qualitatively in terms of allosteric regulations, but not incorporated into
the model. Therefore, the model was not capable of describing the whole enzymatic cycle.
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The reaction scheme used in the kinetic study by Anderson et al. [169] is shown in
figure 2.1. While the reaction at the α-site was taken into account completely, the reaction
mechanism at the β-site was oversimplified. Some chemical states, which were known at
the time of model formulation, were neglected. This was not justified by Anderson et al.
The classical kinetic description has been used to model the enzyme kinetics. Thereby,
the α- and β-subunits were treated as two separate enzyme species. Rate equations
were formulated for the concentrations of different chemical states of these two species.
Even the rate of indole incorporation into the β-subunit was given by a second-order rate
constant, which was dependent on the concentration of indole.

Figure 2.1: Scheme of the kinetic model for tryptophan synthase used by Anderson et al.
in 1991 [169]. The figure is redrawn from the original publication with Inkscape.

As stressed in the review article by M. Dunn [19], the outstanding feature of tryp-
tophan synthase is presence of strong correlations and synchronization in the states of
the α- and β-subunits. During the catalytic cycle, the two subunits of one single enzyme
molecule communicate by allosteric interactions and thereby stay in phase. The strongest
correlations possible are present during indole diffusion through the tunnel: Both subunits
have to take a specific state and only then the indole channeling can take place. Such
strong correlations cannot be described by the classical model formulated by Anderson et
al. [169].

The single-molecule model of tryptophan synthase constructed in this chapter can
take into account the indole channeling and mutual allosteric interactions between the
two catalytic sites. It is necessarily a stochastic model (see section 1.2) and in this case
it is formulated in terms of a discrete state Markov network. For the network construc-
tion, both the important chemical species and transition rates between them need to be
identified. This is done in the following two sections.
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2.2 Kinetic Data

The kinetic data presented in this section was obtained by the groups of Dunn, Woehl,
Schlichting, Anderson and Lane with rapid-scanning stopped-flow (RSSF) methods. RSSF
experiments allow to measure transient species in fast chemical reactions with half-lives
as low as a few milliseconds [170]. The reactant solutions are pushed from syringes into a
reaction chamber where the mixing is almost instantaneous due to the small volume of the
chamber. After mixing, reactant concentrations are measured by spectroscopic methods.
The flow is stopped to increase the reaction time in the chamber and data is collected
for the appropriate interval of reaction times to give the dependence of reactant concen-
trations on the elapsed reaction time. The kinetic parameters are then fitted numerically
to the measured data. Note that a reaction mechanism needs to be proposed prior to
the numerical analysis and that the analysis yields the rate constants of the proposed
mechanism without any conclusions abouts its validity. To test the validity, simulations
with the obtained rate constants are carried out and the results are compared to the
experimental data. In the case of tryptophan synthase kinetics, the reactions at the β-
site could be observed with RSSF techniques due to the flourescent PLP cofactor whose
spectrum is sensitive to the different chemical species shown in figure 1.8 and thus allows
to distinguish them by flourescence measurements. The data analysis was performed by
the respective researchers using the KINSIM package [171].

Experimental studies of tryptophan synthase kinetics have covered many different
aspects such as binding and release of substrates and products [172, 173], indole chan-
neling [174, 175, 169], allosteric interactions [176, 177, 42, 178, 50, 35, 33, 29, 28], reac-
tion of indole at the β-site after channeling [43], the reaction mechanism at the β-site
with indole as a substrate [168, 179] or the effects of monovalent cation (MVC) cofactor
[55, 58, 44, 45, 56, 46, 59, 61, 57]. Enzymes from both Escherichia Coli and Salmonella
Typhimurium have been used. There were variations of pH-values, temperature, buffer
solutions and salt concentration in these publications.

Data on the strength of allosteric interactions between the α- and β-subunits is taken
from [29] and [42]:

Activation of the β-site: The state α-IGP has an activating effect on the formation of β-
A-A: the reaction rate increases 9.7-fold. This result was obtained by Ngo et al. by using
α-site ligands (ASL) that closely resemble the structure of IGP, but cannot be cleaved.
The equilibrium distribution of the predominant β-species β-Aex1 and β-A-A was then
analyzed for the native enzyme with and without different ASL [29].

Activation of the α-site: β-A-A in turn activates the formation of α-indole + G3P: the
reaction rate increases 27.7-fold. By binding serine analogues that could form β-A-A,
but did not react further to the β-site, the rate of IGP cleavage could be measured and
compared to rates with bound serine analogues that could not form β-A-A [42].

The kinetic rate constants for the reaction scheme in figure 1.8 are given in tables 2.1
and 2.2. They have been gathered from publications which focus on the whole catalytic
cycle of tryptophan synthase [169], on the cycle of the β-subunit [168, 173] and on the
influence of MVC on the reaction rates [44, 45].
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Turnover rates for the whole enzymatic cycle have been determined as 3,29 s−1 [180],
5,0 s−1 [172], 3,8 s−1 and 4,6 s−1 [168] and 3,35 s−1 [42].

Reaction Conformation Conditions Rate k Source

IGP + TS → IGP-TS open ≥ 10µM−1s−1 [169]
IGP-TS → IGP + TS open ≥ 200s−1 [169]
IGP-TS → IGP-TS* unknown 0.16s−1 [169]
IGP-TS* → IGP-TS unknown 8s−1 [169]
IGP-TS* → Ind-G3P-
TS*

closed 24s−1 [169]

Ind-G3P-TS* → IGP-
TS*

closed 11s−1 [169]

indole channeling closed ≥ 1000s−1 [169]
Ind-G3P-TS* → Ind +
G3P-TS

open loss of indole into solu-
tion

20s−1 [169]

Ind + G3P-TS → Ind-
G3P-TS*

open indole uptake from solu-
tion

2µM−1s−1 [169]

G3P-TS → G3P + TS open ≥ 200s−1 [169]
G3P + TS → G3P-TS open ≥ 0.2µM−1s−1 [169]

Table 2.1: α-Reaction: kinetic rate constants. The results from [169] were obtained using
KINSIM. Abbreviations: TS: tryptophan synthase, KINSIM: kinetic simulation program.
[171].

Reaction Conformation Conditions Rate k Source

TS + Ser → TS-Ser open 0.135µM−1s−1 [169]
TS-Ser → TS + Ser open 20s−1 [169]
TS + Ser 
 TS-Ser open depends on NaCl con-

centration
K = 0.07mM−1 [44]

TS + Ser → E(Aex1) open no α-site ligand 7.5 · 104M−1s−1 [168]
TS + Ser → E(Aex1) open with IPP 7.5 · 104M−1s−1 [168]
TS + Ser 
 E(Q1) open pH = 7.6, no α-site lig-

and
K = 0.72mM [173]

TS + Ser 
 E(Q1) open pH = 6.4, no α-site lig-
and

K = 2.54mM [173]

TS + Ser → E(Q1) open pH = 7.6, no α-site lig-
and

150mMs−1 [173]

TS + Ser → E(Q1) open pH = 6.4, no α-site lig-
and

45mMs−1 [173]

E(Q1) → TS + Ser open pH = 7.6, no α-site lig-
and

109s−1 [173]

E(Q1) → TS + Ser open pH = 6.4, no α-site lig-
and

113s−1 [173]

TS-Ser → E(A-A) not specified 45s−1 [169]
TS-Ser → E(Aex1) not specified depends on [NaCl] 1390s−1 [44]
E(Aex1) → TS-Ser not specified depends on [NaCl] 23s−1 [44]
E(Aex1) → TS + Ser open pH = 7.6, no α-site lig-

and
500s−1 [168]

E(Aex1) → TS + Ser open pH = 6.4, no α-site lig-
and

500s−1 [168]
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E(Aex1) → TS + Ser open pH = 7.6, with IPP 450s−1 [168]
E(Aex1) → E(Q1) not specified no α-site ligand 300s−1 [168]
E(Q1) → E(Aex1) not specified no α-site ligand 80s−1 [168]
E(Aex1) → E(Q1) not specified with IPP 267s−1 [168]
E(Q1) → E(Aex1) not specified with IPP 120s−1 [168]
E(Aex1) → E(A-A) not specified 16.7s−1 [44]
E(A-A) → E(Aex1) not specified 5.5s−1 [44]
E(Q1) → E(A-A) not specified no α-site ligand 50s−1 [168]
E(A-A) → E(Q1) not specified no α-site ligand 3s−1 [168]
E(Q1) → E(A-A) not specified no α-site ligand, alter-

native pathway
13.3s−1 [168]

E(A-A) → E(Q1) not specified no α-site ligand, alter-
native pathway

0.8s−1 [168]

E(Q1) → E(A-A) not specified with IPP 15s−1 [168]
E(A-A) → E(Q1) not specified with IPP 0.1s−1 [168]
E(Q1) → E(A-A) open pH = 6.5, no α-site lig-

and, active species
5.67s−1 [173]

E(A-A) → E(Q1) open pH = 6.5, no α-site lig-
and, active species

2.23s−1 [173]

E(Q1) → E(A-A) open pH = 6.5, no α-site lig-
and, inactive species

4.03s−1 [173]

E(A-A) → E(Q1) open pH = 6.5, no α-site lig-
and, inactive species

0.18s−1 [173]

E(A-A) → TS-Ser not specified 10s−1 [169]
E(A-A) + Ind → E(A-
A)*-Ind

not specified 2µM−1s−1 [169]

E(A-A) + Ind 
 E(A-
A)*-Ind

not specified depends on NaCl con-
centration, [NaCl] = 0

K = 1.5mM−1 [45]

E(A-A) + Ind 
 E(A-
A)*-Ind

not specified depends on NaCl con-
centration, [NaCl] =
100mM

K = 3.8mM−1 [45]

E(A-A) + Ind 
 E(A-
A)*-Ind

not specified K = 6.4 · 104M [43]

E(A-A)-Ind → E(Q2) not specified no α-site ligand, two
possible reaction path-
ways

250s−1 [168]

E(A-A)-Ind → E(Q2) not specified with IPP, two possible
reaction pathways

50s−1 [168]

E(A-A)-Ind → E(Q2) closed 365s−1 [43]
E(Q2) → E(A-A)-Ind closed 25s−1 [43]
E(A-A)*-Ind → E(Q3) closed 270s−1 [45]
E(Q3) → E(A-A)*-Ind closed depends on NaCl con-

centration, [NaCl] = 0
20s−1 [45]

E(Q3) → E(A-A)*-Ind closed depends on NaCl con-
centration, [NaCl] =
100mM

1s−1 [45]

E(Q3) → E(Aex2) not specified 50s−1 [45]
E(Q2) → E(Aex2) not specified no α-site ligand, two

possible reaction path-
ways

14s−1, 5.0s−1 [168]
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E(Aex2) → E(Q2) not specified no α-site ligand, two
possible reaction path-
ways

7.8s−1, 1.7s−1 [168]

E(Q2) → E(Aex2) not specified with IPP, two possible
reaction pathways

6s−1, 0.17s−1 [168]

E(Aex2) → E(Q2) not specified with IPP, two possible
reaction pathways

2s−1, 1.9s−1 [168]

E(A-A)*-Ind → TS*-
Trp

closed ≥ 1000s−1 [169]

TS*-Trp +→ E(A-A)*-
Ind

not specified 0.1s−1 [169]

E(Aex2) → TS + Trp not specified no α-site ligand 40s−1 [168]
TS + Trp → E(Aex2) not specified no α-site ligand 1.5 · 105M−1s−1 [168]
E(Aex2) → TS + Trp not specified with IPP 30s−1 [168]
TS + Trp → E(Aex2) not specified with IPP 0.3 · 105M−1s−1 [168]
TS*-Trp → TS + Trp switching

probably
included

8s−1 [169]

TS + Trp → TS*-Trp switching
probably
included

0.5µM−1s−1 [169]

Table 2.2: β-Reaction: kinetic rate constants. The data from
[44] was fitted to the following mechanism: TS + Ser 
 TS-
Ser 
 E(Aex1) 
 E(A-A). The constants from [45] were
obtained fitting the simplified mechanism: Ind + E(A-A) 

E(A-A)-Ind 
 E(Q3) 
 E(Aex2). The data from [43] was
obtained fitting the mechanism: E(A-A) + Ind 
 E(A-A)-
Ind 
 E(Q2). The results from [169] were obtained using
KINSIM. In [173], the addition of an α-site ligand (indole
propanol phosphate) shifts the equilibrium distribution be-
tween the active and inactive forms of E(Aex1). In [168], the
reaction proceeds without tunneling, because indole is used
instead of IGP; nevertheless, the influence of the α-site ligand
indole propanol phosphate is investigated. Unless stated oth-
erwise, the experiments were performed under pH = 7.6 Ab-
breviations: TS: tryptophan synthase, IPP: indole propanol
phosphate, KINSIM: kinetic simulation program [171].

2.3 Construction of the Single-Molecule Model

As discussed in the end of section 1.2, when modeling enzyme dynamics including chemical
reactions, the nature of the model depends on the ratio of the time scales of conforma-
tional motions and chemical reactions. In the case of tryptophan synthase, the time scale
of the slowest chemical reactions is on the order of 0.1 s. The characteristic time scale
for large scale conformational motions in motor proteins is known to be on the order of
milliseconds [100, 99]. To the author’s knowledge, no direct measurements of the time
scale of conformational motions for tryptophan synthase are available in the literature.
However, it is safe to assume that the conformational motions in tryptophan synthase are
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not slower than the motions in motor proteins and therefore are considerably faster than
the chemical reactions. This is a rather unusual situation for a protein machine - usually
the ratio is reversed. However, the sequence of reactions catalyzed by tryptohan syn-
thase is very complex and includes diverse C-C and C-N bond formations and cleavages
in different positions of the PLP-substrate complex (figure 1.8). Therefore, the catalytic
center cannot be optimized for all the elementary reactions, but is a compromise in terms
of overall performance resulting in unusually slow rates for some reactions. In effect, the
conformational motions can be integrated out and the natural coarse-grained model for
tryptophan synthase is a Markov network with discrete states given by the chemical states
of both α- and β-subunits and transitions corresponding to chemical reactions within ei-
ther one of the subunits.

The construction of a single-molecule Markov model requires the explicit identification
of all states (a, b) of the Markov network, where a is a chemical state of the α-subunit

and b is a chemical state of the β-subunit. Moreover, the transition probability rates wb,b
′

a,a′

from the state (a′, b′) to (a, b) need to be identified. The starting point is experimental
data given by the set of all chemical states a and b of the α- and β-sites and all rates
for transitions a → a′ and b → b′ measured in diverse experiments (many transitions
have more than one measured rate due to measurements under different conditions).
Note that the raw data for the transitions is not known for combined states (a, b), but
only for individual states a and b. A set of suitable rate constants is identified for each
subunit (Step 1). Then states that form and decay fast are adiabatically eliminated
(Step 2). At this stage, the combined states (a, b) are introduced (Step 3). From
experiments it is known that some combinations (a, b) of chemical states are not possible
due to conformational limitations (Step 4). Moreover, certain transitions need to be
modified due to the allosteric interactions and conservation of mass preventing the loss or
spontaneous appearance of indole inside the enzyme (Step 5). Fixing a set of substrate
and product concentrations gives the final Markov network model (Step 6).

Step 1

All the chemical species of both subunits are well-known and can all be found in [19].
They are shown in figure 1.8. The experimentally measured reaction rates depend on the
experimental conditions and choices are made based on the following principles: Studies
where several rate constants have been determined within the same experimental setup
are preferred. Moreover, because allosteric interactions between the two subunits are
important, only experimental results for the full α2β2 enzyme are used. The experiments
by Anderson et al. [169] and Lane and Kirschner [168] yield most of the data to determine
the transition rates in the stochastic Markov network model. However, the experimental
conditions in these investigations were still not identical: while Anderson et al. [169] used
the enzyme from Salmonella Typhimurium at 37◦C, the experiments [168] were performed
with the Escherichia Coli enzyme at 25◦C.

Step 2

The α-reaction The data for the α-reaction in the model is taken from the work by
Anderson et al. [169]. For the α-site, the reaction sequence empty 
 IGP 
 G3P+indole
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 G3P 
 empty was assumed by these authors. Later, it has been found that the cleavage
of IGP at the α-site is a concerted reaction [35, 36, 29] and therefore Anderson et al. [169]
have indeed correctly taken into account all reaction steps at the α-site. Transition rate
constants based on [169] are given in figure 2.2A. To compute them, the concentration of
the substrate IGP was chosen the same as in the experiments [169] and the product G3P
concentration was set to zero (see table 2.4). No adiabatic elimination was performed for
the α-reaction sequence. In ref. [169], the reaction sequence at the β-site has been treated
only in a simplified way: all intermediates except for the aminoacrylate A-A were merged
into single enzyme-substrate and enzyme-product complexes. Therefore, while the data
by Anderson et al. [169] was sufficient to model the α-reactions, other results were used
for the β-reactions.

TS + IGP IGP G3P + indole G3P TS + G3P

247*

TS + serine Aex1 Q1

200

24

11

1000 200

0*channeling

156* 300

500 80
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Figure 2.2: Reactions at α- and β-sites and their rate constants [s−1]. The values in
red were used in the Markov network model. The constants marked with an asterisk
are the first-order rate constants obtained from the second-order rate constants by fixing
substrate and product concentrations from table 2.4.

The β-reaction In comparison to the α-reaction, the reaction mechanism at the β-site
is considerably more complex. The rate constants obtained by Lane and Kirschner [168]
provide the basis for the model constructed here. Lane and Kirschner have investigated the
kinetics of the β-reaction in the α2β2 enzyme and resolved all known intermediates except
only for two geminal diamines GD1 and GD2 that were too fast to be observed. Based on
their measurements, branching of the β-reaction pathway in the part corresponding to the
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α-site empty IGP indole+G3P G3P
Variable a 1 2 3 4

β-site empty Q1 A-A indole+A-A Q3 Aex2

Variable b 1 2 3 4 5 6

Table 2.3: Chemical states at the α- and β-sites after adiabatic elimination and enumer-
ation by variables a and b.

reaction sequence A-A 
 A-A(indole) 
 Q3 has been proposed (figure 2.2B). However,
several years later and with improved experimental techniques, Woehl and Dunn [44, 45]
have come to the conclusion that the branch corresponding to the closed β-subunit plays
the dominant role. In the present study, following [44, 45] the other branch of the path-
way is discarded (figure 2.2C). The intermediate Aex1 is short-lived, with a decay rate of
800 s−1. In the reduced model (figure 2.2C), it has been adiabatically eliminated yielding
the apparent rate constants k+ = 156 · 300/800 s−1 = 58.5 s−1 for the transition TS +
serine → Q1 and k− = 80 · 500/800 s−1 = 50 s−1 for the respective backward transition.
Note that Lane and Kirschner [168] have performed experiments under two different pH-
values of 6.5 and 7.6. To match the experiments [169], the data determined at pH = 7.6
was used. Furthermore, rate constants obtained in absence of α-site ligands were chosen.

The reaction rate constant for the transition Q3 → A-A(indole) could not be deter-
mined by Lane and Kirschner. However, it was found by Leja et al. [43]. The rate
constants for binding and release of substrates and products have been determined in
[177]. For each catalytic site, we thus obtain a full set of reaction rate constants shown in
red in figure 2.2. Note that the rate constant for reverse indole channeling has not been
determined experimentally to the author’s knowledge. In the experimental literature cited
in this thesis, it is generally assumed to be irreversible.

The chemical states to be included in the model after adiabatic elimination are given
in table 2.3. For notational convenience, numerical variables a and b are introduced in
this table.

Step 3

The chemical state of a single molecule of tryptophan synthase is given by its states a
and b at both the α- and β-site. The complete unrestricted state space is thus given as
the space of combined states {(a, b)|a = 1, 2, 3, 4; b = 1, 2, ..., 6}. It is shown in figure
2.3. Transitions correspond to chemical reaction at either the α- or the β-site. Note that
for chemical reactions, simultaneous transitions of both sites need not be included in the
network, because such transition probability rates within a time interval dt are on the
order of dt2. Simultaneous transitions are only important if the states of both sites change
at the same time due to indole channeling.

Figure 2.3 corresponds to two noninteracting subunits. However, as described in the
introductory section 1.1, the reaction at the catalytic sites of both subunits are tightly
coupled.
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Figure 2.3: The unrestricted state space of combined states {(a, b), a = 1, ..., 4; b = 1, ..., 6}
and all possible transitions.

Step 4

Each catalytic site has a gating mechanism that prevents the exchange of matter with the
environment. In the α-subunit, the loops αL2 and αL6 can fold over the entrance to the
catalytic site [32, 31]. In the β-subunit, βAsp305 rotates and establishes a hydrogen bond-
ing network with the surrounding residues to close the gate to the catalytic site [28, 38].
The enzyme adopts only two conformational states with either both gates open (open
conformation) or closed (closed conformation) [44, 31, 19]. The preferred conformation
of the enzyme is determined by the chemical states at both catalytic sites. The assign-
ment of conformations to chemical states based on crystallographic experiments has been
discussed in Refs. [44, 31]. The β-states empty, Q1 and Aex2 correspond to open confor-
mation, while the β-states A-A and Q3 have the conformation with both gates closed. The
α-state empty is only found in the open conformation, the state indole+G3P is present
only in the closed conformation and the states IGP and G3P can adopt both open and
closed conformations. Therefore, the combinations (empty,A-A), (empty,A-A(indole)),
(empty,Q3), (IGP,A-A(indole)) (indole+G3P,empty), (indole+G3P,Q1), (indole+G3P,A-
A(indole)) and (indole+G3P,Aex2) do not occur due to the incompatibility of conforma-
tions of the two subunits. The resulting reduced state space is shown in figure 2.4.
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Figure 2.4: The reduced state space of combined states (a, b) with the combina-
tions of states (empty,A-A), (empty,A-A(indole)), (empty,Q3), (IGP,A-A(indole)) (in-
dole+G3P,empty), (indole+G3P,Q1), (indole+G3P,A-A(indole)) and (indole+G3P,Aex2)
excluded due to incompatibility of the α- and β conformational states.

Step 5

The reactions at α- and β-sites are coupled through indole channeling and also through
allosteric interactions. The rate of indole channeling (1000 s−1) is taken from ref. [169]
(figure 2.2). Allosteric interactions between the sites lead to reaction rate enhancements
and control the gates for arrival of substrates and release of products at both catalytic
sites. The reaction rate enhancements have been studied in kinetic experiments [29, 42],
where actual ligands were replaced by structurally similar, but unreactive analogues. The
presence of IGP at the α-site increases the rate of formation of the aminoacrylate A-A
at the β-site by a factor of 9.7 [29] When A-A is present at the β-site, this activates the
cleavage of IGP at the α-site by a factor of 27.7 [42].

