
End-to-end Sampling Pa�erns

THOMAS LEIMKÜHLER, MPI Informatik
GURPRIT SINGH, MPI Informatik
KAROL MYSZKOWSKI, MPI Informatik
HANS-PETER SEIDEL, MPI Informatik
TOBIAS RITSCHEL, University College London

Initial points Iter. filter Back-prop.Filters Samples Objective Initial points Iter. filter SamplingFilters Samples Application

Learning time Deployment time

bn(s)+
bn(proj(s))

Fig. 1. We use back-propagation in common Deep Learning frameworks to optimize for recursive unstructured filters that realize an objective, expressed as a
small sample program such as bn(s)+proj(bn(s)): a blue noise spectrum in 4D and in 2D (le�). The resulting filters can be deployed to e�iciently convert
any random sample pa�erns into a pa�ern with properties suitable to solve the programmed task (right).

Sample pa�erns have many uses in Computer Graphics, ranging from
procedural object placement over Monte Carlo image synthesis to non-
photorealistic depiction. �eir properties such as discrepancy, spectra,
anisotropy, or progressiveness have been analyzed extensively. However,
designing methods to produce sampling pa�erns with certain properties
can require substantial hand-cra�ing e�ort, both in coding, mathematical
derivation and compute time. In particular, there is no systematic way to
derive the best sampling algorithm for a speci�c end-task.

Tackling this issue, we suggest another level of abstraction: a toolkit to
end-to-end optimize over all sampling methods to �nd the one producing
user-prescribed properties such as discrepancy or a spectrum that best �t
the end-task. A user simply implements the forward losses and the sampling
method is found automatically – without coding or mathematical derivation
– by making use of back-propagation abilities of modern deep learning frame-
works. While this optimization takes long, at deployment time the sampling
method is quick to execute as iterated unstructured non-linear �ltering using
radial basis functions (RBFs) to represent high-dimensional kernels. Several
important previous methods are special cases of this approach, which we
compare to previous work and demonstrate its usefulness in several typical
Computer Graphics applications. Finally, we propose sampling pa�erns
with properties not shown before, such as high-dimensional blue noise with
projective properties.

CCS Concepts: •Computing methodologies→ Neural networks; Ray
tracing;

Additional Key Words and Phrases: Sampling; Discrepancy; Blue noise;
Optimization: Deep learning

1 INTRODUCTION
Sample pa�erns have many important uses in Computer Graphics,
linking apparently disparate topics such as placement of procedural
trees, casting shadows from an area light or choosing visually pleas-
ing artistic stippling pa�erns. Many algorithms have been proposed
to generate sampling pa�erns and the instruments available for
their analysis is large and growing. Famous examples are Lloyd’s
[1982] relaxation algorithm or dart throwing [McCool and Fiume

1992] as well as deterministic combinatorial pa�erns [Kuipers and
Niederreiter 2012; Shirley et al. 1991] where Halton or Hammersley
can serve as examples. Analysis is typically done with respect to
spectral properties, i. e., the colors-of-noise or their discrepancy.

Choosing the sampling pa�ern most suited for an application
is typically done by analyzing the presumed properties of a task
with the alleged properties of a sample pa�ern. As an example,
we might want to choose blue noise for its spectral properties that
shi� the error into a less visible frequency band, yet we want to
retain the favorable integration error of a low-discrepancy pa�ern.
Achieving both is an active topic of research, requiring involved
mathematical derivations and algorithmic e�ort. Regre�ably, there
is no systematic or automated way to produce such sampling pat-
terns that are best for a speci�c task. Consequently, substantial
e�ort has to be invested into hand-cra�ing purpose-��ed solutions,
a procedure expensive both in terms of mathematical derivation,
implementation e�ort and �nally compute time.

In this paper we leverage modern deep learning to introduce a new
level of abstraction at which we end-to-end optimize for a sampling
pa�ern algorithm that �ts a speci�c property or task. Instead of
mathematical derivation, a user of our system provides a straight-
forward implementation of the desired properties in form of a sample
program (Fig. 1, le�) i. e., a low integration error, and the system
uses the sample program as a loss to �nd an algorithm that converts
random pa�erns into pa�erns with the desired properties (Fig. 1,
right). �is is in analogy to a CNN [Lecun et al. 1998] that optimizes
image �lters to map an image to the likelihood of containing e. g., a
cat. �e architecture comprises of iterated unstructured non-linear
�ltering that can e�ciently be optimized in respect to a combination
of losses. Several important previous sampling pa�erns algorithms
are special cases of ours. �e method works in high dimensions
as our multi-dimensional analysis shows, is quick and simple to
evaluate, and allows arbitrary combinations of losses which we
demonstrate in rendering and object placement applications.

ar
X

iv
:1

80
6.

06
71

0v
1

 [
cs

.G
R

]
 1

8
Ju

n
20

18

2 SAMPLING IN COMPUTER GRAPHICS
Randomness can be quite useful in many computational sampling
tasks, in particular in Computer Graphics. What form of random-
ness is desirable, however, is an active topic of research. We will
here quickly review the two main properties (spectral and discrep-
ancy) before relating to the machine learning and domain-speci�c
language background relevant for this work. A survey of spectral
properties from 2015 is provided by Yan and co-workers [2015] and
formal details about discrepancy can be found in a textbook by
Kuipers [2012].

2.1 Spectra
Yellot [1983] �rst noted, how the receptors on the retina are neither
regular nor random but follow very speci�c pa�erns. �ese pa�erns,
as any sampling pa�ern, are now routinely characterized by their
spectra. A sampling pa�ern spectrum (or periodogram) is computed
by averaging over many Fourier transforms of many instantiations
of that sample pa�ern. For two or more dimensions, the full spec-
trum is o�en further radially averaged to a projected spectrum. �e
variance of this estimate is called the radial anisotropy which is
low for radially symmetric pa�erns and large for others. All these
quantities will directly appear as losses of our formulation.

