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Abstract

In salt pans and playa we sometimes observe that salt crystallization due to evapo-
ration forms polygonal salt ridge patterns on the surface. Ridges of crystallized salt
surround a flat center with a characteristic length scale of several meters. I investi-
gate the mechanisms driving the development of those polygonal structures as there is
currently no comprehensive theory of their formation. Different approaches describ-
ing them range from wrinkling to cracking of the surface; none of these mechanisms
reproduce the characteristic length scale of the pattern. Here I investigate a model
that includes the subsurface dynamics of the salt water-filled porous medium below
the crust: salinity gradients drive convection cells which, in turn, interact with the de-
velopment of salt ridges at the surface. Firstly, I perform a linear stability analysis of
the differential equations describing the dynamics of the system based on the work
on Robin Wooding and extend his results by computing the neutral stability curve as
well the most unstable mode for small perturbations. Secondly I use a pseudo-spectral
method to implement a numerical simulation of the dynamics in the system in a sim-
plified two-dimensional model. I compare the numerical results with the theory and
experimental data in Hele-Shaw cells and investigate the feedback between surface
and subsurface processes and the pinning of the subsurface convection cells to the salt
ridges.
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1 Introduction

1. Introduction

1.1. Motivation

In salt pans and playa we sometimes observe that salt crystallization due to evaporation
forms diverse polygonal salt ridge patterns on the surface. Ridges of crystallized salt sur-
round a flat center with a characteristic length scale of several meters. In figure 2] T show
examples of such structures observed in the Death Valley in California. In cooperation
with Dr. Lucas Goehring and the doctoral student Jana Lasser we aim to understand
the formation of those polygonal structures because there is currently no comprehensive
theory of their formation. Some authors such as Tyler et al. [1] performed field studies
considering the groundwater evaporation and salt flux from Owens Lake in California.
Nield et al. monitored the evolution of the shapes of the salt crust patterns over time in
[2].

There are two major theory to explain the evolution of the the structures ranging from
wrinkling to cracking of the surface. According to the wrinkling approach the salt crust
is growing over time and due to lack of space it piles up to polygonal structures [3, 4].
The alternative model implies that temperature change leads to contracting and thereby
cracking of the salt crust which causes the polygons [5| 6]. Theoretical investigation of
these theories enables the calculation of the expected characteristic length scales of the
polygonal structures — the distance of wrinkles respectively cracks. The length scale ought
to be in the order of magnitude of the thickness of the respective salt crusts [7,8]. Since the
thickness of the crust turns out to be about 1 — 15 cm while the polygonal patterns have
characteristic wavelength of 1 — 3m (measurements by Jana Lasser in the Death Valley).
Hence, we state that the mentioned models are not sufficient to reproduce and explain
the formation of the observed pattern.

Instead we investigate a hypothesis that includes subsurface dynamics of the porous
medium saturated with salt water below the crust. We state that salinity gradients drive
convection cells which, in turn, interact with the evolution of the salt ridges at the surface
and have substantial impact on this process. The sand in salt playa is often saturated with
salty groundwater up to a few centimeters below the surface. High temperatures due to
solar radiation as well as wind enhances the evaporation of water causing the precipi-
tation of salt and formation of a respective crust. Due to the accumulation of salt near
the surface the salinity and thereby density is larger than below. If the gradient is large
enough this configuration get unstable inducing the formation of convection cells in the
sand. Furthermore we assume that the evaporation rate in the surrounding of the salt

ridges is larger than in the flat centers which may interact with the convection cells below
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(a) Length scale of patterns. (b) Field work at Owens Lake (with Jana Lasser).

Figure 2: salt ridge patterns at the Owens Lake in the Death Valley, California. [Photos by Jana Lasser]

such such as pinning the up- respectively downwelling regimes to the ridges [9]. First
approximations indicate that the characteristic length scales of those convection cells is
presumably consistent with the observed patterns. In figure 3|1 display a sketch of this
model.

Jana Lasser is investigating the system experimentally using simplified two-dimensional
Hele-Shaw cells to quantify the subsurface flows and is conducting field studies of the
actual patterns in nature (see figure My responsibility is to increase the theoretical
understanding of the system and implement a two-dimensional simulation for deeper

insights.

The relevance of this project is for one thing justified by the curiosity of humans to un-
derstand natural phenomenons especially pattern formation. Besides the understanding
of the dynamics of flow and convection in porous media is of significant importance: Ac-
cording to the International Panel on Climate Change (IPCC) the development of safe
and secure mechanisms to geologically store carbon dioxide in the ground (CCS: carbon
dioxide sequestration) is crucial for mitigating climate change. Carbon dioxide may be in-
jected into deep saline aquifers where it dissolves in the ambient groundwater to remain
there for centuries. The solution has higher density than normal water which may
lead to a convection driven by gravitational instability enhancing the rate of dissolution
[11]]. In addition to it the understanding of saline groundwater flow is important for the

disposal of waste, e.g. radioactive waste, in geological formations, too [[12].
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Figure 3: Sketch of our model including the subsurface dynamics of the porous medium saturated with salt
water as well as the feedback between the formation of salt ridges at the surface and subsurface processes.
Reproduced from Jana Lasser.
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1.2. Outline

The thesis at hand is structured as follows:

In chapter[2|on the theoretical background I will introduce the properties of porous media
and sketch the derivations of the differential equations describing the dynamics of the salt
water flow in porous media. I show the utilized approximations and introduce a set of
dimensionless differential equations using characteristic velocity and length scales of the
system. I present an analytical solution of the transient behavior of the salinity at the
surface following Wooding [13].

Robin A. Wooding investigated — manifold unintelligible — the linear stability of a
semi-infinite system with similar boundary conditions analytically. In chapter 8|1 repro-
duce his work in detail using a semi-analytical approach and calculate the neutral stability
curve of the respective system which is consistent with the results of Homsy and van Du-
jin [15}16]. Furthermore, I am able to complement their investigation by determining the
most unstable mode, too.

In chapter [ I present the experimental approach of Jana Lasser. She is performing ex-
periments in quasi two-dimensional Hele-Shaw cells constituting a simplified model of
the real-world system of salt playa, in a controlled environment. The aim of these ex-
periments is to analyze the convective behavior in the Hele-Shaw cells. Additionally, I

feature her experimental results which are later compared with the numerical simulation
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to validate the latter.

As build-up for the numerical simulation of the two-dimensional salt playa system I re-
produce the numerical results of Rogerson and Meiburg [17] in chapter |5, They analyzed
the unstable displacement of two-dimensional flow in a porous medium under periodic
boundary conditions. The set of differential equations describing the system is similar
and since they assume periodicity in both directions I can use a spectral method.

In chapter|f]I present the implementation of the two-dimensional numerical model. Based
on a stream function-vorticity formulation of the differential equations [18] I utilize a
pseudo-spectral method to solve the Poisson equation following the approach of Ruith
and Meiburg [19], Riaz and Meiburg [20] and Chen [21] since I assume periodicity in only
one direction. To compute the derivatives I use compact finite difference schemes [22]
and integrate the equations with Runge-Kutta time-stepping [23]. I validate the imple-
mentation using the linear stability analysis.

Using this numerical simulation I present results in chapter[7] Firstly, I consider the early-
time such as the fingering behavior. I investigate the wavelength and velocity scales of
the occurring convection cells to compare the results with the experimental data. Fur-
thermore, I look at the feedback mechanisms between variations in evaporation rate at
the surface and the subsurface convection cells such as pinning. This helps to check the
plausibility of the convection hypothesis.

Finally, I will summarize the main results in chapter
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2. Theoretical Background

In this chapter I sketch the derivation of the differential equations governing the dynam-
ics of the flow of salty fluids in porous media: Analogous to [12] I formulate the conser-
vation equations for mass, salt concentration and momentum. Besides the assumption of
non-compressibility and the advection diffusion equation for salty fluids I make use of
the Darcy Law formulated by Henry Darcy in 1856 [24] describing the momentum conser-
vation of a fluid in a porous medium.

Furthermore, I derive a dimensionless set of differential equations based on characteristic
length and time scales of the system. Assuming that the solute (salt) modifies the solvent
density weakly, I apply the Boussinesq approximation and present the imposed boundary
conditions in the salt playa system and present the analytical solution done by Wooding
in 1997 [13] of the stable transient in case there is no crust on the surface and uniform

up-flow of salty water.

2.1. Properties of porous media

Figure [ displays an exemplary two-dimensional slice of sandstone displaying the high
complexity and tortuosity of such rocks as well as its fluid dynamics. Considering the
porous medium on a microscopic length scale one needs to show consideration for the
heterogeneous structure of the single pores that influence the pathway of the flows. De-
spite that heterogeneity a porous medium often can be considered as a homogeneous on
a macroscopic length scale and has universal macroscopic properties which are spatially
independent. Since it is usually sufficient to analyze the flow on a length scales much
larger than the size of single pores, we need to characterize the macroscopic differential
equations governing the dynamics. [25] I only consider porous media saturated with
fluid in order that the space between the pores is occupied by the fluid phase rather than
for example by air.

For that purpose I consider three basic parameters to describe the macroscopic properties
of a porous medium. The porosity ¢ is the ratio of the void volume to the total volume of
the porous medium. [26]

The superficial flow velocity q = ¢v in porous media, with microscopic advection veloc-

ity v, is described by the Darcy law

= _Z.vp
q=—Vp

Here Vp is the pressure gradient, i the viscosity of the fluid and x the permeability.
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Figure 4: Two-dimensional slice of sandstone in the length scale of the pores visualizing the flow of a fluid
through a porous medium. Reproduced from [25].

In general the permeability « is a tensor of second-order but in case of isotropic porous
media, this can safely be assumed for sand, it simplifies to a scalar constant x usually
expressed in units of m2. It is a property of the geometry of the medium. Typical values
for sand are about ¢ ~ 0.37...0.50 and x ~ 2 x 1077 ...1.8 x 10_6m2.

2.2. Derivation of differential equations

To analyze the mass and salt conservation of salty fluid in a porous medium I start by
writing down equations at the scale of the individual pores and average those equations
over representative elementary volumes (REV) Vrpy =: (lREV)3 much larger than the
pore length scale [, and much smaller than the system size L: [, < [rgy < L. Then [ use
weighted averages over the different species (water and concentrated salt solution) and
sketch the derivation the continuous porous media equations. The following notation
and derivation is based on the work of Herbert et al.

2.2.1. Mass conservation

I consider mass conservation in the system of salt and water within the porous medium
and look on the salt water as a mixture of fresh water (species « = 1) and a concentrated
salt solution (species « = 2). I introduce the mass fraction w, of each liquid species «

in this mixture and moreover define ¢, := w,. Hence, w; = 1 — ¢. ¢ = 1 represents

10
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saturated salt water and c,;, = 0 fresh water. The density conservation equation for each

species is given by

pore

px
ot

F V- (pReE) = 0 1)

whereby o5°" and v, are the density and the partial, advective velocity of the fluid
species « in the length scale of the pores.
To average over a representative volume Vrgy containing many individual pores we are

using the density-weighted averages

1 / pore
= dv,
P VREV JViey P
pore_ pore
Vg = fVREV e p(‘)]ri v
J Vrey Pa dv

with the partial densities p, of the two species given by

Po = PPWq-

Here, ¢ is the porosity of the porous medium and assumed to be a constant. p is the actual
density of the fluid and w, the mass fraction of each species. We know that w, = c;;, and
hence w1 =1 — cy,.

By averaging equation over the representative volume we get with continuity and
differentiability of pgore and vi"°

pore

1 aplx pore__pore
.. /[ S ()

a 1 / pore ) ( 1 ore ore
- 2 av) +v. / pore pore gy} _
ot (VREV VRev P VREV JViey P ¢

IPu
= % LV (pava) =0  (22)

dV =0,

involving a mass flux of p,v,.

We now average equation (2.2) over the two species & = 1,2 using the overall advective

velocity

2
Y. OaVa

11
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as well as the porosity adjusted Darcy or superficial velocity q = ¢v to get

y [aait iV <pm)} —o,

a=1
2 d N 2
<Z 5 >+V (Zpavzx) =0,
a=1 t a=1
0
0L+ V- (pq) =0, 2.3)

2.2.2. Salt conservation

We consider salt conservation in the system and express the total flux of the saline species
« = 2 as the sum of the advective and the diffusive flux

P2V2 = PV +j, = pov — @pD - V.