Because indole channeling is fast, indole release at the α-site (indole+G3P → G3P)
and indole uptake at the β-site (A-A → A-A (indole)) take place only simultaneously.
Moreover, the closed states (IGP,A-A), (G3P,A-A), (IGP,Q3) and (G3P,Q3) cannot release
IGP or G3P from the α-site. The allosteric activations are modeled by multiplying the
transition rates for Q1 → A-A and IGP→ indole+G3P by 9.7 and 27.7 in the transitions
(IGP,Q1)→ (IGP,A-A) and (IGP,A-A)→ (indole+G3P,A-A) on the network. This yields
a modification of the possible transitions on the network of combined states resulting in
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the reaction network shown in figure 2.5. The states are colored according to the preferred
conformation.
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Figure 2.5: Reaction network for on the reduced states space of combined states taking
into account the allosteric interactions (red and blue arrows), the impossibility of substrate
binding and release in the closed conformation and indole channeling as a simultaneous
transition of both sites. The closed states are colored blue and the open states are shown
in green.

Step 6

In a typical experimental situation product concentrations remain vanishingly small and
thus the product binding rates are assumed to be zero in this chapter. Moreover, the
substrate concentrations are taken from the same sources as the majority of the rate
constants [169, 168]. The numerical values are given in table 2.4.

Reaction Rate k Concentration c Rate k̃ Source

TS + Ser → E(Q1) 7.5 · 10−2µM−1s−1 c(Ser)=2.08 mM 156 s−1 [168]
TS + Trp → E(Aex2) 0.15µM−1s−1 c(Trp)=0 0 [168]
IGP + TS → IGP-TS 10µM−1s−1 c(IPG)=24.7µM 247 s−1 [169, 177]
G3P + TS → G3P-TS 0.2µM−1s−1 c(G3P)=0 0 [169]

Table 2.4: Measured second-order rate constants k and the respective first-order constants
k̃ for the chosen concentrations c. The first-order constants were computed as k̃ = k · c.
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This completes the construction of the Markov network model of tryptophan synthase.

2.4 Kinetic Markov Network Model

The kinetic model model from figure 2.5 is redrawn in figure 2.6A with emphasis on the
role of the different states in the catalytic cycle. The large green boxes correspond to sub-
strate and product binding and release. The states involved in these reactions have open
conformations. The main catalytic functions are carried out in closed states. Hereby, the
mutual allosteric activations, the indole channeling from the α- to the β-site and reaction
of indole at the β-site form a catalytic chain (large blue box). Note the presence of the
“futile” states (indole+G3P,Q3) or (G3P,A-A) (orange boxes in figure 2.6A). In these
states, the enzyme cannot catalyze any fertile reactions, because it either contains two
indole equivalents (state (indole+G3P,Q3)) or no indole equivalents (state (G3P,A-A)).
Thus, to proceed further with fertile catalytic reactions, the enzyme has to return to an
open conformation to release the product bound at one catalytic site and bind new sub-
strate. “Futile” states do not contribute to the catalytic reaction, but lead to an increase
of the turnover time.

Alternatively, the same stochastic model can be formulated in terms of the two inter-
acting Markov chains for the α- and β-sites (figure 2.6B). The reactions modify the states
of one subunit, but they can be enhanced or inhibited (blocked) depending on the state
of the other subunit. Additionally, there is one reaction (i.e., indole channeling) which
simultaneously changes the states of both subunits.

Within its catalytic cycle, the tryptophan synthase molecule undergoes a sequence of
reaction events each associated with a change of its chemical state. This sequence can be
considered as a random walk over the set of states (a, b). The set of states together with
the possible transitions between them define a Markov network. For the combined states
(a, b), time dependent probabilities p(a, b; t) can be introduced. They satisfy the master
equation

d

dt
p(a, b; t) =

4∑
a′=1

6∑
b′=1

[wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t)] (2.4.1)

introduced in section 1.3.
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Figure 2.6: The Single-molecule stochastic model of tryptophan synthase. A Markov
network with numerical values of transition rates [s−1]. Green and blue colors correspond
to open and closed conformations. B Equivalent representation as two interacting Markov
chains. Magenta: transitions blocked in the states A-A and Q3 of the β-site. Green (light
and dark): blocked in the state empty of the α-site. Light green: enhanced by a factor
of 9.7 in the state IGP of the α-site. Blue (light and dark): blocked in the states empty,
Q1, Aex2 of the β-site. Light blue: enhanced by a factor of 27.7 in the state A-A of the
β-site. Red: Channeling instantaneously changes the states of both sites.

2.5 Simulation Results

In stochastic numerical simulations, the chemical reaction course inside a single trypto-
phan synthase enzyme is reproduced using the Gillespie algorithm [181]. Starting from
the state (empty,empty), the enzyme performs a random walk on the Markov network
shown in figure 2.6A. This walk represents a series of transitions whose probability rates
are all known. The cycle ends when both products are released and the enzyme returns
to its initial state. An example of a 2.13 s time series is shown in figure 2.7A. In the sim-
ulations, numerical data for one million turnover cycles has been collected and analyzed.

Figure 2.7B shows the distribution of overall turnover times for tryptophan synthase.
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The mean turnover time is µ = 0.15 s. However, it has a thin long tail of cycle durations
on the order of several seconds. This tail is a result of stochastic fluctuations that drive
the two catalytic sites out of phase and lead to prolonged retention in the “futile” states
(indole+G3P,Q3) and (G3P,A-A). It has been checked that, if the transitions to all “fu-
tile” states (orange boxes in figure 2.6A) are blocked, the tail disappears.

Figure 2.7: Simulation data. A Example of a short time series from a of 2.13 s duration.
Horizontal red lines indicate the enzyme being in the respective state and vertical red
lines indicate transitions between the states. B Normalized histogram of turnover times
using the data for 106 cycles. C Histogram shown in B plotted with a logarithmic scale
reveals a tail of long cycle durations.

Using the simulation data, joint probabilities p(a, b) to find the enzyme in differ-
ent compatible combinations of internal states (a, b) were determined. Joint occupation
probabilities p(a, b) for different states a and b were always obtained from stochastic
simulations of 106 turnover cycles. These probabilities are displayed in figure 2.8; their
numerical values are given in table B.1. Once both substrates have arrived, the enzyme
quickly proceeds to indole formation and channeling. After that, it stays however for a
long time in the state (G3P,Q3). The probabilities p(a) and p(b) to find the enzyme in the
states a and b irrespectively of the states at the other subsite can be obtained by summing
p(a, b) over all states of the other subsite (see table B.2 for their numerical values).

If the α- and β-subunits of the enzyme were independent chemical species, the joint
probability distribution p(a, b) would have been given by a product of the probabilities
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Figure 2.8: Joint probabilities p(a, b). Numerical values are given in table B.1.

p(a) and p(b). Hence, intramolecular correlations between the internal states of the two
subunits can be characterized by the difference between the joint probability p(a, b) and
the product p(a)p(b). It is convenient to normalize this difference in such a way that the
resulting correlation coefficient c(a, b) can vary only from -1 to +1, taking the extreme
values in the case of completely correlated or anti-correlated states. For any two chosen
states a and b of α- and β-subunits, the random binary variables X(a) and X(b) are
defined such that they take values 1 if the respective subunit is in the chosen state and
zero otherwise. The elements of the correlation matrix c(a, b) are defined as Pearson
correlation coefficients of the random variables X(a) and X(b), i.e. as

c(a, b) =
〈X(a)X(b)〉 − 〈X(a)〉〈X(b)〉√

〈X(a)2〉 − 〈X(a)〉2
√
〈X(b)2〉 − 〈X(b)〉2

, (2.5.1)

where 〈.〉 denotes the ensemble averaging. Thus defined, the correlation coefficients take
the maximal value of 1 if X(a) = X(b) and the minimal value of -1 if X(a) = −X(b).
They are expressed in terms of the occupation probabilities as

c(a, b) =
p(a, b)− p(a)p(b)√

p(a)− p(a)2
√
p(b)− p(b)2

, (2.5.2)

where p(a, b) is the joint probability to find the two enzyme subunits in the respective
states and p(a) =

∑
b p(a, b), p(b) =

∑
a p(a, b).
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The computed intramolecular correlation matrix is displayed in figure 2.9. The strongest
correlation (0.61) is found between the states G3P and Q3. Indeed, both subunits arrive
almost simultaneously to this state, due to reciprocal strong allosteric activation along
the main catalytic pathway. The substantial correlations or anti-correlations involving
empty states of both subunits are due to allosteric opening or closing of the gates.

Figure 2.9: Intramolecular correlations c(a, b) between different internal states of the
two subunits. In addition to color coding (see the bar), numerical values of the Pearson
correlation coefficients are also given.

For any α- or β-state s, the first-passage time t(s) can be defined as the time the en-
zyme needs to reach this state s when starting from the initial state where both catalytic
sites are unoccupied. The mean-square-root time dispersion σ(a, b) = 〈(t(a) − t(b))2〉1/2
of first-passage times for any two states a and b characterizes the degree of temporal
synchronization between these two states. The binding of substrates can take place in
an arbitrary order and is not controlled by allosteric interactions. The simulations yield
σ(IGP,Q1) = 22 ms for the temporal correlation between binding of two substrates to
their respective α- and β-sites. In comparison σ(indole+G3P,A-A) = 2.4 ms, and thus
the states before indole channeling are reached almost simultaneously at both catalytic
sites. This clearly demonstrates the buildup of synchronization in tryptophan synthase.

The stochastic model can be used not only to reproduce the actual operation of tryp-
tophan synthase, but also to perform in silico studies of its operation mechanism and
of the role of allosteric regulation in its function. As shown in figure 2.6, there are two
reactions steps which are allosterically activated, i.e. the transitions of Q1 to A-A and
of IGP to indole+G3P. How does the action of the enzyme at the single-molecule level
change if both allosteric regulations are switched off or both permanently activated?

To answer this question, simulations in the absence or permanent presence of both
activations have been performed. They show that the mean turnover time of the native
enzyme (µ = 0.15 s) is about two times shorter than that of the hypothetical enzyme
with absent (µ = 0.26 s) and more than three times shorter than that of the hypothetical
enzyme with permanently present (µ = 0.52 s) activations.
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While the increase of the turnover times in absence of activations is well expected,
since some transitions in the main catalytic pathway become slower, their increase under
permanent activations needs further analysis. Figure 2.10 shows occupation probabilities
of different enzyme states in such two cases. Comparing figure 2.10A with figure 2.8A,
it can be noticed that, in absence of activations, the enzyme spends more time in the
states (IGP,Q1) and (IGP,A-A), the transitions from which are slowed down. When both
activations are permanently present (figure 2.10B), the occupations probabilities of these
states become close to those for the native enzyme (figure 2.8A). However, the enzyme
now spends much time in the futile state (indole+G3P,Q3). This explains a decrease in
the catalytic efficiency when both allosteric activations are permanently present.

Figure 2.10: Joint probabilities p(a, b) of the states of α- and β-subunits. A without
activations and B with permanent activations.

The turnover time distribution of the enzyme with permanent activations closely re-
sembles the distribution of the native enzyme for small turnover times. In these cases, the
enzymes do not enter “futile” states. However, the histogram of the enzyme with perma-
nent activations has a long tail of cycle durations ranging up to 14 s (Figure 2.11). Once
a “futile” state is reached, this enzyme can dwell there for a long time thus decreasing
the catalytic efficiency. Hence, the controlled activation of reaction events along the main
catalytic pathway allows tryptophan synthase to raise its turnover efficiency as compared
to permanent acceleration of the respective reaction events.

2.6 Discussion

While presence of strong correlations and synchronization of chemical reaction events
at two catalytic subunits in tryptophan synthase has been suggested as the distinguish-
ing feature of this chemical nanomachine (see reviews [31, 19]), such effects could not
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Figure 2.11: Normalized histogram of turnover times for the hypothetical enzyme with
permanent activations. Data for 106 turnover cycles. The log-scale representation is
chosen.

be accounted for in previous kinetic studies [169] where the two subunits were treated
as separate chemical species. In contrast, the first stochastic single-molecule model was
constructed and investigated that allows a detailed exploration of intramolecular synchro-
nization phenomena.

Because tryptophan synthase has been broadly investigated in the past, providing in-
deed a “mine for enzymologists” [182], all model parameters could be extracted from the
available experimental data. Through numerical simulations of the developed stochastic
model, the statistics of turnover cycles in this enzyme could be determined. The predicted
mean turnover time under the saturation concentrations was found to be equal to 0.15 s
which is comparable with the values of 0.20 [172] and 0.30 s [42] reported under different
experimental conditions. It was found that the distribution of turnover times possesses a
long tail and, with significant probability, turnover cycles with the duration of a few sec-
onds should also be observed. They are explained by dwelling of the enzyme in the futile
states where the catalytic conversion becomes blocked. The dependence of the turnover
rate on substrate concentrations is discussed in [21], supplementary information.

The model yields direct theoretical evidence for intramolecular synchronization phe-
nomena. It is found that correlations between instantaneous chemical states of the two
catalytic subunits can be as high as 0.61, while the absence of correlations corresponds to
the zero value and the maximal possible correlation level is one. It could also be seen how
temporal correlations become enhanced along the main catalytic pathway in the enzyme
molecule, with the mean-square-root time dispersion falling from about 22 ms for the
arrival of substrates to only about 2 ms for the arrival of intermediate products for the
final catalytic conversion event.

By using the Markov model, the aspects of catalytic efficiency and allosteric regulation
in tryptophan synthase could furthermore be explored. While intramolecular channeling
of indole is already strongly contributing towards the efficiency by preventing its loss in a
biological cell and minimizing the time needed for the transfer of this intermediate from
one catalytic center to another, complex allosteric regulation contributes to further effi-
ciency gains. Particularly, this allows to avoid, to a large extent, dwelling in the futile
states which correspond to the non-productive side branches of the intramolecular cat-
alytic pathway and thus accelerates the overall catalytic conversion.
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Despite the fact that extensive kinetic measurements and X-ray diffraction observa-
tions have been performed, tryptophan synthase has not been so far investigated in ex-
periments with single molecules, by employing, e.g., fluorescence correlation spectroscopy
[183] or FRET [184, 185] methods. Hopefully, the results of this study bring the at-
tention to very interesting possible experiments with this enzyme, where intramolecular
synchronization and the effects of strong correlations could be directly demonstrated at
the single-molecule level.

As mentioned in the introduction, tryptophan synthase represents a characteristic
example of a channeling enzyme and, generally, can be viewed as an analog of multi-
enzyme complexes that play an important role in biological cells. Beyond the case of this
specific enzyme, the study provides a theoretical framework for single-molecule kinetic
modeling of such chemical nanofactories where entire complex catalytic pathways are
efficiently implemented within one molecular nanoscale aggregate or a single oligomeric
enzyme.



Chapter 3

Stochastic Thermodynamics of
Tryptophan Synthase

In the previous chapter, the Markov network model has been constructed based purely
on experimentally determined kinetic data. In particular, the reverse rate of indole chan-
neling is not available experimentally and therefore was not included into the model.
Moreover, the product concentrations have been set to zero to conform to experimental
conditions in [168, 179, 169, 45, 178]. In this chapter, the network is analyzed using the
theory of stochastic thermodynamics under physiological conditions, where the enzyme
operates far from equilibrium. Irreversible transitions are not admissible, because they
would lead to divergent values for energy differences and entropy production. Therefore,
the Schnakenberg theory of cycles and fluxes together with experimental thermodynamic
data is used to calculate the rate of reverse indole channeling (section 3.2) and thus to
obtain a modified Markov network model with all reversible internal transitions. More-
over, physiological substrate and product concentrations are used. The results presented
in this and the following chapter have been published in [25].

3.1 Preliminaries

All calculations in this and the next chapter are performed for a slightly modified ver-
sion of the Markov network model constructed in the previous chapter. In the kinetic
model shown in figure 2.6, the transition (indole+G3P,A-A) → (G3P,(indole)A-A) corre-
sponding to indole channeling is irreversible in agreement with experimental observations
[168, 169, 177]. This agrees with calorimetric measurements showing that tryptophan
synthesis is exergonic [186]. There is a large difference in standard Gibbs free energies
∆rG

0
m = −50.7 kJ·mol−1 between products (G3P, tryptophan and water) and substrates

(IGP and serine) in this reaction, corresponding to an energy difference of about 20 kBT
between the substrates and products. For the reverse reaction to occur, the enzyme would
have to extract 20 kBT from thermal fluctuations of its environment. This is highly im-
probable and therefore the reverse reaction is not observed for tryptophan synthase. The
largest Gibbs free energy gap is found for the step of indole channeling (5.4 kBT ) and is
calculated in the next section.
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Figure 3.1: The fully reversible kinetic Markov network of tryptophan synthase with
numerical values of all transition rates in units of s−1.

However, from a thermodynamical point of view, irreversible reactions lead to diver-
gent values for free energy differences, entropy production and entropy flow according to
equations 1.3.16, 1.3.9 and 1.3.10

wx,x′

wx′,x
= exp

(
F (x′)− F (x) + Fx,x′

kBT

)
,

σx,x′ = Jx,x′ ln
wx,x′p(x

′; t)

wx′,xp(x; t)
,

and hx,x′ = Jx,x′ ln
wx,x′

wx′,x
.

Therefore, the network constructed previously (figure 2.6) is modified by including the
transition (G3P,(indole)A-A) → (indole+G3P,A-A). Moreover, nonzero product concen-
trations are used. This makes the transitions corresponding to product release reversible
as well. Whereas the model in the previous chapter was adjusted to a commonly used
experimental setup, physiological concentrations are used here and in the next chapter.
The substrate and product concentrations were determined by Bennett et al. [187]. The
respective binding rate constants are given in table 3.1. The fully reversible Markov net-
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Reaction Binding rate constant k Concentration c w Ref.

β-empty + Ser → Q1 7.5 · 10−2 µM−1s−1 c(Ser)=68 µM 5.1 s−1 [168]
β-empty + Trp → Aex2 0.15 µM−1s−1 c(Trp)=12 µM 1.8 s−1 [168]
α-empty + IGP → α-IGP 10 µM−1s−1 c(IGP)=3.5µM 35 s−1 [169, 177]
α-empty + G3P → α-G3P 0.2 µM−1s−1 c(G3P)=49 µM 9.8 s−1 [169]

Table 3.1: Ligand binding rate constants k, ligand concentrations c and the respective
transition rates w = kc under physiological conditions. The concentrations were measured
by Bennett et al. [187].

work model with all rate constants is shown in figure 3.1.

With the same notation as in the previous chapter, the dynamics on the network obeys
the master equation

d

dt
p(a, b; t) =

4∑
a′=1

6∑
b′=1

[wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t)] (3.1.1)

where p(a, b; t) is the probability to find the enzyme in the state (a, b) at time t and wb,b
′

a,a′

denotes the transition probability rate from a state (a′, b′) to the state (a, b). As was
discussed in the previous chapter (see, e.g., figure 2.6), only the transition representing
indole channeling involves simultaneous changes of the states of both α- and β-sites. All
other transitions change the state of only one subunit although the rates of such transitions
can be controlled by the state of the other subunit. Therefore, the Markov network of
tryptophan synthase has a special structure. It is almost bipartite (see [22, 23, 24]) and
the transition matrix elements can be written as

wb,b
′

a,a′ =



wb,b
′

a if a = a′

wba,a′ if b = b′

w4,3
4,3 if (a′, b′) = (3, 3) and (a, b) = (4, 4)

w3,4
3,4 if (a′, b′) = (4, 4) and (a, b) = (3, 3)

0 else.

(3.1.2)

The indole channeling couples the two subunits and perturbs the complete bipartite struc-
ture of the Markov network. Taking into account the special form (3.1.2) of the transition
matrix, the master equation can also be written as

d

dt
p(a, b; t) =

∑
b′

J b,b
′

a +
∑
a′

J ba,a′ + [δ
(3,3)
(a,b) − δ

(4,4)
(a,b) ]J

channel, (3.1.3)

where δji = 1, if i = j and δji = 0 otherwise. The fluxes corresponding to transitions
inside the β-subunit are J b,b

′
a = wb,b

′
a p(a, b′; t) − wb′,ba p(a, b; t) and the fluxes J ba,a′ for the

transitions within the α-subunit are defined similarly. The flux corresponding to chan-
neling is J channel = w4,3

4,3p(3, 3; t)− w3,4
3,4p(4, 4; t). The transition rate constant w3,4

3,4 is now
determined.
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3.2 Reverse Rate of Indole Channeling

The general formalism used to determine the constant w3,4
3,4 for the reverse of indole chan-

neling has been introduced in section 1.3 and appendix A. Using Schnakenberg’s theory
of cycle fluxes and forces, it is possible to link the transition rate constants of a cycle to
its thermodynamic force. In the case of chemical reaction networks under isothermal con-
ditions, the only forces present are gradients of the chemical potential. In particular, the
cycle fluxes in tryptophan synthase are driven by the chemical potential gradient between
the products (tryptophan and G3P) and the substrates (serine and IGP). The kinetic
Markov model constructed in the previous chapter has only one cycle that is driven by
the chemical potential gradient and its force is precisely this gradient.

The main equations used are 1.3.15 and 1.3.17. As in section 1.3, the condition of
detailed balance is that at thermal equilibrium the net probability flux between any two
states is absent. For the considered network it implies that the ratio of the rates wb

′,b
a′,a

and wb,b
′

a,a′ for forward and backward transitions between any two states (a, b) and (a′, b′)
satisfies the equation

wb,b
′

a,a′

wb
′,b
a′,a

= exp

(
G(a′, b′)−G(a, b)

kBT

)
(3.2.1)

where G(a, b) and G(a′, b′) are Gibbs energies of the respective states in the network at
equilibrium, T is the temperature, and kB is the Boltzmann constant. Note that in this
chapter the Gibbs energies are used, whereas in section 1.3 the free energies were consid-
ered. For enzyme reactions in solution, there is neither a change of volume nor of pressure
and the difference of Gibbs energies determined by equation 3.2.1 is equal to the differ-
ence of free energies given by equation 1.3.16. The reason to use the Gibbs energies here
is simply that it is the natural thermodynamic state variable when considering chemical
reactions. All calculations and arguments given here would work in the same way with
free energies.

For transitions between the states (a, b)→ (a′, b′) that do not involve binding or release

of ligands, the rates wb,b
′

a,a′ coincide with the respective rate constants kb,b
′

a,a′ and the Gibbs
energies G(a, b) are the internal Gibbs energies g(a, b) of the molecular states. In this
case, equation (1.3.16) takes the form

kb,b
′

a,a′

kb
′,b
a′,a

= exp

(
g(a′, b′)− g(a, b)

kBT

)
. (3.2.2)

Note that, for macromolecules the Gibbs energies g(a, b) of internal states are different
from the internal energies ε(a, b) of such states, because they additionally include entropic
contributions and solvent effects.