A blue noise (BN) pa�ern is a pa�ern with a power spectrum
with no power in low-frequency range. Blue noise was �rst used in
graphics for dithering [Ulichney 1988] and stippling [Oliver et al.
2001; Secord 2002]. Classic ways to produce BN pa�erns are dart
throwing [McCool and Fiume 1992] and Lloyd relaxation [Lloyd
1982]. �e �rst can be slow, while the la�er o�en su�ers from
regularity artifacts, that need extra e�ort to be overcome [Balzer
et al. 2009; De Goes et al. 2012]. As in the context of dithering,
models of human perception can be made used to improve quality
[Mulligan and Ahumada 1992]. BN pa�erns are also used for Monte
Carlo integration-based image synthesis, as they shi� the error
into the high-frequency bands, to which humans are less sensitive
[Cook 1986]. However, there is no guarantee on the magnitude
of the integration error. Besides blue noise, other colors of noise
are useful in tasks such as procedural primitive placement. Some
recent methods allow to produce pa�erns from the speci�ed target
spectrum in two dimensions [Ahmed et al. 2015; Kailkhura et al.
2016; Wachtel et al. 2014; Wei and Wang 2011]. We take it a step
further and allow to work in any dimension, also prescribe projective
properties, combined with discrepancy or histograms.

A concept very similar to BN is the Poisson disk [McCool and
Fiume 1992] or max-min distance. In such a pa�ern, the minimal
distance from one point to the others is maximized over all points
i. e., all samples keep a minimal distance. Alternative to a Fourier
analysis, we allow losses using histograms of distances. Histograms
of points distances (the di�erential domain) [Bowers et al. 2010; Wei
and Wang 2011] or point correlation [Öztireli and Gross 2012] are a
more �exible tool to analyze sampling pa�erns. In particular, they
allow working on non-uniform samples and anisotropic spectra
[Pilleboue et al. 2015; Singh and Jarosz 2017; Singh et al. 2017]. We
use both di�erential representations (pair correlations and spectra)
in our network and de�ne losses that enforce desired di�erential
properties.

Many technical alternatives have been considered to produce
blue noise pa�erns such as variational [Chen et al. 2012], optimal
transport [de Goes et al. 2012; Qin et al. 2017], tiling [Ostromoukhov
et al. 2004; Wachtel et al. 2014], Wang tiles [Kopf et al. 2006], kernel-
density estimation [Fa�al 2011], smooth particle hydro-dynamics
[Jiang et al. 2015] or electro-statics [Schmaltz et al. 2010]. All these
methods include involved mathematical derivations, can only realize
a subset of the properties and are limited in dimensionality and/or
speed.

Multi-class [Wei 2010] blue noise is an extension where samples
belong to di�erent classes and get arranged, such that within each
class the pa�ern is blue noise, as well as the union of all pa�erns.

In summary, we see that a lot of methods exist, but all need a
fairly involved mathematical derivation, support only a subset of
properties and can be slow to compute.

2.2 Discrepancy
A concept orthogonal to the spectrum is the discrepancy of a sample
point set. It is mainly relevant, if the set is to be used for Monte
Carlo (MC) integration, such as in rendering [Cook 1986], or image
reconstruction. Loosely speaking, discrepancy computes the di�er-
ence between an area and the number of points in a sub-domain
(e. g., a rectangle) [Kuipers and Niederreiter 2012; Shirley et al. 1991].
In a low-discrepancy pa�ern, this ratio is constant, i. e., the same
everywhere. Typically, discrepancy measures the maximal devia-
tion across all possible subareas. �e shape of the sub-area leads
to other de�nitions of discrepancy (stars, boxes, etc). Commonly,
discrepancy is believed to be an indicator for a low integration error.

In particular, pa�erns that produce a low integration error, are
o�en not random but structured in very speci�c ways [Kollig and
Keller 2002]. Regre�ably, the low quasi-Monte Carlo (QMC) errors,
come at the expense of structured pa�erns. While the structured
pa�erns can be reduced by randomized quasi-Monte Carlo (RQMC)
that randomly shi�s the pa�ern using so-called Cranely-Paterson
rotation, no guarantees on the resulting spectrum can be given.

Another related property is N -rooks, which assures that sub-
spaces are �lled exactly once, or more general, a Latin-hypercube
distribution. Our approach includes a loss to address such projective
properties.

As the integrands encountered in light transport are o�en very
high-dimensional, the pa�erns need to scale to such dimensions.
While arguments exist, that under certain conditions, certain prop-
erties of some pa�erns are be�er than others, the relation between
those properties and the ultimate perceived quality remain di�cult
to capture.

Discrepancy is routinely used as a measure to predict how useful
the pa�ern would be for MC integration. �e notion of equidistri-
bution [Kuipers and Niederreiter 2012] is much more immediately
linked to MC: A sample pa�ern is said to be equidistributed, if and
only if, it produces a low maximal error across all integrable func-
tions (Eq. 1.2 in Kuipers and Niderreiter [2012]). In this work, we
will rather optimize towards equidistribution than towards discrep-
ancy, as the la�er does not allow for e�ective back-propagation.
More speci�cally, we will investigate directly optimizing pa�erns
for integrating a subset of functions, namely those encountered in

2

signals we actually wish to integrate: 2D images, 4D light �elds, 5D
temporal light �elds etc.

2.3 Mixed
Recent methods try to explicitly combine spectral and discrepancy
properties. Reinert et al. [2016] produce blue noise pa�erns that
share the Latin hypercube properties of typical low-discrepancy
pa�erns: their pa�erns are blue noise also when projected to sub-
spaces. �is results in a typical cross-like spectrum. More general
low-discrepancy was introduced by Ahmed et al. [2016]. �e rela-
tion of blue noise and discrepancy is not fully clear as discussed
by Subr and Kautz [2013] as well as Georgiev and Fajardo [2016]:
It is evident, that there are methods that produce a low error, yet
produce a more suspicious artifact pa�ern and that there are other
approaches that produce visually pleasing pa�erns but a high er-
ror. As losses can simply be added, we can combine spectral and
integration desiderata.

2.4 Learning
Computer graphics, and in particular �ltering recently sees a push
towards a learning-based paradigm, where, instead of implementing
algorithms from �rst principles and mathematical derivations, data
is used to optimize a general architecture to perform a task. In
particular for inverse problems, this idea has led to ground-breaking
achievements [Krizhevsky et al. 2012]. But also in graphics, learning
of �lters to solve tasks had been suggested before: Fa�al et al. [2011]
optimize for hierarchical �lters to solve tasks like Poisson integra-
tion. Rendering is a key application of sampling pa�erns, where
deep learning has been used for relighting [Ren et al. 2015], screen-
space shading [Nalbach et al. 2017], volume rendering [Chaitanya
et al. 2017] or denoising [Kallweit et al. 2017]. Recently, reinforce-
ment learning is used for directing the samples to reduce error
during light transport [Dahm and Keller 2017a,b].