Here, D is the hydrodynamic diffusion-dispersion tensor. Mechanical dispersion is as-
sumed to be much smaller than molecular diffusion for the relevant length scales in our
system (compare [13| 27]. For analyzing experimental data I will check whether this con-
dition is fulfilled. Hence, I neglect the dispersion contribution and only take into account
the molecular diffusion D which is a scalar and independent of space.

Plug in that relation in equation for saturated salt solution (¢ = 2) and using the
relation pp = @pwr = ppc,, we get

d
%+V-(p2v—(ppD-Vw2) =0,
Wn | . V(oD V) =
5 T V - (pcmv) — V- (oD - V) = 0. (2.4)

Assuming incompressibility V - v = 0 and D = D1 it simplifies to

opCm
ot

+v-V (pc) —DV - (pVcy) = 0. (2.5)

2.2.3. Darcy Law

The basic equation to describe the momentum balance of fluid in porous media is the
Darcy Law which firstly was formulated by Henry Darcy in 1856 in [24]. He used an
experimental method to obtain the proportional relation between the flow rate in a porous

medium and the total pressure drop across it. In 1937 Muskat presented the general

12



2 Theoretical Background

expression [28] in the simplest form
K
=-—-V
q I p

with a intrinsic material parameter, the permeability x, and the mass flow rate respec-
tively the superficial velocity q. The equation holds on length scales much larger than
pores and smaller then the macroscopic size of the system. Since a rigorous analytical
derivation of the Darcy Law is quite challenging I will only depict the underlying as-
sumptions.

Based on the Navier-Stokes equation describing the dynamics of fluid flows there are
several derivations, for example Neuman in 1977 [29].

To derive the Darcy Law one has to assume a stationary solid phase of porous media
and a creeping flow which has the property that the drag forces are much larger than
inertial forces corresponding to a low Reynold number (Re S 1). Hence, we can neglect
the inertial term in the Navier-Stokes equation to get the Stokes equation in the fluid

~Vp+uViq+£f=0

with external forcing f such as gravity. Additionally we have to assume incompressibility
of the fluid V - q = 0 and no-slip boundary conditions for the boundaries between the
solid and the fluid: ql,qyngary = 0- [30]

Whitaker derived the Darcy law using the method of volume averaging respectively
mean-field approximation [31]. The validity is again based on the restriction that the
length scale of the representative volume elements is much smaller than the sample size:
Irev < L. The porous medium does not need to be homogeneous or periodic but abrupt
structural changes are not considered [31]. Other authors make use of the homogeniza-
tion method assuming periodic and regular patterns in the REV [30, 32].

Brinkman presented a generalized form of the Darcy Law without neglecting the dissipa-
tive viscous term of the Navier-Stokes equation for larger Reynold numbers [33].
Assuming that the porous medium is a collection of spheres with constant radius 7particles
and a porosity of ¢ the Carman—Kozeny equation gives a relation to calculate the perme-
ability x

q03

2
K= rparticle545(1—_(P)2'

(2.6)

as given in [34]. This relation enables one to estimate the permeability of sand with a

given particle radius.

13
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In case the system is affected by gravity g we can adjust the Darcy Law
K
a=¢v=—(Vr—rg) 2.7)

with the buoyancy term f = p g. [12]

2.3. Salinity formulation

According to Herbert et al.[12]] the density of saline water p = p(cy,) fulfills the condition

p(cm) N E L0 25)

with density of fresh water pp and saturated salt water p if we assume that the volumes
of the two species are additive which is equivalent to reciprocal additivity of density.

In figure [5a|I compare this relation with the actual empirical values for the density depen-
dence p(cy,) from Weast 1977 [35]. It shows that this is a reasonable good fit. Under this
assumption we can express the differential equations using the density adjusted fraction

cp of the saline phase instead of the mass fraction c;,

_Pew _p—po
Ps Ps — Po

The latter is a consequence of equation (2.8). With this we can express — analogous to
Herbert et al. [12] — the salt conservation (2.4)) as

d
¢$+V- (coq) —D oV - <@ch,> =0.
t p
Assuming a background density p, and a maximal density p;, of salty water with
Ps > pm > pPp > po we can define the relative salinity

5= L= 0B b —sap+p,

Pm — Pb Ap

with Ap = p — pp and the background salinity

PR _ P 0 (2.9)

. Ppb—P0 _ Pp—P0 .
Sb'_ = :>S+Sb— = Cyp Ap

Pm — Pb Ap Ap

14
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— analytical relation - experimental values
experimental values
12 = 16+ . ]
S 115 ¢ ] =Y .
T 14 . 1
< 11 L ] X .
= 1.05 e 1 S 12} L |
Q ~— .
E 1 "‘/ ‘ b = 1 et e \
0 0.5 1 0 0.5 1
Cm Cm
(@) Density p(cy,) based on empirical data (b) Viscosity p(cm) based on empirical
[35] and the analytical relation (2.8). data [35]].

Figure 5: Density and viscosity of salt water as a function of the mass fraction of saturated salt solution
Cw for a temperature of 20 °C. ¢, = 1 represents saturated salt water while c,, = 0 corresponds to fresh
water.

For constant porosity ¢, diffusion D and permeability x we can express the equations as

dp _
¢+ V- (pq) =0,

S L V.(Sq)=DgV- (@Vs>,

Por 0
K Kg

— _CVp—-B(SAo+pp).

q L VP u( 0+ 0p)

I now take advantage of the Boussinesq approximation that the density dependence is
only considered in the buoyancy term in the Darcy Law and neglected in the diffusional
term (pg/p ~ 1) and the mass conservation equation which reduces to incompressibility.
The constant background density is absorbed into the pressure term using the vertical

height z. Hence, the equations read

V.q=0,
S

(p§+q-vszD(pV25,

K

K
q=——-V(p—pr82) yg (SAp+pp) .

K
2.4. Non-dimensionalization
For further investigation of the system I will non-dimensionalize the governing equa-

tions. For that purpose I make use of the natural velocity scale Ej (e. g. the mean evapo-

15
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ration rate) to introduce the length and time scales

D D
L= Ey/ T = E—%.
The length scale L corresponds to the distance over which advective and diffusive ef-
fects have the same order of magnitude and T is the characteristic time for the advective
respectively diffusive flow to travel the distance L.
I define the adjusted dimensionless pressure which includes the absorbed term of con-
stant background density

K
P:=(p— z) ——g,
(P=pe82) o5

the dimensionless time 7, space X,Y,Z as well as the velocity vector

=4
¢ Eo

I now have the non-dimensionalized set of differential equations

V-U=0, (2.10)

%S Ly Vs =V (2.11)
oT ’ '

U=-VP—RaSZ (2.12)

with the dimensionless Rayleigh number

Ra = ©BP8 (2.13)
91 Eo

The Rayleigh number describes the ratio of buoyancy and dissipative effects and is con-
stant for the fluid if I assume the viscosity u = u(p) to be constant itself. The Rayleigh
number describes the buoyancy instability of the system and if exceeding a certain thresh-
old Ra. instability will occur. By including the porosity ¢ in the scaling of the velocity and
the pressure as well in the Rayleigh number I can eliminate this constant number in the
differential equations. The Peclet number of the advective transport is Pe = Bl _ 1.

Hence, the Peclet number is not a system parameter but a constant by definition.

In figure 5b|I display the change of the viscosity as a function of the mass concentration
of saturated water c,,. Although the viscosity varies about 65% I assume it to be constant

i = u(po) to simplify the theoretical and numerical model since it does not alter the

16



2 Theoretical Background

results significantly [13]. For subsequent work it is interesting to analyze the effects of
these variations.

2.5. Boundary Conditions

Depending on the physical conditions various boundary conditions at the surfaces of the
porous medium are possible. We presume the porous medium is occupying the half-
space for Z < 0: a semi-infinite system with a horizontal surface. If we have ponding
water at the surface or a system saturated with fluid up to the surface the pressure P, as
well as the salt concentration is constant . Hence, XYZ the density p;; at Z = 0 is constant.
[13]

Our focus will be on saturated, dry salt playa with evaporating water at the surface. The
latter is driven by external energy input such as solar radiation. The evaporation rate
can thus vary as E(X,Y,7) in space and time. Here, we assume the velocity to be normal
(Z-direction) to the boundary and in first approximation to be constant at the surface:
Uz(Z = 0) = q/Ep = 1. Variations due to soil and atmospheric properties are taken to
be small enough to be neglected. In case of already formed salt ridge patterns the vertical
evaporation rate may vary in the surrounding of those structures. These variations might
effect the position of the convection cells beneath the surface by pinning their up- or
downwelling. This effect is studied in section 7.4/ using numerical simulations.

Due to the evaporation of water at the surface, salt will accumulate there. After saturation
is reached at the top the salt will have to precipitate atop the porous medium boundary
and a salt crust forms. Hence, the salt exits the porous medium and the salt in the crust
has no direct effect on the dynamics of the flow anymore. The boundary condition then

is
p(Z=0)=ps=pm = S=1

If the salt concentration at the surface is below saturation I assume that no salt is crossing
the boundary and no salt crust will evolve. The upward advective flux at that surface of
the salt will balance the downward diffusive flux (1st Ficks Law)[13]]:

dcy dS

s (2.14)

For Z — —oo I will suppose a background density p, and hence S — 0. In case we have

a system with finite height H in vertical direction these will be the presumed boundary

conditions for Z = —H. In the two-dimensional simulations I will simplify the system

17
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by eliminating one horizontal dimension making use of periodic boundary conditions
in horizontal X-direction. The Rayleigh number Ra and the height H are a full set of

parameters to characterize this system.

2.6. Transient to steady-state

In the following I investigate the development of such a porous medium in half-space
(Z < 0) saturated with salt water of background density p = p; respectively a salinity
of S = 0 and assume the water evaporating with a uniform flow rate at the surface,
E(X,Y,T) = Ey, and analyze the transient until the salt concentration near the surface
reaches the maximum (p = ps corresponding S = 1) at time 7;. During this period no salt
will cross the surface and the boundary condition can be applied. For z — —oo we
have S — 0 since we assume water of background density coming from below.

For that purpose I consider a system with neither disturbance nor convection rolls and
reduce the set differential equations to a one-dimensional advection diffusion equation
since gradients in horizontal direction vanish. In that case the non-dimensional vertical
velocity is constant Uz(X,Y,Z,T) = 1. I describe the salt conservation as

aS

R — 2

Wooding gives an analytical solution of this problem in [13] for 0 < T < 75 as follows:

S(Z) = Spe”/? 1-4——24_145‘2/2 erfc _TrZ
2 21

1 7/ T+7Z [T 7%+ 12
5e erfc(zﬁ)—k —exp 102 .

In figure |f] I display the salinity S(Z) for different times T < 7,. We clearly see that the

length scale of the (approximately exponential) distribution is increasing.
At saturation time 7; we fulfill the boundary condition S = 1 at Z = 0 which is than fixed
because salinity cannot be larger. The steady-state solution of the system now is given by

S%(z <0) =%

In figure [7]I display the increasing salinity at the surface S(Z = 0, T) for T < 7, in units of
background salinity S;,. I will later use this analytical solution to validate the numerical
simulation with experimental data.

In later described experiments Jana Lasser uses saline water with 2.5 g salt per 1 kg water

18
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Figure 6: Logarithmic salinity S(Z) in units of Sy, for different times T before saturation at surface if T < T
at that time.

salinity S(Z = 0)/S,

time T

Figure 7: Salinity S(Z = 0,7) in units of Sy, at the surface before it reaches saturation at the surface.

which corresponds to a background salinity of S, = 1/14.2 ~ 7.04-10~2. Solving for
S(Z=0,7) =1,we get T, = 13.2 applying these values.
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3 Investigation of stability

3. Investigation of stability

To get a quantitative and a qualitative understanding of the conditions in our proposed
system leading to a buoyancy-driven instability there is need to perform a linear stability
analysis. This is the foundation to check the consistency of the numerical and experimen-
tal results and acquire a deeper understanding of the conditions of stability in the salt
playa system. In 1960 Robin Wooding performed a linear stability analysis for a system
with an equivalent set of differential equations describing the temperature in a semi-
infinite, three-dimensional porous medium with a permeable surface covered with a cold
fluid. In contrast to Wooding we are focusing on the dynamics of salty water in porous
media with evaporation of water at the surface. In his analytical work he accomplishes
a calculation of the critical Rayleigh number and the neutral stability curve as a function
of the characteristic wave-number of the disturbance and the Rayleigh number. [14] In
1976 Homsy [15] computed the critical point for our system and in 2002 van Dujin used
an energy minimization method to compute the neutral stability curve [16]. In addition
to their work I am able to compute the most unstable mode of the system.