The transitions that involve binding or release of a ligand should be treated separately.
Suppose that a transition from (a, b) to (a′, b′) is accompanied by binding of a ligand and
the ligand is released in the backward transition. Then the forward transition rate is
proportional to the ligand concentration c, i.e. wb

′,b
a′,a = kb

′,b
a′,ac, whereas for the backward

transition wb,b
′

a,a′ = kb,b
′

a,a′ . Moreover, the Gibbs energies in (3.2.1) include now contributions
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from ligand particles, i.e. G(a, b) = g(a, b) + µ, where µ is the chemical potential of the
ligand. For the considered weak solutions, one has µ = µ0 + kBT ln c. Substitution of
these expressions into equation (3.2.1) yields

kb,b
′

a,a′

kb
′,b
a′,a

= exp

(
g(a′, b′)− g(a, b)− µ0

kBT

)
. (3.2.3)

In this equation, the ligand can be either a substrate or a product if reverse binding of a
product molecule takes place.

As shown by Schnakenberg [128], one can derive further identities by considering
different pathways in a Markov network. Suppose that the chosen pathway represents a
closed cycle Γ that involves only the internal states of the molecule without the events of
ligand binding or release. Then, by using equation (3.2.2), one can show that the identity

∏
Γ

kb,b
′

a,a′

kb
′,b
a′,a

= exp

(∑
Γ

g(a′, b′)− g(a, b)

kBT

)
= 1 (3.2.4)

holds, with the multiplication on the left side performed over all transitions that belong
to the chosen cycle. This is the analogue of equation 1.3.15.

If the pathway Γ involves a conversion of substrate to a product or back, application
of condition (3.2.3) leads to a modified identity. For tryptophan synthase, it has the form

∏
Γ

wb,b
′

a,a′

wb
′,b
a′,a

= exp

(
µ(trp) + µ(G3P)− µ(ser)− µ(IGP)

kBT

)
(3.2.5)

if the pathway Γ leads from the bottom to the top empty states (empty,empty) in the
Markov network in figure 2.6, i.e. if it corresponds to conversion of the two substrate
molecules IGP and serine to the two product molecules G3P and tryptophan.

The detailed balance condition (3.2.1) and the Schnakenberg identities (3.2.4) and
(3.2.5) can be used to check the thermodynamic consistency of a Markov network, to find
missing rate constants of some transitions, and to determine Gibbs energies of different
states. Particularly, in the Markov network of tryptophan synthase, there is a transition
from the state (4, 4) to (3, 3) that corresponds to the channeling of indole from the β- to
the α-site. This transition has never been observed experimentally and its rate constant
could not be measured. This rate constant can however be determined, as explained be-
low, by using the identity (3.2.5) and additional experimental data.

Kishore et al. were able to determine the difference of the Gibbs free energies between
the product molecules (G3P and tryptophan) and substrate molecules (IGP and serine)
by measuring the respective equilibrium concentrations [186]. Under standard conditions
(c0(IGP) = c0(ser) = c0(G3P) = c0(trp) = 1 M), the difference of the chemical potentials
µ0(IGP) + µ0(ser)− µ0(G3P)− µ0(trp) in tryptophan synthase is equal to 20.46 kBT .

By using the identity (3.2.5) and the known value of ∆q for tryptophan synthase,
reverse channeling transition rate can be determined as k3,4

3,4 = 4.55 s−1. This is indeed
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Figure 3.2: The Gibbs energy landscape along the main pathway of tryptophan syn-
thase under physiological ligand concentrations. The Gibbs energies are given in units
of kBT . Physiological concentration values are chosen. In the states within the beige
box, the molecular gates are closed and the enzyme is disconnected from the chemostats.
Tryptophan is present inside the β-subunit in the state Aex2.

much smaller than the measured rate k4,3
4,3 = 1000 s−1 of the forward channeling transition.

Therefore, the reverse channeling transitions should be very rare and this is why they have
not been experimentally observed.

3.3 The Energy Landscape

With all transition rate constants on the fully reversible network 3.1, the detailed balance
conditions (3.2.1) and (3.2.5) are now used to determine, by repeated application, the
Gibbs energies G(a, b) with respect to the Gibbs energy of a certain reference state.

The reference state corresponds to the free enzyme with two products (tryptophan
and G3P) and its Gibbs energy is chosen as Gfinal = 0. In the initial state, the enzyme is
free, there are two additional substrate molecules (serine and IGP) and the two product
molecules (tryptophan and G3P) are missing. The Gibbs energy of the initial state is
therefore Ginitial = µ(IGP)+µ(ser)−µ(G3P)−µ(trp). It should be noted that it depends
on the involved ligand concentrations c because µ = µ0 + kBT ln c. It coincides with the
amount of heat ∆q released in one turnover cycle. The value above given ∆q = 20.46 kBT
corresponds to the standard conditions c0(IGP) = c0(ser) = c0(G3P) = c0(trp) = 1 M.
Recalculating this under the physiological concentrations (table 2.4) gives Ginitial = ∆q =
19.56 kBT .

There are also several states where one of the subunits is empty and the other sub-
unit has a ligand bound to it. For example, the state (IGP, empty) has IGP bound
to the α-subunit and no ligand in the β-subunit. The Gibbs energy of this state is
G(IGP,empty) = g(IGP,empty) − g0 + µ(ser) − µ(G3P) − µ(trp). It includes both the
difference of the chemical potentials, depending on the concentrations, and the internal
Gibbs energies g(IGP,empty) and g0 = g(empty,empty) of the state (IGP, empty) and the
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free state of the enzyme.

Finally, there are states where both subunits are occupied. For example, for the state
(IGP, Q1), we have G(IGP,Q1) = g(IGP,Q1)− g0− µ(G3P)− µ(trp). For the state (IGP,
A-A), we have G(IGP,A-A) = g(IGP,A-A) − g0 − µ(G3P) − µ(trp). Note that the dif-
ference G(IGP,Q1)− G(IGP,A-A) = g(IGP,Q1)− g(IGP,A-A) is determined only by the
internal Gibbs energies of the states and is independent of ligand concentrations. This
difference gives the amount of heat dissipated in the respective transition.

Figure 3.2 shows the Gibbs energy landscape of tryptophan synthase along its main
pathway. After the binding of substrates requiring activation energies of 1.74 kBT for
IGP binding and 2.28 kBT for serine binding, all transitions towards product formation
are exergonic. The four catalytically important transitions (IGP,Q1) 
 (IGP,A-A) 

(indole+G3P,A-A) 
 (G3P,indole+A-A) 
 (G3P,Q3) in the closed conformation of the
enzyme are highly exergonic and accompanied by heat release in the range between 5.40
and 2.30 kBT . The release of the products G3P and tryptophan is accompanied by the
heat release of 3.10 and 3.02 kBT , respectively.

3.4 Entropy Production and Flow

The theory of stochastic thermodynamics on fully reversible Markov networks arbitrarily
far from equilibrium has been introduced in section 1.3. The central quantities are briefly
restated here for the sake of readability and then calculated and interpreted for the fully
reversible Markov network of tryptophan synthase under physiological conditions.

As before, the time evolution of the probability distribution p(a, b; t) on the Markov
network 3.1 is given by the master equation 3.1.3. The Shannon entropy at time t is
defined as

S(t) = −
∑
a,b

p(a, b; t) ln p(a, b; t) (3.4.1)

Its time derivative is

d

dt
S =

1

2

∑
a,a′,b,b′

J b,b
′

a,a′ ln
p(a′, b′; t)

p(a, b; t)
. (3.4.2)

It can be decomposed as

d

dt
S = σ − h (3.4.3)

into the difference of the entropy production σ inside the enzyme and of the net flow h of
entropy from the enzyme, i.e. of the rate of entropy export by it, where

σ =
1

2

∑
x,x′

Jx,x′ ln
wx,x′p(x

′; t)

wx′,xp(x; t)
(3.4.4)
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and

h =
1

2

∑
x,x′

Jx,x′ ln
wx,x′

wx′,x
. (3.4.5)

dS/dt can be written as a sum of the contributions sb,b
′

a,a′ from each individual transition,
i.e.

d

dt
S =

1

2

∑
a,a′,b,b′

sb,b
′

a,a′ , with sb,b
′

a,a′ = J b,b
′

a,a′ ln
p(a′, b′)

p(a, b)
. (3.4.6)

The same holds for the total entropy production σ and the rate of entropy export h

h =
1

2

∑
a,a′,b,b′

hb,b
′

a,a′ ; σ =
1

2

∑
a,a′,b,b′

σb,b
′

a,a′ (3.4.7)

where

hb,b
′

a,a′ = J b,b
′

a,a′ ln
wb,b

′

a,a′

wb
′,b
a′,a

, (3.4.8)

σb,b
′

a,a′ = J b,b
′

a,a′ ln
wb,b

′

a,a′p(a
′, b′)

wb
′,b
a′,ap(a, b)

. (3.4.9)

The properties and the physical meaning of σb,b
′

a,a′ , h
b,b′

a,a′ and sb,b
′

a,a′ are discussed in section 1.3.

Now, the Shannon entropy, the entropy production and entropy flow are calculated
for the whole Markov network of tryptophan synthase (equations 3.4.1, 3.4.4 and 3.4.5)
and for all transitions (equations 3.4.6, 3.4.8 and 3.4.9).

In the state of thermal equilibrium, all fluxes J b,b
′

a,a′ vanish and therefore according to
equations 3.4.8 and 3.4.9 there are no transitions where entropy is produced or exported.
Under physiological conditions, however, the enzyme tryptophan synthase operates far
from thermal equilibrium, with the difference of Gibbs energies of 19.56 kBT for one cy-
cle. Thus, its operation is characterized by nonequilibrium steady-state. In the respective
nonequilibrium steady-state with the stationary probability distribution p̄(a, b), the fluxes

J̄ b,b
′

a,a′ do not vanish and therefore the transitions are accompanied by entropy production
and entropy export. Because the entropy S is conserved in this state, dS/dt = σ−h = 0.
Hence the total entropy production σ is counterbalanced by the entropy export h. Note
that, although dS/dt = 0, the rates of entropy change sb,b

′

a,a′ for individual transitions are
not zero even in the nonequilibrium steady-state.

The stationary probability distribution p̄(a, b) can be found by solving the master
equation 3.1.3 in the nonequilibrium steady-state. Numerical values of the probabilities
p̄(a, b) corresponding to all possible states are given in table B.6. Then, by using equation

1.3.2, the fluxes J̄ b,b
′

a,a′ can be determined. From equations 3.4.6, 3.4.8 and 3.4.9, the values

of σb,b
′

a,a′ , h
b,b′

a,a′ and sb,b
′

a,a′ can be calculated afterwards.
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The results are displayed in Figs. 3.3 and 3.4. The same network as in figure 3.1 is
shown, but, for simplicity, only the numerical notations of the states are retained. Only
the links between the states are shown because the transition directions are not important
as the quantities σb,b

′

a,a′ and hb,b
′

a,a′ are symmetrical, i.e. σb,b
′

a,a′ = σb
′,b
a′,a and hb,b

′

a,a′ = hb
′,b
a′,a. For each

link, the value of the quantities σb,b
′

a,a′ or hb,b
′

a,a′ is indicated. Additionally, color coding is used.

Here and below, all numerical values for entropy and information are given in units of
bits. One has 1 bit = ln 2 = 0.693, because natural logarithms are used in the definition
of the Shannon entropy.
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Figure 3.3: Entropy production in different transitions in the nonequilibrium steady-state.
The values of entropy production are given in units of bit s−1 next to the links between
the states. Additionally, color coding of the links according to the corresponding entropy
production is used. The states are labeled according to table 2.3.

The rates of entropy or information change are given in bits per seconds. Alterna-
tively, they can also be expressed by the respective amounts per a catalytic cycle. Note
that the substrate conversion rate of the enzyme is equal to the probability flux J channel

because each productive cycle includes this transition. The mean catalytic cycle time is
the inverse of the substrate conversion rate. Under physiological concentrations the mean
cycle time is 0.75 s. Tryptophan synthase is a slow molecular machine.

Figure 3.3 shows numerical values of entropy production for all individual transitions
within the enzyme. The entropy is mostly produced along the main catalytic pathway.
The highest entropy production (10.22 bit s−1) is found for the allosterically activated
transition Q1 
 A-A in the β-site. In contrast to this, all transitions involving futile
states (side branches of the network) have values of entropy production below 0.01 bit s−1
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per second. Ligand binding and release is characterized by entropy production below
1.78 bit s−1 per second.
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Figure 3.4: Rates of entropy export in individual transitions in tryptophan synthase. The
same notations as in figure 3.3.

The values for entropy export are given in figure 3.4. The entropy export takes is
maximal (between 7.77 bit s−1 and 10.22 bit s−1) for the transitions (IGP,Q1) 
 (IGP,A-
A) 
 (indole+G3P,A-A) 
 (G3P,indole+A-A) where most of the heat exchange with
the environment takes place. All other transitions have absolute values smaller than
4.61 bit s−1. Note that transition (G3P,Q3) 
 (G3P,Aex2) has a small entropy export,
but a high entropy production.

Because the rate of entropy change in a transition is given by the difference of entropy
production and export, this rate can be found by subtracting the respective values in
Figs. 3.3 and 3.4. Thus the transition (G3P,Q3) 
 (G3P,Aex2) in the main catalytic
pathway has the largest rate of entropy increase s6,5

4,4 = 4.82 bit s−1. In contrast to this,
channeling and the subsequent transition (G3P,indole+A-A) 
 (G3P,Q3) are accompa-
nied by the net export of entropy at the rates s4,4

3,3 = −4.53 bit s−1 and s5,4
4,4 = −3.55 bit s−1.

Using the computed rates of entropy production and export for individual transitions,
total amounts for the whole enzyme per a turnover cycle can be obtained. Within a
single catalytic cycle of tryptophan synthase, 27.79 bits of entropy are produced. The
same amount of entropy is on the average exported by the enzyme per one cycle.
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3.5 Discussion

In this study, methods of stochastic thermodynamics have been applied to characterize
the operation of the channeling enzyme tryptophan synthase.

Using thermodynamic identities related to the detailed balance, the Gibbs energy
landscape of this enzyme along its main catalytic pathway could be reconstructed from
the experimental data. Under in vivo conditions, the cycle of this enzyme is driven by the
Gibbs energy gradient of approximately 19.56 kBT between its substrates and products.
Thus, under physiological substrate and product concentrations, the enzyme operation is
far from thermal equilibrium.

Inside the cycle of tryptophan synthase, only the first substrate binding transitions
are thermally activated, with activation energies about 1 kBT . All other transitions, in-
cluding the events of product release, correspond to a decrease in the Gibbs energy. In
particular, channeling is driven by the energy difference of 5.4 kBT and does therefore
not represent a diffusion process.

Because the enzyme operates far from equilibrium, entropy is persistently produced.
It was found that 27.79 bits of entropy are produced and the same amount of entropy is
exported, on the average, to the environment within one catalytic cycle. The distribution
of entropy production over the Markov network is largely nonuniform.
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Chapter 4

Information Exchange in Bipartite
Systems

In this chapter, the analysis of information exchange and entropy production for bipar-
tite Markov networks [22, 23, 24] is extended to systems that also have cross-transitions
between the two subsystems. These results have been published in [25]. Resuming the
argument of section 1.3.2, information theory enters the thermodynamics of stochastic
processes when measurements of a subsystem if performed by another subsystem. This
changes the free energy of the system being measured, but does neither influence its
dynamics nor its current state - the measurement is non-interactive. This might seem
contradictory to the gain in free energy at first glance. Yet, the free energy is a quan-
tification of the work that can be potentially extracted from the system. The improved
knowledge of the system’s state increases the extractable work, because the respective ex-
perimental protocols can be adjusted according to the surplus of information. In contrast,
the state of the measurement device is altered as a result of the measurement - after all
the measurement device is a physical system and the storage of information necessitates a
change of the physical state [188]. Note that this situation is asymmetrical: The evolution
of the subsystem under measurement influences the dynamics of the measurement device,
but not vice versa.

It is possible to symmetrize this situation by allowing the measurement to proceed in
both directions, i.e. to allow both subsystems to measure each other, and by choosing a
measurement device with its own internal dynamics (an ideal measurement device should
of course be stable and not posses its own dynamics for a faithful storage of information,
but this condition is relaxed with respect to the symmetrization). This leads naturally
to the notion of a bipartite Markov network. Let A × B be a system composed of two
subsystems A and B that have their own dynamics and perform measurements on each
other. Denote the states of A and B by discrete variables {a|a ∈ A} and {b|b ∈ B}
and the states of A × B by pairs {(a, b)|a ∈ A, b ∈ B} and the transition probability

rate for the transition from (a′, b′) to (a, b) as wb,b
′

a,a′ . As discussed before, a measurement
only changes the state of the measurement device, i.e. if A is measured by B, the cor-
responding transitions should be transitions from any state (a, b) to (a, b′), but not to
(a′, b′) with a 6= a′. Analogously, transitions corresponding to the measurement of B by
A should take place only between (a, b) and (a′, b). Note that for a measurement of B by
A, the transitions from (a, b) to (a′, b) and from (a, b′) to (a′, b′) can have different rates
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wb,ba′,a and wb
′,b′

a′,a although they correspond to the same transition of the A-subsystem. This
dependence of the A-transition rates on the state of B is precisely the way in which A
measures B: If wb,ba′,a and wb

′,b′

a′,a were equal for all states b, b′, then the transition between
a to a′ would not correspond to a measurement. If for each A-transition between a to a′,
wb,ba′,a and wb

′,b′

a′,a were equal for all states b, b′, then A could not measure B at all.

The internal dynamics of one subsystem is not directly linked to the internal dynamics
of the other system and thus simultaneous transitions between (a, b) and (a′, b′), a 6= a′, b 6=
b′ do not occur on a fine enough time scale. Thus, the same transitions that correspond
to measurements at the same time correspond to the internal dynamics of each subsystem.

A bipartite Markov network is defined as a Markov-network corresponding to the
situation just discussed, i.e. a Markov network on a product state space A × B such
that the transition probability rates wb,b

′

a,a′ are zero whenever a 6= a′ and b 6= b′. In
[23], a the theory is developed for such systems with the main result that the mutual
information quantifies the information transfer between the two systems and that, in
the steady state, the apparent entropy production (i.e. the entropy production in one
subsystem determined if only the dynamics of this system is known and the dynamics
of the other subsystem is inaccessible) within each subsystem is altered with respect
to the real entropy production precisely by this information transfer. This allows, for
example, to have an apparently negative entropy production in one subsystem in seeming
contradiction to the second law. However, this is comes at the cost of a higher apparent
entropy production in the other subsystem. The approach in the following section was
motivated by ref. [23] and uses the same formalism and the same ideas. Therefore, a
recap of [23] is unnecessary as it is a special case of the following.

4.1 General Formalism

Consider a system A×B composed of two subsystems A and B. The states of the system
are labeled as (a, b). Assume that the bipartite transitions, i.e. the transitions of the
form (a, b) 
 (a, b′) and (a, b) 
 (a′, b) that occur within one subsystem, have rates that
can be affected by the state of the other subsystem. Moreover, in contrast to [23], also
cross-transitions where the states of both subsystems become simultaneously changed, i.e.
(a, b) 
 (a′, b′) with a 6= a′ and b 6= b′, are also allowed. (For tryptophan synthase, there
is one such transition and it corresponds to indole channeling.)

The evolution of the joint probability distribution p(a, b; t) obeys the master equation

d

dt
p(a, b; t) =

∑
a′,b′

[wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t)], (4.1.1)

where wb,b
′

a,a′ denotes the transition rate from a state (a′, b′) to the state (a, b). Distinguish-
ing between the regulatory and cross-transitions, one can write

wb,b
′

a,a′ =


wb,b

′
a if a = a′

wba,a′ if b = b′

wb,b
′

a,a′ if a 6= a′ and b 6= b′
(4.1.2)
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Moreover, probability fluxes are introduced as

J ba,a′ = wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t) if b = b′, (4.1.3)

J b,b
′

a = wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t) if a = a′, (4.1.4)

J b,b
′

a,a′ = wb,b
′

a,a′p(a
′, b′; t)− wb

′,b
a′,ap(a, b; t) if a 6= a′ and b 6= b′. (4.1.5)

The mutual information i(a, b) for a pair of states (a, b) is defined as

i(a, b) = ln
p(a, b)

pA(a)pB(b)
, (4.1.6)

where pA(a) =
∑

b p(a, b) is the probability to find the subsystem A in the state a and
pB(b) =

∑
a p(a, b). The average of i(a, b) over all states (a, b) yields the mutual informa-

tion I of the entire system

I =
∑
a,b

p(a, b) ln
p(a, b)

pA(a)pB(b)
=
∑
a,b

p(a, b)i(a, b). (4.1.7)

Its time derivative dI/dt can be written in the form

d

dt
I =

1

2

∑
a,a′

fAa,a′ +
1

2

∑
b,b′

fBb,b′ +
1

2

∑
a,a′,b,b′

f b,b
′

a,a′ , (4.1.8)

where the first two sums are taken over bipartite transitions in subsystems A or B and
the last sum includes all cross-transitions in the considered system. One has

fAa,a′ =
∑
b

J ba,a′ [i(a, b)− i(a′, b)]

=
∑
b

J ba,a′ ln
pB(b|a)

pB(b|a′)
, (4.1.9)

fBb,b′ =
∑
a

J b,b
′

a [i(a, b)− i(a, b′)]

=
∑
a

J b,b
′

a ln
pA(a|b)
pA(a|b′)

, (4.1.10)

f b,b
′

a,a′ = J b,b
′

a,a′ [i(a, b)− i(a
′, b′)] . (4.1.11)

Here pA(a|b) = p(a, b)/pB(b) is the conditional probability to find the A-system in state
a if the B-system is in the state b and pB(b|a) is defined similarly.