In this work, we apply the idea to learn �lters to solve the task
of creating sampling pa�erns. We make use of unstructured con-
volutions, as pioneered by PointNet [Qi et al. 2017], but suggest
a simpler, fully convolutional radial basis function-based kernel
representation. Instead of inferring labels or per-pixel or per-point
a�ributes such as normals, we optimize for �lters that transform
sets of random points into a sets of points with the desired proper-
ties. Furthermore, our network is recursive, catering to the need of
changing the point positions which are typically kept constant in
PointNet and follow-up work.

2.5 Domain-specific languages
Our system introduces sample programs, a notation to de�ne sample
pa�ern requirements using programmatic expressions. �is is a
simple instance of a domain speci�c language, such as recently pro-
posed for image synthesis [Anderson et al. 2017], non-linear image
optimization [Devito et al. 2017; Heide et al. 2016] or physics [Bern-
stein et al. 2016]. Instead of deriving our own parser, we provide
functions in TensorFlow [Abadi et al. 2016] that are parsed and eval-
uated e�ciently during training and testing thanks to TensorFlow’s
symbolic analysis and GPU evaluation support.

3 SAMPLING END-TO-END
We refer to our approach as end-to-end sampling, as we do not con-
struct a forward algorithm to produce a sampling pa�ern. Instead
we suggest a general sampling scheme that can be optimized in
respect to a desired end-goal.

We now give an overview (Sec. 3.1), followed by the details on
how to achieve this: learnable non-linear recursive �lters that work
on unstructured data (Sec. 3.2), an architecture to train those �lters
(Sec. 3.3) and, most importantly, the losses describing the goals
(Sec. 3.5).

3.1 Overview
Our architecture comprises of two parts: A learning stage and a test
stage (Fig. 2). We will publicly provide both pre-trained �lters that
are readily applicable to produce the desired sample pa�erns, as
well as the full architecture, including the losses, to construct new
sample pa�erns.

At the learning stage, many training point sets are fed into the
architecture that comprises of unstructured, non-linear recursive
�lters. �e output is analyzed in respect to the con�gurable losses.
�is error is back-propagated to the �lters such that their result im-
proves. Note, that we need to reformulate concepts like discrepancy,
blue noise or progressiveness in order to become back-propagatable.
Providing these components is the key technical contribution of
this paper.

It is important to see, that we are not given pairs of “bad” and
“good” absolute sample pa�erns and learn how to transfer one into
the other, which appears a daunting task. Instead, we learn a much
simpler task of adjusting a pa�ern such that its statistics follow
prescribed goals.

At the test stage, a user provides a new set of points that can
be converted to have the desired properties by applying the �lters
learned before. �e �lters are compact and quick to apply. While
many ways exist to train the network in TensorFlow for di�erent
losses, there is only one resulting network structure, independent
of the loss. �is structure is easily and e�ciently implemented. �e
particular instance is parametrized by a compact latent coding with
only a handful of degrees of freedom.

3.2 Tunable convolution on sample pa�erns
We start by de�ning our tunable �lters, before we go into the details
on how to optimize over their parameters. �ese �lters are required
to work on unstructured data, i. e., a list of n-d points, and that
also recursively; and shall be expressive enough to perform non-
linear operations. We go over those three aspects in the following
paragraphs.

Convolution. As our data comprises of o unstructured points X =
x1, . . . , xo in n-D, we �rst have to introduce a convolution on such
data. PointNet [Qi et al. 2017] and following papers have made
use of symmetric functions and rotational transformers, but their
tasks like segmentation and classi�cation are di�erent. We found
a much more straightforward extension from a structured to the
unstructured domain to be e�ective: We parametrize our kernels
as a weighted sum of m RBFs (we use Gaussians) N with �xed n-
d position µi and variance σ 2

N , where the weights wi are tunable

3

Input points

Laplacian Tunable RBF kernels

Output pointsInitial points

...

Recurrence

Discrepancy

Spectrum

Loss

Back-propagation

Histogram

Task discrepancy

x3

y3

x2

y2

x1

y1

x

y

x

y

x3

y3

x2

y2

x1

y1

x3

y3

x2

y2

x1

y1
Iteration 1 Iteration 2 Iteration 3

d2,3

d2,1

f(d23)

f(d12)

Pooling
(Summation)

Fig. 2. Overview of our method. The learning part starts from an initial point set shown le� in 2D and as a stacked vector with x and y values. We here show
computation of the green point that depends on the blue and orange point. The filter is translation-invariant, working on the o�sets d1 and d2 that combine
pairs of points. The o�sets are fed into the RBF-based non-linear filters (b) in multiple iterations that assign a weight to each o�set. In each iteration, a
di�erent filter is used (here we show three iterations), which typically gets more spatially compact. A�er the iteration, the resulting points are assessed by a
combination of losses and improvement are back-propagated to the RBF filters.

and correspond to classic �lter mask entries. In other words, a
convolution C of a sample point xi with a kernel parametrized by a
weight vector w is de�ned as:

C(xi |w) =
xi +

∑o
j,i

∑m
k=1wkN(xi 	 xj |µk ,σN)xj

|1 +∑o
j,i

∑m
k=1wkN(xi 	 xj |µk ,σN)|

,

where 	 denotes the torroidal vector di�erence. In a slight abuse of
notation, we will refer to the (overloaded) convolution of all points
X as C(X) as well. Note, that the weights w can also be negative.
Typically we use m = 20. �e means µ are placed following a
low-discrepancy pa�ern – Hammersley – to allow covering higher
dimensions easily. �e variances σN are all chosen the same as
0.4, the size of domain. Please note, that the division produces a
partition of unity.

Non-linearity. �e above �lters are non-linear by construction.
We also experimented with introducing explicit non-linearities such
as ReLUs but did not observe an improvement.

We found the residual approach in the above formulation to
improve the results compared to a �lter iterating over all points. �e
RBFs have to be able to represent the identity upon convergence, i. e.,
a Dirac that maps the point to itself and nothing else. �is cannot
be done when using a straightforward non-residual formulation for
numeric reasons (a single extremely high Gaussian in combination
with many zeros). As a solution, we rather learn an update and
always keep xi . Now identity is easily produced using RBF weighs
of zero.