Trying to reconstruct the derivations of Wooding I experienced difficulties which I were
not able to dissolve completely because his derivations are incomplete and described
opaque. Nonetheless I reproduce the theoretical results of Wooding with an approach
which is semi-analytical with numerical calculations using Mathematica. In addition to
reproducing his findings I calculate the growth rate of disturbances as a function of the
Rayleigh number and the wave-number beyond neutral stability. In consequence this al-
lows one to compute the most unstable wavelength for a given Rayleigh number. Besides
I can produce solutions to a problem with the boundary conditions which we assume for
our system: uniform evaporation rate at the surface.

In the following I use the earlier established notation and the non-dimensionalized equa-
tions for salt gradient driven instability instead of temperature. Wooding utilizes the
Boussinesq approximation assuming that the density p depends linearly on the temper-
ature and the diffusivity. He further assumes that the specific heat is spatially invariant
which corresponds to uniform diffusion D. Wooding does explore the effect of constant
viscosity (1 = u(pp)) at the end of his calculation.

3.1. Formulation of the problem

For my derivation I will use the non-dimensionalized equations as given in (2.10), (2.11)
and (2.12)) in a porous-medium filling the half-space for 0 > Z > —oco which

I) is covered by a liquid of constant density p = p;; (salinity S = 1) at Z = 0 and
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Investigation of stability

constant dimensionless pressure P|,_, = Py. This boundary condition is used by
Wooding in [14].

IT) has a constant density p = p;,, (salinity S = 1) at Z = 0 as well as a uniform
vertical evaporation rate u|,_, = 1 Z. This boundary condition is later used in

the investigation of salt playa for T > .

For both top boundary conditions I presume an uprising flow from an infinitely far-away
source at Z = —oo with background density p;, (5 = 0). In steady-state we therefore
have a uniform velocity U = 1Z (unit vector in Z-direction) in positive Z-direction, the
salinity S°(Z) = ¢ and the pressure P°(Z).

3.2. Linear stability analysis

To investigate the stability of the steady-state, I consider small perturbations of the the
salinity, pressure and velocity relative to the steady-state: S = S — S%, P = P — P respec-
tively U = U — U°. After linearizing I obtain

V-U=0, (3.1)

g—iJrUO'VSNJrlNJ-VSO—VZg:O,

S 9S  _asY

_ _ R — 2~:
St t e — VIS =0, (3.2)

VP+RaSZ+U =0, (3.3)

using w := 7. ﬁ, the Z-direction of Ij, as well as U = Z. The two inner terms in (3.2)
only considers the Z-direction because the steady-state solution only depends on this

direction.

To eliminate the pressure perturbations P and the horizontal components of U I rearrange
equation (3.3) with T" := VP + RaSZ + U = 0 by applying

V2TY — 9, (V- T") =0
and as well as the notation V7 := V2 — 92 = 9% + 92 to get

V2@ +RaV2S =0. (3.4)
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3 Investigation of stability

Utilizing equation (3.2) I get the relation

(3% ' [ _,~ 95 oS
I) Assuming uniform pressure and salinity at the top boundary I can set the pressure
and salinity perturbation P(Z = 0) = 0 and 5(Z = 0) = 0. Hence, I know

aﬁ‘ :aﬁ( —0.
XZ:O YZ:O 0

Using it follows that the central term and the X/Y-components of the velocity
perturbation U vanish and only @ := Z - U remains. Equation yields

II) For uniform evaporation rate and salinity at the top boundary I canset S(Z = 0) = 0
as well as w(Z = 0) = 0. The latter is known by definition if the vertical velocity
perturbation vanish.

For both top boundary conditions the vertical perturbation of the velocity w vanishes for
Z — —oo. Utilizing equation (3.5) and % = e’ 1 conclude that the denoted derivatives
of S have to decay faster than e? for Z — —oo, ezg—é — 0. Otherwise w — 0 could not be

tulfilled. Hence, we have the condition for the bottom boundary Z — —co

295 0. (3.6)

w—>0 = 57

The perturbations fulfill the boundary conditions. Now I use the instability S (X,Y,Z,7)
given by Pellew and Southwell in 1940 [36] following the approach of Wooding which
separates the variables

S(X,Y,Z,1) = F(Z)®(X,Y) exp (Q1). (3.7)

I assume that ® = ®(X,Y) satisfies (V7 4 a?)®(X,Y) = 0 whereby a is the characteristic
wavenumber of the perturbations in horizontal X- and Y-direction. F(Z) is the most un-
stable perturbation of the vertical salinity field and () its non-dimensional growth rate.
For () > 0 the amplitude of the perturbation increases and hence the system is unstable
and for (3 < 0 the perturbation decays and the system is stable.

For later investigation of the numerical simulation as well as the experiments in Hele-
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Shaw cells — both representing a two-dimensional system — I note that eliminating the Y-
direction does not alter the following analytical results. In that case we have ® = ®(X)
and assume the relation (9% + a?)®(X) = 0 for the horizontal dependence of the pertur-

bation.

Using I plug in the perturbation (3.7) in to get the eigenvalue equation for the
non-dimensional height-dependence F(z)

(0% —a?9,)e %(9% — 07 —a®> — Q)F(Z) = a* RaF(Z). (3.8)

According to the relation for the Rayleigh number (2.13) the system is only affected by

gravitational instability.

I) In case of a top boundary condition of constant pressure I define
G(Z) = (az [e—Z(aZZ — 3y —a*— Q)] F(Z)) (3.9)

and using (3.5), the perturbation function and the boundary condition

% 7=0 = 0 rearranges to G(Z =0)=0.

IT) In case of uniform evaporation rate I introduce
G(Z) = [azz - a?— Q} F(Z)=0 (3.10)

and likewise get the condition G(Z = 0) = 0 because w(Z = 0) = 0.

Besides we have F(Z = 0) = 0 in both cases due to S(Z = 0) = 0.

Using the Mathematica tool DSolve I obtain an analytical solution of the differential equa-
tion (3.8) operating on F(Z). The solution is a superposition of four independent infinite
series solutions with eigenvalues of

CQ/1=1:|:61

(1£¥)

1 1
23 =5 <1i 1+4a2+40> =

with'¥ := 1+ 4a? + 4Q.

To display the solutions I introduce the generalized hypergeometric function [37] for
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p,q € N,a;b;, Z € R

p n-1
- I:Ilk—o(al k) Z"
Fq({al""’ap}/{bll"' q} Z = Z 177 n:l F
| IL T (i =)
i=1k=0

For eigenvalues cy/1 =1+ aand cy/3 = % (1+¥) I obtain four solutions for Fy _ 3(Z)

F(2) = (~Rad® eZ>Ci Hi(Z) forie {1...4} (3.11)

1 1
HO/l( )—0F3 ({} {2C0/1—1,00/1+§(1—‘F),CO/1+§(1+‘I’)},_ngﬂeZ),

Hy/3(Z) = oFs <{ Y, {2¢2/3,¢2/3+a,¢2/3 —a} , —a’Ra €Z> :

Since I know that F(Z) has to decay faster than e? for Z — —oco using condition and
H;(Z) is an infinite sum of terms which are either constant (n = 0) or decaying for Z — co.
Hence, I only consider the two eigenvalues which are larger than 1 for the linear stability
analogous because F;(Z) « ¢%. Since a > 0 as well as QO > 0 and hence ¥ > % +a we
know that ¢, = %(1+‘I’) >1,co=1+a>1landcqy,c3 < 1.

Superposing the two solutions for ¢y and ¢y, the two top boundary conditions can be sat-
isfied with non-zero constants given by F(0) = 0 and G(0) = 0 using for condition I
and for condition II. Hence, L have F(0) = Cy Fy(0) + C, F,(0) = 0 and an analogous
equations for G(0) with Cy, C; € R and therefore

Based on these equations we know that either Cy = C; = 0 or the determinant

AZ)|z—9 = = Fy(0) G2(0) — F2(0) Go(0) = 0.

Since only the non-zero solution is physically relevant I am applying this relation at the
top boundary to get a relation between the Rayleigh number Ra, the horizontal wave-

number a and the non-dimensional growth rate (). Based on the solutions Fy(Z) and
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3 Investigation of stability

F(Z) in I can compute A(0) and use the tool FindRoot for fixed values of a and ()
to find the smallest Ra > 0 satisfying the boundary condition. Based on this I compute
the desired relations in the following section. This allows me to reproduce the analytical
results from Wooding [14] and to extend the linear stability analysis on non-zero growth
rates () > 0 as well as a different boundary condition (II).

3.3. Reslults

4 |
S ok S
N —  steady-state
I —Ra=20,a=1-
Ra=50,a=1
Ra =50,a =2
0 -1 -2 -3 -4 -5 -6

VA

Figure 8: The most unstable perturbation of the vertical salinity perturbation F(Z) for exemplary
wavenumber a and Rayleigh numbers Ra for O = 0 and F(Z = 0) = 0 as well as the steady-state
solution S°(Z). The amplitude of the functions is chosen arbitrary since the solution F(Z) can be scaled
arbitrary.

In figure 8|1 display exemplary solutions of the function F(Z) for different wave-numbers
a and Rayleigh numbers Ra.

In figure 9 I display the neutral stability curve and the critical points for both types of
boundary conditions at the surface (either constant pressure P or uniform vertical velocity
Uy corresponding to a uniform evaporation rate E(X,Y,7) = Ep). I calculated the relation
between the Rayleigh number Ra and the wavenumber a for a growth rate (2 = 0. The
critical points respectively the lowest points of the neutral stability curves are given in
table|1} Ra, is the smallest Rayleigh number for which the system becomes unstable.

Boundary condition | Ra. | ac
constant pressure | 6.954 | 0.429

uniform flow rate | 14.35 | 0.7585

Table 1: Critical wavenumber a. and Rayleigh number Ra..

The numerical values of the neutral stability curve with constant pressure are equal to

the results of Wooding in [14]. The critical point as well as the neutral stability curve is
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Figure 9: neutral stability curve Ra(a), critical points Ra., a. and the most unstable mode according to
the linear stability analysis with constant salinity at the top and either constant pressure P (I) or uniform
vertical velocity Uz = 1 (1I). The continuous lines represent the neutral stability curves, the dots mark the
critical points and the dashed lines the most unstable mode.

equivalent with the results of Homsy and van Dujin who solved the same problem using
a different approach [15} 16].

In case of uniform flow rate the critical values are larger and the system is stable in a
greater regime of parameters Ra and a. Furthermore, the critical Rayleigh number is in
the same order of magnitude as in the classical Elder problem analyzing the stability of a
finite system with constant top and bottom boundary conditions: Ra, = 471> ~ 39.5. [38]
Next up I compute the relation between the Rayleigh number and wavenumber for differ-
ent values of the non-dimensional growth rate Q). In figure[I0|I display the growth rate of
perturbations as a function of characteristic wavenumber for different Rayleigh numbers
of the system with uniform vertical velocity Uz (condition II) at the surface Z = 0.

By computing the minima of a(Ra) for different growth rates () I calculate the wavenum-
ber with the largest growth rate () as a function of the Rayleigh number Ra. This is shown
in figure (11| for both types (I and II) of boundary conditions. These results point out the
most unstable mode for a specific Rayleigh number. In case of random perturbation I
would expect that wavenumbers near that value will dominate after in early time as long
as the amplitudes are small enough. The most unstable wavenumber increases sublinear
(and thereby the wavelength decreases) with increasing Rayleigh number. This resulting

curve is expanding the work from Wooding, Homsy and van Dujin [14-16].
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Figure 10: Analytical growth rates () as a function of the wavenumber a — a. (adjusted for critical
wavenumber) for different Rayleigh numbers Ra for top boundary condition II corresponding uniform ver-
tical velocity Uyz. For a condition I — constant pressure — the behavior is similar.
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Figure 11: Most unstable wavenumber a as a function of the Rayleigh number Ra relative to the critical
point Rac, ac.
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4 Experiments in Hele-Shaw Cells

4. Experiments in Hele-Shaw Cells

4.1. Experimental methodology

Jana Lasser is performing experimental work in quasi two-dimensional Hele-Shaw cells.
She aims to analyze the onset of a fingering instability and the subsequent convection
rolls driven by salt concentration gradients, as well as the spacing and position of these
convection rolls. Experiments are used to validate the two-dimensional numerical simu-
lations by comparing specific measures such as the wavelength of convection cells as well
as their propagation speed. The experiments constitute a simplified two-dimensional
model of the real-world system of salt playa, in a controlled environment. The purpose
is to to investigate the convection behavior of the system for varying parameters, e.g. the
evaporation rate E and Rayleigh number Ra.