Thus fAa,a′ yields the contribution to the total rate of change of mutual information
due to the regulatory transition between a and a′ that takes place in the subsystem A and
is regulated by the subsystem B. A similar interpretation holds for fBb,b′ . The term f b,b

′

a,a′

represents the contribution to the total rate of change of mutual information due to the
cross-transition between (a, b) and (a′, b′), with a 6= a′ and b 6= b′, that directly connects
the two subsystems A and B.
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Now the influence of the coupling through bipartite and cross-transitions on each of
the entire subsystems A and B is derived. Therefore, consider the amount of entropy ΣA

produced per unit time in the transitions that change the state of the A subsystem. It is
given by equation 3.4.9,

ΣA =
1

2

∑
a,a′,b

J ba,a′ ln
wba,a′p(a

′, b)

wba′,ap(a, b)
+

+
1

2

∑
a6=a′,b 6=b′

J b,b
′

a,a′ ln
wb,b

′

a,a′p(a
′, b′)

wb,b
′

a,a′p(a, b)
. (4.1.12)

In a similar way, the amount of entropy ΣB produced in the B subsystem can be found

ΣB =
1

2

∑
a,b,b′

J b,b
′

a ln
wb,b

′
a p(a, b′)

wb
′,b
a p(a, b)

+

+
1

2

∑
a6=a′,b 6=b′

J b,b
′

a,a′ ln
wb,b

′

a,a′p(a
′, b′)

wb,b
′

a,a′p(a, b)
. (4.1.13)

Suppose that the subsystem A is observed without the knowledge of the states of the
subsystem B, i.e. there is no access to the joint probability distribution p(a, b) and instead
the probability distribution pA(a) in equation 4.1.12 is used. Proceeding in this way, the
apparent entropy production σA assigned to the subsystem A is obtained

σA =
1

2

∑
a,a′,b

J ba,a′ ln
wba,a′pA(a′)

wba′,apA(a)
+

+
1

2

∑
a6=a′,b 6=b′

J b,b
′

a,a′ ln
wb,b

′

a,a′pA(a′)

wb
′,b
a′,apA(a)

. (4.1.14)

Similarly, one obtains

σB =
1

2

∑
a,b,b′

J b,b
′

a ln
wb,b

′
a pB(b′)

wb
′,b
a pB(b)

+

+
1

2

∑
a6=a′,b 6=b′

J b,b
′

a,a′ ln
wb,b

′

a,a′pB(b′)

wb
′,b
a′,apB(b)

. (4.1.15)

The real entropy production rates ΣA and ΣB are always non-negative, whereas the ap-
parent entropy production rates σA and σB can also be negative [22, 23, 24]. The influence
on the entropy production of system A (respectively, B) through coupling to the whole
system is then given by the difference between the apparent and total entropy production.
Thus one defines
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FA = σA − ΣA (4.1.16)

FB = σB − ΣB. (4.1.17)

Substituting equations 4.1.12 to 4.1.24 gives

FA =
1

2

∑
a,a′,b

J ba,a′ ln
pB(b|a)

pB(b|a′)
+

1

2

∑
a6=a′,b 6=b′

J b,b
′

a,a′ ln
pB(b|a)

pB(b′|a′)
, (4.1.18)

FB =
1

2

∑
b,b′,a

J b,b
′

a ln
pA(a|b)
pA(a|b′)

+

+
1

2

∑
a6=a′,b6=b′

J b,b
′

a,a′ ln
pA(a|b)
pA(a′|b′)

. (4.1.19)

Note that FA and FB have contributions from terms fAa,a′ and fBb,b′ defined in equations
4.1.9 and 4.1.10 and used in the splitting of dI/dt in equation 4.1.8. In addition, they
also include cross-terms originating from non-bipartite transitions.
Using FA and FB, equation 4.1.8 for the rate of change of mutual information can be
written as

d

dt
I = FA + FB + F cross (4.1.20)

where the quantity

F cross =
1

2

∑
a6=a′,b 6=b′

J b,b
′

a,a′ ln
p(a′, b′)

p(a, b)
. (4.1.21)

is introduced. Note that the expression 4.1.21 for F cross can be also formulated as

F cross =
∑

a6=a′,b 6=b′
sb,b

′

a,a′ (4.1.22)

where sb,b
′

a,a′ is the Shannon entropy produced in the cross-transition from (a, b) to (a′, b′).

Using the non-negativity of ΣA and ΣB, one arrives at the second law-like inequalities

ΣA = σA − FA ≥ 0, (4.1.23)

ΣB = σB − FB ≥ 0, (4.1.24)

where FA and FB are related by the change of mutual information and the rate of Shan-
non entropy in the cross-transitions according to equation 4.1.20.

The equations 4.1.23 and 4.1.24 are the same as previously derived for completely
bipartite systems where two subsystems were coupled by regulatory transitions, but no



66 4. Information Exchange in Bipartite Systems

cross-transitions were allowed [22, 23, 24]. In the absence of cross-transitions, the original
framework[22, 23, 24] is recovered. Now, these inequalities have been generally derived
for the systems where both regulatory and cross-transitions directly connecting the sub-
systems can take place. Such generalization is only possible if the definitions 4.1.18 and
4.1.19 are employed. Once the inequalities have been established, the same interpretation
as in refs. [22, 23, 24] can be used.

4.2 Information Exchange in Tryptophan Synthase

There is a complex pattern of allosteric interactions between the two subunits of tryp-
tophan synthase. Additionally, one transition that corresponds to indole channeling and
affects simultaneously both subunits takes place. The allosteric cross-regulations and
channeling lead to the development of correlations between the internal states of the sub-
units. In chapter 2, the presence of correlations has been demonstrated by computing the
Pearson correlation coefficients for all possible pairs of states. In this section, the concept
of mutual information will be employed to further quantify the effects of allosteric cross-
regulation and channeling based on the theoretical framework presented in the previous
section. The kinetic model from chapter 3 is used here.

The mutual information i(a, b) between the states a and b of the two subunits is de-
fined by equation 4.1.6, where pα(a) =

∑6
b=1 p(a, b) and pβ(b) =

∑4
a=1 p(a, b) are the

probability distributions for the states of α- and β-subunits. i(a, b) quantifies correlations
between the states a of the α-subunit and b of the β-subunit, it vanishes if these states
are statistically independent, i.e. if p(a, b) = pα(a)pβ(b). If it is negative, anti-correlations
between the states are present.

The values i(a, b) under physiological conditions are shown in figure 4.1 for all states
(a, b). High correlations (2.39 and 2.20 bits) are found between the states (G3P,indole+A-
A) and (G3P,Q3) after indole channeling and after the indole reaction at the β-site in
the main pathway. This agrees with the previous analysis using the Pearson correlation
coefficients [21]. As a result of channeling, both subunits simultaneously arrive at the state
(G3P,indole+A-A) and high positive correlations are characteristic for it. On the other
hand, anticorrelation (-1.04 bits) in the state (IGP,A-A) before channeling is present.
This is an effect of allosteric interactions: when the β-subunit is in the state A-A, the
cleavage of IGP into G3P and indole is blocked when the β-subunit is in the state Q1,
but it is possible in the state A-A.

The statistical average of i(a, b) over all pair states (a, b) yields the mutual information
I of the whole system

I =
4∑

a=1

6∑
b=1

p(a, b) ln
p(a, b)

pα(a)pβ(b)
=

4∑
a=1

6∑
b=1

p(a, b)i(a, b). (4.2.1)

This property is positive and it characterizes the strength of statistical correlations be-
tween the α- and β-subunits. For tryptophan synthase under physiological conditions one
obtains I = 0.49 bit.
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Figure 4.1: Correlations i(a, b) in units of bits for different states a and b.

By equation 4.1.8, the rate of mutual information change for the entire system is

d

dt
I =

1

2

4∑′

a,a′=1

fαa,a′ +
1

2

6∑′

b,b′=1

fβb,b′ + f channel. (4.2.2)

Here, the sums exclude the forward and backward channeling transitions and

fαa,a′ =
∑
b

J ba,a′ [i(a, b)− i(a′, b)] , (4.2.3)

fβb,b′ =
∑
a

J b,b
′

a [i(a, b)− i(a, b′)] , (4.2.4)

f channel = J channel [i(4, 4)− i(3, 3)] . (4.2.5)

Note that in a steady state dI/dt = 0 and therefore the terms 4.2.3 - 4.2.5 satisfy one
additional constraint. Moreover, the terms fαa,a′ and fβb,b′ do not depend on the choice of a
direction for the transitions between a and a′ or between b and b′. The quantity fαa,a′ gives
the contribution by the transition between the states a and a′ in the α-subunit to the
rate of change of the total mutual information of the system; this contribution is averaged
over all possible regulatory states of the subunit β. A similar interpretation holds for the
quantity fβb,b′ .

By solving the master equation under physiological concentrations, the steady state
probabilities p̄(α, β) are obtained. Substituting them into equation 1.3.2 and into the
equations 4.2.3 - 4.2.5 yields the values for fαa,a′ , f

β
b,b′ and f channel.

Figure 4.2 shows how the generation (or loss) of mutual information is distributed over
the network. Mutual information is generated in three transitions in the α-subunit. Its



68 4. Information Exchange in Bipartite Systems

empty

1

Q₁

2

A-A

3

Q₃

5

Aex₂

6

empty

1

IGP

2

indole
+G3P

3

G3P

4

Subunit !

Subunit "

empty

1

empty

1

indole
+A-A
4-0.37

-1.36 3.79 1.04 1.53

-0.32 1.04 -0.26 -3.79 -0.26

-3 -2 -1 0 1 2 3

Figure 4.2: Rates of change of mutual information in units of bits per second for the
transitions within α- and β-subunits and for the channeling transition.

highest generation rate is 3.79 bit s−1 in the transition (IGP 
 indole+G3P) preceding
channeling. The channeling transition itself generates mutual information at a smaller
rate (1.04 bit s−1). All transitions in the β-subunit are accompanied by mutual informa-
tion loss with the highest rate (-3.79 bit s−1) achieved in the transition immediately after
channeling (Q3 
 Aex2).

Furthermore, information interactions between entire subunits can also be discussed.
To do this, the rate of change of mutual information is written as

d

dt
I = Fα + F β + F channel (4.2.6)

where

Fα =
1

2

∑
a,a′,b

fαa,a′ + fαchannel, (4.2.7)

F β =
1

2

∑
a,b,b′

fβb,b′ + fβchannel. (4.2.8)

Here, the rate of generation of mutual information in the channel f channel was divided,
given by equation 4.2.5 into three parts, i.e. f channel = F channel + fαchannel + fβchannel, where

F channel = J channel ln
p(3, 3)

p(4, 4)
, (4.2.9)

fαchannel = J channel ln
pα(3)p(4, 4)

pα(4)p(3, 3)
, (4.2.10)

fβchannel = J channel ln
pβ(3)p(4, 4)

pβ(4)p(3, 3)
. (4.2.11)

Thus the rates of mutual information change in α- and β-subunits include now con-
tributions fαchannel and fβchannel from the channeling transition. The advantage of this
definition is that, as shown in the previous section, the important thermodynamic in-
equalities 4.1.23 and 4.1.24 for the entropy production in both subunits become then
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satisfied.

In a steady state, dI/dt vanishes and thus Fα + F β + F channel = 0. If the channel-
ing was absent, one would have had Fα = −F β. In this case, the mutual information
generated in one subunit would have been completely consumed in the other subunit,
cf. [22, 23, 24]. Because F channel 6= 0, this is, however, no longer valid. Some mutual
information for the entire enzyme is additionally generated in the channeling transition
involving simultaneously both subunits.

The values for Fα, F β and F channel under physiological concentrations have been
computed. They all have the same order of magnitude. The mutual information F channel =
−4.53 bit s−1 generated per unit time by the transition corresponding to indole channeling
flows to both subunits where is consumed at the rates of Fα = 3.09 bit s−1 and F β =
1.42 bit s−1. Note that F β is positive whereas all contributions fβb,b′ from individual
transitions in the β-subunit are negative. This is an effect of the large contributions from
the cross term fβchannel = 6.43 bit s−1 (whereas fαchannel = −0.86 bit s−1).

4.3 Discussion

Information interactions between the two catalytic subunits of the enzyme have been
analyzed. Both the allosteric interactions between the subunits and the channeling of an
intermediate product from one of them to another contribute to the change of mutual
information. Thus, the previously existing theory [22, 23, 24] had to be generalized
to the situations where, in addition to regulatory interactions between the subsystems,
the transitions simultaneously changing the states of both of them can also take place.
Mutual information is generated both in α- and β-subunits at the rates 3.09 and 1.49
bits per second. This mutual information is consumed in the channeling transition so
that the balance is maintained. Moreover, contributions from individual allosterically
regulated transitions in each of the subunits to the total mutual information change were
determined.

Thus, it was demonstrated that, through the use of stochastic thermodynamics, a
rich quantitative characterization of the nonequilibrium operation of an enzyme can be
produced. It would be interesting to perform analogous investigations for other enzymes
with several catalytic subunits. Such further investigations can clarify the connections
between various thermodynamic properties of such nanomachines and the aspects of the
chemical function of the enzymes.
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Chapter 5

Semigroup Models for Reaction
Networks

In this chapter, a new class of semigroup models for catalytic reaction systems (CRS) is
presented. CRS are representations of chemical reaction networks with emphasis on the
catalytic function of certain chemicals that are themselves part of the network. They have
been introduced by Hordijk and Steel [189] as a generalization of Kauffman’s autocatalytic
sets [190] while studying the occurrence of self-sustaining subnetworks (called RAF sets in
the parlance of CRS). Classically, chemical reaction networks are described by differential
equations for the time evolution of concentrations of chemical species. Within this frame-
work, it is not clear how to formally distinguish between metabolites and catalytically
active enzymes. However, the concept of enzyme function has consolidated in biological
sciences and was suggested by philosophers to be included in the quantitative natural
sciences [191]. In section 5.1.1, the CRS formalism is motivated and introduced formally.

Within the semigroup formalism, the notion of enzyme function is extended to the
successive and joint functions of arbitrary subsystems on the whole reaction system. In
section 5.2, semigroup models for arbitrary CRS are constructed, their basic properties
are discussed and the function of a subsystem is introduced. Section 5.3 extends the con-
struction to CRS with food set. It is then shown that the maximal function of the CRS
produces the CRS from the food set if and only if the system has the RAF property. A
corollary is that the maximal function acting on the food set contains the maximal RAF
set. In particular, if the semigroup is nilpotent, the CRS has no RAF sets. This is an
important statement, because the vast majority of semigroups are nilpotent and the semi-
groups corresponding to RAF sets are thus located in the narrow class of non-nilpotent
semigroups.

In section 5.4, a discrete dynamics is defined on the power set of the set of all chem-
icals. It is shown that dynamics has a fixed point if its initial condition is the whole set
of chemicals. Moreover, this fixed point contains the maximal RAF set. Combining the
methods from sections 5.3 and 5.4, it is possible to identify the maximal RAF set of any
CRS (theorem 5.5.5). This is a main result of this chapter, because the identification
of the maximal RAF of a CRS is a major challenge and receives a lot of attention in
the literature. The section ends with a remark about the connection between the CRS
formalism and the general formalism of chemical reaction networks (CRN). It is sketched
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how a CRS can be rewritten as a CRN and thus the theory of thermodynamics of CRN
is made accessible for CRS. In particular, this allows to exclude CRS that are not ther-
modynamically consistent.

The main motivation to use an algebraic formalism is the possibility of an algebraic
coarse-graining procedure via quotient structures. Taking the quotient of a semigroup
can be thought of as lumping together elements of the semigroup in such a way that
the original semigroup operation naturally descends to an operation between the lumped
states. The possible quotients are determined by the lattice of congruences that captures
all algebraically allowed coarse-graining procedures. This motivation is further discussed
in section 5.1.2 together with the formal definition of congruences and quotients of semi-
groups. In section 5.6, the application to the constructed semigroup models is demon-
strated by the construction of two biologically relevant families of congruences. The first
construction is a congruence on the subsemigroup of constant functions and reveals the
organization of metabolic pathways within the CRS. The second construction is a family
of congruences that leads to a rather unusual coarse-graining procedure. The network is
covered with local patches in such a way that the local information about the network is
fully retained, but the environment of each patch is no longer resolved. Whereas classical
coarse-graining procedures would fix a particular local patch and delete detailed informa-
tion about its environment, the algebraic approach keeps the structure of all local patches
and even allows the interaction of functions within distinct patches.

The text uses a mathematically flavored language to avoid semantical ambiguities.
Some definitions and theorems from semigroup theory are given in the introductory section
5.1.2 and some are included in the main text for the sake of better readability. They are
then marked with an asterisk (*). A self-contained presentation of the concepts can be
found in [192].

5.1 Motivation

5.1.1 Self-Sustaining Reaction Networks

Self-sustaining reaction networks form the basis of a class of theories for the origins of life
based on the cells first hypothesis as advocated by Oparin [193], Dyson [194] and many
others [195, 196, 197]. A self-sustaining reaction network is a reaction network that is
able to generate all its substances from a given set of externally supplied chemicals (called
food in the literature, c.f. [189, 198]). Its reactions are catalyzed and all catalysts are
themselves part of the network. The main idea of the cells first hypothesis theories is
based on the observation that micelles can form rather easily under prebiotic conditions.
Such micelles enclose certain chemicals - in most cases just water and some other small
molecules. Every now and then, they should contain molecules that are able to react with
each other, i.e. that form a chemical reaction network. A reaction network with auto-
catalytic properties can possibly contain a self-sustaining subnetwork. A self-sustaining
network has the inherent ability to replicate itself and grow. If its growth is supplemented
with growth and division of micelles, this system is a potential candidate for primordial
cells.
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The main modern example of a self-sustaining network is the whole reaction network
of an organism: The externally supplied food sources are carbohydrates and minerals.
They are transformed into proteins, RNA, DNA and structural elements such as the cy-
toskeleton or cell membranes. There is a two-level system of “catalysts”: Proteins are
the direct chemical catalysts enabling the transformations on the network, whereas the
formation of proteins is controlled (catalyzed in the language of reaction networks) by
DNA via RNA. Including metabolites, proteins and DNA into one large reaction network
makes it self-sustaining whereas subnetworks excluding any of these species are generally
not self-sustaining.

From the author’s point of view, the condition of self-sustainability is so crucial to
the reaction networks of biological systems that any formalism attempting to model such
networks should at least in principle be able to distinguish between reaction networks
that can sustain themselves and those that cannot. One possibility towards suitable for-
malisms is to try to capture the organization of a reaction network. Both this viewpoint
and the method of resolution have been advanced by prominent scientists.

In the 1940ies and 50ies, von Neumann was pioneering the development of automata
theory alongside Turing, Church, Shannon and many others. The theory describes the
organization and possible logical operations performed by a computing machine [199].
Using this new framework, von Neumann constructed a self-replicating automaton with
the goal of modeling a living system [200]. However, he noted that the theory could only
be complete if it was linked to thermodynamics thereby making his construction falsifi-
able under the three laws of thermodynamics [201]. The biophysicist Rashevsky, who is
arguably one of founding fathers of mathematical biology, spent many years of his career
working very successfully on models of partial processes in organisms such as intracellular
oxygen diffusion [202], nerve excitation [203], or cell polarity [204]. Yet, later he con-
cluded that such models merely capture subsystems of a living being without any relation
to the whole organism. In particular, his models would still remain the same if the or-
ganism died. Therefore he suggested to use more abstract mathematical methods such as
topology to capture the organization of an organism as a whole [205]. This approach was
termed relational biology [206]. Its main focus was to capture the structure of interactions
between the parts of an organism. The actual physical material forming the organism
was seen as one possible realization of a relational structure. Rashevsky’s student Rosen
continued to work in this direction. He used the language of category theory to describe
organizational structures that were self-referential [207, 208]. However, he was not able
to link his formalism to actual physical phenomena.

A more chemical approach was given by Stuart Kauffman in 1986, when he introduced
a binary polymer model to study the emergence of self-sustaining reaction networks [190].
In this model, two molecules a and b supplied from the environment are able to form
linear polymers (represented by strings of a and b). The possible reactions are cleavage
and fusion of polymers. This yields a reaction network. It is assumed that each polymer
has a certain probability of catalyzing a reaction within the network. A reaction network
of level N is a binary polymer network where the length of the polymers is at most N .
The main result of Kauffman is the almost certain emergence of self-sustaining reaction
networks for high enough level. A generalization of Kauffman’s model under the name
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of RAF networks was introduced by Hordijk and Steel [189]. This notion is also focused
on the catalytic interactions between chemicals in a reaction network, but replaces the
binary polymers with arbitrary chemicals. RAF networks are defined as a special case of
catalytic reaction systems (CRS). The definitions given here follow [189].

Definition 5.1.1. A catalytic reaction system (CRS) is a triple (X,R,C), where X is a
finite discrete set of chemicals, R is the finite set of reactions r : X → Z and C ⊂ X ×R
is a set of reactions catalyzed by chemicals of X. For any pair (x, r) ∈ C, the reaction r
is said to be catalyzed by x.

Definition 5.1.2. A subnetwork (X ′, R′, C ′) of a CRS (X,R,C) is given by the subset
X ′ ⊂ X with the maximal possible sets of reactions and catalyzed reactions:

R′ = {r|X′ such that r ∈ R, dom(r) ⊂ X ′, ran(r) ∩X ′ 6= ∅},

where r|X′ denotes the restriction of r : X → Z to X ′ and

C ′ = {(x, r|X′) such that ∃(x, r) ∈ C with r|X′ ∈ R′ and x ∈ X ′}.

It is possible to have a some reaction r included in R, but not its reverse −r. This
can be justified by the fact that many reactions proceed along a chemical potential gra-
dient and are therefore essentially irreversible. One example is the reaction catalyzed the
enzyme tryptophan synthase presented in the previous chapters.

Giving a reaction in the form r : X → Z as above is equivalent to the usual notation

a1A1 + a2A2 + ...+ anAn → b1B1 + b2B2 + ...+ bmBm,

where ai, bj ∈ N and Ai, Bj ∈ X, Ai 6= Bj for i = 1, ..., n and j = 1, ...,m via

r(x) =


−ai, if x = Ai

bj, if x = Bj

0, else.

The notation r : X → Z allows the notion of linear combinations (
∑

i µiri) : X → Z, µi ∈
Z of reactions {ri}i∈I via

(
∑
i

µiri)(x) :=
∑
i

µiri(x)

and will therefore be used for notational convenience. It is useful to define the domain
dom(r) and range ran(r) of a reaction as

dom(r) = {x ∈ X, r(x) < 0}

and

ran(r) = {x ∈ X, r(x) > 0}.

Following [209] a CRS can be graphically represented by a graph with two kinds of
vertices and two kinds of directed edges. As an example, consider the graph in figure
5.1. The solid disks correspond to the chemicals in X and the circles corresponds to



5.1 Motivation 75

reactions in R. The chemicals participating in a reaction are shown by solid arrows. If
the reaction is catalyzed by some chemical, this is indicated by a dashed arrow. Usually,
the stochiometry of a reaction is not explicitly shown in the graph.

a b

c

d

e

Figure 5.1: Example of a graphical representation of a CRS. The CRS consists of five
chemicals X = {a, b, c, d, e} and three reactions a+ b→ c, c+ b→ d and c+ d→ e. The
first two reactions are catalyzed by d and a, respectively, whereas the last reaction is not
catalyzed.

Definition 5.1.3. A reflexive autocatalytic network (RA network) is a CRS (X,R,C),
such that each reaction r ∈ R is catalyzed by some chemical x ∈ X, or, equivalently, if
the natural projection C → R is surjective. The CRS (X,R,C) is said to posses the RA
property.

