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NONEQUILIBRIUM DMFT FOR THE
HOLSTEIN MODEL

In this section we present the nonequilibrium DMFT
setup for the Holstein model. Apart from the symmetry
breaking, the formalism is analogous to what has been
explained in Ref. [1]. We therefore only state the equa-
tions, and do not provide a detailed derivation.

In DMFT, the Holstein model [see Eq. (5) of the main
text] is mapped to a set of Anderson-Holstein impurity
models (one for each inequivalent lattice site), with action

S =− i
∑
σ

∫
C

dt
[√

2gX (c†σcσ − 1
2 ) +

ω0

2
(X2 + P 2)

]
− i
∑
σ

∫
C

dt1dt2 c
†
σ(t1)∆(t1, t2)cσ(t2) (1)

on the Keldysh time-contour C. (For an introduction
to nonequilibrium DMFT and to the Keldysh formalism,
see Ref. [2]). In Eq. (1), the first term is the local part
of the lattice Hamiltonian, which involves the coupling
of the electrons at the impurity site to the coordinate
X = (b† + b)/

√
2 of the local oscillator, and ∆(t1, t2)

is the hybridization function, which is determined self-
consistently below.

The impurity model is solved using the self-consistent
Migdal approximation [1], where also the vibrational
mode evolves as a consequence of the interaction with the
electrons. In the symmetry broken phase, the coordinate
X acquires a nonzero expectation value. The expecta-
tion value is determined by the exact equation of motion
d2

dt2 〈X(t)〉 = −ω2
0〈X(t)〉+F (t), with the time-dependent

force F (t)

F (t) =
√

2g
∑
σ

(
〈c†σ(t)cσ(t)〉 − 0.5

)
. (2)

In turn, there is a time-local (Hartree) contribution to the
electronic self-energy, i.e., a self-consistent on-site poten-
tial,

hloc(t) = −
√

2g〈X(t)〉. (3)

Furthermore, we include the leading order self-consistent
diagrammatic corrections in the expansion in terms of
the fluctuations X̃ = X−〈X(t)〉. The second-order elec-
tronic self-energy is

Σ(t, t′) = ig2G(t, t′)D(t, t′), (4)

where

D(t, t′) = −2i〈TCX̃(t)X̃(t′)〉. (5)

(We consider the spin-symmetric phase and omit spin
indices Σσ and Gσ.) With this, the Dyson equation for
the electronic Green’s function reads(

i∂t + µ− hloc
)
G(t, t′)−(

∆(t, t′) + Σ(t, t′)
)
∗G(t, t′) = δC(t, t′).

(6)

To include the back-action of the electrons on the
phonons on the same diagrammatic level, we include the
phonon self-energy (polarization operator)

P (t, t′) = −2ig2G(t, t′)G(t′, t), (7)

and solve the phonon Dyson equation in the form(
1−D0(t, t′) ∗ P (t, t′)

)
∗D(t, t′) = D0(t, t′). (8)

Here D0(t, t′) is the non-interacting phonon propagator,

D0(t, t′) =− i
[
2 cos(ω0(t− t′)bβ + θC(t′, t)eiω0(t−t′)

+ θC(t, t′)e−iω0(t−t′)], (9)

where bβ = 1/(eβω0 − 1) is the Bose function.
In the present case of a two-sublattice symmetry bro-

ken phase, we have two inequivalent impurity models (1),
which represent sites on the a and b sublattice, i.e., all
quantities, G, ∆, hloc, 〈X(t)〉, Σ, P , will additionally
depend on the sublattice a, b. For the particle-hole sym-
metric case, we have 〈X(t)〉a = −〈X(t)〉b. We use a
bipartitle lattice with a semielliptic density of states, in
which the DMFT self-consistency is given by [2]

∆a(t, t′) = v(t)Gb(t, t
′)v(t′), (10)

∆b(t, t
′) = v(t)Ga(t, t′)v(t′), (11)
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where v(t) is the time-dependent profile of the hopping
amplitude. This closes DMFT equations.