In figure[12a]I display the basic setup of the experiments: Two transparent plates of acrylic
glass separated by a gap of size 8 mm, filled with sand. The width of the system is given
by L = 40 cm. At the bottom of the cell is a layer of about 5cm sand with larger particle
size (about 500 — 1000 pm) and thereby much larger permeability and larger Rayleigh
number. On top of this layer is sand (H = 15cm) with a specified particle size of 100 —
200 um and a permeability of ¥ ~ (1.67 +0.12) x 107! m? (measured by Birte Thiede
[39]). The porosity of the sand is ¢ ~ 0.40 = 0.01 [39].

The bottom layer with larger Rayleigh numbers aims to minimize the influence of the
position of the saline water supply, which is realized by a water reservoir connected to
the system via four inlets. The water level of the reservoirs is approximately 2 cm below
the top of the experiment. Since there is no additional pumping, water enters the system
only via the hydraulic pressure.

Due to the small gap size of the Hele-Shaw cells we assume that the flow dynamics in z-
direction can be integrated and thereby neglected for the investigation [40, 41]. This setup
is similar to many experiments that investigated porous media flow under controlled
conditions [13, 27]. Jana Lasser combines the widely used Hele-Shaw cell setup with a
new method to visualize the flow in the porous medium, as shown in figure

At the beginning the system is filled with saline water with the background concentra-
25gsalt

1 kg water
(2.8)). At the surface the water evaporates driving, the primary up-flow, while fresh water

tion ¢, = and thereby we have a density of p, ~ 1.016 kg/m? (using equation

1Utilizing the Carman-Kozeny equation (2.6) we can estimate the permeability of the sand with the
2
larger particle size of about 500 — 1000 um in the bottom layer as «kpottom ~ X (%) ~

(4243) x 10~ m?2.
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(@) Setup of the experiments shown in a frontal (b) Measurement of the wavelength and front veloci-
and top view. ties of the convection cells.

Figure 12: Setup of the experiments in a quasi two-dimensional Hele-Shaw cell by Jana Lasser. The interval
between two transparent plates is filled with sand and salty water which is evaporating at the surface. By
injecting color in a thin line the convection can be visualized.

with concentration ¢, enters the system through the inlets near the bottom. The evapo-
ration rate E can be increased by blowing away the evaporated vapor with a fan or by
heating top of the experiment. The water level of the reservoir is regularly observed with
a camera, to monitor the dropping water level to compute the evaporation rate. Once
the water close to the surface reaches saturation, after the transient time 7, salt will start
to precipitate at the surface. Daily photos of the surface are taken to determine the first
emergence of a salt crust.

Figure shows a visualization of the flows in the cell by injection of color into the
system at half height through a thin rod with small holes. Since the rod has a diameter
of 1.2mm we assume that it does not affect the flow dynamics significantly. Jana used
different colors: blue, red and fluorescent. The densities of the colored water is larger
than the surrounding.By regularly taking photos from the side, for a few hours, we can
analyze the dynamics of the flow by tracing deformations of the line of color, and can
compute the velocities of the up- and down-welling as well as the wavelengths of the
occurring convection cells. These measures are established and for instance utilized by
Simmons [27].

In addition, the sand can be removed irreversibly from the system layer by layer to ana-

30
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lyze the salt concentration as a function of the horizontal and vertical position after stop-
ping the driving of the flow. This is done to analyze the salinity distribution within con-

vection cells for one specific point in time.

4.2. Experimental Results

In the following I present the experimental results from Jana Lasser which are later com-
pared to the numerical simulation. The method to visualize the flow of the saline water
in the cell is shown in figure Jana Lasser is able to measure the wavelength and the
front velocities of the occurring convection cells at half height as a function of the mean
evaporation rate Ey describing the vertical advective velocity in the porous medium.

By monitoring the water level in the reservoir over time Jana measures its dropping per
time vg4op. To calculate the evaporation rate I have to adjust the height of the dropped
water level with the ratio of the reservoir area over the surface area of the Hele-Shaw
cell. The latter is about 0.8 cm x 40 cm =~ 32 cm? and the ratio approximately area = 15.
Since the dropping water level corresponds to the superficial velocity q = ¢ v we have

Vdrop O
Ey = ~drop T2 The mass flow rate through the surface then is ¢ Ey.

For each experiment we take the images of the water level in the time period of 24 hours
before and after the coloring itself to compute the respective evaporation rate by linear
least-square fitting the water level. The coloring experiment itself have durations of about
4 hours — the time interval for determining the velocities. Based on this we get values for
the evaporation rate ranging from about 2 to 4 um/s. Some experiments do not have valid
evaporation measurements since the monitoring did not work properly. Since we only
have rough estimations they will be neglected for our comparison with the numerical
simulation.

In case that there is a salt crust on the surface while doing the coloring experiment it can
be assumed that the saturation at the surface is already reached. Since for some of the
experiments there is no crust on the surface at the time of the coloring so that we need to
estimate the density at the surface to compute the density difference Ap and the Rayleigh
number Ra o Ap. For that purpose we utilize the analytical solution of the transient in
section In dimensionless time (with T = D/ E%) we have a dimensionless saturation
time 75 = 13.2 for a background salt concentration of 2.5% used in the experiment.

Taylor estimated the velocity-dependent dispersion Dy; in [42] by

uZ 7,2 .
Dy=D (48P—ggces) ~ 0.03D < D 4.1)
M
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Figure 13: Wavelength A of convection cells as a function of the evaporation rate Eg of the experiment.

with molecular diffusion for sodium chloride in water D = 0.805 x 10~? m?/s at 25 °C
[43], the particle radius 7particles &~ 200 um the characteristic front velocity U ~ 5um/s.
Hence, the molecular diffusion dominates and I will not consider the velocity-dependent
dispersion.

Now, I compute the saturation time using the diffusion D = 0.805 x 1072 m?2/s. If the
coloring experiments take place later than 2ts I assume that saturation at the surface is
already reached and we have the maximal density difference Ap. The other coloring
experiments will not be considered for the validation of the numerical simulations since
the numerical model considers constant salt concentration at the top boundary. Now, 46
coloring experiments with either an emerged salt crust or t > 2t; remain. In the latter
cases the crust emerged in the following one or two days.

Using the side-view images of the cell (compare figure during the coloring Jana
Lasser quantified the wavelengths of the occurring convection rolls by measuring the dis-
tance of the maxima respective minima. This gives values between 5 and 12 cm. In figure
[13]I show the measured wavelengths for each experiment as a function of the evaporation
rate Ey. Here, no clear trend is visible. The increased density of the saline water with the
color will not have any direct effect on the wavelength.

Given her monitored images and tracking the fastest up- and downwelling fronts of the
occurring convection rolls Jana also measures the maximal front velocity. Over a time pe-
riod of severals hours the fronts typically move a few millimeters. Analyzing the spatial
shift of the colored line at half height we thus have a proxy for the velocity at half height,
since we assume that the front velocity does not vary significantly over a few millimeters.
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The typical front velocities ranges from 1.5 — 11 pm/s.

We have measurements of 16 coloring experiments with different colors, mostly blue.
Since the density of the colored salt water is slightly larger I expect a relative downwelling
trend of the velocities although it is not obvious weather this is dominating the overall
upwelling due to the evaporation. The mean value of the maximal up- and downwelling
front velocities as a function of the evaporation rate is shown in figure The value
should not be influenced of the density of the colored water since the larger density will
lead to a constant downwelling of the complete color line. Figure [15{shows the difference
of these values: vyp — Ugown for the maximal front velocities. The downwelling front
velocity is larger in most of the experiments. Although we have an overall upstream the
increased density and enhanced downwelling of the color front relative to the convection
itself may explain this.

Based on these measurements I check whether turbulence is of relevance for our problem.
For that purpose I estimate the Reynold number for flow in porous media based on the
work of Ergun [44, 45]. Using the particle radius 7particte ~ 200 pm, the density of wa-
ter p = 1 x 10°kg/m3, the characteristic front velocity U ~ 5 x 107°m/s, the porosity
¢ ~ 0.4 and the viscosity g = 1 x 103 kg/(ms) we have

_ PAparticle u

— P ~2.10% <« 1.
Ho (1— o)

Re
Since Ergun [44] observed a critical value of 3 — 10 it can be safely assumed that there is
no turbulence occurring in the experiments.
Later I will compare these results with the numerical simulation in order to check con-
sistency of the order of magnitude of the wavelength and the velocities as well as its
dependency of the Rayleigh number.
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Figure 14: Mean of the maximal up- and downwelling front speed — 5 as a function of the evapo-
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Figure 15: Difference of the maximal up- and downwelling front velocity vy — Ugown as a function of
the evaporation rate Ey. The downwelling velocity is larger in most coloring experiments (blue, red and
fluorescent).
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5. Double-periodic simulations

Before implementing the two-dimensional numerical model of convection in salt playa I
will reproduce the numerical work done by Rogerson and Meiburg in 1993 [17] in this
chapter. They accomplished two-dimensional, double-periodic numerical simulations of
the evolution of the interface for two miscible fluids with differing densities and viscosi-

ties in a porous medium under gravitational influence.

Considering the similarities of the approaches I reproduce their numerical work as a
preparatory work to the actual implementation of the numerical model of the salt playa
convection since it helps to validate the simpler spectral approach before applying pseudo-
spectral approaches to solve the Poisson equation in section [f|for our model of convection
in salt playa.

The dynamical behavior of the system, as well as the differential equations, are quite
similar to the system described in chapter |2/ as well as the utilized methods. The main
difference is that I have non-periodic boundary conditions in the y-direction in that sys-
tem while Rogerson utilizes periodic boundary conditions in both x- and y-direction. He
uses a spectral approach to solve the differential equations by transforming the differen-

tial equations to Fourier space, solve them and transform it back.

5.1. Implementation

Given is a two-dimensional system of size L x H in x- and y-direction. The length and
height are given by L and H. I introduce the dimensionless Peclet number Pe := H and
the aspect ratio A := L/H so that L = Pe A. Unlike Rogerson, who considers an angle 0
of the gravitation relative to 2, I assume that g || Z since I only consider the case 6 = /2
(compare [17]).

In figure [16]I display the basic flow configuration of the system: We have an overall flow
of U = 1 in the x-direction (dimensionless) and an initial interface between the two fluids
is parallel to the y-axis. The fluids themselves have velocities of V; and V; in y-direction
which is tangential to their initial interface. The distribution of the two fluids is described
by the concentration field c¢(x,y) with ¢ = 1 for the first fluid and ¢ = 0 for the second
fluid. The density and viscosity is concentration dependent and given by p(c) = eR (17
and p(c) = 5179 with dimensionless parameters R and S.

Analogous to Rogerson and Meiburg in [17] I consider a reference frame moving with

U = 1 in x-direction and average tangential velocity Vy = (V4 + V») in the y-direction
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Figure 16: Sketch of the flow configuration in the numerical simulations done by Rogerson and Meiburg
[17]. We have a concentration field ranging from ¢ = 1 (left) to ¢ = 0 (right). We have L = Pe A and
H = Pe and gravitation directed in z-direction. Sketch adapted from [17]].

and use the equations neglecting the dependency on 0:

V.-U=0, (5.1)
VP = —uU+ GpX, 5.2)

aC . 2
£+U'V0—Vc. 5.3)

The dimensionless parameter G corresponds to the ratio of the gravitational to the viscous
forces. In the left boundary I have the fluid 1 and at the right boundary fluid 2 with
their respective velocities. Hence, the boundary conditions in the x-direction are given
byc=1U=(0,V—Vy)atx =0andc =0,U = (0, —Vp)atx = L = PeA. In
y-direction I assume periodicity and thereby have U(x,0) = U(x,H).

