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We propose a solution to the problem of Bloch electrons in a homogeneous magnetic field by including
the quantum fluctuations of the photon field. A generalized quantum electrodynamical (QED)-Bloch
theory from first principles is presented. In the limit of vanishing quantum fluctuations, we recover the
standard results of solid-state physics: the fractal spectrum of the Hofstadter butterfly. As a further
application, we show how the well-known Landau physics is modified by the photon field and that Landau
polaritons emerge. This shows that our QED-Bloch theory does not only allow us to capture the physics of
solid-state systems in homogeneous magnetic fields but also novel features that appear at the interface of
condensed matter physics and quantum optics.
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Cavity quantum electrodynamical (QED) materials are a
growing research field bridging quantum optics [1,2],
polaritonic chemistry [3–7], and materials science, such
as new light-induced states of matter achieved with
classical laser fields [8,9]. Photon-matter interactions have
recently been suggested to modify electronic properties of
solids, like superconductivity and electron-phonon cou-
pling [10–14]. On the other hand, materials in classical
magnetic fields are known to give rise to several novel
phenomena like the Landau levels [15], the integer [16,17]
and the fractional quantum Hall effects [18], and the
Hofstadter butterfly [19], which can be now accessed
experimentally with high resolution [20–22]. An open
question in this field is whether Bloch theory is applicable
for solids in the presence of a homogeneous magnetic field,
which breaks translational symmetry. This issue was solved
partially by introducing the magnetic translation group that,
however, puts fundamental limitations on the allowed
strength of the magnetic field because it permits only
rational fluxes through the unit cell [17,23,24].
In this Letter, by combiningQEDwith solid-state physics,

we provide a consistent and comprehensive theory for solids
interacting with homogeneous electromagnetic fields, both
classical and quantum, in which a magnetic field of arbitrary
strength can be treated nonperturbatively. Ourmain findings
are as follows: (i) The quantum fluctuations of the electro-
magnetic field allow us to restore translational symmetry
that is broken due to an external homogeneous magnetic
field (see Fig. 1). (ii) We generalize Bloch theory and
provide a Bloch central equation for solids in the presence of
a homogeneousmagnetic field and its quantum fluctuations.
(iii) Applying our framework for a 2D solid in a
perpendicular homogeneous magnetic field, in the limit
of no quantum fluctuations, we recover the Hofstadter

butterfly (see Fig. 2). (iv) For a 2D electron gas in a cavity
and under the influence of a perpendicular homogeneous
magnetic field, we find Landau polaritons [25–27]. The
spectrum of the Landau polaritons (in atomic units) is

Ej;kw ¼ k2w=2M þ Ωðjþ 1=2Þ: ð1Þ

FIG. 1. Here, Aext breaks periodicity along y of an otherwise
periodic material in the ðx; yÞ plane with lattice constant ay.

Including the quantized field Â proportional to the photonic
coordinate u, we obtain the total vector potential Âtot ¼ ÂþAext,
which is constant in the polaritonic direction w, which makes the
system periodic along w with lattice constant

ffiffiffi
2

p
ωcay, where

ωc ¼ eB=me. Thus, when embedding the ðx; yÞ plane into the
higher-dimensional space involving the coordinate u, periodicity
gets restored; whereas in the electronic subspace, the system is
aperiodic.
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The frequency of the upper polariton isΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ ω2

p

q
and

depends on the cyclotron frequency ωc ¼ eB=me and the
local electron densityne viaωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=meϵ0

p
. The kinetic

energy k2w=2M corresponds to the lower polariton (see
Fig. 3) and will be explained in what follows.
Translational symmetry with homogeneous magnetic

fields.—Nonrelativistic QED describes electrons minimally
coupled to the electromagnetic field: both classical and
quantum. For the description of the photon field, we follow
the standard procedure of assuming a finite box of volume
V [1,2,28]. In the usual case of a solid, the volume V does
not constitute a physical quantity. In this case, the local
electron density ne ¼ N=V is the quantity to work with
because the volume V and the number of electrons N tend
to infinity in such a way that ne is constant. On the other
hand, if we consider a solid confined in a cavity, the mode
volume determines the coupling of the cavity modes to the
electrons [2–6] and the volume becomes a physical
quantity. Our starting point in both cases is the Pauli-
Fierz Hamiltonian in the single mode limit [1,2,28,29]

Ĥ ¼
XN
j¼1

�
1

2me
ðiℏ∇j þ eÂðrjÞ þ eAextðrjÞÞ2 þ vextðrjÞ

�

þ 1

4πϵ0

XN
j<k

e2

jrj − rkj
þ ℏω

�
â†âþ 1

2

�
: ð2Þ

Here, AextðrÞ is an external vector potential. Being inter-
ested in the case of a homogeneous magnetic field, we
choose AextðrÞ in the Landau gauge of AextðrÞ ¼ −exBy
[15], which gives rise to a constant magnetic field in the z
direction: Bext ¼ ∇ ×AextðrÞ ¼ ezB.