Receptive �eld. To avoid computing interaction between all sam-
ples in the convolution, which would imply quadratic time complex-
ity, we limit the convolution to a constantly-sized neighborhood
of a receptive �eld σ , that is typically chosen to be a fraction of
the domain, such as 0.4. �e variances of the Gaussians forming
the RBFs are to be scaled accordingly, i. e., their e�ective size in
this example is .1 × .4 = .04, i. e., four percent of the entire domain.
We also found this critical for learning of more complex losses to
converge.

Iteration. �e above can be applied to a point cloud directly to
produce a new one. Applying the �lter is similar to an update in
a Jacobi or Gauss-Seidel-type optimization or a generalized step
of Lloyd relaxation. Repeatedly applying the �lter would further
improve the result, given the �lter is optimized for such an operation.
We call each repeated application of the �lter an iteration. As our
training set comprises of continuous random vectors, the concept
of epochs is not applicable. We will refer to learning e�ort in units
of batch counts, i. e., how many sample pa�erns were produced,
divided by the number of pa�erns per batch, that needs to be larger
than one for e�ective training. A�er experimenting with sharing
the �lter weights w across iterations, we found be�er convergence
by using di�erent �lters w(l) in di�erent iterations, so the overall
forward expression for the network is

C(C(C(. . . |w(l−2))|w(l−1))|w(l))

Learning. Subsequently, we simply stack all the �lter weights
w(1), . . . ,w(ns) for all RBF kernels in all iterations into a parameter
vector Θ ∈ Rns×m to optimize over.

3.3 Architecture
A�er having established tunable, iterative �lters that run on unstruc-
tured data, we can now optimize a parameter vector that produces
the desired results. Such an optimization comprises of an outer loop
across many sets of random points and an inner loop of three steps:
initialization, �ltering and back-propagation in respect to a loss.

Filtering. We can initialize the network with any known sampling
pa�ern (random, ji�ered or low discrepancy). A�er this initializa-
tion, the point set is �ltered many times (ns) using the iterative �lter.
�e resulting point set is then submi�ed to the loss in the next step.

Gridding. We support both non-gridded and gridded sample pat-
terns. In a non-gridded sample pa�ern, all dimensions are �ltered.
�is is the default. A gridded sampling pa�ern comprises of a n′ < n
dimensions which are �xed and their values are not changed by
the �lters. Always, all n dimensions are input to the �lters, but the
�lter only outputs the n′ dimensions to update. An example of a
gridded pa�ern with n = 3,n′ = 1 is a pa�ern where the �rst two

4

�xed dimensions are the pixel centers, and the third dimension is
the wavelength.

Backpropagation and Losses. �e loss can be a linear combination
of many sub-losses, which we will detail in Sec. 3.5. It maps the
point set to a scalar value, that is low if the point set well-ful�lls
the requirements. For now, it is enough to assume that the loss is
back-propagatable in respect to the choice of �lter parameters Θ.

3.4 Sample programs
Core of our method is to de�ne the desirable random sample pa�ern
properties as a back-propagatable point sample program. �e point
sample program is an expression such as bn(s) + bn(proj(1D,s))
+ discrepancy(s): A pa�ern that is blue noise per-se, that has a
blue noise projection and also is low-discrepancy. A sample program
expression is formed of three parts: �e sample pa�ern s, losses that
quantify the quality of s and operators that map a sample pa�ern
into a new sample pa�ern, potentially of a di�erent dimension and
sample count. �e name of the losses and operators are denoted
in teletype font. �e family relation of all losses is shown in
Fig. 3. Next, we discuss these losses (Sec. 3.5), before explaining the
operators (Sec. 3.6).

Discrepancy

Pair correlation

Gaussian

Fourier

Differential

Projective

Progressive
Anisotropy

Noise

Carthesian

Radial

Rendering

Anti-aliasing

...

Task-specific

Fig. 3. Family tree of our operators (blue) and losses (orange).

3.5 Losses
A loss maps a point sample set to a scalar. It is the last (outermost)
expression in a sample program and de�nes properties such as point
correlation or discrepancy in several most relevant variations.

3.5.1 Fourier. �e spectral loss measures the frequencies found
in the pa�ern. �ese are de�ned on correlation of pairs of sample
points. �e spectral loss is de�ned as the L2 distance between a
desired n-dimensional spectrum, given either as a table or an ana-
lytic function, and the spectrum of the current point set. When e. g.,
a blue noise pa�ern is desired, a user simply provides a 1D table
where the blue frequencies are enhanced and others are suppressed.
�e target spectrum is provided by means of a 1D table or 2D image.
In higher dimensions, implicit descriptions of the desired spectrum
are used.

We have found the use of mini-batches essential to make a Fourier
loss converge faster: Producing a single spectrum of a single realiza-
tion is typically noisy, which is why, even for visualization, many
spectra need to be averaged. As the stochastic gradient descent
is computing gradients in respect to this noisy spectrum, they are
even more noisy, leading to low convergence or even divergence
(especially, for small sample count N). We observed, that with a
mini-batch size of 4, spectra are converged enough to be used for
gradient computation.

We also found, that excluding the DC term (that is just a sum of
all points) from the loss helps convergence, especially for sampling
algorithms (e.g., [Wachtel et al. 2014]) that generates varying sample
count over di�erent realizations. Samplers for which the number of
points doesn’t change (e.g., for ji�ered) over multiple realizations,
this over-constraints the problem arti�cially.

3.5.2 Di�erential. �e differential loss is another pair cor-
relation loss. Here, the relation between two points is reduced
to a scalar distance that is inserted into a histogram using ker-
nel density estimation (KDE) with a Parzen �lter instead of hard
counting. Doing so, the construction becomes smooth and hence,
back-propagatable. We typically use histograms of 128 bins.

3.5.3 Anisotropy. Anisotropy is special in that it only works in
combination with a projective loss. Whenever a projection is per-
formed, a higher-dimensional distribution F of values is replaced by
its mean E[F]. Anisotropy is the variance V[F] of this distribution.

When performing a radial projection of a 2D pa�ern to 1D for
example, this loss can be use used to encourage the pa�ern to have
circular uniformity. While in 2D, this could also be achieved directly
by a spectral loss with a radially smooth 2D image, in higher
dimensions, we typically do not work with a full spectrum, but
rather its radial averages or projections.