For numerical analysis I use a stream function-vorticity formulation following Rogerson
and Meiburg [17]. For a two-dimensional and incompressible flow we can define the
Laplace stream function [18, 41, 46] ¢ (x,y,7) fulfilling the condition U = (3—15, —g—i). It
follows that the incompressibility is fulfilled by definition: V - U = 0. Instead we use the
vorticity w = (V x U), which fulfills the Poisson equation V2 = —w. This approach

allows one to simplify equation by eliminating the pressure dependency. As shown
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by Rogerson and Meiburg [17] the equations become

Vip = —w
w=—R[(Yx— Vo) cx+ (py +1) ¢y] +GSeS R,
Ct = =Py Cx + Pxcy + Cxx + Cyy,

with the derivatives of ¢ and ¢ in the x, y-directions as well as time 7. We now aim to

solve the Poisson equation using a purely spectral method.

I introduce a periodic extension in x-direction by reflecting the two-dimensional system
of size at x = L and compute the differential equations in the double-size system with a
length of 2 L. Now there are two interfaces and I can assume periodicity in both directions

and utilize a spectral method to solve the Poisson equation.

The numerical methods are outlined in [17) 47]]. The second interface of the two fluids
which is at x = 3L/2 is stable for R > 0 since the viscosity of the second fluid is larger.

We stop simulating before the developing fingers reach the second interface. I utilize the

2t m 21t n
1 and k, = 7S (mn € Z), for the

Fourier expansions with wavenumbers k;, =
e

concentration field c(x,y,7)

M/2-1 N/2-1 .
coyt)= Y. Y Guu(r)ebnxthny) (5.4)
m=—M/2n=—N/2

and analogous for i and w. I use the M x N grid points: x; = ]% and y; = l% for

il e IN? and j<M-—1,1 <N —1and introduce the functions |, K and L

J(x,y,T) = Py cx — Pxcy,
K(x,y,T) =GS e(S—R)(1-0) cy,

L(x,y,T) = pxcx + Py cy (5.5)
and their respective Fourier transformation. These functions represent the non-linear
terms in the differential equations and are computed in real space. Since the differential

equations are computed in Fourier space they have to be Fourier transformed. The equa-

tions of the vorticity, stream function and concentration fields, using J, K and L, in Fourier
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space are:

@m,n = —R (zm,n +1 (kn - km VO) f5111,11) + K\m,n/

~

~ Wm,n

Pon = 51
Rk

These equations are solved in Fourier space and the results transformed back into real
space to compute the derivatives of ¢ and ¢ and the nonlinear terms J,K and L with a stan-
dard central finite difference scheme of second-order. Then these fields are transformed
back into Fourier space for the next step. For computing the Fourier transformation in
each integration step I use a FFT algorithm.

The time-stepping is done by using a second-order, linear multi step Adams-Bashforth
method [47]. I use adaptive time steps utilizing the Courant-Friedrichs-Lewy condition
C= ”%XXAT < Cop[48] with a constant Cy = O(1) which is chosen as 0.1 to reach stability.
I compute the maximal velocity every tenth step and adjust At so that C = Cy = 0.1.

5.2. Validation

In the following I will present some examples of qualitative and quantitative results and
compare them to the work of Rogerson and Meiburg [17] in order to validate my imple-
mentation of the simulation. For that purpose I consider the behavior of small concen-
tration perturbations near the interface of the two fluids using the quantitative measures
of the growth rate ) of the amplitude Aq with Aq(T) « e©7. In addition to this I con-
sider the wavelength of fingers for early times. These measures are relevant to validate
the simulation of such systems for small deviations from the steady-state and will later
be used to validate the simulation of the salt playa convection patterns. In figure [17]1
display several snapshots of the relative concentration of fluid for a system with neither
buoyancy (S = 0) nor tangential velocities (V; = V> = 0). The instabilities are driven
by the viscosity contrast. The qualitative behavior of the development of the occurring
fingering structure is similar to that found by Rogerson and Meiburg, e.g. the coarsening
behavior [[17].

Tan and Homsy performed a linear stability analysis for such a system [49] and computed
the the characteristic wavelength of the occurring fingers at a given time. For the system
with H = Pe = 1000, R = 3, G = S = 0 at time T = 100 I get an average wavelength of
the fingers of A = Pe/Nfpger ~ 60.6 £ 0.8 (standard error when running the simulation

20 times). In the simulations I use white noise as initial condition of the concentration
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(a) T = 150. (b) T = 400. (c) T = 1000.

Figure 17: Concentration c (from ¢ = 0 (black) to c = 1 (white)) and for a system with Pe = 1000, R = 3,
G=5=0 V1=V, =0, A =2 for some exemplary time frames. We can clearly see the fingering pattern
in the horizontal direction.

near the interface with an amplitude 0.01. This result is consistent with the theoretically
predicted A ~ 61.3 as well as the numerical result of Rogerson and Meiburg A ~ 58.8 [17]
who performed this validation just once.

Next I compare the growth rates of small concentration perturbations in a system with
buoyancy (S > 0) and non-zero tangential velocities of the fluids. According to Rogerson
I utilize the following periodic concentration perturbation with amplitude v = 1073 in

y-direction, with wavenumber a = 27t/ Pe:

2
E(X,y,to) = —7 COs (a ]/) exp (_ (x xlzterface) )

The cosine-term represents the separated function of the perturbation in y-direction and
the exponential term the width of the perturbation in x-direction.

Following Rogerson and Meiburg I compute the root mean square (rms) of the deviation
of the concentration at each time in the area of size L x H relative to the concentration at
that time for the evolved system without perturbation. This gives the amplitude and the
logarithmic growth rates Q) (with Aq(7) « €¥%). I compute the same for the U-velocity
in x-direction. Furthermore, I compute the growth rates of the velocity perturbation for
constant time as a function of the wavenumber a. The comparison of my own results and
the results of Rogerson and Meiburg in [17] are shown in figure (18| (time-dependence) and

(wavenumber-dependence). The curves in both figures show very good agreement.
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Figure 18: Shown are the dimensionless growth rates, Q)(T) as a function of time for a system with R = 3,
S = =2, G = 1 and wavenumber a = 0.15. The black lines correspond to the results of Rogerson and
Meiburg in [17] whereby the central curve is the results from the theoretical linear stability analysis. The
upper curve is the numerical growth rate of the root mean square of a small concentration perturbation and
the bottom curve for the U-velocity in x-direction. The colored points represent results from my simulation.
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Figure 19: Shown are the growth rates Q)(a) of the velocity perturbation at dimensionless time T = 20 as a
function of wavenumber k for the same parameters as in figure[I8} The black dots corresponds to the results
of Rogerson in [|[17|] and the colored curves are results from my simulation: blue corresponds to shearing
Vi — Va| = 2(1 — e~ R) and red to the case without shear Vi = V, = 0.
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6. Implementation of the model

In the previous chapter [5| I reproduced the numerical work of Rogerson and Meiburg
[17]. In the following I present the methods used to implement a two-dimensional, finite-
difference model of the salt playa based on the non-dimensional equations given in (2.10),
and (2.12). I have a two-dimensional system with height H in the Z-direction and
length L in the X-direction and assume periodicity in the latter direction. I model the
system with saturation at the top boundary, p(Z = 0) = ps, and thereby S(Z = 0) = 1
for p; = ps using the definition of non-dimensional salinity (2.9).

Additionally I have background concentration at the bottom boundary p(Z = —H) = p,
and hence S(Z = —H) = 0.

Within the scope of my thesis I neglect the effect of varying viscosity and use u(S) = p(0).
Wooding argues that this assumption only alters the results to a minor degree [13]. Fur-
ther, I only account for molecular diffusion expressed with a scalar diffusion coefficient
D and do not consider any velocity or concentration dependent diffusion and dispersion.
Notwithstanding the known importance of velocity-induced dispersion in porous media
[42] many authors in the field, such as the references [17,19, 20, 47]] in like manner assume
a scalar diffusion constant. I follow [19, 20] in accounting for a scalar diffusion constant
only. In the experimental chapter @I showed that the velocity-dependent dispersion is
small relative to the molecular diffusion and thereby can be safely neglected for our sim-

ulation.

At the surface of the system (Z = 0) I have an imposed evaporation rate E(X) with
average (E(X))x = Ep driven by external forces such as heating. This corresponds to a
vertical velocity Uz(X,Z = 0) with average (Uz(X,Z = 0))x = —1. In the first part of
the investigation I use a uniform evaporation rate Uz (X,Z = 0) = —1. In the section [7.4]
I study a possible connection of the salt ridge patterns on the surface and the subsurface
convection cells by imposing a sinusoidal evaporation rate and analyzing the influence

of such variations.

Since I assume incompressibility we know that (Uz(X,Z))x = —1 for Z # 0. For rea-
sons of simplification I assume a uniform flow rate Uz (X,Z = —H) = —1 at the bottom
boundary. Assuming constant pressure may be more realistic and could be investigated
in subsequent work.

For the implementation I follow the numerical approach of Ruith and Meiburg [19]], Riaz
and Meiburg [20] as well as Chen [21] making use of a semi-spectral approach to solve the
Poisson equation, compact finite difference schemes of sixth-order to compute the deriva-

tives as well as an explicit third-order Runge-Kutta scheme for time stepping introduced
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by [23].

6.1. Differential equations

I use the following set of non-dimensional equations for a two-dimensional and planar

system

V- U(X,Z,1) =0,

aS(X,Y,T)
oT

U(X,Z,7) = —VP(X,Z,7) — RaS(X,Z,7) Z.

= —U(X,Z,1)-VS(X,Z7)+ V?S(X,Z,7), (6.1)

In case of uniform evaporation rate respectively vertical velocity at the top surface I have
Uz(X) = —1. Since I investigate variations in top evaporation rate I introduce the ana-
lytical function UY(X) which is 0 in the uniform case and represents the variations in the
boundary condition.

The vertical boundary conditions are the following:

top boundary Z = 0 ‘ bottom boundary Z = —H
5(X)=1 S(X)=0
Uz(X) = —1-U%X) Uz(X) = -1

Analogous to the preparatory work in chapter 5} I utilize a stream function-vorticity ap-
proach following [19, 20]. The Laplace stream function ¢(X,Z,7) only accounts for the
variations from the uniform base flow in vertical direction. The stream function ¢(X,Z,7)
and vorticity w(X,Z,T) corresponding to the curl in the third Y-direction satisfy

o W\ ,
U—a—ZX+< 1 a_x) 2,

w = (V xU)y.

With this approach the incompressibility condition is still satisfied since

9 I I

V-U=3Xoz oz azax %
The vorticity function satisfies the Poisson equation
Vi = —w. (6.2)
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Taking the curl of the Darcy law I can eliminate the pressure term, since V x V® = 0 for
arbitrary scalar fields ®, and get
(V x U(X,Z,7))y = (—V x VP(X,Z,T) — V x [Ra S(X,Z,7) Z} )Y
= w(X,Z,7) = dx [RaS(X,Z,7)] = Radx S(X,Z,7). (6.3)

Based on the new formulation of differential equations (6.2), (6.1) and we can calcu-
late the adapted boundary conditions for the stream function ¢ and the vorticity w. The

constant vertical flow for the boundaries transforms to

Uy(X,Z =0) = —1 — U(X) W = U%(X)  (64)
Uy(X,Z=—H)=—1 agu(x,gxz —H) _, (6.5)

Constant salinity in the horizontal direction corresponds to a vanishing vorticity w = 0
using (6.3).

Following Chen in [21] I split the velocity in two components. Imposing a vertical flow
rate Uz(X,Z = 0) = —1—UY%(X,Z = 0) at the top boundary I introduce a stream function
potential $°(X,Z) that is constant in time satisfying and (6.5). I now split the stream
function 1, the vorticity w and the velocity U in two components

W(X,2,7) = 9(X,Z,7) + v°(X,2),
w(X,Z,7) = &(X,Z,7) + (X, 2) = &(X,Z,7) + V' (X,2),

~ 0 ~ oy’ o oyl 4

U(X/Z/T) = U(X’Z’T) + U (X/Z) = U(X/Z/T) + e e —— Z
0Z 0X
with their respective analytical expressions for ¢°(X,Z), w°(X,Z) = and U°(X,Z). These
analytical functions represent the constant part of the solutions and are non-zero if the
evaporation rate does vary on the top boundary. Imposing a varying evaporation rate at
the surface can be done by using an analytical expressions for ¥°(X,Z). I then solve the
Poisson equation for ¢(X,Z,7) and @(X,Z,T).