Optical conductivity: The main quantity of interest in
this work is the current correlation function C(t, t′) =
〈j(t)j(t′)〉, and the optical susceptibility δ〈j(t)〉/A(t′),
which characterizes the long-wavelength current (q → 0)
in response to an applied time-dependent vector po-
tential A(t). Since the current operator is given by
j = −δH/δA, the latter response function is given by
χR(t, t′) = iθ(t, t′)〈[j(t), j(t′)]〉. (For simplicity of nota-
tion, we are omitting cartesian components x, y, z.)

The current-current correlation function is obtained
from the lattice Green’s function by direct generalization
of the expressions presented in Ref. [3]. Both response
and correlation function are obtained from the contour-
ordered current-current correlation function,

χ(t, t′) = i〈TCj(t)j(t′)〉. (12)

which is defined as the response of the current to an arbi-
trary variation of the vector potential along the Keldysh
contour,

δ〈j(t)〉 =

∫
C

dt̄ χ(t, t̄)δA(t̄), (13)

omitting a diamagnetic contribution which is time-local
and thus irrelevant for the discussion of the dynamic
properties discussed in this paper. Current fluctuations
are given by the greater and lesser component, χ>(t, t′) ≡
χ(t−, t

′
+) = i〈j(t)j(t′)〉 and χ<(t, t′) ≡ χ(t+, t

′
−) =

i〈j(t′)j(t)〉 (t± is on the upper/lower branch of the
Keldysh contour), and χR(t, t′) = θ(t, t′)(χ>(t, t′) −
χ<(t, t′).

In the symmetry broken phase, the lattice has a unit
cell with two sites a, b, and a reduced Brilluoin zone
(RBZ). We introduce the spinor,

ψ̂k =

(
ck,a
ck,b

)
, (14)

and the momentum-dependent Green’s function
Gk then becomes a 2 × 2 matrix, Ĝk(t, t′) =

−i〈TC ψ̂k(t)ψ̂†k(t′)〉. The hopping term takes the

form Hhop =
∑
k ψ̂
†
kεk−Aσ̂1ψ̂k, with the Pauli matrix

σ̂1;
∑
k is a sum over the reduced Brillouin zone (RBZ).

The vector potential is added by the Peierls substitution
εk → εk−A, so that the current j = −δH/δA is given by

〈j(t)〉 = −2i
∑

k∈RBZ

tr
[
vk−Aσ̂1Ĝk(t+, t−)

]
, (15)

where vk = ∂kεk is the band velocity, and the factor 2 is
for spin. Following Ref. [3], we take the variation δA(t′),
using that vertex corrections to the current correlation
function vanish in DMFT. This gives the susceptibility
(evaluated at A = 0),

χ(t, t′) = 2i
∑

k∈RBZ

v2
k tr
[
σ̂1Ĝk(t+, t

′)σ̂1Gk(t′, t−)
]
, (16)

which is the usual bubble diagram of the Green’s func-
tions.

In DMFT (and when we consider only a modulation
of the hopping amplitude, as in the manuscript), Ĝk de-
pends on k only via the dispersion εk, i.e., Ĝk(t, t′) ≡
Ĝεk(t, t′). In the particle-hole symmetric case on a bi-
partite lattice, the RBZ corresponds to positive values
of εk. The momentum sum can then be represented by
integrals ∑

k∈RBZ

f(εk) =

∫ ∞
0

ρ(ε)f(ε), (17)

∑
k∈RBZ

v2
kf(εk) =

∫ ∞
0

D(ε)f(ε), (18)

where ρ and D depend on the lattice. We assume a
semi-elliptic density of states ρ(ε) =

√
4− ε2, and the

corresponding form for D(ε) as defined in Ref. [3]. The
lattice Green’s function is evaluated on a grid of mo-
mentum points, solving the Dyson equation Ĝεk(t, t′) =

(i∂t + µ− ĥ(t)− Σ̂(t, t′))−1, where ĥ and Σ̂ in the {a,b}
basis are

ĥ(t) =

(
gXa(t) εk(t)
εk(t) gXb(t)

)
, (19)

Σ̂(t, t′) =

(
Σa(t, t′) 0

0 Σb(t, t
′)

)
, (20)

with the sublattice-dependent Σa,b and 〈X〉a,b.