Definition 5.1.4. A CRS with food set F is a quadruple (X,R,C, F ), where (X,R,C) is
a CRS and F ⊂ X. A subnetwork of a CRS (X,R,C, F ) with food set F is a CRS with
food set (X ′, R′, C ′, F ) such that F ⊂ X ′ and (X ′, R′, C ′) is a subnetwork of (X,R,C) by
definition 5.1.2.

Definition 5.1.5. A food-generated network (F network) is a CRS with food set such
that each x ∈ X is generated by some sequence of reactions from F . The CRS (X,R,C)
is said to be generated from the food set F . More precisely, (X,R,C) is generated from
F if the following two conditions are satisfied:

(F1) For every x ∈ X there is a finite index set I such that the linear combination r :=
(
∑

i∈I µiri), µi ∈ N of reactions {ri}i∈I ⊂ R satisfies x ∈ ran(r) and dom(r) ⊂ F
and the index set I satisfies the condition:

(F2) There is a partition of I

I =
n∐
j=1

Ij

and reactions r̃j := (
∑

i∈Ij µiri), j = 1, ..., n such that dom(r̃1) ⊂ F and dom(r̃j+1) ⊂
∪jk=1ran(r̃k) for j = 1, ..., n− 1.

Remark 5.1.6. Intuitively, condition (F1) is enough to capture the notion of generation
from a food set. However, condition (F2) makes the definition given here equivalent to
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the original definition given by Hordijk and Steel [189]. It turns out to make a crucial
difference between a RAF set and more general self-sustaining networks. This is discussed
in remark 5.5.6 after the study of semigroup models and their connection to RAF sets
and self-sustaining networks.

Remark 5.1.7. Each CRS (X,R,C) can be made into an F network by taking F = X.
Due to the finiteness of X there exist minimal (not necessarily unique) food sets F for
every CRS making it an F network.

Remark 5.1.8. In [189], a RAF network is defined as follows: A RAF network is an
F network (X,R,C, F ) where (X,R,C) is RA. This definition requires all possible reac-
tions between chemicals in the food set F to be catalyzed. This is redundant, because
these chemicals are supplied from the environment. Therefore the author prefers to use a
slightly modified definition of a RAF network taking this minor detail into account (defi-
nition 5.3.2). Otherwise, the author’s definition agrees with the definition given above.

The definition of a RAF network captures the intuitive notion of a self-sustaining
chemical reaction network. The RA property allows each chemical to be formed by reac-
tions catalyzed by the network itself and the generation from a food set implies that every
chemical in the network can be regenerated from resources taken up from the environment.

Example 5.1.9. The subnetwork shown in figure 5.1 given by {a, b, c, d} is RA, because
all its reactions are catalyzed. Choosing the food set F = {a, b} makes it into a RAF
network as all chemicals in the network are generated from F . However, for F = {a} the
network is no longer RAF, because b cannot be generated from the food set. The RA
property is a property of the network (X,R,C), whereas the F property is not inherent
to the network, but depends on the choice of food set.

5.1.2 Coarse-Graining via Congruences

One benefit of algebraic models and the main motivation for this work is their natural
hierarchy of substructures and quotient structures. As has been discussed in the thesis
introduction, one important characteristic of biological systems are processes taking place
on many length and time scales and an associated hierarchy of structures and interactions
between them. However, current approaches for the transitions from a lower scale to
higher scales crucially rely on a time scale separation. Even the transition from a given
scale to one higher scale by integrating out fast degrees of freedom can be technically
very demanding [210]. The use of algebraic structures is an attempt to circumvent these
difficulties and try to perform a “coarse-graining in function” by taking quotients (section
5.6). An algebraic quotient groups together classes of elements in a way such that the
classes are compatible under some given algebraic operations. This gives the quotient
structure the algebraic type of the original structure. As an example without biological
interpretation, consider the subgroups and quotients of Z:

Example 5.1.10. The integers Z = {0,±1,±2, ...} form a commutative group under ad-
dition. Each subgroup of Z is of the form nZ = {0,±n,±2n, ...}, n ∈ N. The subgroups
nZ form a hierarchy fully determined by divisibility of the natural numbers, i.e. mZ is a
subgroup of nZ if and only if n divides m. One writes mZ < nZ. If mZ < nZ, then the
question about proper subgroups between mZ and nZ is determined by the quotient m/n:
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There exist proper subgroups if and only if m/n is not a prime number. The resulting
hierarchy of subgroups of Z is sketched in figure 5.2A.

Each subgroup nZ yields a quotient group Z/nZ = {0̄, 1̄, ..., n− 1} - the group of
residue classes modulo n. As sets, the residue classes ī are cosets i+ nZ = {..., i− 2n, i−
n, i, i+ n, ...}. Z/nZ inherits the addition from Z, i.e.

ī+ j̄ =

{
i+ j if i+ j < n

i+ j − n if i+ j ≥ n.

Each quotient Z/mZ sees the part of the lattice above the subgroup mZ and forgets
the rest of it as shown in figure 5.2B for the quotient Z/60Z. The normal subgroups
containing mZ, i.e. the groups nZ such that n|m, become quotient groups nZ/mZ ∼=
Z/(m/n)Z. They can be used to take further quotients of the lattice as shown in figure
5.2C. Throughout this procedure, the addition defined on Z descends to a well-defined
addition on all the quotients.

For the group Z (and any group) the quotients are in one-to-one correspondence with
its normal subgroups and therefore the characterization of quotients given here is com-
plete. However, for general algebras, the subalgebras do not determine all possible quo-
tients. The appropriate notion is the notion of congruence relation. Congruences can be
defined for any type of algebra [211], but the exposition here will focus on semigroups.
This material is presented in greater detail in [192], chapter I.
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Figure 5.2: Lattice of Congruences on A Z, B Z/60Z and C Z/60Z. The lattice C results
from B by taking the quotients modulo Z/10Z, which is obtained from A as a quotient
modulo 60Z.

Definition 5.1.11. A relation R on a set S is a subset of the cartesian product
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R ⊂ S × S.
For a pair (x, y) ∈ R, one writes xRy.

Definition 5.1.12. A semigroup is a set S endowed with a binary associative operation
◦ : S × S → S, i.e. a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ S. ◦ is called the multiplication
on S.

Definition 5.1.13. A subsemigroup S ′ of a semigroup (S, ◦) is a subset S ′ ⊂ S closed
under the semigroup operation ◦. One writes S ′ < S

Definition 5.1.14. An equivalence relation R on a set S is a relation that is reflexive,
symmetric and transitive, i.e.

(x, x) ∈ R for all x ∈ S
(x, y) ∈ R ⇒ (y, x) ∈ R

(x, y), (y, z) ∈ R ⇒ (x, z) ∈ R.

Remark 5.1.15. Giving an equivalence relation R is the same as giving a partition of S
into disjoint sets (Si)i∈I

S =
∐
i∈I

Si.

The (Si)i∈I are called equivalence classes or cosets. Each x ∈ S is contained in exactly
one coset Si, which then contains all elements y ∈ S that are related to x, i.e. yRx,
and only those. The coset containing x will be denoted as xR. Vice versa, for a given
partition S =

∐
i∈I Si, the relation xRy ⇔ ∃i ∈ I such that x, y ∈ Si is an equivalence

relation.

Definition 5.1.16. A congruence R on a semigroup S is an equivalence relation that is
compatible with the semigroup operation, i.e.

xRx′ and yRy′ ⇒ (xy)R(x′y′) (5.1.1)

for all x, x′, y, y′ ∈ S.

Congruences are partially ordered by inclusion as sets (they are subsets of S × S by
definition 5.1.11). Moreover, they form a lattice. An ad hoc definition of lattice is

Definition 5.1.17. A lattice (L,∨,∧) is a partially ordered set (L,≤) such that any two
elements a, b ∈ L have a smallest upper bound u, i.e. a ≤ u and b ≤ u and u is minimal
and unique with this property and a largest lower bound l with the analogous properties.
u is called the join of a and b and denoted as a ∨ b and l is the meet and is denoted as
a ∧ b.

Remark 5.1.18. Let R1 and R2 be two congruences. The lattice of congruences has a
maximal element 1 = S × S and a minimal element ∆ = {(s, s), s ∈ S} ⊂ S × S. Thus,
the join R1 ∨R2 can be obtained as the intersection of all congruences containing both
R1 and R2 and the meet R1 ∧R2 as the union of all congruences contained in R1 and
R2.
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Definition 5.1.19. Let R be a congruence on a semigroup S. The quotient semigroup
S/R is the set of cosets {xR, x ∈ S} with the operation inherited from S

(xR)(yR) = (xy)R.

This operation is well-defined as a consequence of the property 5.1.1 in definition 5.1.16.
There is a natural projection from S onto its quotient semigroup

R# : S → S/R

x 7→ xR.

Congruences are characterized by the following universal property

Theorem 5.1.20 ([192], Thm. I.5.4). Let R be a congruence on a semigroup S. For
any semigroup T and homomorphism φ : S → T such that xRy ⇒ φ(x) = φ(y) there is
a unique homomorphism ψ : S/R → T such that the diagram

S T

S/R

φ

R#
ψ

commutes.

Remark 5.1.21. Let S be a semigroup and R a congruence. It follows from the previous
theorem that there is a one-to-one correspondence between the congruences R ′ of S
containing R and the congruences of S/R:

{R ′ such that R ⊂ R ′ ⊂ S × S} ↔ {R ′/R ⊂ S/R × S/R}

by defining xR ′y if and only if (xR)R ′/R(yR).

Example 5.1.22. As an illustration, example 5.1.10 can be restated in the language of
congruences. Defining the congruence Rn on Z via

aRnb⇔ a− b ∈ nZ

identifies the quotient of groups Z/nZ with the quotient Z/Rn. The congruences Rn

form a lattice, whereby the join Rm ∨ Rn is Rgcd(m,n) and the meet Rm ∧ Rn is given
by Rsmc(m,n) (gcd(m,n) is the greatest common divisor and smc(m,n) is the smallest
common multiple of m and n). The lattice of subgroups shown in figure 5.2A corresponds
to the lattice of the congruences Rn.

Figure 5.2B shows the lattice obtained from A after taking the join with R60 and then
taking the quotients of Z. By remark 5.1.21, the lattice of congruences of Z/R60 consists
of all congruences Rn containing R60. Taking the quotient of Z/R60 by R10/R60 gives
the quotient Z/R6 leaves the lattice of congruences shown in figure 5.2C.

This example is meant to illustrate that the lattice of congruences of a semigroup
contains all possible congruence relations, i.e. quotients that are compatible with the
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semigroup operation. After taking a quotient by any given congruence, the congruences
of the semigroup larger than the chosen one remain as congruences of the quotient and
allow to repeat the procedure.

It is useful to point out that the language of congruences in unnecessary for groups,
but is crucial in semigroup theory: For any group G, a congruence R is uniquely deter-
mined by a normal subgroup N < G via aRb ⇔ ab−1 ∈ N and each normal subgroup
uniquely corresponds to a congruence as the kernel of the projection G → G/R. For
groups, the study of congruences is reduced to the study of normal subgroups. However,
for semigroups, it is not the case that congruences are determined by subsemigroups or
ideals (although each ideal determines a congruence). For example, congruences on finite
semigroups can yield congruence classes of different sizes. This is the case for all Rees
quotients of a finite semigroup S by a proper ideal I ⊂ S. Hereby, all elements of S \ I
form separate classes, whereas all elements of I belong to the same class. In contrast, in
quotients of groups G/N all congruence classes are in bijection with the respective normal
subgroup N and thus necessarily have the same size.

Remark 5.1.23 (Biological Motivation). The preceding example suggests that alge-
braic structures might be helpful for the coarse-graining of models of biological systems.
If a system can be modeled by an algebraic structure such as a semigroup, then the lattice
of congruences automatically suggests natural possibilities of coarse-graining.

For example, let A be a set of some system components. If their interactions can
be described as an operation ◦ that leads to other system components of A, i.e. if the
interaction between a ∈ A and b ∈ A produces a product c = a ◦ b, then A is a set with
an algebraic operation and naturally endowed with a lattice of congruences. Fixing any
congruence R, leads to a partition of A into congruence classes and allows to talk about
the interactions between the classes.

More specifically, A could be the some set of proteins within a cell and R the equiv-
alence relation dividing the proteins into classes depending on the protein complex they
belong to. If the interaction between proteins ◦ can be defined in a physically meaningful
such that R is a congruence, one immediately obtains the interaction between the respec-
tive protein complexes. Moreover, the lattice of congruences describes the inclusion of
smaller protein complexes into larger ones. Conversely, given a set of proteins A and the
interaction ◦, the possible coarse-graining procedures compatible with the interaction are
given by congruences on A. This idea is sketched in figure 5.3 using 4Z < Z as a purely
algebraic analogy (without biological meaning).



82 5. Semigroup Models for Reaction Networks

A

B

C

…-3,-2,-1,0,1,2,3,…

interaction            given by +

-4,0,
4,8,..

-3,1,
5,9,..

-2,2,
6,..

-1,3,
7,..

-4,0,
4,8,..

-3,1,
5,9,..

-2,2,
6,..

-1,3,
7,..

Z

Z

4Z

Z

4Z

2Z

Figure 5.3: Left: A Schematic representation of some biological system consisting of a
set of components with interactions represented by two-sided arrows. B Coarse-graining
into four lumped sets with interactions inherited from the component-component inter-
actions. C An algebraic procedure automatically suggests further possibilities of coarse-
graining and thus shows a hierarchy of nested structures. The interactions within classes
as indicated by the solid arrow are only inherited from the algebra if the classes contain
idempotents. Right: A A far-fetched analogy with the “system” Z and the “components”
0,±1,±2, ... whose interaction is addition. B Lumping the elements of Z into the four
residue classes 0̄, 1̄, 2̄ and 3̄ of Z/4Z. C Algebraically, there is an intermediate coarse-
graining scheme into Z/2Z. The addition naturally descends into class 0̄, but not into the
other residue classes.

In general, there is no natural way to assign interactions within the congruence classes.
However, congruence classes that contain idempotents (elements e such that e ◦ e = e)
allow the natural interaction within the class inherited from ◦: For aRe and bRe, one
obtains (a ◦ b)R(e ◦ e) and thus (a ◦ b)Re.

The coarse-graining by congruences will applied to semigroup models of CRS in section
5.6.

5.2 Semigroup Models of CRS

The semigroups constructed here combine the formal CRS approach of Kauffman, Hordijk
and Steel with the semigroup models constructed by Rhodes [212] and a flavor of Ra-
shevsky’s ideas.

The author’s main motivation for the use of CRS over classical chemical reaction net-
works is the possibility to talk about the function of chemical species x ∈ X and even
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about the function of subnetworks and of the whole network on itself.

Throughout this section, let (X,R,C) be a CRS. The state of the CRS is defined by
the presence or absence of the chemicals, i.e. by giving the subset Y ⊂ X of chemicals
that are present. Thus the state space X of the CRS is the power set P(X) = {0, 1}X .
The elements of X can be represented by finite tuples (xA1 , ..., xAn) labeled by the set
X, i.e. xAi

∈ {0, 1}, and X = {A1, ..., An}. Such tuples (xA1 , ..., xAn) are in one-to-one
correspondence with the subsets of X. This correspondence is made explicit by viewing
the xAi

in the tuples as the characteristic functions of the singleton sets {Ai} giving a
bijection

P(X)→ {0, 1}X (5.2.1)

Y 7→ (xA1(Y ), ..., xAn(Y )) , where xAi
(Y ) = 1 iff Ai ∈ Y .

The identification between subsets and tuples will be used interchangeably depending on
the context. When reactions r : X → Z are directly involved in the construction, the
tuple notation is more convenient, but for more abstract constructions and arguments the
subset notation is better suited.

A reasonable way to define the function of some given chemical x ∈ X is via the
reactions it catalyzes, i.e. by the way it acts on the state space X. This definition
originates from the work of John Rhodes [212]. The connection to his work is discussed
in section 5.7.

Definition 5.2.1. Let (X,R,C) be a CRS with state space X = {0, 1}X . The function
of r ∈ R is defined as

φr : X→ X

φr((xA1 , ..., xAn))Ai
=

{
1 if Ai ∈ ran(r) and xAj

= 1 for all Aj ∈ dom(r)

0 else

or, equivalently

φr(Y ) =

{
ran(r) if dom(r) ⊂ Y

∅ else

for all Y ⊂ X. The sum φ+ ψ of two functions φ, ψ : X→ X is defined as

(φ+ ψ)((xA1 , ..., xAn))Ai
=

{
1 if φ((xA1 , ..., xAn))Ai

= 1 or ψ((xA1 , ..., xAn))Ai
= 1

0 else,

i.e.

(φ+ ψ)(Y ) = φ(Y ) ∪ ψ(Y )
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for all Y ⊂ X. The function φx : X→ X of x ∈ X is defined as the sum over all reactions
catalyzed by x

φx =
∑

(x,r)∈C

φr.

The functions φx can be composed via

(φx ◦ φy)(Y ) := φx(φy(Y )) for any Y ⊂ X.

This composition ◦ is the usual composition of maps and therefore associative. Recalling
the definition

Definition 5.2.2 (*). The full transformation semigroup T (A) of a finite discrete set A
is the set of all maps {f : A→ A} with ◦ defined as the composition of maps.

one is led to the definition of the semigroup model for a CRS.

Definition 5.2.3. Let (X,R,C) be a CRS. Its semigroup model S is defined as the
semigroup of all maps φ : X→ X under composition ◦ generated by the {φx}x∈X through
the operations of composition ◦ and union +, i.e. S is the smallest subsemigroup of the
full transformation semigroup T (X) closed under ◦ and + that contains {φx}x∈X . One
writes

S = 〈φx〉x∈X

As a subsemigroup of T (X), S is automatically a finite semigroup.

Remark 5.2.4. By definition, a general map φ : X → X is to be defined on all subsets
Y ⊂ X, i.e. the assignment Y 7→ φ(Y ) needs to be given for all Y ⊂ X. However, in the
case of the constructed semigroup models, it is enough to specify the map on some finite
set I of generating sets {Yi}i∈I , Yi ⊂ X by explicitly defining φ(Yi) for all i ∈ I and by
defining

φ(Y ) =
⋃
Yi⊂Y

φ(Yi).

for an arbitrary Y ⊂ X. Usually, the generators {Yi}i∈I , Yi ⊂ X will be taken as the sets
of substrates of the functions included in φ. This is a convenient notational simplification
as the state space X grows exponentially with the number of chemicals in the network.

Example 5.2.5. As an example, consider the CRS A in figure 5.4. Its semigroup model
is generated by the maps φa, φd : X → X. Using the previous remark, the maps will
only be specified on their generating sets. The generating set for φa in the example is
{c, b} with φa({c, b}) = {d}. Similarly φd is generated by {a, b} via φd({a, b}) = {c}. The
element φa + φd has both {a, b} and {c, b} as generating sets with (φa + φd)({c, b}) = {d}
and (φa + φd)({a, b}) = {c}. All possible concatenations ◦ of any of the maps φa, φd and
φa+φd yield the zero map 0 : X→ X defined as 0(Y ) = ∅ for all Y ⊂ X. This determines
the semigroup model S of the CRS A as

S = {0, φa, φd, φa + φd} such that a ◦ b = 0 for all a, b ∈ S.
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This is both a left- and right-zero semigroup. The chemical interpretation is that no
possible combination of reactions in the CRS produces enough substrates to enable any
other reaction within the network. In this particular case, the chemical b is required for
all reactions, but is never produced.

a b

c

d

A

IGP serine

tryptophan

tryptophan
synthase

C
G3Pa

b

c

d

B

e

f

Figure 5.4: Examples of some simple CRS.

The CRS B has a nonzero concatenation corresponding to the production of d and
e from a, b and c followed by the production of f . In the semigroup language, the map
φa ◦ (φe + φf ) is generated by {a, b, c} via φa ◦ (φe + φf )({a, b, c}) = {f}.

One can also recast the chemical reaction network of tryptophan synthase studied in the
previous chapter as a CRS. It is shown in figure 5.4C. Tryptophan synthase catalyzes
the reaction between serine and IGP to form tryptophan and G3P corresponding to the
map φTS given by the generator φTS({serine, IGP}) = {tryptophan,G3P}. Because
φTS ◦ φTS = 0 the semigroup model corresponding to the tryptophan synthase Markov
network is

S = {0, φTS} with φTS ◦ φTS = 0.

The semigroup models in this example are nilpotent semigroups by the

Definition 5.2.6 (*). Let S be a semigroup and n some natural number. The n-th power
Sn of S is defined as the subsemigroup of S consisting of products of length n

Sn = {a1 ◦ a2 ◦ ... ◦ an|ai ∈ S}.

Definition 5.2.7 (*). A semigroup S is nilpotent if there is an N ∈ N such that

SN = {0}.

For the CRS A and C in example 5.2.5, one has S2 = {0} and for B one finds S3 = {0}.

The rest of this chapter establishes the basic properties of semigroup models used
throughout the chapter. There is natural partial order on S inherited from the partial
order on T (X) defined by

Lemma 5.2.8 (*). Let φ, ψ ∈ T (A), where A is a finite and discrete set. Then
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φ ≤ ψ ⇔ φ(B) ⊂ ψ(B) for all B ⊂ A.

is a partial order on T (A). In particular, this induces a partial order on S. One writes
(S,≤) for S endowed with this partial order.

The partial order of a semigroup model S of a CRS possesses the following property
that is not in general valid for transformation semigroups.

Lemma 5.2.9. Let S be a semigroup model of a CRS. The partial order (S,≤) as defined
above is preserved under composition, i.e. for any φ, ψ, χ ∈ S

φ ≤ ψ ⇒ φ ◦ χ ≤ ψ ◦ χ (5.2.2)

and φ ≤ ψ ⇒ χ ◦ φ ≤ χ ◦ ψ. (5.2.3)

Proof. φ ≤ ψ implies φ(Y ) ⊂ ψ(Y ) for all Y ⊂ X and a fortiori (φ ◦ χ)(Y ) ⊂ (ψ ◦ χ)(Y ).
This proves 5.2.2. 5.2.3 follows by remark 5.2.4 from φ(Y ) ⊂ ψ(Y ).

Lemma 5.2.10. Let S be a semigroup model of a CRS.
(I) Any φ, ψ ∈ S satisfy

φ ≤ φ+ ψ. (5.2.4)

(II) Any φ, ψ, χ ∈ S such that φ ≤ χ and ψ ≤ χ satisfy

φ+ ψ ≤ χ. (5.2.5)

Proof. This follows directly from remark 5.2.4 and the definition of a sum.

The operations ◦ and + on S have the following distributivity properties.