The top boundary condition now reads (X,Z = 0) = const and analogous for the bot-
tom boundary Z = —H. I can set $(X,Z = 0) = 0 and then

~ ~H 3¢ “H __
¥(X,Z = —H) :/0 Wdzz/o Ux(X,Z)dZ.

Imposing an initial condition without a uniform vertical flow and boundaries not con-
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tributing horizontal momentum. Hence, $(X,Z = —H) = 0 due to momentum conser-

vation.

Collecting the modified differential equations I now have

@(X,Z,7) = Radx S(X,Z,7) — w°(X,2), (6.6)
V(X Z,1) = —@&(X,Z,7), (6.7)
e 0 e 0
U(X.Z,1) = <a¢(§éz,r) Lo £§,Z)> %+ <_ L alp(gc},(z,r) 9y ;}}?Z)> 5
(6.8)
% _ _U(X,Z,7)- VS(X,Z,7) + V2S(X,Z,7). 69)

with the boundary conditions satisfying

top boundary Z = 0 | bottom boundary Z = —H
S(X)=1 S(X)=0
w(X)=0 w(X)=0
$(X) =0 P(X) =0

Using I compute the steady-state of the salinity distribution S°(X,Z) fulfilling the
boundary conditions S(X,Z = 0) = 1and S(X,Z = —H) = 0 and get

e_Z €_H

1—eH 1_¢H

SUX,z) = (6.10)
In the numerical simulations I typically make use of this S°(X,Z) as initial condition.
Alternatively, to study the stability of convection cells, I start with an evolved convection
cell, as will be introduced in chapter

Following Riaz and Meiburg [20] I use the random initial salinity perturbations to trigger
a non-uniform dynamics by convolving a field of random numbers f(X,Z) uniformly
distributed in [—1,1], an amplitude of v and an exponential kernel with a width of o,
typically chosen as ¢ = 3, to avoid grid artifacts in the derivatives:

~ _X2472

Srandom(XrZ) = ')’f(X/Z) xe o (6.11)

The implementation details of the time-stepping, the calculation of derivatives as well as
solving the Poisson equation using a semi-spectral approach are described in the follow-

ing sections.
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6.2. Compact finite difference schemes

To compute the first- and second derivatives of S(X,Z) and ¥(X,Z) in the differential
equations I make use of sixth order compact finite difference schemes, an implicit method
[22, 50]. In the X-direction I utilize periodic boundary conditions and in the Z-direction
I have Dirichlet boundary conditions. In comparison to the standard finite difference
schemes the compact finite difference schemes allows for higher order accuracy and sta-
bility. Particularly for the Dirichlet boundary conditions accuracy is of the same high or-
der at the boundaries, which is important since since the accuracy there is crucial for the
stability of a numerical simulation. The generalized approach is introduced by Lele [22]
and Tyler [50]. Tyler [50] computed high order scheme for the first and second derivatives
for interior as well as boundary grid points.
A standard centered finite difference schemes for a first order derivative is
/ i+1 — Ji-1

=Bt
for a function f at the discrete points x; = h-i,i € Nand 0 < i < N —1, and grid
spacing h. Using a Taylor expansion of the function f around x; one can compute the
local truncation error and gets O (h?). [50]
Lele [22] generalized the form of the compact finite difference scheme for first order

derivatives for an interior grid point i at x;

: L, fiej — fi
/ fl Sy i
fz"']g"‘] (fz+]+fz—]> Zl j 2ih
with constants « and a which need to be determined depending of the stencil size /, and
[, as well as the desired order of the scheme [22].

According to [S0] we have for a second derivative with stencil size [g and I,

+Z:31<f+1+ > bezﬂ zf;ljfz

For periodic boundary conditions in x-direction these linear equations can be computed
for every grid point since fy = f1. In case of Dirichlet boundary conditions at the top and

bottom of the system we need to utilize non-symmetric schemes such as

I Iy
fo+ Y ifi= % (,Z%ﬁ)
j=1 j=1
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Table 2: Coefficients for sixth compact finite difference schemes used in the numerical simulations.
Coefficents for first derivatives f'.

‘ X0 L5 ‘ a1 an as ay as e
interior 1/3 | 14/9 1/9
node0 | 5 197/60 -5/12 5 =5/3 5/12 —-1/20

nodel [ 3/4 1/8 | —43/96 -5/6 9/8 1/6 —1/96

Coefficents for second derivatives f".

| B B | W by b3 by bs be
interior | 12/97 —-1/194 | 120/7
boundary | 11/12 -131/4|177/16 -507/8 783/8 —201/4 81/16 —3/8

and analogous for second derivatives as well as grid points near the boundary. The con-
stants a; and a; have to be determined for the boundaries separately. Tyler calculated the
respective constants for different orders (up to O(h'%)) and boundaries in [50].

If we have N grid points x; = hi,0 <i < N — 1, we have N linear differential equations

WhiCh can be subsumed to matrices by
left rlght = left rlght

with the inverted left-hand matrix Al;flt which is possible since the determinant is non-
zero. If the matrices remain unchanged during the simulation the matrix Q := A, flt Aright
may be computed before the integration of differential equations and used in each time
step to compute the derivatives. To compute the derivative of a two-dimensional field,
e.g. P(X,Z), I can use this matrix to compute it by one simple matrix multiplication. [50]
To implement a Dirichlet boundary condition £, I utilize the approach presented by Car-
penter [51] by computing Q. := Al;fltfbC for the respective boundary values and add this
constant vector to adjust the derivative f() for the boundaries.

In table 2] present the coefficients for sixth order compact finite difference schemes which
I used in the numerical simulations for computing the first and second derivatives. The

values are obtained by Tyler in [50].

6.3. Pseudo-spectral method

In the following I will present a pseudo-spectral Fourier-Galerkin method to solve the
Poisson equation in two dimensions with periodicity in one direction. The approach

is described in [19-21} 52]. The advantage is that such pseudo-spectral methods are com-
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putationally efficient since one only has to compute Matrix multiplications as well as the
Fast Fourier Transform algorithm.

In X-direction I employ a Fourier expansion assuming M x N grid points x,, = m Ax and
Yn = n Az with grid spacing Axand Azand0<m <M —-1,0<n < N -1

_ M/2-1 o k
P (Xmyn) = M Y. telyn)e L (6.12)
k=—M/2

with Fourier coefficients i, , and an analogous expansion for wy, . I use the respective

backward Fourier transformations to transform the fields from Fourier to real space.
I utilize a compact finite difference scheme for the second order derivative in Z-direction

with the left- and right-hand matrices A) . and AY

Toft right respectively, satisfying

A F'(X,Z) = AJgn F(X,2) (6.13)

for a scalar field F(X,Z).

After Fourier transform the Poisson equation may be written as
Ixx P(X,2) + 372 9(X,Z) = —@(X,2).

Following [20] I now compute the X-derivative analytically using the Fourier expansion
(6.12) and the Z-derivative by the compact finite difference scheme (6.13):

M/2-1 N _, Xmk M1 | i mk
Y. | @xx+9zz2) Yr(yn)e Ll=- ) |@lyn)e L
k=—M/2 k=—M/2

Since the equation holds for every k for the Fourier expansion I get

dx x ﬂ(yn) +aZZ{/’;(yn) = —wi(Yn),

—27ik\? ~ — _
= < Lm ) Yk(Yn) + 92z Yx(yn) = —Wik(yn),

27tk \ 2 ~ —~ _
= _A?eft (T) ll]k(y”) + A?ight lpk(yn) = _A?eft wk(yn)

-1
— 27k 2 —
= Pe(yn) = — <_A?eft (T) +A91ght> Al @k (Yn)-
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Hence, we have a k-dependent two-dimensional matrix to compute the Poisson equation
in each time-step which can be implemented adjusting the parameters in the described
compact finite difference scheme. By applying a backward Fourier transformation on
¥r(yn) we get the stream function ¢ (x,,,y).

6.4. Time-stepping

In this section I describe the realization of each integration step. For the time-stepping of
the salinity equation I follow Ruith and Riaz [19, 20] by utilizing an explicit multi-
step, third-order Runge-Kutta scheme introduced by Wray [23] with time step AT.
Following [19} 20] I write equation as

and introduce the three steps for k € {1,2,3}

k k— k=
51(/],) — sl(/]. D4 At [zxk F(Ui,jfsl( D

i)+ Bk F(Ui,jls(kfz))} ,

i,j

(3)

with S 1((;) the salinity from the former time-step and S; j the final salinity using the coeffi-

cients:

0 =8/15| wp=5/12 | a3=3/4
Bi=0 |py=-17/60 | ps=—5/12

In every time-step I compute the vorticity w using (6.6), then solve the Poisson equation
using the described pseudo-spectral method by transforming the vorticity w into
Fourier space and computing the stream function and transform it back. I make use of the
Fast Fourier Transform algorithm. By applying the compact finite difference schemes to
compute the derivatives as well as the analytical derivatives of ¥°(X,Z) I then compute
the velocity in real space using equation (6.8). Finally I use the described Runge-Kutta
method to compute the evolution of the salinity distribution S(X,Y,7). (Compare [19-21,
53])

The grid size is chosen so that AX and AY are in order ((0.02) to reduce computation
time while being small enough to represent the occurring characteristic length scales.
The time steps AT are computed using the Courant-Friedrichs-Lewy condition [48]

umax AT < CO-

C= —max2t
AX =
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The condition Cy for stability is of order O(1) and chosen to be 0.1 which leads to stable
systems. Here, I use the highest occurring velocity in the system Umax which is com-
puted every 10 time steps. The validation of the code is done by computing the growth
rates for small periodic perturbations and comparing the numerical simulations with the

theoretical analysis in section[3} This is described in the subsequent section.

6.5. Validation of growth rates
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Figure 20: Figuredisplays the basic initial salinity perturbation which is added to the steady-state. In
figure 206 to 20d] I show the amplitude A of that mode as a function of time for the height H = 12, the
wavenumber a = 1.7637 and different Rayleigh numbers, as well as a linear fit of the exponential regime to
get the growth rate in the exponential regime.

In the following I will present a validation of the implementation of the model for peri-
odic perturbations of small amplitude using the semi-analytical linear stability analysis
shown in section |3, This approach to validate the implementation, by comparing the
growth rates for small perturbations with theory is widely used as for instance in
53]. As we are interested in the instability of the system under perturbations, which
is expected to drive the pattern formation on the surface, validation of the growth rates
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Figure 21: Comparison of theoretical and numerical growth rates () as a function of the wavenumber
a — a. (adjusted for critical wavenumber) for the height H = 12 and different Rayleigh numbers Ra for a
top boundary condition of uniform vertical velocity Uyz. The black squares represent the numerical results
and the curves the theoretical values computed in chapter

in the simulation seems like a good choice. I will compare the theoretical and numerical
dependency of the growth rates of the wavenumber a for small perturbations of salin-
ity added to the exponential steady-state solution of the finite system with width L and
height H. Assuming S = 1 at the top boundary (Z = 0) as well as a uniform evapora-
tion rate E = Ep and S = 0 at the bottom boundary (Z = —H) I utilize the steady-state
solution of equation and the salinity perturbation

= e — e

S(X,Z)=—vZ (w) cos (2ra X)
shown in figure 7 is the amplitude of the perturbation and chosen to be 1 - 10~° that
it is small enough to be linear and large enough to avoid floating errors. It is a periodic
cosine function in horizontal X-direction. The vertical dependence of the perturbation is
chosen arbitrary but consistent with the Dirichlet boundary conditions and similar to the

most unstable modes in the linear stability analysis exemplary shown in figure

The height of the two-dimensional system is constant, H = 12, which is large enough
that the resulting growth rates are no function of height. I checked this by computing the
growth rates for H = 16 as well and got the same result with relative deviations of order
10~°. The horizontal length L is L = 27t/a, which corresponds one wavelength. Since the
system is periodic in the X-direction and I have no random perturbations I do not need

to choose a larger system.
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In figure to 20d] I display the amplitude An(7) of the perturbations as a function
of the time for systems of different Rayleigh number Ra. To compute the amplitude I
determine the maxima and minima of the sinusoidal perturbation. Using Aq(T) o« 7 I
can measure the growth rate of the perturbations. Hereby I have to consider the following
difficulties: When the amplitude is too small the discretization may influence the slope,
as shown in figure in some cases the amplitude does have a transient, as for instance
in figure where the amplitude is increasing first and then decreasing exponentially.
This may be an effect of the transient behavior of the vertical perturbation dependence;
Finally, if the amplitude is increasing and reaches order an of 1, non-linear effects are
becoming important as shown in figure

The resulting growth rates and the comparison with the analytical results from chapter
are shown in figure There is a nearly perfect coincidence with a relative error in
the order of magnitude of 10-2 — 10~3. Hence, the implementation is validated for small

amplitudes and further investigations are expected to give reasonable results.
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7. Results from numerical simulation

In the following chapter I investigate the dynamics of saline-gradient driven convection
in a two-dimensional, finite system utilizing the numerical simulation of the previous
chapter. The aim of the simulations is to simulate the quasi two-dimensional experimen-
tal systems in Hele Shaw cells because numerical simulation allows one to investigate the
parameter space more systematically and analyze connection between surface structures

and subsurface flow dynamics.