DERIVATION THE REFLECTIVITY
FLUCTAUTIONS

In this section we present explicit steps of the fluctu-
ation expansion leading from the general expression for
the moments In of the photon-count [main text, Eq. (2)]
to the variance of the intensity [main text, Eq. (1)]. We
start from the expression for In,which was been derived
by Fleischhauer [4, 5],

I1 =

∫
d1d1′d1̄d1̄′ D11′g(1, 1̄)g(1′, 1̄′)〈j(1̄)j(1̄′)〉, (21)

I2 =

∫
d1d1′d2d2′d1̄d1̄′d2̄d2̄′ D11′D22′g(1, 1̄)g(1′, 1̄′)

× g(2, 2̄)g(2′, 2̄′)〈Tτ̄ [j(1̄)j(2̄)]Tτ [j(1̄′)j(2̄′)]〉. (22)

Here

D1,1′ = εδ(r1 −R)δ(r′1 −R)

∫ ∞
0

dω e−iω(t1−t′1) (23)

is the detector response function, and g is the linear ker-
nel which relates the induced field Eind and the current
j by a solution of Maxwell equations,

Eind(1) =

∫
d1̄g(1, 1̄)j(1̄). (24)
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In Eq. (21) and (22), we insert the expansion j(1) =
〈j(1)〉+δj(1). Terms which are first order in δj vanish by
construction, because 〈δj〉 = 0. Zeroth order terms are
identical in I2 and I2

1 , and thus vanish in the variance I2−
I2
1 . Third and fourth order terms, such as Eq. (22) where

the correlation function in the integrand is replaced by
〈Tτ̄ [δj(1̄)δj(2̄)]δj(1̄′)〉〈j(2̄′)〉, are not considered here as
explained in the main text, because they scale differently
with the sample volume. To second order in δj, Eq. (22)
has six terms, where the current correlation function in
the integral takes one of the following combinations

〈Tτ̄ [δj(1̄)δj(2̄)]〉〈j(1̄′)〉〈j(2̄′)〉, 〈δj(1̄)δj(2̄′)〉〈j(1̄′)〉〈j(2̄)〉,
〈δj(2̄)δj(1̄′)〉〈j(1̄)〉〈j(2̄′)〉, 〈Tτ [δj(1̄′)δj(2̄′)]〉〈j(1̄)〉〈j(2̄)〉,
〈δj(1̄)δj(1̄′)〉〈j(2̄)〉〈j(2̄′)〉, 〈δj(2̄)δj(2̄′)〉〈j(1̄)〉〈j(1̄′)〉.

(25)

Here the time-ordering operator can be dropped
whenever it acts on c-numbers 〈j〉, such as for
the second term, 〈Tτ̄ [δj(1̄)〈j(2̄)〉]Tτ [δj(2̄′)〈j(1̄′)〉]〉 =
〈δj(1̄′)δj(2̄)〉〈j(1̄)〉〈j(2̄′)〉. Of the six terms in Eq. (25),
the last two are cancelled by corresponding terms in the
expansion of I2

1 . For the remaining four, one can evalu-
ate integrals in (22) which correspond to a contraction of
the current expectation values 〈j〉 with D,

∫
d1̄d1 D1,1′g(1, 1̄)〈j(1̄)〉

= εδ(r′1 −R)

∫
d1Eind(1) δ(r1 −R)

∫ ∞
0

dω e−iω(t1−t′1)

= δ(r′1 −R)

∫ ∞
0

dω e−iω(t1−t′1)Eind(R, t1)

≡ εδ(r′1 −R)E−(t′1), (26)

using Eqs. (23) and (24) in the first step. Similarly,

∫
d1̄′d1′ D1,1′g(1′, 1̄′)〈j(1̄′)〉

= εδ(r1 −R)

∫
d1Eind(1

′) δ(r′1 −R)

∫ ∞
0

dω e−iω(t1−t′1)

= δ(r1 −R)

∫ ∞
0

dω e−iω(t1−t′1)Eind(R, t
′
1)

≡ εδ(r1 −R)E+(t), (27)

Inserting Eqs. (25), (26), and (27) into Eqs. (22) and (21)

we get

I2 − I2
1 =

=ε2
∫
d1d2d1̄d2̄ g(1, 1̄)g(2, 2̄) ×

× 〈Tτ̄ [δj(1̄)δj(2̄)]〉δ(r1 −R)E+(t1)δ(r2 −R)E+(t2)