Lemma 5.2.11. Let φ, ψ, χ ∈ S. Then

φ ◦ χ+ ψ ◦ χ = (φ+ ψ) ◦ χ (5.2.6)

and χ ◦ φ+ χ ◦ ψ ≤ χ ◦ (φ+ ψ). (5.2.7)

Proof. Using the definitions of the operations, one obtains (φ ◦ χ + ψ ◦ χ)(Y ) = (φ ◦
χ)(Y ) ∪ (ψ ◦ χ)(Y ) = φ(χ(Y )) ∪ ψ(χ(Y )) = (φ + ψ)(χ(Y )) = ((φ + ψ) ◦ χ)(Y ) for all
Y ⊂ X proving the equality 5.2.6.

Lemma 5.2.9 and lemma 5.2.10(I) imply χ ◦ φ ≤ χ ◦ (φ+ ψ) and χ ◦ ψ ≤ χ ◦ (φ+ ψ).
5.2.7 now follows from lemma 5.2.10(II).

The two operations ◦ and + have obvious interpretations in terms of the function of
enzymes on a CRS: The sum of two functions φx + φy, x, y ∈ X describes the joint or
simultaneous function of two enzymes x and y on the network - it captures the reactions
catalyzed by both x and y at the same time. The sum is associative and commutative by
definition. The composition of two functions φx ◦ φy, x, y ∈ X describes the subsequent
function on the network - first y and then x act by their respective catalytic function.
Interestingly, using the partial order introduced in lemma 5.2.8, the distributive property
5.2.7 reads: Applying a test function χ to the sum of two functions φ and ψ can be larger
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than applying the test function to the individual functions and then taking the sum. This
is reminiscent of the prevalent characterization of emergence (the whole is larger than the
sum of its parts) and the fact that the simple algebraic models studied here already show
this behavior in such clarity is rather surprising to the author.

By definition S captures all possibilities of joint and subsequent functions of elements
of the network on the network itself. In particular, this allows to determine the actions
of arbitrary subsets Y ⊂ X on the whole network by making the

Definition 5.2.12. Let (X,R,C) be a CRS and Y ⊂ X. The semigroup S(Y ) < S of
the functions of Y is

S(Y ) = 〈φx〉x∈Y
and the function ΦY of Y on X is defined as

ΦY =
∑

φ∈S(Y )

φ.

ΦY is characterized by the following property.

Proposition 5.2.13. ΦY is the unique maximal element of S(Y ) with respect to the
partial order introduced in 5.2.8.

Proof. By construction, ΦY is an element of S(Y ). It suffices to show that any element
ψ ∈ S(Y ) satisfies ψ ≤ ΦY . But this is a direct consequence of lemma 5.2.10(I) as
ΦY = ψ +

∑
φ∈S(Y )\{ψ} φ by construction. The unicity follows from the properties of a

partial order.

Remark 5.2.14. In particular, S has a maximal element ΦX .

Remark 5.2.15. If Y ⊂ Z ⊂ X, then the definition 5.2.12 implies ΦY ≤ ΦZ .

One can use the distributivity property 5.2.6 to derive an explicit expression for each
φ ∈ S in terms of the functions of chemicals {φ}x∈X as discussed in the following remark.
However, this will not be used until section 5.6.

Remark 5.2.16 (Explicit representation of elements of S). Recall that the elements
of S are generated via + and ◦ from the functions {φx}x∈X of individual chemicals. There
is an iterative construction of all elements in S. Denote by S0 = {φx}x∈X and let

S◦i = {
∏
finite

aj|aj ∈ Si−1} for i ≥ 1

be the set of all possible finite products of elements from Si−1. Let Si be the set of all
possible finite sums of elements from S◦i

Si = {
∑
finite

ak|ak ∈ S◦i } for i ≥ 1.

Because S is a finite semigroup, this construction yields all elements of S after a finite
number of iterations, i.e. there is some N ∈ N such that
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S = S◦N .

Tracing the construction backwards gives the explicit representation of any φ ∈ S = S◦N :

φ = a1 ◦ a2 ◦ ... ◦ an,

where all aj are elements of SN−1, i.e.

aj =
∑
ij

ajij , ajij ∈ S◦N−1.

In particular,

a1 =
∑
i1

a1i1 , a1i1 ∈ S◦N−1.

Distributivity (equation 5.2.6) gives

φ =
∑
i1

(a1i1 ◦ a2 ◦ ... ◦ an),

where a1i1 ∈ S◦N−1. Repeating this at most N − 1 more times for the leftmost factor gives

φ =
∑
y∈Y

φy ◦ ay2 ◦ ... ◦ ayny
, (5.2.8)

where φy are functions of single chemicals for some multiset Y with elements in X, ayi ∈
S◦N−1 and the ny some natural numbers. The same sequence of operations can be repeated
for ay2 giving

ay2 =
∑
y′∈Yy

φy′ ◦ ayy
′

3 ◦ ... ◦ ayy
′

nyy′

for some multiset Yy with elements in X, ayy
′

i ∈ S◦N−1 and the nyy′ some natural numbers.
Plugging this into the expression 5.2.8 leads to

φ =
∑
y∈Y

φy ◦ (
∑
y′∈Y ′y

φy′ ◦ ayy
′

3 ◦ ... ◦ ayy
′

nyy′
) ◦ ay3 ◦ ... ◦ ayny

.

Using distributivity and relabeling the ayi , i ≥ 3 gives

φ =
∑
y∈Y

φy ◦ (
∑
y′∈Yy

φy′ ◦ ayy
′

3 ◦ ... ◦ ayy
′

myy′
). (5.2.9)

Continuing this resolution for all the remaining functions and taking into account that
φ was generated by a finite number of operations of taking sums and products (it lies in
SN) implies that φ has the form indicated in expression 5.2.9 consisting of consecutive
sums of products of functions of single chemicals. This means that φ can be represented
as a tree with edges labeled by functions φy and the vertices representing sums over the
underlying edges. The sums are then multiplied with the function on the edge above the
respective vertex. Figure 5.5A gives an example of such a representation.
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φa φb φc

φd φe φf

φg
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a

Figure 5.5: The tree A shows the function φ = φa ◦ (φd ◦ φg + φe) + φb ◦ φf + φc (point
before line calculation to avoid brackets) as an example of an explicit representation of
a general element of S as discussed in the text. B the reaction pathway within a CRS
corresponding to the function represented in A. As the root of the tree A has three
branches, the pathway has three components that are not interconnected. Note that the
pathway B does not represent a unique function. For example, it is also the pathway
corresponding to the function φ+ φg.

The representation of a function by a tree implies a correspondence to reaction path-
ways in the CRS, where the leafs of the tree correspond to starting reactions and vertices
correspond to joining reaction pathways. As an example, figure 5.5B shows the pathways
corresponding to the tree from figure 5.5A. However, the mapping of functions to reaction
pathways in neither surjective nor injective in general. In particular, a reaction does not
define a unique function. For example, the reaction pathway shown in figure 5.5B corre-
sponds to the function φ represented in figure 5.5A, but it is also the reaction pathway of
the function φ+ φg.

This representation of functions motivates the definition of the support of a given
function φ ∈ S. Intuitively, this is the minimal set Y ⊂ X such that φ is a function
generated by this set. With the notions introduced above, the definition is

Definition 5.2.17. Let φ be any function φ ∈ S. The support of φ is the set of minimal
sets Y ⊂ X such that φ ∈ S(Y ). It is denoted as supp(φ).

Remark 5.2.18. The support supp(φ) can consist of multiple minimal sets that generate
φ. See figure 5.6 for an example. Therefore, the more appealing definition to require
supp(φ) to be the minimal set Y ⊂ X such that φ ∈ S(Y ) is not well-defined in general.
However, if supp(φ) consists of exactly one set, then the support will be set equal to this
set.
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a b

c

gfe

d

Figure 5.6: An example of a CRS where a function is supported on different minimal
subsets of X, i.e. |supp(φ)| > 1. The function φ is defined on the generating set {a} via
φ({a}) = {b}. It can be written as φ = φg ◦ φd ◦ φc and φ = φg ◦ φf ◦ φe and has support
supp(φ) = {{c, d, g}, {e, f, g}}.

Note that the support function used here is completely different from the support
defined in [189]. In [189], the support is defined on subsets of the reaction set R whereas
the support introduced here is defined on elements of S. The definition from [189] is not
needed in this work.

5.3 Semigroup Models of CRS with Food Set

Having introduced semigroup models for CRS (X,R,C), the models will now be adapted
to CRS with food sets F ⊂ X. The CRS A from example 5.2.5 has a semigroup model
with S2 = {0} showing that no combinations of reactions of the network could produce
chemicals within the network. Certainly, this CRS is not self-sustaining. However, if the
chemicals a and b were constantly supplied, the network would become self-sustaining,
i.e. RAF. This should be reflected in an appropriately modified semigroup model.

First, it is not necessary to include the chemicals from the food set in the state space
X = {0, 1}X , because the chemicals from the food set should always be present. Moreover,
chemicals that are formed from the food set under reactions catalyzed by the food set need
not be included in the state space either, because the also would form in the environment
and thus will automatically be externally supplied. This can be achieved by defining the
closure of the food set:

Definition 5.3.1. Let (X,R,C, F ) be a CRS with food set F . The closure F̄ is defined
as the smallest set containing F such that any reaction r with range outside of F̄ requires
either a catalyst or a reactant that is not in F .

It is convenient to define the restriction of X to F as XF := X \ F̄ and the state space
XF := {0, 1}XF as the power set of XF .

Definition 5.3.2. A CRS (X,R,C) with food set F is RAF if (X,R,C) is an F̄ network
according to definition 5.1.5 such that for each element x ∈ XF there is a set I of reactions
{ri}i∈I producing x and satisfying the conditions (F1) and (F2) from definition 5.1.5 and
such that each reaction ri is catalyzed by some chemical in X.



5.3 Semigroup Models of CRS with Food Set 91

Remark 5.3.3. If a CRS (X,R,C, F ) has a RAF subnetwork, it has a maximal RAF
subnetwork as the union of all RAF subnetworks. If its maximal RAF subnetwork is F̄ ,
one defines that the CRS (X,R,C, F ) has no RAF subnetwork.

To take into account the constant presence of the food set, it is not possible to just
replace X by XF and restrict all maps in S to XF , because reactions catalyzed by the
food set still need to be included in the model and chemicals in the food set are needed
to form chemicals in XF , yet they do not occur explicitly in XF . The following definition
takes this into account.

Definition 5.3.4. Let (X,R,C) be a CRS with semigroup model S. Let F ⊂ X be
some food set. For each map φ ∈ S, the F -modification φF is defined using generating
sets introduced in remark 5.2.4. Let {Yi}i∈I , Yi ⊂ X be generating sets for φ. Then
{Yi ∩XF}i∈I are the generating sets for φF via

φF (Yi ∩XF ) :=
(
φ(Yi ∪ F̄ ) ∪ ΦF̄ (Yi ∪ F̄ )

)
∩XF ,

where ΦF̄ is the function of F̄ as defined in 5.2.12.

The semigroup model SF of a CRS (X,R,C, F ) with food set F of is a subsemigroup
of the transformation semigroup T (XF ) on XF generated by the elements φF under the
operations + and ◦, i.e.

SF = 〈φF 〉φ∈S

The semigroup operation is the usual composition ◦ inherited from T (XF ).

In the definition of the F -modification φF of φ, the term φ(Yi ∪ F̄ ) takes into account
the constant presence of all elements of F̄ as reactants and the term ΦF̄ (Yi ∪ F̄ ) ensures
their catalytic action.

Example 5.3.5. As an example for semigroups models with food set, the CRS A from
example 5.2.5 is reexamined with food set F = {a, b} as shown in figure 5.7 and the
corresponding semigroup model SF with food set is constructed. The maps φa, φd and
φa+φd have been determined using generating sets in example 5.2.5. Using the definition
5.3.4, the F -modifications φF are constructed. Afterwards, the closure under + and ◦
must be established.

a b

c

d

F

Figure 5.7: CRS A from example 5.2.5 with food set F = {a, b}.
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The definition 5.3.1 of the closure of the food set yields F̄ = F and XF = {c, d}. The F -
modifications (φa)F , (φd)F and (φa+φd)F are given by generating sets as (φa)F ({c}) = {d},
(φd)F (∅) = {c} and (φa+φd)F (∅) = {c}; (φa+φd)F ({c}) = {c, d}. In contrast to example
5.2.5, the concatenations give new elements. It is convenient to introduce a notation for
constant maps cY : XF → XF defined by cY (Z) = Y for all Z ⊂ XF (the zero map 0
is c∅ in this notation). Note that (φd)F = c{c}. Some concatenations give more constant
elements (φa + φd)

2
F = c{c,d}, (φa)F ◦ (φd)F = c{d}, (φa)F ◦ (φa)F = 0. The elements

{0, (φa)F , (φd)F , (φa + φd)F , c{d}, c{c,d}} are closed under + and ◦ as can be seen in the
tables 5.1 and 5.2. Thus the semigroup model SF is

SF = ({0, (φa)F , (φd)F , (φa + φd)F , c{d}, c{c,d}}, ◦)

with the operation ◦ given in table 5.1.

◦ (φa)F (φd)F (φa + φd)F c{d} c{c,d}
(φa)F 0 c{d} c{d} 0 c{d}
(φd)F (φd)F (φd)F (φd)F (φd)F (φd)F

(φa + φd)F (φd)F c{c,d} c{c,d} c{d} c{c,d}
c{d} c{d} c{d} c{d} c{d} c{d}
c{c,d} c{c,d} c{c,d} c{c,d} c{c,d} c{c,d}

Table 5.1: The multiplication table for S{a,b}. The order of composition is row ◦ column.

+ (φa)F (φd)F (φa + φd)F c{d} c{c,d}
(φa)F (φa + φd)F (φa + φd)F c{d} c{c,d}
(φd)F (φa + φd)F c{c,d} c{c,d}

(φa + φd)F c{c,d} c{c,d}
c{d} c{c,d}
c{c,d}

Table 5.2: The addition table for S{a,b}. All functions φ satisfy φ + φ = φ giving the
corresponding elements on the diagonal. The commutativity of addition yields the lower
left half of the table.

For semigroups SF of CRS with food set, the lemmata 5.2.8, 5.2.9, 5.2.10 and 5.2.11
remain valid and the analogous proofs hold. Moreover, the definition 5.2.12 of the function
(ΦY )F supported on a subset Y ⊂ X carries over verbatim and it satisfies the proposition
5.2.13. The representation of a function discussed in remark 5.2.16 and the definition of
5.2.17 with the respective corollaries apply to SF as well.

With the construction of a semigroup model SF for a CRS with food set, it is possible
to give a clean characterization for a CRS to be RAF.

Theorem 5.3.6. Let (X,R,C, F ) be a CRS with food set F and semigroup model SF .
(X,R,C, F ) is RAF if and only if ΦXF

is the constant function cXF
, i.e.

ΦXF
(∅) = XF .
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Proof. If (X,R,C, F ) is RAF, each chemical is formed by a sequence of catalyzed reactions
from F̄ , i.e. for each x ∈ XF there is a function ψx such that x ∈ ψx(∅). The function
Ψ :=

∑
x∈XF

ψx then satisfies Ψ(∅) = XF . The maximality of ΦXF
yields ΦXF

= Ψ
showing the necessity of the condition.

The condition ΦXF
(∅) = XF implies that each chemical in XF can be formed from F̄

by a sequence of reactions catalyzed by elements in X. The representation of ΦXF
as a

tree discussed in remark 5.2.16 implies that there is a sequence of reactions satisfying the
conditions (F1) and (F2). The partition of the index set required in (F2) is given by the
the distance of the function to the root of the tree.

Corollary 5.3.7. ΦXF
(∅) contains the maximal RAF.

Proof. Let (X ′, R′, C ′, F ) be the maximal RAF subnetwork with semigroup model S ′F of
the CRS (X,R,C, F ) with semigroup model SF . By definition both CRS have the same
food set. As the closure of a food set only depends on the food set, both CRS have the
same closure of food sets. Thus X ′F ⊂ XF and subsets of X ′F are subsets of XF and
the functions in S ′F extend to functions on XF as follows: Let φ be a function in S ′F ,
i.e. φ : X′F → X′F and define the extension φe : XF → XF as φe(Y ) = φ(Y ∩ X ′F )
for all Y ⊂ XF . In particular, this gives Φe

X′F
≤ ΦXF

. Now theorem 5.3.6 implies that

ΦX′F
(∅) = X ′F . By construction ΦX′F

(∅) = Φe
X′F

(∅) and therefore X ′F ⊂ ΦXF
(∅).

Corollary 5.3.8. A CRS (X,R,C, F ) with nilpotent semigroup SF no RAF subnetwork.

Proof. If the CRS had a maximal RAF subnetwork (X ′, R′, C ′, F ), ΦXF
would be bounded

from below by the constant function cX′ by corollary 5.3.7. Then all powers of ΦXF
would

be bounded by cX′ as well and therefore SF could not be nilpotent.

5.4 Dynamics on a Semigroup Model

With the tools constructed so far, it is possible to define a discrete dynamics on a CRS
with food set by using its semigroup model. The constructions given here are analogously
applicable for CRS without a specified food set and will therefore not be mentioned ex-
plicitly.

Let (X,R,C, F ) be a CRS with food set F and semigroup model SF . This is the
setup for the rest of this section. Starting with any set of chemicals Y0 ⊂ XF , there is
a maximal function ΦY0 (definition 5.2.12) that is supported on this set. This function
acts on Y0 giving the maximal set Y1 = ΦY0(Y0) that can be produced from Y0 by using
functionality supported only on Y0 and the food set. The same argument applies to Y1

and leads to the

Definition 5.4.1. The discrete dynamics on a CRS (X,R,C, F ) with food set F ⊂ X
with initial condition Y0 is generated by the propagator D

D : XF → XF (5.4.1)

Y 7→ ΦY (Y ),

where ΦY is the function of Y ⊂ XF . Analogously, the dynamics is parametrized by N as
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Yn+1 = ΦYn(Yn) for all n ∈ N.

Note that the propagator 5.4.1 deletes all elements that are in Y , but not in ΦY (Y ).

Remark 5.4.2. Because the state space XF is finite, for the sequence (Yn)n∈N there
exist minimal natural numbers k and m such that Yk = Yk+m. Taking into account
that the dynamics generated by D is memoryless gives rise to periodic behavior, i.e.
Yk+i = Yk+i+nm for all i = 0, ...,m− 1 and all n ∈ N. If m = 1, Yk is a fixed point and one
says that the dynamics stabilizes at Yk. If m > 1, one says that the dynamics has period
m and is oscillatory. Both behaviours are possible in CRS. According to theorem 5.3.6,
if (X,R,C, F ) is RAF, then XF is a fixed point for the dynamics with initial condition
Y0 = XF .

Example 5.4.3. Figure 5.8 shows a CRS with X = XF = {a, b, c}, F = F̄ = ∅ and the
respective reactions shown in the figure. If the initial condition Y0 is a proper subset of
XF , the dynamics has period 3. For example, the dynamics generated by Y0 = {a} is

{a} 7→ {b} 7→ {c} 7→ {a} 7→ ...

a b

c

Figure 5.8: Example of a CRS with Possible Oscillatory Dynamics.

ex:period
The discrete dynamics on a CRS can be used to derive further statements about RAF

subnetworks of a CRS.

Proposition 5.4.4. Let (X,R,C, F ) and let (Yn)n∈N be the discrete dynamics with initial
condition Y0. If the semigroup SF of the CRS is nilpotent, then the dynamics stabilizes
at ∅, i.e. there exists a natural number N such that

Yn = ∅ for all n ≥ N.

Proof. By definition Yn = ΦYn−1 ◦ ΦYn−2 ◦ ... ◦ ΦY0(Y0). Because SF is nilpotent, there
exists an index N such that SNF = {0}. This implies that Yn = ∅ for all n ≥ N .

A useful result is that the dynamics with initial condition XF cannot have periodic
behavior, but always has a fixed point. It is a consequence of the following stronger result.

Proposition 5.4.5. Let (X,R,C, F ) be a CRS with dynamics (Yn)n∈N. If Y1 ⊂ Y0, the
dynamics is monotonically decreasing, i.e.

Yn+1 ⊂ Yn for all n ≥ N.
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Proof. The proof proceeds by induction. By hypothesis Y1 ⊂ Y0 is satisfied. Let Yn ⊂
Yn−1. This implies the ordering of the respective functions ΦYn ≤ ΦYn−1 by remark 5.2.15.
This ordering and remark 5.2.4 give the inclusions

Yn+1 = ΦYn(Yn) ⊂ ΦYn−1(Yn) ⊂ ΦYn−1(Yn−1) = Yn,

completing the proof.

Corollary 5.4.6. With the hypothesis of the previous proposition, the dynamics (Yn)n∈N
stabilizes.

Proof. By the previous proposition, the dynamics is a descending chain of sets Y0 ⊃ Y1 ⊃
... ⊃ Yn ⊃ Yn+1.... Because XF is finite, the chain stabilizes.

Corollary 5.4.7. A dynamics (Yn)n∈N with initial condition Y0 = XF always leads to a
fixed point.

Proof. This follows from ΦXF
(XF ) ⊂ XF and the previous corollary.

It is convenient to denote the fixed point of the dynamics with initial condition Y0 =
XF as X∗F and to refer to X∗F as the fixed point of the CRS. If the CRS is RAF, then
X∗F = XF by theorem 5.3.6. Intuitively it is clear that X∗F contains the maximal RAF
set of the CRS, because any RAF will constantly reproduce itself. This is made precise
in the

Proposition 5.4.8. The fixed point X∗F of a CRS (X,R,C, F ) contains the maximal
RAF set.

Proof. Let (Yn)n∈N be the discrete dynamics with Y0 = XF and let (X ′, R′, C ′, F ) be the
maximal RAF subset of (X,R,C, F ). If Y ⊂ XF contains X ′F , then ΦX′F

≤ ΦY by remark
5.2.15. In particular, ΦX′F

(∅) ⊂ ΦY (∅) ⊂ ΦY (Y ). By theorem 5.3.6 X ′F ⊂ ΦX′F
(∅) and

thus X ′F ⊂ ΦY (Y ). X ′F is contained in Y0 = XF and it follows inductively that X ′F ⊂ Yn
for all n ∈ N. By the previous corollary the dynamics stabilizes and thus X ′F ⊂ X∗F .