3.5.4 Discrepancy. Discrepancy is a measure that compares if the
number of points in a sub-domain is proportional to the area of that
sub-domain for all possible sub-domains. Typically, the sub-domains
are quads or nested sequences of quads in di�erent sizes. Regre�ably,
this notion is not back-propagatable due to the piecewise constant
box function. We therefore suggest to use a slightly generalized
notion of discrepancy: We call discrepancy the di�erenced = F−F̄
between the analytic result F of an integration and the result F̄
found when using the sample pa�ern. In other words, discrepancy
of a pa�ern is low, if MC integration was successful. Note, how
box discrepancy is a special case of this, but this notion allows a
generalization that includes smooth functions, which in turn become
back-propagatable. In particular, we make use of Gaussians again:
To compute discrepancy, we simply sample a number of random
Gaussians in the domain. We know their analytic integral (care
is to be taken to handle the boundary). �is analytic integral is
easy to compare to the MC estimate of this integral when using the
points. Comparing the two provides the smooth discrepancy that is
back-propagatable.

3.5.5 Task-discrepancy. Our discrepancy now allows to produce
pa�erns that have a low discrepancy for a particular task. Instead of
looking at the sample pa�ern S or its statistics, we look at a sampling-
dependent signal F (S) and a sample-independent reference signal F̄ .
If we were, say, to use the sample pa�ern to compute integrals of the
product of natural illumination and BRDF, we can now inject this
data at learning time, and optimize for �lters that will turn point
pa�erns into point pa�erns that are suitable for this particular task.
�e same can be repeated for anti-aliasing of fonts, super-sampling
of vector graphics, stippling etc. Our current implementation al-
lows for all tasks that can be expressed as fetching an image at a
location and computing the sum. �is allows applications such as
MC integration of environment lights or super-sampling of fonts.

5

Future work will seek to make the set of tasks larger, but several
di�culties out of the scope of this work would need to be overcome
to make a ray-tracer including visibility back-propagatable.

3.6 Operators
Operators map point sample sets to point sample sets of a di�erent
dimension and sample number.

3.6.1 Projective. It has recently become of interest to not only
achieve spectral properties in the full space but also in one or multi-
ple projections of that space onto planes [Ahmed et al. 2016; Reinert
et al. 2016; Singh et al. 2017]. Such projective operations are
seamlessly integrated by performing a projection and creating a
spectrum later, as all intermediate operations are back-propagatable.
We support both Cartesian projection and radialProjection.

3.6.2 Progressiveness. Orthogonal to the above we can optimize
for progressiveness: Here, instead of projecting all points, we just
take random subsets for which we enforce the above constraints.
�is incentivizes a pa�ern where not only the �rst n points are blue
noise but also 1, . . . ,n/2 and n/2 + 1, . . . ,n are on their own.

3.7 Implementation
Training. Training is implemented in TensorFlow. We train the

architecture using a �xed number of samples N . As our training
data set is in�nite, it does not make sense to talk about epochs
in our context. Instead, we state training e�ort as batch counts.
A batch comprises of multiple sample pa�erns that contribute to
one optimization step. We found a batch size of 4 to work well
in practice for be�er convergence. In particular it helps to reduce
the inevitable noise in a periodogram of any �nite realization of a
pa�ern by averaging many iterations. However, we observe that
mini-batch size of 1 (for large N ≥ 1024) also does the job, but at
the cost of longer training time. We typically train for a batch count
of 10,000 batches.

For training the recursive �lters, we simply unroll them. For an
iteration count of, e. g., 30, we simply create a network of depth
30. We train using the ADAM optimizer, using an exponentially
decreasing learning rate that is initialized by 10−6. Learning a typical
�lter requires around 45 minutes of training time on an Nvidia
Tesla V. �e trained kernels can then be directly used to generate
points on the �y (the cost involves only the recursive convolutional
operations).

4 RESULTS
Here we perform a quantitative analysis for our approach, including
comparison to previous work (Sec. 4.1), before showing applications
to rendering and object placement (Sec. 4.2).

4.1 Analysis
Spectra. We start by performing a multi-dimensional analysis

in Fig. 4 of di�erent state-of-the-art sampling pa�erns that ranges
from 1D to 5D dimensions. We also look at their (radial) projections.
All target spectra are computed for N = 1024 point samples and are
appropriately scaled for di�erent dimensions for be�er comparison

of the low frequency region (frequency axis scaled by N 1/d for d-th
dimension in radial plots).

Starting from the top in Fig. 4, a random pa�ern shows no pro-
nounced spectra. A simple way to improve error in integration is
via strati�cation, which can be easily achieved by Latinhypercube
(LHC) or N-rooks sampling. �is method is easily scalable to higher
dimensions and has dark anisotropic cross along the canonical axes
due to dense strati�cation (column 2, row 2). However, this doesn’t
help improve Monte Carlo (MC) variance convergence (unless the
integrand variations are aligned to the canonical axes, as illustrated
by Singh and Jarosz [2017]).

�e third row shows ji�ered sampling spectrum (second column)
that has signi�cant low energy region in the low frequency region
around the DC (which is at the center of each spectrum 2D image).
�is leads to good convergence properties [Pilleboue et al. 2015].
Regre�ably this low-power area shrinks in higher dimensions as
seen in the 2D projections from 3D, 4D and 5D (the dark region
shrinks), which is the other reason (besides the curse of dimen-
sionality of a dense grid), that ji�ered pa�erns are una�ractive for
higher dimensions.

In the fourth row, BNOT [de Goes et al. 2012]—generated using
tiling approach by Wachtel et al. [2014]—produces a large blue noise
region around DC, but is only available in 2D (therefore, any further
columns are missing). Many other variants exist but have limita-
tions over the dimensions. Non-deterministic samplers like Halton
(shown in the ��h row) are easily extended to higher dimensions,
have anisotropic dark regions in di�erent projections that is known
to lower the variance during MC integration.

Recently, Perrier et al. [2018] proposed a high-dimensional sam-
pler that can combine both properties (following the work by Ahmed
et al. [2016]), but at the expense of high anisotropy and a reduced
amount of blue noise in higher-dimensional projections. �is algo-
rithm also su�ers in the mixed projections (e.g., blue noise in (x,
y) & (u,v) projections doesn’t imply blue noise in the mixed (x,u)
or (y,v) ones). Our proposed framework (last two rows in Fig. 4)
is expressive enough to control di�erent properties along di�erent
projections (as demonstrated later in Fig. 6).