Moreover, ÂðrÞ is the quantized vector potential of the
electromagnetic field in the Coulomb gauge [28]

ÂðrÞ ¼
�

ℏ
ϵ0V

�
1=2 ϵffiffiffiffiffiffi

2ω
p ½âeiκ·r þ â†e−iκ·r�: ð3Þ

Here, κ is the wave vector, ω ¼ cjκj is the frequency, and ϵ
is the transversal polarization vector [1,2,28]. The annihi-
lation and creation operators in terms of the displacement
coordinates q and their conjugate momenta ∂q ¼ ∂=∂q are

â ¼ ðqþ ∂qÞ=
ffiffiffi
2

p
and â† ¼ ðq − ∂qÞ=

ffiffiffi
2

p
. The quantized

field in our theory captures the backreaction of matter to the
electromagnetic field. For that purpose, we choose the
quantized field and the external field to have the same
polarization: ϵ ¼ ex. Such backreactions are essential in
solid-state physics, e.g., in the semiclassical microscopic-
macroscopic connection that determines the induced fields
inside a material [30–32]. In cavity QED, these back-
reactions get enhanced by cavity confinement; in this case,
the quantized field models the influence of the cav-
ity modes.
In Bloch theory [33], the external potential is assumed

periodic: vextðrÞ ¼ vextðrþRnÞ, where Rn is a Bravais
lattice vector. To analyze conveniently the external vector
potential, we choose the lattice vectors Rn ¼
naxex þmayey þ lazez. Having a periodic external poten-
tial and a uniform magnetic field, one would expect a
periodic solution using Bloch theory. Yet, it is obvious that
AextðrÞ breaks translational symmetry because it is linear in
y. The quantized vector potential [Eq. (3)] is not invariant
under the translation r → rþRn either. As a consequence,
the Pauli-Fierz Hamiltonian [Eq. (2)] is not periodic and
Bloch’s theorem is not applicable.
We propose that the problem of broken translational

symmetry can be resolved in the optical limit. Therein, the

FIG. 2. Energy spectrum of a 2D solid in a perpendicular
homogeneous magnetic field as a function of the inverse relative
flux Φ0=Φ ¼ ℏ=eBaxay.

FIG. 3. Upper (red line) and lower (blue line) polaritonic
excitations of Eq. (1) as a function of the strength of the magnetic
field B (in tesla). The upper polariton (UP) asymptotically
reaches the dispersion of the cyclotron transition ωc ¼ eB=m�
(orange dashed line). The lower polariton (LP) does not reach the
empty cavity frequency ωcav [27].
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quantized vector potential is assumed uniform and has no
spatial dependence; as a consequence, Â ¼ exq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ϵ0Vω

p
.

But, what exactly does the optical limit mean for a solid?
The optical limit is valid when the wavelength of the
electromagnetic field is much larger than the size of the
electronic system. But, solids compared to the size of an
atom are infinitely large systems: especially in Bloch
theory, where full periodicity is assumed. This implies
that, in the optical limit, the wavelength of the field should
be infinite and the frequency should tend to zero. Naively
taking ω → 0 in Â seems to lead to divergencies in Eq. (3).
However, if the limit is performed consistently by taking
into account the backreaction of matter due to the square of
the vector potential, no divergencies arise.
To that end, we isolate the purely photonic part of Ĥ,

which includes the bare photon mode ω plus the square of
the vector potential Ĥp ¼ ℏωðâ†âþ 1=2Þ þ Â2Ne2=2me.
In terms of the photonic coordinate q and its momentum
∂q, it is Ĥp ¼ ℏω=2ð−∂2

q þ q2Þ þ q2Ne2ℏ=2meωϵ0V.
Introducing the dressed frequency, ω̃2 ¼ ω2 þ ω2

p and

the coordinate u ¼ q
ffiffiffiffiffiffiffiffiffi
ω̃=ω

p
, Ĥp takes the form Ĥp ¼

ℏω̃=2ð−∂2
u þ u2Þ, where the frequency ωp depends on the

electron density ne and is given by ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=meϵ0

p
. The

frequency ωp is a diamagnetic shift induced by the
collective coupling of the electrons to the transversal
photon field [29,34,35]. The vector potential as a function
of u is Â ¼ uex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ϵ0Vω̃

p
. In the optical limit, the dressed

frequency ω̃ goes to ωp and, substituting Ĥp and Â back
into Eq. (2), we obtain the Hamiltonian in the optical limit