5.5 Identification of RAF Subnetworks

This section uses and compares the tools from the two previous sections to determine the
maximal RAF subnetwork of any given CRS. The identification of RAF sets is important
in its own right and the approach taken in this work is to establish a correspondence
between RAF networks and their respective semigroups. For example, corollary 5.3.8
shows that a CRS with nilpotent semigroup cannot contain any RAF subnetworks. This
is an important fact by itself as most semigroups are nilpotent and this weeds out these
objects in the study of RAF networks. If the converse were true, it would be possible
to tackle the combinatorial properties of RAF sets using the knowledge and tools from
semigroup theory, where combinatorial problems are an important and developed field
[213]. However, as discussed in the end of this section, the converse is not true within the
setup constructed in this work, but many pathological cases can be excluded by thermo-
dynamical considerations.
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As in the previous section, let (X,R,C, F ) be a CRS with food set and semigroup
model SF . In corollary 5.3.7 and lemma 5.4.8, it was established that both ΦXF

(∅) and
X∗F contain the maximal RAF subset. As shown in the following example, there is no
general relation between the two sets and the inclusion of the maximal RAF subset can
be strict. However, as shown in theorem 5.5.5, a combination of the methods used in 5.3.7
and 5.4.8 yields the maximal RAF subset of the CRS.

Example 5.5.1. Figure 5.9 shows two networks with ΦXF
(∅) and X∗F given in table 5.3.

This shows that the containment of the maximal RAF set is not necessarily strict and
that in general neither of ΦXF

(∅) and X∗F is contained in the other.

a b

c

d
A

F

d

B

F

a

b

c

e

f

Figure 5.9: Two CRS with food sets demonstrating that there is no relationship between
ΦXF

(∅) and X∗F .

Network ΦXF
(∅) X∗F maximal RAF set

A {c, d} ∅ ∅
B ∅ {a, b, c} ∅

Table 5.3: ΦXF
(∅), X∗F and the maximal RAF subset of the networks from figure 5.9.

The CRS 5.9A has two branches {c, d} and {e, f} that are not connected by chemical
reactions. Only the {c, d} branch is connected to the food set and all reactions in this
branch are catalyzed by ΦXF

. Therefore, ΦXF
(∅) = {c, d}. The discrete dynamics starting

with the full set {c, d, e, f} leads to a depletion of e, then of f and c and then of d giving
the empty set as the fixed point.

The system 5.9B has a cyclic arrangement that is self-sustaining and as such X∗F = XF =
{a, b, c}. However, none of the chemicals forms from the food set alone and therefore the
network has no F network leading to ΦXF

(∅) = ∅.

This example shows the essence of the failure for ΦXF
(∅) and X∗F to be the maximal RAF

subsets. X∗F contains self-sustaining cycles that contain chemicals not formed from the
food set alone and as such do not match the definition of an F set. ΦXF

contains functions
that are provided by chemicals not formed from the food set. A combination of the two
examples where the {e, f} branch of network A is replaced by network B would provide
a CRS where both ΦXF

(∅) and X∗F are strictly larger than the maximal RAF subset.
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The maximal F network of the CRS 5.9B is ∅ and this implies ΦXF
(∅) = ∅ by the

following lemma.

Lemma 5.5.2. ΦXF
(∅) is contained in the maximal F network, i.e. it is an F subnetwork

of the CRS.

Proof. Each chemical in ΦXF
(∅) is formed solely from chemicals in F̄ . These are by

definition formed solely from F .

Moreover, in the CRS 5.9B, the obstruction for X∗F to be equal to the maximal RAF
set is that the discrete dynamics has initial condition Y0 not contained in the maximal F
network as is implied by the following lemma.

Lemma 5.5.3. Let (X,R,C, F ) be a CRS with discrete dynamics (Yn)n∈N with a fixed
point Y ∗ such that Y0 is contained in the maximal F network. Then Y ∗ is contained in
the maximal RAF network.

Proof. Because Y0 is contained in the maximal F network, one sees inductively that Y ∗ is
contained in the maximal F network. Y ∗ = ΦY ∗(Y

∗) implies that all reactants are formed
from F by some sequence of catalyzed reactions and thus Y ∗ is RA.

Remark 5.5.4. If the dynamics (Yn)n∈N is periodic, the proposition still applies with an
analogous proof.

The main theorem on the maximal RAF subset now follows from the previous results.

Theorem 5.5.5 (on the maximal RAF subset). For any CRS (X,R,C, F ), the maximal
RAF subset is the fixed point Y ∗ of the dynamics (Yn)n∈N with initial condition Y0 =
ΦXF

(∅).

Proof. First note that

Y1 = ΦY0(Y0) ⊂ ΦXF
(Y0) = Φ2

XF
(∅) ⊂ ΦXF

(∅) = Y0,

where the containments follow from the maximality of ΦXF
. By proposition 5.4.5, the

dynamics has a fixed point Y ∗.
By lemma 5.5.2, Y0 is contained in the maximal F network and thus Y ∗ is contained

in the maximal RAF network by lemma 5.5.3.
ΦXF

(∅) contains the maximal RAF network by corollary 5.3.7. By the same argument
as in the proof of proposition 5.4.8 all Yn contain the maximal RAF network and so does
Y ∗. This shows the reverse inclusion.

This theorem concludes the formal treatment of the application of semigroup models
to RAF sets. In connection to the CRS B in example 5.5.1, it is tempting to discuss the
connection between CRS, their maximal RAF subnetworks and the role of thermodynam-
ics in a concluding remark.

Remark 5.5.6 (Thermodynamics of CRS). To the author’s knowledge, a connection
between CRS and classical chemical reaction networks (CRN) has not been established
in the literature so far. Viewing CRS as CRN has the advantage of being able to apply
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the theory of non-equilibrium thermodynamics for CRN [214] and thus to sort out cor-
responding CRS that are thermodynamically impossible. The transformation of a CRS
into a CRN is rather straightforward. The main idea is to write out the catalytic function
of each chemical as a reaction cycle as illustrated in figure 5.10A. Reactions that involve
multiple reactants or products lead to multiple or to larger cycles (figure 5.10B). The
transformation into catalytic cycles is not unique (cf. A and C in figure 5.10), but the
thermodynamic properties of the CRN only depend on the sum of all cycle fluxes corre-
sponding to the particular chemical reaction [214].

Moreover, the food set is considered to be the set of chemicals whose potential is main-
tained constant by chemostats. Assuming that the reaction network is in a steady-state,
these potentials determine the net chemical fluxes for the reaction network. In particular,
they determine the direction of the respective cycle fluxes corresponding to the catalyzed
chemical reactions. Then the direction of the catalyzed reaction corresponds to the sum
of all cycle fluxes. Figure 5.11 shows the cycle decomposition of the CRN 5.10B and C.
The CRN 5.10B decomposes into three cycles a, b and c with the respective orientations.
Both a and b correspond to the reaction A + B → C, whereas c does not correspond to
any transformation. Therefore, the flux of the reaction A+B → C equals the sum of the
fluxes of a and b. Analogously, the CRN 5.10C is decomposed into two cycles d and e. d
corresponds to the reaction A→ B and c to its reverse. Therefore the flux of the reaction
A→ B is difference of the cycle fluxes of d and e.
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Figure 5.10: Illustration of the conversion of CRS into CRN by expansion of the catalytic
cycles. The expansion is not unique as shown by the examples A and C. However, the
thermodynamic properties depend only on the sum of fluxes for all cycles that correspond
to a particular reaction.

This setup suggests to think of a CRS without a specified food set as a network of pos-
sible chemical reactions with undetermined directionality. The directions of all reactions
are only determined upon the choice of food set and the respective chemical potentials.
The catalytic cycles without a net flux seem to impose difficulties, because the inclusion
of both directed reactions into the CRS could lead to apparent self-sustaining subnet-
works that just correspond to catalyzed reactions at equilibrium. However, the values of
chemical potentials of the food set that create such situations have measure zero among
the space of all possible chemical potentials and therefore it can be safely assumed that
such situations do not occur.
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Figure 5.11: Decomposition of CRN into cycles. The net flux of a reaction is determined
by the sum of the respective cycle fluxes. The cycle orientations need to be taken into
account: Both a and b correspond to the reaction A+B → C and the flux of the reaction
A+B → C equals the sum of the fluxes of a and b (c corresponds to no transformation).
d corresponds to the reaction A → B and c to its reverse, i.e. the flux of the reaction
A→ B is difference of the cycle fluxes of d and e.

From this it follows that self-sustaining cycles that are not linked to chemostats, i.e.
to the food set, are thermodynamically impossible. This applies to the example shown in
figure 5.8. CRS without such cycles will be called thermodynamically consistent. However,
the CRS B in example 5.5.1 is thermodynamically consistent and in fact one can construct
a CRN corresponding to this CRS. Although the CRS 5.5.1B is not RAF, it is certainly
self-sustaining. This applies to all fixed point sets X∗F of a thermodynamically consistent
CRS. Therefore, in future work the author will focus on the class of fixed point sets X∗F
instead of RAF subnetwork as the former capture precisely the notion of self-sustainment
whereas the latter are too narrowly defined.

5.6 Algebraic Coarse-Graining

This section revisits the algebraic coarse-graining procedure via congruences sketched in
example 5.1.22 and its biological interpretation from remark 5.1.23. It has been illustrated
there that congruences of a semigrouop S can be thought of as lumped states or objects
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xR that obey the same operation ◦ as the ”microscopic” objects x ∈ S.

For general finite semigroups very little is known about the lattice of congruences.
Therefore, meaningful results on the structure of congruence lattices of arbitrary SF can
only be obtained after a deeper understanding of the structure of SF . As a fist step in
this direction, section 5.6.1 gives a proof that all semigroups SF of CRS indeed have non-
trivial congruences. The given proof heavily relies on the details of the underlying CRS.

In the case semigroups SF of CRS, it has to be noted that SF does not contain any
objects of the CRS, but functions acting on it. In section 5.6.2, examples of biologically
meaningful coarse-graining procedures in function are given. Thereby, the support of any
function in SF allows to relate the function to subsets of chemicals of the network and thus
to relate a coarse-graining in function to partitions of the set of chemicals or state of the
network. A second family of congruences describes another interesting coarse-graining of
the system: The CRS is covered with local patches in a way that the local information on
the network is fully retained, while the environment of each patch is no longer resolved.

5.6.1 Existence of Congruences on Semigroup Models

For the rest of the section, let SF be a semigroup model of a CRS (X,R,C, F ) with food
set. Moreover, let the CRS be thermodynamically consistent as discussed in remark 5.5.6.
As a first step of the analysis, it is shown that semigroup models of CRS generally have
non-trivial congruences. Congruence-free finite semigroups are well-understood. Finite
semigroups with 0 have been classified through a structure theorem by Yamura [215] which
basically adopts the classification of 0-simple semigroups by Rees [216]. Finite semigroups
without 0 admit a neat classification via the theorem

Theorem 5.6.1 ([192], III.6.2.). A finite semigroup S with |S| > 2 either has non-trivial
congruences or is a simple group.

These theorems can be used to show that SF has non-trivial congruences in a purely
mathematical way. However, the author prefers an argument which directly involves ther-
modynamic properties of the CRS.

First, some basic definitions are recalled. An ideal of a semigroup is defined via

Definition 5.6.2 (*). Let S be a semigroup. An ideal I is a proper subset of S such that

SI ∪ IS ⊂ I.

where the notation AB = {a ◦ b|a ∈ A, b ∈ B} for A,B ⊂ S is used. Any ideal I ⊂ S
defines a congruence RI as

RI = {(x, y)|x, y ∈ I} ∪ {(z, z)|z ∈ S}, (5.6.1)

which is non-trivial if I 6= {0}. The quotient S/RI is also denoted as S/I and called Rees
factor semigroup. By finding ideals in SF , the following theorem can now be proven.

Theorem 5.6.3. The semigroup SF of a thermodynamically consistent CRS (X,R,C, F )
with food set admits non-trivial congruences if |SF | > 2.
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Proof. By the preceding, it suffices to show that SF has a nonzero ideal I. Note that
|SF | > 2 is assumed as for |SF | = 1 and |SF | = 2, SF does not have enough elements to
admit non-trivial congruences. 3 cases are considered in the proof.

a b

d

F

… …

…

…

…

c

r

Figure 5.12: Within any CRS, catalyzed reactions r with dom(r) ⊂ F̄ give rise to constant
functions. The figure shows a subnetwork of some CRS where this situation occurs. Here
φd is the constant function c{c}.

Case 1. If SF contains nonzero constant functions as well as non-constant functions,
the constant functions form an ideal. (Both φ ◦ c and c ◦ φ are constant for a constant
function c and any φ ∈ SF .)

Case 2. If SF has only constant functions, then any equivalence relation on SF is
automatically a congruence, because the congruence condition 5.1.1 from definition 5.1.16
is trivially satisfied. As |SF | > 2, SF admits non-trivial equivalence relations.

Case 3. SF does not have any constant functions except 0. This case uses details
of the CRS underlying SF . First, any reaction with reactants solely from the food set
cannot be catalyzed by any function in SF . If it was, then there would be some element
x ∈ XF catalyzing this reaction and its function φx or some power of it would be nonzero
and constant (see figure 5.12 for an illustration).
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Figure 5.13: If the CRS has no nonzero constant functions and for each reaction r of CRS,
either dom(r) ⊂ F̄ or dom(r) ⊂ XF , then its semigroup SF is nilpotent. The figure shows
a subnetwork of some CRS. The reactions r1, r2 and r3 all have dom(ri) ⊂ F̄ , i = 1, 2, 3
and therefore cannot be catalyzed. In this subsnetwork ΦXF

(XF ) does not contain d, e
and f , Φ2

XF
(XF ) does not contain g and j either and Φ4

XF
= 0.

Case 3.1. Assume first that all elements in the food set react only with each other
and not with chemicals in XF , i.e. if each reaction r of CRS has either dom(r) ⊂ F̄ or
dom(r) ⊂ XF . This means that the application of ΦXF

to XF will deplete XF by the
chemicals formed directly from the food set, an application of ΦXF

to the resulting set will
deplete it by all elements formed from F̄ by two successive reactions and iteratively ΦN

XF

will deplete XF by all chemicals formed from F̄ by N successive reactions. By remark
5.5.6, all directed reactions in a thermodynamically consistent CRS must be linked to
the food set and therefore there exists an N such that ΦN

XF
= 0 (see figure 5.13 for an

illustration). ΦN
XF

is the maximal element of SNF and thus SNF = {0}. For a nilpotent
semigroup, either S2

F = {0} or S2
F is a proper ideal of SF . (S2

F is an ideal by definition.
If it was not proper, then SF = S2

F = ... = SNF for any N .) If S2
F = {0}, then any non-

trivial equivalence relation yields a congruence on SF , because the congruence condition
5.1.1 from definition 5.1.16 is trivially satisfied. Otherwise the ideal S2

F gives a non-trivial
congruence.

Case 3.2. Assume now that there are reactions where chemicals from F̄ and XF react
with each other and that SF is not nilpotent. The case of nilpotent SF can be treated
as above. This implies that there is a cyclic subnetwork Y ⊂ XF that is linked to the
food set and all whose reactions are catalyzed by some chemical of XF . The condition of
being cyclic is necessary since no power of ΦXF

is zero and therefore Y ⊂ ΦXF
(Y ) must

be satisfied. This is illustrated in figure 5.14. Choose a minimal Y with this property,
i.e. such that for all y ∈ Y one has Y ⊂ ΦXF

(Y ), but Y \ {y} 6⊂ ΦXF
(Y \ {y}). Without

loss of generality one can assume that Y = XF . This implies that ΦXF
(XF ) = XF and

XF \{x} 6⊂ ΦXF
(XF \{x}) for all x ∈ XF . In particular ΦXF

(XF \{x}) is a proper subset
of XF . Now the following elementary lemma gives the desired result.

Lemma 5.6.4 ([192], III.1.3.). A semigroup S is simple (i.e. contains no proper ideals) if
and only if SaS = S for all elements a ∈ S. Or equivalently, if and only if for all a, b ∈ S
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there exist x, y ∈ S such that xay = b.

f

b

g

F

…

d

a

… c

j

i

h

e

r1 r2
r3

Figure 5.14: A CRS without nonzero constant functions can have a non-nilpotent semi-
group model SF . This implies the presence of a cyclic subnetwork Y ⊂ XF such that
Y ⊂ ΦXF

(Y ). In the case of the subnetwork shown, Y = {f, g, h, i, j} is such a cyclic
network. The functions r1 and r2 cannot be catalyzed and therefore the left linear reaction
branch will vanish for some power ΦN

XF
. This CRS has no constant functions as c ≤ ΦXF

for any constant function, thus ΦXF
(∅) = ∅ implies c = 0.

With the notation of lemma 5.6.4, take b = ΦXF
and a some function φc of a chemical

c that does not form some reactant x ∈ XF (in figure 5.14, any chemical will suffice as c).
With the notation introduced in section 5.3, the element φc should be written as (φc)F ,
but the subscript will be dropped here to avoid notational overload. If SF was simple,
then one could find φ, ψ ∈ SF such that ΦXF

= φφcψ. Using the maximality of ΦXF
this

gives

ΦXF
= φφcψ ≤ ΦXF

φcΦXF
≤ ΦXF

⇒ ΦXF
φcΦXF

= ΦXF
.

Applying both maps to the set XF gives ΦXF
(XF ) = XF on the right hand side, but

ΦXF
φcΦXF

(XF ) = ΦXF
(φc(XF )) on the left hand side. By the above, φc does not produce

x, i.e. φc(XF ) ⊂ XF \{x} and therefore ΦXF
(φc(XF )) ⊂ ΦXF

(XF \{x}) is a proper subset
of XF . This shows that SF is not simple and completes the proof.

5.6.2 Constructions of Congruences

As before, let SF be a semigroup model of a CRS (X,R,C, F ) with food set. A congruence
B related to the organization of metabolic pathways within the CRS and a family Rn,
n ∈ N of congruences related to the local structure of the CRS are introduced here.
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The Subsemigroup of Constant Functions and Metabolic Pathways

The notion of metabolic pathways naturally arises as a congruence on the subsemigroup
of SF formed by constant functions. For the sake of simplicity it will be assumed that
(X,R,C, F ) is a RAF set, but generalizations to arbitrary CRS are straightforward. Let
Sc < SF be the subsemigroup of constant functions. It is non-empty as ΦXF

is the con-
stant function cXF

by theorem 5.3.6. As discussed in the proof of theorem 5.6.3, case 2,
any equivalence relation of Sc is already a congruence, i.e. any partition of Sc =

∐
Si into

subsets {Si}i∈I gives a congruence. Thus the number of congruences grows exponentially
with |Sc| and the difficulty lies in the identification of the biologically interesting ones. As
the following considerations show, this can be done using the partial order of functions
and their support defined in 5.2.17.

To avoid unnecessary technicalities, assume that the RAF network (X,R,C, F ) has
all reactions catalyzed by exactly one chemical (condition 1) and that each chemical is
formed by a unique path of catalyzed reactions within the network (condition 2). The
two conditions are fulfilled for reaction networks encountered in biology. Let B be a
biologically meaningful congruence. First, it is reasonable to impose that B is compatible
with the partial order on Sc inherited from SF , which is explicitly given by

cY ≤ cZ ⇔ Y ⊂ Z

for constant functions. For each chemical x ∈ XF , there is a minimal constant function
cx forming that particular chemical by the RAF property. By condition 2 this function
is unique and by condition 1 it has a unique support supp(cx). The set of support sets
M = {supp(cx)}x∈XF

is partially ordered by inclusion. Figure 5.15 shows an example of
a subnetwork of a RAF network and the induced partial order onM. In general,M does
not necessarily contain upper or lower bounds for any two elements Y, Z ∈ M. For a
given element Y ∈M, a successor of Y is an element Z ∈M such that Y ≤ Z and there
exists no element T ∈ M, T 6= Y, Z such that Y ≤ T ≤ Z. A precursor of Y is defined
analogously. One says that there is a fork with multiplicity n at Y ∈M if Y has multiple
successors {Y1, Y2, ..., Yn} such that Y is the only precursor for each Yi, i = 1, ..., n. If
Y ∈ M is the successor of multiple precursors {Y1, Y2, ..., Yn}, then Y is said to be the
hub with multiplicity n of {Y1, Y2, ..., Yn}.
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F
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v

w3

w2

x2

x1

a1

a2

c3

A

w1

B

  supp(c{a2})  supp(c{b})

 supp(c{c1})
 supp(c{d2})

  supp(c{d1})

supp(c{a1})

 supp(c{c2})

 supp(c{c3})

C

 {u1,u2}  {v}

 {v,u1,u2,w1}
 {x1,x2}

 {x1}

 {u1}

 {v,u1,u2,w1,w2}

 {v,u1,u2,w1,w2,w3}

Figure 5.15: A Example of metabolic pathways within a RAF set. B The set M corre-
sponding to A and its partial order. C Explicit representation of the sets from B.

The partial order onM already contains all the information about metabolic pathways
and their relations. supp(cx) is minimal if and only if x is formed by a single reaction
with all its substrates contained in F̄ . Any minimal supp(cx) with a successor supp(cy)
such that supp(cx) is the unique precursor of supp(cy) is part of a linear reaction pathway
wherein x is formed from substrates contained in F̄ and then further transformed. In
such a situation there is a unique chemical z with function φz such that

supp(cy) = supp(cx) ∪ {z}

and

cy = φz ◦ cx.

Therefore, for all minimal supp(cx) there are maximal chains of successors corresponding
to linear reaction pathways

φzn ◦ φzn−1 ◦ ... ◦ φz1 ◦ cx.

This allows forks, but no hubs within such linear pathways. Hereby each fork of mul-
tiplicity n leads to the branching of one linear pathway into n distinct ones. A hub
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Y = supp(cy) of {Y1, Y2, ..., Yn}, Yi = supp(cxi) corresponds to a reaction with substrates
produced in the pathways Y1, ..., Yn catalyzed by some chemical z. In this case, one has

Y = {z} ∪
n⋃
i=1

Yi

and

cy = φz ◦
n∑
i=1

cxi .

This shows that the partial order on the support functions inM corresponds directly
to the organization of connected metabolic pathways within the RAF network. Hubs
correspond to reactions that combine products from multiple reaction pathways and forks
corresponds to the splitting of a pathway. The structure of reaction pathways that are
not connected is not captured byM (in the example shown in figure 5.15, the support of
c{c3,d2} is not inM). Moreover, the the resolution of linear reaction pathways is too fine.
The linear pathways can be contracted by deleting all support sets Y1, Y2, ..., Yn−1 from
M, where Y1 ≤ Y2 ≤ ... ≤ Yn is a linear pathway without forks or hubs. This is achieved
through the definition

M′ =M\

{
n−1⋃
i=1

Yi|Yi ∈M such that Y1 ≤ Y2 ≤ ... ≤ Yn has no forks or hubs

}
.

To take into account pathways that are not connected, define

M∗ =M∪

{⋃
i∈I

Yi|Yi ∈M′ such that ∀i, j ∈ I there is no Y ∈M′ such that Yi ∪ Yj ⊂ Y

}
.