In the last two rows, �rst we show (penultimate row) ours when
trained with a loss encouraging a 2D ji�ered spectrum in all dimen-
sions (see the third row to recall that this does not happen when
running ji�ered sampling). Since training for a full dimensional
power spectra has diminishing returns (due to shrinking power
spectra as we go in higher dimensions), we consider a 2D ji�ered
target spectrum and de�ne our loss as a sum of the L2 losses over
each 2D projection (wrt the target). As a result, the low-power
area (dark) in our ji�ered samples remains relatively large, even in
higher dimensions and their corresponding 2D projections. �is is
important to gain convergence improvements.

When using BNOT’s spectrum (last row) in our loss across all
projections, we �nd an even larger BN area in 2D and a consistently
large BN area in all projections. Note, that for both of our variants,
the anisotropy is low, also in all projections. Our method does not
directly produce the acclaimed cross [Ahmed et al. 2016; Reinert
et al. 2016] (albeit we could optimize for it), but instead tries to
have a good spectrum in all subspaces, not only axis-aligned: In
other words, the cross might just be a sign for partially successful

6

5D 4D 3D 2D 1D Projections

2D Samples 2D Spectrum Radial to 1D to 2D to 3D to 4D

Ra
nd

om

power

ν

ν

anisotropy

radial mean1

0

−10dB

La
tin

hy
pe

rc
ub

e

anisotropy

power

Ji�
er

ed

anisotropy

power

Po
ly

he
x

[2
01

4]

anisotropy

power

H
al

to
n

anisotropy

power

BN
LD

[2
01

8]

anisotropy

power

O
ur

(ji
�e

re
d)

anisotropy

power

O
ur

(B
N

O
T)

anisotropy

power

Fig. 4. Our multi-dimensional analysis (for N = 1024 samples). Every row shows a sample pa�ern, where pa�erns produced using our approach come last.
The first column shows a 2D realization. The second column shows the power spectrum of the 2D pa�ern. The third column shows the radial power mean and
the anisotropy. All radial profiles are appropriately scaled for a given sample count and the dimension to facilitate comparison. In the anisotropy radial plots,
the dashed gray horizontal line shows the reference −10dB value, any sampler that deviates from this reference has some anisotropic structures present
in it’s spectrum. Colors encode di�erent projections as explained in the legend. The yellow line is for example the radial anisotropy of the 2D pa�ern. All
1D projections are shown in the fourth column. Columns five to seven show the average power spectra of all possible 2D projections, from 3D, 4D and 5D
respectively. For 3D this is the average of the (x, y), (y, z) and (x, z) spectrum. The last two columns show the radial averages of all 3D resp. 4D subspaces.
For 3D, this is the average of all 3D projections from 4D (green) and 5D (magenta). Finally, the last column shows all 4D projections from 5D (magenta). Please
see Sec. 4.1 for a discussion of the results for di�erent metods (rows).

a�empt that has found a way to produce very good BN along some (canonical) directions, but remains poor along almost all others
(diagonals).

7

5D

4D

3D

2D

0.0 120.0

2.0

0.0
Distances

N
or

m
al

iz
ed

co
un

t

Fig. 5. Di�erential analysis when using our approach with a histogram loss
for dimensions upto 5D . Here we are plo�ing (in green) the pair correlation
function (PCF) for points generated using our approach, given target 2D
Poisson disk PCF. Loss is defined as a sum over all 2D projections.

Discussion. With our approach, we manage to increase the dark
regions in higher dimensions without worrying about curse of di-
mensionality (well known for ji�ered samples). We further showed
that our approach preserves some blue noise characteristics in all
the projections. However, several questions on spectral properties
remain to be investigated. We do not see our pa�erns, while they
have some unique properties, as the best pa�ern ever, but would
like to recall they were produced without diving into any intricate
mathematical details or implementation maneuvering. Ultimately,
we hope this ease of implementation to foster construction of new
pa�erns that bring forward their overall understanding.

Histograms. To show the versatility of our approach, we also
injected di�erential histogram as a loss function and trained our
network to get Poisson disk samples. We demonstrate our results
in Fig. 5 for dimensions upto 5D for N = 1024. Similar to the spectral
loss, we consider a 2D Poisson Disk target PCF and de�ne our loss
as a sum of the L2 losses over each 2D projection (wrt the target).
For 2D, the histogram loss does a pre�y good job but in higher
dimensions the known Poisson disk bumps in the histogram are not
preserved. However, we managed to preserve the histogram shape
at small distances.

Importance Sampling

Adaptivity. �e abil-
ity to adjust for the
number and there-
fore the density of
samples naturally pro-
vides a means to per-
form adaptive sam-
pling. We show such
a result in the �gure
to the right, where
the le� shows the importance map and the right our resulting pat-
tern, that is bn(s) and follows the importance.

Mask Spectrum Hal�oning

Ra
nd

om
(s
pe
ct
ru
m(
gr
id
(s
,x
))

Fig. 6. Comparison of a random and our learned masks (bo�om). In a
dithering mask [Georgiev and Fajardo 2016], the 2D layout is fixed to a
regular grid (gridded). Our network has learned to filter the values so that
the top spectrum (second column) turns into the bo�om spectrum with a
pronounced blue noise i. e., no spatially nearby elements in the mask have
similar values. Consequently, the artifacts using our sampling pa�ern in
hal�oning appears visually less suspicious (third column).

Gridding. �e ability to compute gridding masks (dithering pat-
terns for rendering [Georgiev and Fajardo 2016]) is demonstrated
in Fig. 6. To achieve this, our framework doesn’t require additional
coding besides adding an enclosing grid operator that extracts the
x dimensions from a 3D pa�ern keeping, y and z �xed. Explicit con-
structions of such masks can take considerable implementation ef-
fort (simulated annealing). �is also demonstrates our framework’s
ability to handle di�erent target spectra along di�erent projections
(in this case, blue noise along 1D and uniform for the rest).