+ ε2
∫
d1d2′d1̄d2̄′ g(1, 1̄)g(2′, 2̄′) ×

× 〈δj(1̄)δj(2̄′)〉δ(r1 −R)E+(t1)δ(r′2 −R)E−(t′2)

+ ε2
∫
d1′d2d1̄′d2̄ g(1′, 1̄′)g(2, 2̄) ×

× 〈δj(2̄)δj(1̄′)〉δ(r′1 −R)E−(t′1)δ(r2 −R)E+(t2)

+ ε2
∫
d1′d2′d1̄′d2̄′ g(1′, 1̄′)g(2′, 2̄′) ×

× 〈Tτ [δj(1̄′)δj(2̄′)]〉δ(r′1 −R)E−(t′1)δ(r′2 −R)E−(t′2).

=ε2
∫
dt1dt2〈Tτ̄ [δj(R, t1)δj(R, t2)]〉retE+(t1)E+(t2)

+ ε2
∫
dt1dt

′
2〈δj(R, t1)δj(R, t′2)〉retE+(t1)E−(t′2)

+ ε2
∫
dt′1dt2〈δj(R, t2)δj(R, t′1)〉retE−(t′1)E+(t2)

+ ε2
∫
dt′1dt

′
2〈Tτ [δj(R, t′1)δj(R, t′2)]〉retE−(t′1)E−(t′2).

=2ε2Re

∫
dtdt′〈Tτ̄ [δj(R, t)δj(R, t′)]〉retE+(t)E+(t′)

+ 2ε2
∫
dtdt′〈δj(R, t)δj(R, t′)〉retE+(t)E−(t′). (28)

In the main text the first term is not discussed because it
would vanish by averaging over a carrier envelope phase
ϕ (E± ∼ e∓iϕ). The remaining term is Eq. (1) of the
main text.

ELECTRONIC OCCUPATION

To visualize more clearly how the electronic occupation
and distribution function change during the oscillation,
in Fig. 1a we plot the electronic occupation N(tp, ω) and
spectral function A(tp, ω) for two pump-probe delays at
the minimum and maximum of the oscillation of 〈X〉.
Fig. 1b shows their ratio. As can be seen, when 〈X〉
is at its minimum and the atoms are the closest to the
undistorted position, the distribution function closely re-
sembles the Fermi-Dirac distribution. When 〈X〉 is max-
imum and the gap is revived after one period of the oscil-
lation, the distribution function departs from the quasi-
thermal thermal state.
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FIG. 1. a) Electronic occupation N(tp, ω) (solid) and spectral
function A(tp, ω) (dashed) for pump-probe delays tp = 52, 76
(black and yellow, respectively), i.e. at the minimum and
maximum 〈X〉 in the oscillation. b) Ratio N(tp, ω)/A(tp, ω)
for the two tp as in panel a.

EXPERIMENTAL SET-UP

The measurements reported in Fig. 3 of the main text
have been performed with the set-up described by Espos-
ito et al. [6]. In order to cancel classical fluctuations in
the incoming light, a balanced differential detector has
been used to measure ∆R

R and (∆m)2. The probe beam
is split in two. One of the resulting beams interacts with
the sample, while the other is used as the reference for
the balanced differential measurement. Due to extrinsic

contributions to the noise in the measurement produced
in the balanced scheme, the absolute amplitude of the
modulation of the variance should not be considered as
relevant.

Fig. 3 of the main text shows the total (∆m)2 =
σ[I]+ 〈m〉, while Fig. 2b shows C(tp, ω), which gives rise
only to the contribution σbulk to σ[I] (see Eq. 3 of the
main text). They should be compared considering the
fact that (∆m)2 (Fig. 3) contains, in addition to σbulk,
a shot-noise-like term proportional to the probe pulse in-
tensity and, hence, to ∆R

R . The relevant information con-
tained in Fig. 3 is the deviation of (∆m)2 from the simple
shot-noise-like behavior, i.e. from a rescaled ∆R

R . Such
deviation occurs, as predicted by the result of the numer-
ical calculation (inset of Fig. 2b in the main text), after
one period of the oscillation. Note that ∆R

R ∝ −〈X〉.
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