The setsM′ andM∗ corresponding to the network from figure 5.15A are shown in figure
5.16. Note that M∗ is a join semilattice in contrast to M and M′.
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Figure 5.16: A The network from figure 5.15. B The partially ordered set M′ after
contraction of the linear pathways from M. C The resulting join semilattice M∗.

At this point, it is straightforward to group the constant functions into equivalence
classes depending on the position of their support withinM∗ leading to the congruence B.

For all constant functions cZ , let Y (Z) ∈ M∗ be the unique minimal element such
that supp(cZ) ⊂ Y (Z) and define

cZBcZ′ ⇔ Y (Z) = Y (Z ′). (5.6.2)

According to remark 5.2.16, all functions correspond to some set of reaction pathways in
the CRS. But for all possible reaction pathways of constant functions there is a minimal
element inM∗ that contains their support by construction. Thus the definition 5.6.2 has
assigned each element of Sc to some congruence class of B. The partial order on the
functions induces a partial order on the congruence classes of B via

(ψB) ≤ (ψB)⇔ for all φ′ ∈ (φB), ψ′ ∈ (ψB)

∃φ′′ ∈ (φB), ψ′′ ∈ (ψB) such that φ′ ≤ ψ′′ and φ′′ ≤ ψ′



5.6 Algebraic Coarse-Graining 109

giving a partial order on Sc/B. This corresponds to the partial order onM∗. The partial
order on Sc/B describes the hierarchy of possible metabolic pathways and the partial
order on M∗ describes the different coarse-graining schemes on XF that give rise to the
respective reaction pathways. In other words, M∗ shows all the subsets of XF that are
functionally related and in additions reveals the hierarchy of such relation.

In this example, the semigroup structure is easy to understand from an algebraic point
of view: The semigroup of constant functions is a left zero semigroup, i.e. a semigroup
S such that xy = x for all x, y ∈ S. Mathematically, there is no reason to prefer some
congruence over any other. However, the partial order on the functions and its connection
to XF via the support function gives rise to the biologically interesting congruence B.
The semigroup operation descends to an operation on the quotient Sc/B, but it does not
have an interesting biological interpretation and therefore is not discussed further.

Remark 5.6.5. The congruence B on Sc cannot be extended to a congruence on SF ,
because all congruence classes that contain more than one element would collapse to 0
as the following argument shows. Let (cY B) be a congruence class with more than two
elements. It contains a constant function cY ′ such that Y ′ is the product set of one
chemical reaction and supp(cY ′) is maximal among the support sets in the congruence
class. By definition of B, the class also contains an element cY ′∪Y ′′ , where Y ′′ is a set
of reactants for some φ ∈ SF such that supp(φ) ⊂ supp(cY ′) and Y ′′ does not contain
Y ′. It follows that φ ◦ cY ′∪Y ′′ is a constant function contained in the class (cY B). This is
illustrated in figure 5.17.

a b

yx

F

Figure 5.17: With the notations in the text, Y ′ = {b}, Y ′′ = {a}, cY ′ = φy ◦ φx, cY ′∪Y ′′ =
φy ◦ φx + φx and φ = φy is an example of the general setup.

If there was a congruence B′ on SF extending B, then cY ′B′cY ′∪Y ′′ would imply

φ ◦ cY ′B′φ ◦ cY ′∪Y ′′ ,

where the φ ◦ cY ′ is the zero function and thus (cY B) is the congruence class of 0.

However, imposing that all constant functions cY ∈ SF are in the zero congruence
class gives rise to the quotient semigroup SF/Sc. Congruences on this quotient lead to
interesting coarse-graining schemes via the complexity of functions.

Congruences via Complexity of Functions

Let (X,R,C, F ) be a RAF network with semigroup model SF . Due to the finiteness of
SF the chain SF ) S2

F ) ... stabilizes for some N ∈ N, i.e.
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SF ) S2
F ) ... ) SNF = SN+1

F .

As discussed in the proof of theorem 5.6.3, case 3.2, SNF contains all constant functions
and non-constant functions corresponding to self-sustaining cycles. Note that the RAF
property imposes that SF contains none of the latter and therefore SNF = Sc. This suggests
the following definition.

Definition 5.6.6. Let φ be some function in the semigroup model SF of a RAF network.
φ has complexity n if there exists some n, 1 ≤ n ≤ N such that

φ ∈ SnF \ Sn+1
F .

Constant functions (including 0) have complexity ∞. The complexity of φ is denoted as
comp(φ).

x2

x1

a1

a2

x3
a3

y2

y1

b1

b2

y3
b3

Figure 5.18: The functions φ = φx2 ◦ φx1 + φy1 and ψ = φx3 + φy3 ◦ φy2 have complexity
1, but their composition has complexity 3.

The complexity comp(φ) of a function φ determines whether the function can be
decomposed into a product of at most comp(φ) functions. For example, a non-constant
function φx of a chemical x ∈ XF has complexity 1 in general as it cannot be further
decomposed. By remark 5.2.16, functions correspond to reaction pathways within the
CRS. Intuitively, comp(φ) gives the length of the shortest pathway described by φ as
illustrated in the

Remark 5.6.7. By definition, any two functions φ, ψ ∈ SF satisfy comp(φ) + comp(ψ) ≤
comp(φ ◦ ψ). The inequality can be strict as the example in figure 5.18 shows. The
functions φ = φx2 ◦φx1 +φy1 and ψ = φx3 +φy3 ◦φy2 have complexity 1. Their composition
can be written as (φx3 + φy3) ◦ (φx2 + φy2) ◦ (φx1 + φy1) and thus has complexity 3.

The powers SnF are proper ideals of SF for 2 ≤ n ≤ N and give rise to a congruence
RSnF via the expression 5.6.1. Such congruences will be denoted as Rn for notational
convenience. The resulting quotient semigroups SF/Rn are the semigroups of functions
of complexity at most n, i.e. the functions with complexity lower than n are all in
separate congruence classes and the functions with complexity greater or equal to n are
in the congruence class of 0. The composition of two functions φ, ψ ∈ SF/SnF with
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comp(φ), comp(ψ) < n gives φ ◦ ψ if comp(φ ◦ ψ) < n and zero otherwise. Thus, the
quotient SF/Rn naturally injects into SF/Rn+1 for 2 ≤ n ≤ N − 1 as a set

ιn : SF/Rn ↪−→ SF/Rn+1.

However, this is not a semigroup homomorphism. Furthermore, the congruences Rn are
totally ordered as

RN < RN−1 < ... < R1

and give rise to projections

πn : SF/Rn+1 � SF/Rn,

where the πn are semigroup homomorphisms.

The biological interpretation of the quotients SF/Rn now follows immediately: They
capture the local structure of the CRS of “size at most n”, i.e. within the quotient SF/Rn

it is only possible to see those functions that contain reaction pathways of length smaller
than n. It is possible to compose the functions as usual, but as soon as the compositions
gain a complexity larger than n, the functions vanish, i.e. one is restricted to interactions
within “local patches” of limited size. Returning to the idea of relating congruences to
coarse-graining schemes, the Rn describe a rather unusual coarse-graining of the system:
Lumping together functions of large complexity can be thought of lumping together “the
environment” and retaining the local structure. However, the coarse-graining via the
Rn does not fix a given subnetwork and then integrates out all of its environment, but
preserves all the local patches. It is well possible to combine functions in SF/Rn that
seemingly live on different patches.

The injections ιn : SF/Rn ↪−→ SF/Rn+1 are inclusions of patches of size n into patches
of size n+1 and the projections πn : SF/Rn+1 � SF/Rn lose information about functions
with complexity n + 1 and thus correspond to a reduction to smaller patches. This
interpretation as a coarse-graining of the environment is illustrated in figure 5.19.
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Figure 5.19: Illustration of coarse-graining of the environment via the congruence R3.
The figure shows three functions φgreen, φblue, φred colored in green, blue and red via the
representation of elements in SF as pathways in the CRS (remark 5.2.16). The circles
indicate the local patches of complexity at most 2. Each of the functions has a local
structure of complexity 2 lying in the respective circles. The functions φgreen, φblue, φred

are nonzero in SF/R3. The composition φgreen ◦φblue gives the function in the blue patch.
It has complexity ≤ 2 as well. The composition φblue ◦ φred has complexity 4 and equals
zero in SF/R3.

Interplay of B and Rn

After the presentation of the congruence B on the semigroup of constant functions Sc of
a RAF network, it has been shown that B cannot be extended to a congruence on SF .
By construction, the congruences Rn considered in the previous paragraphs contain all
constant functions in the congruence class of 0, i.e. have the coarsest possible resolution
on the elements of Sc by lumping them all together into the zero element. The congruences
Rn project to congruences on SF/Sc and thus the congruences B and Rn complement
each other: While B contains the global information on all pathways within the network,
the Rn allow to study the local interactions of functions and to disregard functions of too
high complexity.

5.7 Discussion

The constructed semigroup models were motivated by the ideas proposed by Oparin and
formalized by Kauffman. The original work by Kauffman [190] and subsequent work
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within the CRS formalism [217, 198, 218] is aimed primarily at the evaluation of prob-
abilities for the occurrence of RAF subnetworks within a CRS of given size. From a
mathematical point of view, this is the task of constructing a map from the set of all CRS
to the set {0, 1} that takes the value 1 if there is a RAF subnetwork within the respective
CRS and 0 otherwise. Such a map is clearly not invertible, i.e. it loses information on the
structure of the particular CRS. The models presented here are different in spirit: They
retain the full topology of the CRS and do not reduce the information content, i.e. the
map assigning the semigroup model SF to a CRS is invertible in general.

The models constructed by Rhodes in [212] are very to similar to the semigroup models
SF proposed here. Rhodes modeled the citric acid cycle with the state space formed by
subsets of metabolites involved in the cycle. The semigroup was defined by the actions of
all enzymes involved as catalysts in the cycle and all possible compositions thereof. In the
language used in this work, he considered a CRS (X,R,C) with state space X = M

∐
E

consisting of all metabolites M and enzymes E involved in the cycle such that each re-
action r ∈ R has dom(r), ran(r) ⊂ M and is catalyzed by some element e ∈ E. The
semigroup model SRhodes is generated by all functions {φe}e∈E under the operation of
composition ◦. Rhodes then analyzed the complexity of SRhodes using the Krohn-Rhodes
decomposition theorem. Therefore, from a mathematical point of view, the semigroup
models SF are an extension the semigroups SRhodes. Because Rhodes did not allow the
enzymes to participate in reactions within the network, the models SRhodes are not appli-
cable to self-referential networks. In particular, SRhodes would always have the empty set
as the fixed point in the discrete dynamics. Moreover, Rhodes did not use the operation of
addition and thus could not consider joint functions of elements. Without this operation,
subnetworks Y of CRS with parallel reaction pathways do not allow to naturally define
a function on the network (they do not allow the construction of the maximal element ΦY ).

In connection to the work of Rhodes, it is useful to note that there is a deep theory
on the structure of finite semirings [219]. The semigroups SF carry two operations ◦ and
+ that satisfy right-distributivity and an inequality replacing left-distributivity (lemma
5.2.11) making them more general than semirings, which require strict left-distributivity.
It would be interesting to study how much of the theory for semirings can be transferred
to SF .

The formalization of the notion of function of elements and subnetworks of a CRS was
a primary goal of this work and it has successfully been achieved. It allowed to define
a natural dynamics on the state space XF and yielded a simple identification of RAF
subnetworks via theorem 5.5.5. Moreover, using the congruence B, it was possible to
identify the structure of reaction pathways with the CRS. The notion of complexity of
functions in SF led to the congruences Rn and to a new kind of coarse-graining procedure.
The corresponding quotient semigroups only see local structures of the CRS and therefore
can be though as a coarse-graining applied to the environment. However, this is not a
coarse-graining in the classical sense where the fine structure of the environment would
be completely deleted leaving only a description of some local patch. In contrast, the
coarse-graining by the Rn retains the information on all local patches.

In remark 5.5.6, a transformation of CRS into classical chemical reaction networks
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(CRN) was sketched. This link was used to derive useful restrictions on the structure of
physically possible CRS. The reverse transformation of reaction networks into CRS would
allow to apply the tools developed here to CRN and in particular to have a new way of
coarse-graining procedures based on function. This transformation is not as straightfor-
ward as the one in remark 5.5.6. It is currently being addressed by the author.

A main field for applications of semigroup theory are automata theory in theoreti-
cal computer science and the theory of formal languages. Automata theory deals with
questions of computability and computational complexity. The framework developed here
therefore suggests to investigate the computational capabilities of catalytic reaction sys-
tems as a future direction of research. The general possibility to consider networks as
computational devices was suggested by Mikhailov [220]. Within the theory of formal
languages, the lowest class of grammars (regular grammars) according to the Chomsky
hierarchy is the class of grammars recognizable by finite-state automata. Such automata
can in turn be described by finite semigroups and vice versa. This suggests to study the
inverse problem (which finite semigroups can be realized as semigroup models of CRS).
Yet, one thing is already clear: Finite CRS have finite semigroup models and are therefore
always in the lowest complexity class of formal grammars. Therefore, the more interesting
questions in this direction arise for the semigroups of infinite reaction networks and their
classification in the Chomsky hierarchy. Such networks should be realized as direct limits
of finite networks and the respective semigroups would then be the direct limit of the
corresponding finite semigroups. One could also work directly with infinite networks, in-
troducing the semigroups models analogously to the finite case, but the arguments based
on finiteness of SF , XF and X used in many proofs then require modification. An exten-
sion of the state space from {0, 1}XF to RXF

≥0 taking into account the concentrations of
the respective species would also lead to infinite semigroups.



Appendix A

Forces and Fluxes in
Phenomenological Thermodynamics

This appendix sketches the determination of the entropy production via forces and fluxes
in classical nonequilibrium thermodynamics [221] and the connection to stochastic ther-
modynamics [128].

The internal energy U of a chemical system at equilibrium is given by the Euler
equation

U = TS − pV +
∑
i

µiNi, (A.0.1)

with internal energy U , entropy S, temperature T , pressure p, volume V and chemical
potentials µi at equilibrium such that the sum runs over all chemical species in the reaction
mixture and Ni is the number of molecules of the respective chemical. The differential
dU is given by the Gibbs relation

dU = TdS − pdV +
∑
i

µidNi. (A.0.2)

Here,
∑

i µidNi is the chemical work and pdV the pressure-volume work except performed
by the system.

Assuming that no work is performed by the system, equation A.0.2 simplifies to dU =
TdS (when work is performed, the equations involve more terms, but the idea of the
following derivation remains unaltered). Assuming quasi-stationarity in sufficiently small
volume elements V0, this equation can be rewritten using the energy and entropy densities
u = U/V0 and s = S/V0 as

∂s

∂t
=

1

T

∂u

∂t
. (A.0.3)

Note that the densities u and s have a dependence on spatial coordinates. The entropy
production σ is the source term in

∂s

∂t
= σ − Js, (A.0.4)
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where Js is the entropy flux. The conservation law for internal energy is

∂u

∂t
+∇ · Ju = 0, (A.0.5)

where Ju is the flux of internal energy. Using the assumption that no work is performed by
the system, this is the heat flux Ju = Jq by the first law of thermodynamics. Substituting
the conservation law into equation A.0.2 and using the chain rule for ∇ · (Jq/T ) gives

∂s

∂t
= Jq · ∇

1

T
−∇ · Jq

T
. (A.0.6)

From this equation, the entropy flux can be identified as Js = ∇ · Jq/T and comparison
with equation A.0.4 gives the entropy production as the the source term

σ = Jq · ∇
1

T
. (A.0.7)

This yields

σ = −Jq

T 2
∇T. (A.0.8)

In this system, thermal equilibrium is achieved through heat the transport quantified by
Jq. The flux Jq is conjugate to the force −1/T 2∇T and their product describes the effect
of heat transport on the entropy production. Moreover, Fourier’s law gives a relationship
between the two quantities

Jq = −K∇T, (A.0.9)

where K is the thermal conductivity. Usually equation A.0.8 includes other pairs of forces
and fluxes, originating for example fluxes of chemicals (with force−∇µi) or of charge (with
force −∇φ, where φ is the electric potential). In these cases the relation between fluxes
and forces are given by Fick’s and Ohm’s laws, respectively. In general, the entropy
production can be expressed as a sum of products of conjugate pairs of thermodynamic
forces and fluxes

σ =
∑
α∈A

FαJα. (A.0.10)

The theory of irreversible thermodynamics describes the relationship between fluxes Jα
and forces Fβ in the linear regime, i.e. in the regime of small deviations from equilibrium
which allows to write

Jα =
∑
β

LαβFβ, (A.0.11)

where Lαβ are coupling coefficients [221]. Onsager has derived symmetry relations for
the coefficients Lαβ from the microscopic reversibility of underlying processes [222, 223].
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Schnakenberg has shown in [128] that the forces FΓ =
∑

Γ Fx,x′ on closed cycles of a
Markov network as determined by the equation 1.3.17 in the main text are the macroscopic
forces generated by a coupling of the system to macroscopic resevoirs. Therefore, the
entropy production in a steady-state of the microscopic system considered the main text is
actually the entropy production in the macroscopic reservoirs caused by the maintanance
of constant potentials. It is given by equation A.0.10. The conjugate fluxes can be
determined microscopically in this case by the following procedure.

Let {Γi}i∈I be a basis of cycles for the network, i.e. any cycle on the network can be
obtained as a linear combination of the Γi with integer coefficients whereby a negative
sign indicates reversal of direction and edges with opposite directions cancel when two
cycles are added to each other. Such a basis can be obtained as follows: Fix some maximal
spanning tree of the network. Each edge from x′ to x that belongs to the network, but
not to the spanning tree, generates a cycle on the network (because of the maximality
of the spanning tree). Denote this cycle by Γi and the corresponding probability flux by
Ji := Jx,x′ . The choice of direction of the flux Ji defines the direction of the cycle Γi. The
basis {Γi}i∈I is consists of all the cycles obtained from edges of the network not present in
the maximal spanning tree indexed by I; it comes equipped with the set of corresponding
probability fluxes {Ji}i∈I just defined.

Schnakenberg verified the formula for the total entropy production σ of the network

σ =
∑
i∈I

FΓi
Ji. (A.0.12)

This expression is formally identical to equation A.0.10, whereby the force FΓi
are de-

termined by macroscopic reservoirs and the fluxes Ji by the microscopic details of the
network. It is a generalization of equation A.0.10 in the sense that it allows to assign an
entropy production to microscopic systems with strong fluctuations. When considering a
sufficiently large number of copies of the microscopic system as a grand canonical ensem-
ble, the probability fluxes become material fluxes and equation A.0.12 recovers equation
A.0.10.

The expression for the entropy production in equation A.0.12 can also be written as
[128]

σ =
1

2

∑
x,x′

Jx,x′ ln
wx,x′p(x

′; t)

wx′,xp(x; t)
. (A.0.13)

This is equation 1.3.7 from the main text. It shows that the formula A.0.12 is independent
of the choice of cycle basis and motivates the definition of entropy production σx,x′ =
Jx,x′ ln(wx,x′p(x

′; t)/wx′,xp(x; t)) for each link on the network. This definition is justified,
because the sum of the entropy production of all links recovers the macroscopic entropy
production A.0.10 at a steady-state through equation A.0.12. However, the author knows
of no physically meaningful way to establish a connection between any individual σx,x′
and classical thermodynamical quantities.
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Appendix B

Results of Numerical Simulations

B.1 Numerical Results under Experimental Substrate

Concentrations

The results of stochastic simulations are graphically presented in the main text. In this
section, the numerical values for the respective figures are given. Data for the turnover
time distributions (figures 2.7 and 2.11) is given in table B.4, for the stationary probability
distributions (figures 2.8 and 2.10) in tables B.1, B.2, B.3 and B.4.

p(a, b) empty IGP indole+G3P G3P
empty 6.60·10−2 7.69·10−2 0 4.41·10−3

Q1 2.21·10−2 1.34·10−2 0 9.66·10−4

A-A 0 9.68·10−3 6.36·10−3 1.23·10−2

A-A(indole) 0 0 0 2.63·10−2

Q3 0 3.73·10−2 8.44·10−2 4.77·10−1

Aex2 6.69·10−2 6.93·10−2 0 2.68·10−2

Table B.1: Joint probabilities p(a, b) to find the enzyme in the state (a, b).

a p(a) b p(b)
empty 0.155 empty 0.147
IGP 0.207 Q1 0.036
indole + G3P 0.091 A-A 0.028
G3P 0.548 A-A(indole) 0.026

Q3 0.599
Aex2 0.163

Table B.2: Marginal probabilities p(a) and p(b).
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p(a, b) empty IGP indole+G3P G3P
empty 9.24·10−2 1.11·10−1 0 2.53·10−3

Q1 7.57·10−2 8.52·10−2 0 5.98·10−4

A-A 0 1.59·10−1 3.80·10−3 9.50·10−3

A-A(indole) 0 0 0 1.51·10−2

Q3 0 2.23·10−2 4.90·10−2 2.79·10−1

Aex2 3.89·10−2 3.99·10−2 0 1.59·10−2

Table B.3: Simulation setup without activations: Joint probabilities p(a, b) to find the
enzyme in the state (a, b).

p(a, b) empty IGP indole+G3P G3P
empty 1.88·10−2 2.19·10−2 0 1.27·10−3

Q1 6.50·10−3 3.92·10−3 0 2.99·10−4

A-A 0 2.88·10−3 1.89·10−3 4.83·10−2

A-A(indole) 0 0 0 7.53·10−3

Q3 0 1.14·10−2 6.89·10−1 1.39·10−1

Aex2 1.95·10−2 2.00·10−2 0 7.88·10−3

Table B.4: Simulation setup with permanent activations: Joint probabilities p(a, b) to
find the enzyme in the state (a, b).

µ σ Q25 Q75

Native enzyme 0.154 s 0.146 s 0.077 s 0.183 s
Permanent activations 0.520 s 1.879 s 0.078 s 0.196 s
Absent activations 0.264 s 0.176 s 0.153 s 0.325 s

Table B.5: Statistical data for simulations with different setups of allosteric activations.
µ: Mean turnover time, σ: standard deviation, Q25 and Q75: quantiles.

B.2 Numerical Results under Physiological Substrate

Concentrations

p̄(a.b) empty IGP indole+G3P G3P
empty 5.88·10−1 1.02·10−1 0 2.99·10−2

Q1 4.21·10−2 2.72·10−3 0 2.26·10−3

A-A 0 2.00·10−3 1.38·10−3 3.77·10−2

indole+A-A 0 0 0 1.51·10−2

Q3 0 4.45·10−3 9.70·10−3 9.81·10−2

Aex2 4.95·10−2 7.98·10−3 0 7.72·10−3

Table B.6: Stationary probabilities p̄(a.b) to find the enzyme in the state (a, b) under
steady-state physiological conditions.
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