4.2 Applications
Our trained �lters can e�ciently be applied to problems such as
rendering or object placement.

Rendering. In Fig. 8, we render di�erent scenes using PBRT [Pharr
et al. 2016] with dimensionality varying from 3D to 5D and compare
our ji�ered and blue noise (BNOT target) with Halton and classical
ji�ered sampling. For fair comparison we implement 3D, 4D and 5D
classical ji�ered sampling in the PBRT source code. All the scenes
are rendered with a point light source to control the dimensionality
of the underlying MC integration. First row shows 3D integrand for
which the samples are generated over 2D pixel locations and along
the 1D time axis to introduce motion blur. Visual inspection (insets)
shows our ji�ered and BNOT manages to reduce the noise level (even
if MSE values are not signi�cantly improved). In the second row,
4D depth of �eld integrand (2D pixels + 2D lens) is computed using
N = 256 samples followed by a 5D integrand (2D pixels, 2D lens and
1D time) in the third row with N = 1024 samples. We believe that
our samplers could show improvements in convergence compared
to naive ji�ering due to the relatively large low-power (dark) region
in higher dimensions (see Fig. 4). However, this requires a more
focused convergence analysis that we leave for future work.

8

Blue (noise) spectrum Green (noise) spectrum Pink (noise) spectrum

(a) (b) (c)

Fig. 7. Our network is capable of generating di�erent colored noises. We
demonstrate this by placing flowers at point locations generated from (a)
blue (b) green and (c) pink noise (corresponding spectra in the insets) for
N = 1024 point samples.

Object placement. We further demonstrate the capability of our
framework to handle di�erent target spectra. In Fig. 6, we show
point set with a �ower placed on it and the corresponding spectra
for green and pink noises which is obtained from our trained �lters.

5 CONCLUSION
We have proposed the �rst framework to end-to-end optimize for
�lters that turn random points without properties into sample pat-
terns with properties relevant for Computer Graphics tasks. Other
than previous work that requires mathematical derivation and im-
plementation e�ort, we simply state the forward model as a loss
and rely on modern back-propagation so�ware to come up with a
sampling method. �e methods resulting from our approach are
very versatile: As we have shown several previous pa�erns can be
emulated using our approach and in some cases even surpassed in
terms of quality and/or computation speed. We share execution e�-
ciency with classic CNNs that require only a few passes across the
input with constant time complexity and complete data-parallelism.

Still many questions remain to be answered. While we state the
optimization and hope for modern optimizers to �nd good solution,
at the one hand, we lack any theoretical guarantees. On the other
hand, most mathematical derivations also do not provide proofs,
such as we are unaware of proofs that Lloyd relation converges in
high dimensions. Future work will need to investigate a detailed
convergence analysis for di�erent combination of losses. Ultimately
we would want to ask if any sample pa�ern can be learned as we
here have only shown a small, but important, subset.

We think our approach to some extend is machine learning (ML),
but with an indirection: a classic ML approach learns the mapping
from input to output e. g., a color image to a depth image. Our task
is slightly more indirect. We do not provide supervision in form of
pairs of input and output that sample a mapping. Instead, we “learn”
�lters, that, when applied to originally random data are free to do
to those points what they please, as long as they introduce structure
in the form of the statistical properties. �is methodology might
be applicable to other scienti�c questions, also beyond Computer
Graphics.

Ultimately, we hope that our approach will support exploration
of new sampling pa�erns, and both make their application eas-
ier in practical tasks as well as to move forward their theoretical
understanding.

REFERENCES
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,

Ma�hieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Manjunath
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine Learning.
In OSDI.

Abdalla GM Ahmed, Hui Huang, and Oliver Deussen. 2015. AA pa�erns for point sets
with controlled spectral properties. ACM Trans. Graph. 34, 6 (2015).

Abdalla GM Ahmed, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei
Guo, Dong-Ming Yan, Hui Huang, and Oliver Deussen. 2016. Low-discrepancy blue
noise sampling. ACM Trans. Graph. 35, 6 (2016).

Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frdo Durand. 2017. Aether: An
Embedded Domain Speci�c Sampling Language for Monte Carlo Rendering. ACM
Trans. Graph. 36, 4 (2017).

Michael Balzer, �omas Schlömer, and Oliver Deussen. 2009. Capacity-constrained
point distributions: a variant of Lloyd’s method. ACM Trans. Graph. 28, 3 (2009).

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Ma�hew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical Simulation
on CPUs and GPUs. ACM Trans. Graph. 35, 2 (2016).

John Bowers, Rui Wang, Li-Yi Wei, and David Maletz. 2010. Parallel Poisson disk
sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6 (2010).

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Trans. Graph. 36, 4 (2017).

Zhonggui Chen, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang. 2012.
Variational blue noise sampling. IEEE Trans. Vis Comp. Graph. 18, 10 (2012), 1784–
96.

Robert L Cook. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5,
1 (1986), 51–72.

Ken Dahm and Alexander Keller. 2017a. Learning Light Transport the Reinforced Way.
CoRR abs/1701.07403 (2017).

Ken Dahm and Alexander Keller. 2017b. Machine Learning and Integral Equations.
CoRR abs/1712.06115 (2017).

Fernando De Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6 (2012).

Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue Noise through Optimal Transport. ACM Trans. Graph (Proc. SIGGRAPH)
31, 6 (2012).

Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian �eobalt, Pat Hanrahan, Ma�hew Fisher, and Ma�hias Niessner.
2017. Opt: A Domain Speci�c Language for Non-Linear Least Squares Optimization
in Graphics and Imaging. ACM Trans. Graph. 36, 5 (2017).

Raanan Fa�al. 2011. Blue-noise point sampling using kernel density model. ACM Trans.
Graph. 30, 4 (2011).

Iliyan Georgiev and Marcos Fajardo. 2016. Blue-noise Dithered Sampling. ACM
SIGGRAPH 2016 Talks (2016).

Felix Heide, Steven Diamond, Ma�hias Niessner, Jonathan Ragan-Kelley, Wolfgang
Heidrich, and Gordon Wetzstein. 2016. ProxImaL: E�cient Image Optimization
Using Proximal Algorithms. ACM Trans. Graph. 35, 4 (2016).

Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015. Blue
noise sampling using an SPH-based method. ACM Trans. Graph. 34, 6 (2015).

Bhavya Kailkhura, Jayaraman J �iagarajan, Peer-Timo Bremer, and Pramod K Varshney.
2016. Stair blue noise sampling. ACM Trans. Graph. 35, 6 (2016).

Simon Kallweit, �omas Müller, Brian Mcwilliams, Markus Gross, and Jan Novák. 2017.
Deep Sca�ering: Rendering Atmospheric Clouds with Radiance-predicting Neural
Networks. ACM Trans. Graph. 36, 6 (2017).

�omas Kollig and Alexander Keller. 2002. E�cient multidimensional sampling. Comp.
Graph. Forum (Proc. Eurographics) 21, 3 (2002), 557–63.

Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive
Wang tiles for real-time blue noise. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3
(2006).

Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2012. ImageNet Classi�cation
with Deep Convolutional Neural Networks. In NIPS. 1097–105.

Lauwerens Kuipers and Harald Niederreiter. 2012. Uniform distribution of sequences.
Courier Corporation.

Y. Lecun, L. Bo�ou, Y. Bengio, and P. Ha�ner. 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 11 (1998), 2278–324.

9

Reference Our BNOT Our Ji�ered Ji�ered Halton

3D
(N
=

64
)

MSE: 3.606 × 10−3 MSE: 3.071 × 10−3 MSE: 3.741 × 10−3 MSE: 1.756 × 10−3

4D
(N
=

25
6)

MSE: 4.307 × 10−3 MSE: 4.291 × 10−3 MSE: 4.281 × 10−3 MSE: 0.966 × 10−3

5D
(N
=

10
24

)

MSE: 3.404 × 10−4 MSE: 3.182 × 10−4 MSE: 3.413 × 10−4 MSE: 1.856 × 10−4

Fig. 8. We render di�erent scenes using the PBRT renderer [Pharr et al. 2016]. We use N = 64, 256, 1024 samples for the respective scenes from top to bo�om
and compare our ji�ered and blue noise (BNOT target) samples with Halton and naive ji�ered sampling over 3D (top row: pixel and motion blur), 4D (middle
row: pixel and depth of field) and 5D (bo�om row: pixel, motion blur and depth of field). All scenes are rendered with a point light source. Reference is
rendered with N = 4096 Halton samples.

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Trans Inform. �eory 28, 2
(1982), 129–37.

Michael McCool and Eugene Fiume. 1992. Hierarchical Poisson disk sampling distribu-
tions. In Proc. Graphics interface, Vol. 92. 94–105.

Je�rey B Mulligan and Albert J Ahumada. 1992. Principled hal�oning based on human
vision models. In Human vision, visual processing, and digital display III, Vol. 1666.

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, and Tobias
Ritschel. 2017. Deep Shading: Convolutional Neural Networks for Screen-Space
Shading. Computer Graphics Forum (Proc. EGSR 2017) 36, 4 (2017).

Deussen Oliver, Hiller Stefan, Van Overveld Cornelius, and Strotho�e �omas. 2001.
Floating Points: A Method for Computing Stipple Drawings. Computer Graphics
Forum 19, 3 (2001), 41–50.

Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast hierarchical
importance sampling with blue noise properties. 23, 3 (2004), 488–495.

A Cengiz Öztireli and Markus Gross. 2012. Analysis and synthesis of point distributions
based on pair correlation. ACM Trans. Graph. 31, 6 (2012).

Hélène Perrier, David Coeurjolly, Feng Xie, Ma� Pharr, Pat Hanrahan, and Victor
Ostromoukhov. 2018. Sequences with Low-Discrepancy Blue-Noise 2-D Projections.
Comp. Graph. Forum (Proc. Eurographics) 37, 2 (2018).

Ma� Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From �eory To Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor Ostro-
moukhov. 2015. Variance analysis for Monte Carlo integration. ACM Trans. Graph.
34, 4 (2015).

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classi�cation and segmentation. CVPR (2017).

Hongxing Qin, Yi Chen, Jinlong He, and Baoquan Chen. 2017. Wasserstein Blue Noise
Sampling. ACM Trans. Graph. 36, 5 (2017).

Bernhard Reinert, Tobias Ritschel, Hans-Peter Seidel, and Iliyan Georgiev. 2016. Projec-
tive Blue-Noise Sampling. Comp. Graph. Forum 35, 1 (2016), 285–95.

Peiran Ren, Yue Dong, Stephen Lin, Xin Tong, and Baining Guo. 2015. Image Based
Relighting Using Neural Networks. ACM Trans. Graph. 34 (2015).

Christian Schmaltz, Pascal Gwosdek, Andres Bruhn, and Joachim Weickert. 2010. Elec-
trostatic Hal�oning. Comp. Graph. Forum (2010).

Adrian Secord. 2002. Weighted voronoi stippling. In Proc. NPAR. 37–43.
Peter Shirley et al. 1991. Discrepancy as a quality measure for sample distributions. In

Proc. Eurographics. 183–194.
Gurprit Singh and Wojciech Jarosz. 2017. Convergence Analysis for Anisotropic Monte

Carlo Sampling Spectra. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017).
Gurprit Singh, Bailey Miller, and Wojciech Jarosz. 2017. Variance and Convergence

Analysis of Monte Carlo Line and Segment Sampling. Comp. Graph. Forum (Proc.
EGSR) 36, 4 (2017), 79–89.

Kartic Subr and Jan Kautz. 2013. Fourier analysis of stochastic sampling strategies for
assessing bias and variance in integration. ACM Trans. Graph. 32 (2013).

Robert A Ulichney. 1988. Dithering with blue noise. Proc. IEEE 76, 1 (1988), 56–79.
Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh,

Gaël Cathelin, Fernando De Goes, Mathieu Desbrun, and Victor Ostromoukhov.
2014. Fast tile-based adaptive sampling with user-speci�ed Fourier spectra. ACM
Trans. Graph. 33, 4 (2014).

Li-Yi Wei. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29, 4 (2010).
Li-Yi Wei and Rui Wang. 2011. Di�erential domain analysis for non-uniform sampling.

ACM Trans. Graph. 30, 4 (2011).
Dong-Ming Yan, Jian-Wei Guo, Bin Wang, Xiao-Peng Zhang, and Peter Wonka. 2015.

A survey of blue-noise sampling and its applications. J Comp. Sci. and Tech. 30, 3
(2015), 439–52.

John I Yello�. 1983. Spectral consequences of photoreceptor sampling in the rhesus
retina. Science 221, 4608 (1983), 382–5.

10

	Abstract
	1 Introduction
	2 Sampling in Computer Graphics
	2.1 Spectra
	2.2 Discrepancy
	2.3 Mixed
	2.4 Learning
	2.5 Domain-specific languages

	3 Sampling End-to-end
	3.1 Overview
	3.2 Tunable convolution on sample patterns
	3.3 Architecture
	3.4 Sample programs
	3.5 Losses
	3.6 Operators
	3.7 Implementation

	4 Results
	4.1 Analysis
	4.2 Applications

	5 Conclusion
	References