For that purpose I firstly analyze the development of the system in the steady-state given
in equation (6.10). If the density difference of the top and bottom boundary Ap is large
enough and thereby the Rayleigh number Ra is larger than the critical Rayleigh number
Ra. the system is not stable and I expect downwelling fingers of higher salt concentration
respectively salinity [13]. I use the numerical simulation to investigate the wavelength
and the front velocities as a function of the Rayleigh number of the system for early
times. I expect the wavelength of the fingers to be in the same order of magnitude as
the most unstable mode calculated in the linear stability analysis 3| since the wavelength
with largest growth rate for small perturbations will dominate the early time behavior.
The fingers will coarsen and thereby increase the wavelength until convection cells as a
dynamic equilibrium will develop. I show the exemplary qualitative development from

the steady state to convection cells.

Since the time scale from the setup of the Hele-Shaw cell until the salt concentration near
the surface reaches saturation — which is the precondition for the considered coloring
experiments — is much larger than the time scale of the advection in the experiments
itself we assume that convection cells are already developed. Additionally the qualitative
behavior of the visualized flow in the Hele-Shaw cells shows characteristics of convection

cells since it exhibits similar up- ad well as down-welling regimes.

Hence, we primarily care for the flow properties of the convection cells in the system and
need to establish measures to compare the numerical simulation with the experimental
data. Since the velocity and the wavelength of the convection cells in the experiments is
taken at half height we investigate those measures in the simulation as well. I compute the
regime of wavelengths [A;i, Amax| for which the convection cells in the two-dimensional
system are stable. Due to wrong approximations which we have done initially I investi-
gated the wrong regime of the finite system height H. Hence, further study are necessary
for a robust validation of the numerical simulation with experimental data, but prelimi-

nary results can be shown.

To investigate the real-world salt playa we need to study whether the subsurface con-
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vection cells and their wavelength is robust for changing external conditions such as
temperature and humidity changes. Hence, the analysis of the stable regime of already
developed convection cells is important for the understanding of their behavior.

Finally I present some preliminary results regarding the connection of the salt ridges to
the surface and the subsurface dynamics. For that purpose I analyze whether variation
in the evaporation rate at the top boundary does have an influence on the convective
behavior and pins the convection cells and the surface patterns. Such pinning is crucial
for our hypothesis that convection cells play a major role in the development of the salt
ridge patterns. In the surroundings of the salt ridges the salt crust is patchy and cracked
while we observe a thick and continuous salt crust in the shallow interstice of the patterns.
The evaporation rate is larger for the patchy regions because the salt crust acts as a wick to
increase evaporative surface while the crusty region blocks the evaporation as shown by
Eloukabi [9]. If the upwelling regime of the convection cells occurs below the salt ridges
pinning would compensate for spatial deferrals of the convection cells due to external
conditions. Without pinning and with spatial shifts of the convection cells the formation
of the salt ridges might not occur.

7.1. Fingering behaviour

The aim of this section is to analyze the fingering behavior for early times. Fingering is
a well-known phenomenon occurring for instabilities between two miscible fluids [17] or
buoyancy driven instabilities for our system [13] as well as the coarsening of the occurring
fingers.

In figure 22| 1 display an exemplary development of the finite system in the numerical
simulation from the steady-state to the emergence of convection cells.

We observe an initial instability for the time T = 0.1 and the emergence of fingers for
T = 0.2, their coarsening for T = 0.4 as well as the development of convection cells for
later times.

Since I aim to analyze the qualitative early time behavior of the fingering I am interested
in the wavelengths and the velocities of the occurring fingers as a function of the instabil-
ity parameter — the Rayleigh number Ra.

For that purpose I analyze a system of height H = 8 and large horizontal length L ~ 40
in X-direction and use the steady-state given in equation as initial condition. I
impose random white noise according to equation with an amplitude v = 0.01
onto the steady-state and analyze the development for different Rayleigh numbers by
introducing the following measure: I let the system evolve until one of the fingers reaches
the height Z = —2 — the salinity maximum at Z = —2 exceeds the threshold of 0.5.
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Figure 22: Qualitative development of the salinity from steady-state for early times with a Rayleigh number
Ra = 200. For this simulation I impose random white noise according to equation (6.11) with amplitude
v = 0.01.

Then I take the horizontal profile of the vertical velocities at the height Z = —1 and
determine the number of maxima to compute the wavelength and take the velocities in its
maxima and minima to get the mean front velocities. In figure[23a]I display an exemplary
concentration profile at the time when the threshold is exceeded. In figure is the
respective profile of the vertical velocities.

In figure 241 display the neutral stability curve, the most unstable mode from the lin-
ear stability analysis in chapter 3| and the wavenumber of the fingers as a function of
the Rayleigh number Ra. This allows us to compare the spacing of the fingers with the
wavenumber of the fastest growing perturbation. The latter is only valid for small scale
perturbations. In accordance with my expectation the wavenumber of the fingers in early
times are matching the linear stability analysis. For Ra < Ra, the steady-state is stable
and hence no fingers occur.

In figure 25/ I present the the velocity dependence at the height Y = —1 of the Rayleigh
number Ra. For that purpose I compute the mean average front velocities in up- as well as
down-welling directions. The downwelling front velocities are significantly larger than

the upwelling velocities since we analyze the early-time behavior of the down-welling
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01 2 3 45 6 7 8
(@) Salinity profile for Ra = 200. (b) Vertical velocity Uz (X) at Z = —1.

Figure 23: Fingering for a system with Rayleigh number Ra = 200 at the time T = 0.128. shows the
vertical velocity profile at a specific height Z = —1. This state fulfills the condition that at least one of the
fingers reached the height Z = —2.

tingering. When plotting the vertical front velocities Uz divided by the relative Rayleigh
number Ra — Ra, in figure 26|the numerical values fluctuate around a constant value. If I
divide the velocities by the Rayleigh number Ra the adjusted velocities will significantly
drop for small Rayleigh numbers.
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Figure 24: neutral stability curve and most unstable mode from the theoretical linear stability analysis in
chapter 3| and the wavenumber a of the occurring fingers as a function of the Rayleigh number Ra. The
wavenumber is determined at height Z = —1 when the salinity exceeds the threshold of 0.5 at Z = —2 as

shown in figure
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Figure 25: Vertical front velocities Uy of the early-time fingering for the up- and down-welling direction
as a function of Rayleigh number Ra. The velocities are determined at height Z = —1 when the salinity
exceeds the threshold of 0.5 at Z = —2 (compare figure[23).
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7.2. Investigation of convection cells

In this section I present first results of the numerical simulation of convection cells in
the two-dimensional system. Since we have experimental measures regarding the wave-
length of the occurring convection cells as well as the maximal front velocities at half
height I consider these measures for my numerical study, too. In this preliminary study I
do not focus on the influence of the height of the system which is an important question
for subsequent work with the numerical simulations.

For our hypothesis for the real-world system the connection between the salt ridges on
the surface and the subsurface convection cells is crucial. Hence, the number of convec-
tion cells in the system needs to be robust against small changes of external conditions
such as the evaporation rate. I investigate the wavelength regime for which a specific
number of convection cells in a finite system of length with periodic boundary conditions
in horizontal directions is stationary. Within this regime changes of external conditions
will not necessarily change the number of convection cells.

For that purpose I simulate a system of height H and length L with N stationary convec-
tion cells as in figure [27] as initial condition and let the system evolve in time to check
after a time of T = 20 whether the convection cells stay stationary and the number of
convection cells does not change.

By simulating the stationary convection cells for different lengths L of the system, differ-
ent Rayleigh numbers Ra and number of convection cells I can compute the wavelength
regime [Ayin, Amax] for stationary convection cells. These regimes are shown in figure
For a given length L different number of convection cells N can be stationary so that
changes of external conditions are not necessarily changing the convective behavior qual-
itatively and the system shows hysteresis behavior.

For larger Rayleigh number Ra the wavelength of convection cells is decreasing as well as
the width of the stationary regime [Ai;;, Amax]. The lower limit depends on the number N
of stationary convection cells. For N = 1 the number of cells cannot reduce but the system
slows down more and more when reducing the length. For a larger number of cells there
may be a transition to N — 1 stationary cells. The respective change in wavelength is
smaller for larger N. Further investigations of the stationary regime for large N and large
heights H are important.

In figure 29 I present the vertical front velocity of the convection cells at half height as a
function of the wavelength for different Rayleigh numbers Ra. The front velocities are in-
creasing from 0 for smaller wavelengths and after reaching a maximum slowly decaying
for larger wavelengths until the convection cells are not stationary anymore. The small

velocity regime only occurs for N = 1 since A,,;, is larger for N > 1. We observe a slow-
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Figure 27: Exemplary convection cells for a Rayleigh number of Ra = 200. The convection cells are used as
initial condition for systems of different lengths L and Rayleigh numbers Ra to investigate the wavelength
regime [Ayin, Amax] for which the convection cells stays stationary as well as the front velocities of the
convection cells.

down of the stationary convection cell when reducing the wavelength until it approaches
the exponential steady-state of the system.

Since the front velocity for larger wavelengths in this regime is nearly constant I choose
the maximal value of those velocities as a function of Rayleigh number Ra to compare
these values with the experimental results. The results are shown in figure 30|
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Figure 28: Shown are the minimal and maximal wavelengths A, and Ay for which a convection cell
as initial conditions stays stationary as a function of the Rayleigh number Ra. For that purpose I used N
convection cells in figure[27|as initial condition for a height of H = 8 and different lengths L of the cell, let
it develop for T = 10 and investigate the stability of the convection cells by checking whether the number
of maxima at all heights stays N. I scanned the parameter space and computed the minimal and maximal

wavelength regime of stability.
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Figure 29: Shown is the vertical front velocity Uz at half height of stable convection cells as a function of
the wavelength A for different Rayleigh numbers Ra within the stable regime [Ayin, Amax). For that purpose
I used an initial condition with one convection cell because those stay stable for smaller wavelengths. The

velocity dependence for other N is equivalent.
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Figure 30: Shown is the maximum of the curves in ﬁgureas a function of the Rayleigh number Ra.
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7.3. Comparision with experimental data

In this section I present the comparison of the experimental data from chapter 4 with
the results from the numerical simulation because this is crucial for validating the sim-
ulation. The simulation aims to simulate the two-dimensional experiment and I use the
wavelength of convection cells as well as their front velocities at half height for compari-
son.

Firstly, I have to convert the experimental data to non-dimensional units. For that pur-
pose I need estimations for the physical constants.

The molecular diffusion constant D for sodium chloride in water at 25 °C is approxi-
mately D = 0.805 x 102 m?/s [43]. As stated above in section the dispersion can
safely be neglected. Since our length scale is L = EBO and the evaporation rate Ey is 0.2
to 4um/s we have unit lengths of order 0.2 to 4 mm. With heights of the sand of about
15 cm this results in dimensionless heights H ~ 40 to 750 which is much larger than the
height regimes I considered in the first numerical study of convection cells in the former

section. Nevertheless I will compare the experimental data which should be interpreted

cautiously. The time scale T = 2 then ranges from 50 to 20 x 10%s.