Ĥopt ¼
XN
j¼1

�
−

ℏ2

2me
∇2

j þ
iℏe
me

ðÂþAextðrjÞÞ ·∇jþvextðrjÞ
�

þ 1

4πϵ0

XN
j<k

e2

jrj− rkj
þ e2

2me

XN
j¼1

ðÂþAextðrjÞÞ2

−
ℏωp

2
∂2
u: ð4Þ

The quantized vector potential in the optical limit is
Â ¼ exu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ϵ0Vωp

p
. For a periodic potential, Ĥopt is still

not periodic in the electronic coordinates becauseAextðrÞ is
linear in y. But, the optical Hamiltonian Ĥopt is periodic
under the generalized translation

ðrj; uÞ →
�
rj þRn; uþ Bmay

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0Vωp=ℏ

q �
: ð5Þ

This proves our claim that, in the optical limit, the broken
translational symmetry caused by the homogeneous mag-
netic field gets restored (see Fig. 1).
QED-Bloch theory with homogeneous magnetic fields.—

Having restored translational symmetry, we can derive a
Bloch central equation for solids in homogeneous magnetic

fields. Instead of expressing the unfeasible many-
electron interacting problem of Eq. (4), we will employ
the independent electron approximation, which resembles
the usual approach of density-functional theory (DFT).
Such an approach is consistent with Bloch theory, which is
not a theory of one electron in a periodic potential but of
many noninteracting electrons. Thus, to account for the
collective coupling of the electrons to the photon field, we
use an effective electron density to capture the backreaction
correctly. Any further exchange and correlation effects
would need the inclusion of effective fields as introduced in
quantum electrodynamical DFT [6,36]. Introducing the
cyclotron frequency, the Hamiltonian of Eq. (4) in the
independent electron approximation is

Ĥopt¼−
ℏ2

2me
∇2þ iℏex

�
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωp=me

q
−yωc

�
·∇

þvextðrÞþ
me

2

�
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωp=me

q
−yωc

�
2
−
ℏωp

2
∂2
u: ð6Þ

The Hamiltonian Ĥopt of Eq. (6) is invariant under the
following translation:

ðr; uÞ →
�
rþRn; uþmayωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=ℏωp

q �
ð7Þ

that acts on both the electronic and photonic coordinates.
We switch now to atomic units. To describe properly this
symmetry, we define a set of polaritonic coordinates

v ¼
ffiffiffiffiffiffi
ωp

p u − ωcyffiffiffi
2

p ; w ¼ mp
ffiffiffiffiffiffi
ωp

p uþmcωcyffiffiffi
2

p
M

: ð8Þ

Here, the mass parameters are mp ¼ 1=ω2
p, mc ¼ 1=ω2

c,
and M ¼ ðmp þmcÞ=2. In this coordinate system, Ĥopt

becomes

Ĥopt ¼ −ð∂2
x þ ∂2

z þ ∂2
w=MÞ=2þ i

ffiffiffi
2

p
v∂x

þ vextðrÞ − Ω2∂2
v=4þ v2 ð9Þ

with Ω2¼1=mcþ1=mp¼ω2
cþω2

p and r ¼ ðx; w= ffiffiffi
2

p
ωc−

mpv=
ffiffiffi
2

p
Mωc; zÞ. The coordinates v and w are independent

because the respective momenta and positions commute.
The Hamiltonian Ĥopt includes a harmonic oscillator Ĥv ¼
−Ω2∂2

v=4þ v2 that has the Hermite functions ϕjðvÞ as
eigenstates, and its spectrum is Ej ¼ Ωðjþ 1=2Þ. It can be
written equivalently in terms of annihilation and creation
operators Ĥv ¼ Ωðb̂†b̂þ 1