0
To compute the Rayleigh number using equation (2.13))

Ra = Apgr
¢ Eo po
I estimate Ap for systems with saturated salt water at the top and background salt concen-
25gsalt
1 kg water
get Ap ~ 178kg/m?>. The permeability is x ~ (1.67 & 0.12) x 10~ m? [39] and the vis-
cosity ug for 25 °C for fresh water is yig ~ 1 x 1073 kg/(ms). [35]. Using these values the

tration ¢, = at the bottom boundary condition by using the relation (2.8) and

Rayleigh numbers range from 20 to 600 while the evaporation rate is the only changing
parameter for our experimental data since the other constants are not modified.

The advective velocity of the convection is non-dimensionalized by using the evaporation
rate E.

Firstly I compare the experimental data with the theoretical neutral stability curve from
the linear stability analysis in chapter 3| The results are plotted in figure 29, In contradic-
tion to the expectation many experimental data points are outside of the neutral stability
curve in the stable regime. Hence, there is need to investigate this divergence from theory.
In figure 32]1 compare the experimental data for the wavelengths of the convection cells
with the stable wavelength regime from the numerical simulation. The experimental data

are not within this stable regime and there even is a deviation of one order of magnitude.
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Figure 31: Shown is the neutral stability curve from theoretical linear stability analysis as well as the
wavenumber a of the occurring convection cells in the experiment in dimensionless units for different
Rayleigh numbers Ra..

Since I investigated a height regime of H = O(10) in the simulation while H = O(500) in
the experiments further investigation may help to match the experimental data and the
simulation.

In figure B3]1 show that the vertical front velocities of the convection cells is in the same
order of magnitude and having the same trend for increasing Rayleigh numbers although
some of the experimental data points are outliers.

All things considered more investigation of the simulations for larger dimensionless heights

is needed to validate the simulation with the experimental data.
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Figure 32: Shown is the experimental wavelength of the occurring convection cells in dimensionless units
as well as the stationary wavelength regime Ay, Amax] from the simulation for H = 8 (too small).
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Figure 33: Shown is the vertical front velocity of the convection cells in the experiment as well as the

numerical results for a height of H = 8 as shown in figure[30}
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7 Results from numerical simulation

7.4. Investigation of pinning behaviour

In this section I will use the numerical model to study the connection of the salt ridges and
the subsurface convection. Our hypothesis claims that the salt ridges causes an increase
of evaporation rate because the surface is more patchy there while the evaporation in the
regions between the salt ridges is partially blocked. We further claim that these variations
of evaporation rates are pinning the subsurface convection cells. The upwelling regimes
of the convection cells are expected to match the maxima of evaporation.

For that purpose I will use a simplified model of those variations by imposing a sinusoidal
variation of the evaporation rate E(X) at the surface with E(X) = 1+ A cos (a, X) with
amplitude A and wavenumber a;,. Besides the bottom boundary condition is set to have
constant vertical flux E(X) = 1. In figure 34/ I plot the exemplary evaporation at the
surface. I present a preliminary study of the pinning effect to investigate whether the
effect is relevant.
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Figure 34: Shown is the variation of the evaporation rate E(X) = 1+ A cos (ap X) at the surface for the
study of pinning in this section. The shape is sinusoidal with an amplitude of A and a wavenumber a,.

According to the equations to for the implementation of the system I have to
define an analytical function ¢°(X,Z) causing the specific boundary conditions. I define

¥(X,Z) := %sin (ap, X+ ¢0) [% cos (N—HZ> + %] : (7.1)

with a phase shift of ¢g and a vertical component decreasing from 1 at Z = 0 to 0 at

Z = —H. This ensures the sinusoidal top and uniform bottom boundary condition for
the vertical velocity. Using this definition I need to compute wy(X,Z) and Up(X,Z) ana-
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lytically based on definition (7.1)
wy(X,Z) = —V*y°(X,2),

Am . . wZ A .
0521 (-4l 30 (55). 001

Using these boundary conditions I can investigate the pinning behavior for a sinusoidal
evaporation rate.

Firstly I investigate the behavior for a convection cell developing from steady-state. I use
the steady-state with random-noise of amplitude oy = 0.01 and let the system evolve for a
specific time so that a stationary convection cell develops. I determine the relative phase
of the upwelling regime and the upwelling region of the evaporation itself. In figure 351

display the results.
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Figure 35: Relative phase of upwelling of developing convection cell to the maximum in evaporation rate
E(X) as a function of its amplitude A with E(X) = —1 — cos (a, X) as well as theoretical expectation
for equipartition for N convection cells and a system size H = 6 and L = 2.4 N because in that case the
convection cells are stationary. The simulation time is T = 3 and the Rayleigh number is Ra = 200. In the
diagram I plot the mean as well as the standard deviation after running the simulation 100 times.

We see that for larger amplitudes the standard deviation of the relative phase A¢ is de-
creasing while its mean is A¢ ~ 0. Hence, I can state that we observe pinning. The
upwelling regimes of evaporation rate and convection matches while larger amplitudes
enhance the pinning effect as expected.

Secondly I investigate stationary convection cell as initial condition with a phase ¢, rel-

ative to an imposed evaporation rate. This aims to analyze the evolution of the relative
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phase of time. In figure 361 show the time development of the relative phase for some
exemplary systems.
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Figure 36: Time development of the relative phase ¢ of the upwelling of a convection cell at half height to
the maximum in evaporation rate E(X) for different Rayleigh numbers Ra, initial phase ¢po and amplitudes
A of the evaporation rate E(X) = 14 A cos (a, X). I use convection cells and evaporation rate variations
with the same wavenumber a, = a. A phase of 0.5 corresponds to an upwelling regime directly below the
minima of the evaporation rate and 0 corresponds to an upwelling regime matching the maxima.

It can be seen that for all cases the relative phase is approaching 0 but the time the equili-
bration takes depends on the amplitude of the evaporation rate variations as well as the
Rayleigh number. To investigate the pinning efficiency as a function of Rayleigh number
Ra and amplitude A I use an initial relative phase of 0.5 which corresponds to an up-
welling regime of the convection cells below the minima of the evaporation rate. Then I
simulate until the relative phase undercuts the threshold 0.02. This time (7p,02) as a func-
tion of Rayleigh number is shown in figure

The time to undercut the threshold 1y, increases for larger Rayleigh number and de-
creases for larger amplitudes A. Hence, the pinning efficiency increases for larger ampli-
tudes as expected.

Finally I investigate whether the wavelength regime of stationary convection cells as de-
scribed in the previous section is changing if one imposes an amplitude A > 0 to the
evaporation rate variations E(X). The results are shown in figure

The wavelength regime [Ay, Amax| is not changing drastically and A,y is slightly de-
creasing for Ra = 200 if the mean evaporation rate is constant. This suggests that the

stability of convection cells is not increasing for sinusoidal evaporation rate variations.
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Figure 37: Shown is the pinning efficiency as a function of Rayleigh number for different amplitudes A. I
use the measure that the relative phase undercut the threshold 0.02 using an initial phase of 0.5 and a height

of H=28.

This preliminary study shows that the pinning is a relevant effect and variations in evap-
oration rate may constitute a relevant factor in connecting the salt ridges and the subsur-

face convection and pinning the convection cells.
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Figure 38: Shown is the wavelength regime [Ayin, Amax| with stationary convection cells for Ra = 200,
N = 3 cells, a height H = 8 as a function of evaporation rate amplitude A. The wavenumber a is the same

for the evaporation and the convection cells. For Ra = 100 I only computed A,iy,.
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8. Summary

The aim of this thesis is to broaden the understanding of the development of polygonal
salt ridge patterns in salt playa. For that purpose I focus on the theoretical investigation
of the linear stability as well as implementing a two-dimensional numerical model to

simulate respective two-dimensional experiments.

In chapter 2| I firstly sketch the derivation of the differential equation governing the
advection-diffusion dynamics of saline water in porous media. Besides the advection-
diffusion equation, non-compressibility, the Darcy Law is describing the momentum con-
servation of fluids in porous media. I present a salinity formulation of the differential
equations and introduce a Non-dimensionalization of differential equations. Using the
Boussinesq approximation and neglecting variations of the viscosity and the velocity-
dependent dispersion I reduce the physical constants to one dimensionless parameter Ra

— the Rayleigh number.

I consider a porous medium saturated with saline water with a uniform evaporation at
the surface. This causes an increasing salt concentration near the surface and once sat-
uration is reached there salt is accumulating and precipitating at the surface. Based on
this I present an analytical solution of the transient from a constant background salinity
to the steady state with saturated water at the top boundary to estimate the time to reach
saturation.

The major theoretical result in chapter 3| of this thesis is the expansion of the linear stabil-
ity analysis of Wooding, Homsy and van Dujin in [14-16|] for small salinity perturbations
with a horizontal wavenumber of a. Using a semi-analytical approach I am able to com-
pute the neutral stability curves in parameter space Ra, a and particularly the critical
points Rac, a. for different top boundary conditions based on the approach of Wooding.
The semi-analytical results are consistent with the results of Wooding and van Dujin. In
addition to their work I compute the growth rate () for different Rayleigh numbers as a
function of the wavenumber and hence compute the most unstable wavenumber a(Ra).
This result helps to estimate the wavelength of early time perturbations from steady-state.

In chapter ]I present the results of the Hele-Shaw-geometry experiments conducted by
Jana Lasser. I use quantities measured in these experiments to try and validate the results
of my simulation later on. She measured the wavelength of the occurring convection cells

as well as the front velocities as a function of the evaporation rate.

As a preparatory work for the numerical implementation of the two-dimensional salt
playa model I firstly reproduce the numerical work of Rogerson and Meiburg in [17]

in chapter 5| In contrast to our model they use double-periodic boundary conditions.
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For those the computation of the Poisson equation can be done using a purely spectral
method. To check the consistency of my implementation I compare the results quali-
tatively as well as quantitatively by using different measures such as the characteristic
wavelength of occurring fingers and the growth rate of small perturbations. The wave-
length is consistent with the most unstable mode compute in the linear stability analysis
while the ratio of the front velocities and Ra — Ra. are constant.

In chapter [6|I present the methods for the implementation of the actual two-dimensional
model of salt-gradient driven convection in salt playa. I implement a system with con-
stant evaporation rate at the top boundary as well as sinusoidal evaporation rate varia-
tions. I use a stream function-vorticity approach to simplify the equations and eliminate
the pressure term. To compute the derivatives I use compact finite difference schemes
of 6th order and I use a pseudo-spectral approach following [19-21] to solve the Pois-
son equation. I utilize an explicit multi-step, third-order Runge-Kutta scheme following
[23]. By applying the theoretical results from the linear stability analysis I validate the
implementation of the numerical simulation.

Utilizing this implementation I investigate the two-dimensional system in chapter [/} 1
analyze the wavelength as well as the front velocities of early time fingering behavior
and compare the results with the most unstable mode from the theoretical analysis. The
wavelengths are matching. Secondly I compute the regime of wavelengths in which sta-
tionary convection cells are stable as well as the front velocity at half height to validate
the simulation with the non-dimensionalize experimental data. I analyze not the same
regime for the height H regime as in experiments. Further investigation of the convection
in regimes of larger heights H may help to explain the mismatch between experimen-
tal and numerical results. Besides it may be of interest to consider differential equations
without neglecting the viscosity variations. Furthermore it is an open question why the

experimental data are not all lying in the unstable regime of the linear stability diagram.

I use the properties of the real-world system and estimate the Rayleigh number in real
world salt playa: The particle size is similar — based on measurements by Jana Lasse in
the Death Valley and Owens Lake — and hence the permeability is in the same order of
magnitude. Since the other physical constants are equivalent and the evaporation rate
is much smaller in order of Eg ~ 1 — 6 x 10719m/s [1] the Rayleigh number is in order
of Ra ~ 6000 — 36000. Since this Rayleigh number is much larger than the Rayleigh
numbers in the experiments and the results of my numerical simulation I cannot give
a robust estimation of length scales of the occurring subsurface convection cells in real
world salt-playa.

The major result of the numerical simulations is the study of the subsurface convection
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and the surface salt ridge patterns. Imposing sinusoidal evaporation rate variations I
am able to show that the convection cells are pinned by such variations. I quantify the
pinning efficiency as a function of Rayleigh number and amplitude of the variations.
Hence, the patterns may pin the convection cells in real world salt playa if the surface
patterns causes variations in the evaporation rate. This result makes our hypothesis for
the driving mechanism of the salt polygon formulation more plausible, since the feedback

mechanism is a crucial part of the hypothesis.
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