2
Þ, b̂ ¼ v=

ffiffiffiffi
Ω

p þ ffiffiffiffi
Ω

p ∂v=2, and

b̂† ¼ v=
ffiffiffiffi
Ω

p
−

ffiffiffiffi
Ω

p ∂v=2. The Hamiltonian Ĥopt is invariant

under the translation ðx; w; zÞ → ðxþ nax; wþ ffiffiffi
2

p
ωcmay;

zþ lazÞ, implying we can use Bloch’s theorem in ðx; w; zÞ.
Thus, the eigenfunctions of Ĥopt can be written with the
ansatz
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Ψkðrw; vÞ ¼ eik·rwUkðrw; vÞ: ð10Þ

where rw ¼ ðx; w; zÞ. Here, Ukðrw; vÞ is periodic along
rw ¼ ðx; w; zÞ with periodicities ax,

ffiffiffi
2

p
ωcay, and az,

respectively. One important aspect of our Bloch ansatz is
that it is a polaritonic Bloch ansatz because w is a combined
coordinate. The crystal momentum k ¼ ðkx; kw; kzÞ corre-
sponds to rw, and kw is a polaritonic quantum number. The
polaritonic unit cell in the w direction scales linearly with
the strength of the magnetic field (see Fig. 1). The same
feature appears also for the magnetic unit cell but allows
only field strengths, which generate a rational magnetic
flux through a unit cell [17]. On the contrary, the polaritonic
unit cell puts no restrictions on the allowed magnetic
strengths.
Because the function Ukðrw; vÞ is periodic in rw, we

expand it in a Fourier series in rw. For the v coordinate, we
use the eigenfunctions of Ĥv. Thus,

Ψkðrw; vÞ ¼ eik·rw
X
n;j

Uk
n;je

iGn·rwϕjðvÞ; ð11Þ

where Gn ¼ ðGx
n; Gw

m;G
z
l Þ ¼ 2πðn=ax;m=

ffiffiffi
2

p
ωcay; l=azÞ

is the reciprocal lattice vector. The external potential is
also expanded in Fourier series

vextðrÞ ¼
X
n

VneiGn·rwe−iG
w
mmpv=M: ð12Þ

Substituting Eqs. (11) and (12) into Eq. (9), acting from the
left with hϕij, and eliminating the plane waves, we obtain

�ðkx þ Gx
nÞ2

2
þ ðkw þGw

mÞ2
2M

þ ðkz þ Gz
l Þ2

2
þ Ei − Ek

�
Uk

n;i

−
ffiffiffi
2

p
ðkx þ Gx

nÞ
X
j

hϕijvjϕjiUk
n;j

þ
X
j

X
n0

Vn−n0Uk
n0;jhϕije−iG

w
m−m0mpv=Mjϕji ¼ 0: ð13Þ

Using the Hermite recursion relations, we find for the
matrix hϕijvjϕji ¼

ffiffiffiffi
Ω

p ½ ffiffi
j

p
δi;j−1 þ

ffiffiffiffiffiffiffiffiffiffiffi
jþ 1

p
δi;jþ1�=2. The

exponential in Eq. (13) can be written as a displacement
operator using b̂ and b̂†,

e−iG
w
m−m0mpv=M ¼ eαmm0 b̂−α�

mm0 b̂
† ¼ D̂ðαmm0 Þ ð14Þ

where αmm0 ¼ −iGw
m−m0mp

ffiffiffiffi
Ω

p
=2M. The matrix represen-

tation of D̂ðαmm0 Þ in the basis fϕiðvÞg is [37]

hϕijD̂ðαmm0 Þjϕji ¼
ffiffiffiffi
j!
i!

r
αi−jmm0e−ðjαmm0 j2=2ÞLði−jÞ

j ðjαmm0 j2Þ;
ð15Þ

where i ≥ j and Lði−jÞ
j ðjαmm0 j2Þ are Laguerre polynomials.

Using Eq. (15) and the expression for hϕijvjϕji, we obtain
the generalized Bloch central equation

�ðkx þGx
nÞ2

2
þ ðkw þGw

mÞ2
2M

þ ðkz þGz
l Þ2

2
þ Ei − Ek

�
Uk

n;i

−
ðkx þGx

nÞ
ffiffiffiffi
Ω

p
ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffiffiffi
iþ 1

p
Uk

n;iþ1 þ
ffiffi
i

p
Uk

n;i−1�

þ
X
n0;j

Vn−n0Uk
n0;j

ffiffiffiffi
j!
i!

r
αi−jmm0e−ðjαmm0 j2=2ÞLði−jÞ

j ðjαmm0 j2Þ ¼ 0:

ð16Þ

Equation (16), derived from theHamiltonian of Eq. (6), gives
the spectrum and the eigenfunctions of electrons in a solid
under the influence of a constant magnetic field, when the
quantum fluctuations of the field due to the electron density
are also taken into account. Equation (16) also holds in the
limit where the frequency ωp goes to zero. In this limit, all
parameters in Eq. (16) depend only on the strength of the
externalmagnetic field because they take thevaluesM → ∞,
Ω → ωc, and αmm0 → −iπ

ffiffiffi
2

p ðm −m0Þ= ffiffiffiffiffiffi
ωc

p
ay. Thus, the

physics of periodic structures in homogeneous magnetic
fields [17,19,23,24] is recovered. For instance, we recover
the Hofstadter butterfly, depicted in Fig. 2, in the lowest
Landau level for a cosine lattice potential.
Landau polaritons.—In what follows, we consider a 2D

electron gas confined in a cavity under the influence of a
perpendicular homogeneous magnetic field. To respect the
macroscopicity of the 2D gas and make the cavity boundary
conditions compatible with the homogeneous magnetic
field, we perform the optical limit. Physically, this means
that the cavity frequency gets dressed by the density
of the 2D gas and is dominated by the frequency ωp.
Consequently, the system is described by Ĥopt of Eq. (9)
with vextðrÞ ¼ 0 and is analytically diagonalizable. For the
part of Ĥopt depending on rw ¼ ðx; w; zÞ, the eigenfunc-
tions are plane waves eik·rw and, applying Ĥopt on eik·rw , we
obtain

Ĥopt½k� ¼ k2z=2þ k2w=2M − Ω2∂2
v=4þ ðv − kx=

ffiffiffi
2

p
Þ2:

The eigenfunctions of the shifted harmonic oscillator are
the Hermite functions ϕjðv − kx=

ffiffiffi
2

p Þ with spectrum
Ej ¼ Ωðjþ 1=2Þ. The eigenfunctions of Ĥopt are

Ψk;jðrw; vÞ ¼ eik·rwϕjðv − kx=
ffiffiffi
2

p
Þ: ð17Þ

Thus, for the 2D gas (kz ¼ 0), the spectrum is given by
Eq. (1). This spectrum is similar to the one derived by
Landau (see [15] and references therein) but there is a major
difference. The eigenfunctions in Eq. (17) are functions of
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the polaritonic coordinates v and w. Thus, they should be
interpreted as Landau polaritons. Such states have been
theoretically studied [38] and observed experimentally
[25–27].
Specifically in [27], Landau polaritons were observed in

a strained germanium 2D hole gas with 2D density n2D ¼
1.3 × 1012 cm−2 confined in a cavity with a frequency of
ωcav ¼ 0.208 THz. Here, we can define the electron
density in the cavity ne ¼ n2Dωcav=2πc [10] in terms of
the 2D density and the cavity frequency ωcav. With the
parameters reported in [27] and the effective mass of
m� ¼ 0.336me, the frequency ωp takes the value ωp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n2Dωcav=2πcm�ϵ0

p
¼ 0.292 THz and reproduces the

gap for B ¼ 0 in [27]. Having ωp, we compute the
Landau polariton excitations given by Eq. (1). Figure 3
shows the upper and lower Landau polariton excitations as
functions of the magnetic field. Analyzing the asymptotic
behavior of the lower polariton k2w=2M with respect to the
magnetic field, we find its upper bound to be
ωp=2 ¼ 0.146 THz. In this case, the lower polariton does
not reach the empty cavity frequency of ωcav ¼ 0.208 THz
as depicted in Fig. 3. Our model reproduces the data
reported in [27], whereas the Hopfield model [38], as
discussed in [27], fails to account for the behavior of
the lower polariton. Lastly, for no cavity confinement,
we obtain the original Landau levels because Ω → ωc
and M → ∞.
Conclusions.—In this Letter, we demonstrated how

translational symmetry can be restored for Bloch electrons
in a homogeneous magnetic field by including the fluctua-
tions of the field. We derived a Bloch central equation
[Eq. (16)] that gives the spectrum of electrons in solids with
a homogeneous magnetic field: in the presence of, but also
in the absence of, the field fluctuations. The solutions of
this equation in the limit of zero fluctuations reproduce the
known results of Bloch electrons in magnetic fields, like the
quantum Hall effect [16,17] and the Hofstadter butterfly
[19]. The derived central equation puts no limitations on the
strength of the magnetic field and allows us to scan through
the whole continuum of field strengths for the first time. For
a 2D electron gas in a homogeneous magnetic field and
confined in a cavity, we find Landau polaritons that have
been experimentally observed [25–27]. The Landau polar-
itons have direct implications on related phenomena like
the quantum Hall effects and the Hofstadter butterfly. We
propose that cavity QED confinement of 2D materials will
allow for the observation of such polaritonic effects.
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