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Abstract

■ Many of our daily decisions are memory based, that is, the
attribute information about the decision alternatives has to be
recalled. Behavioral studies suggest that for such decisions we
often use simple strategies (heuristics) that rely on controlled and
limited information search. It is assumed that these heuristics
simplify decision-making by activating long-term memory repre-
sentations of only those attributes that are necessary for the de-
cision. However, from behavioral studies alone, it is unclear
whether using heuristics is indeed associated with limited mem-
ory search. The present study tested this assumption by monitor-
ing the activation of specific long-term-memory representations
with fMRI while participants made memory-based decisions using
the “take-the-best” heuristic. For different decision trials, differ-
ent numbers and types of information had to be retrieved and

processed. The attributes consisted of visual information known
to be represented in different parts of the posterior cortex. We
found that the amount of information required for a decision
was mirrored by a parametric activation of the dorsolateral
PFC. Such a parametric pattern was also observed in all poste-
rior areas, suggesting that activation was not limited to those
attributes required for a decision. However, the posterior in-
creases were systematically modulated by the relative impor-
tance of the information for making a decision. These findings
suggest that memory-based decision-making is mediated by the
dorsolateral PFC, which selectively controls posterior storage
areas. In addition, the systematic modulations of the posterior ac-
tivations indicate a selective boosting of activation of decision-
relevant attributes. ■

INTRODUCTION

Imagine you are a contestant on the TV show Who Wants
to Be a Millionaire. As your final $1 million question, the
host asks you: “Which of the following Spanish cities has
more inhabitants: Barcelona or Madrid?” You have heard
of both cities but do not know their sizes exactly. Given
that time is ticking away and that you cannot search the
Internet, you are bound to retrieve relevant information
about the cities from long-term memory (LTM). For in-
stance, you may recall that Madrid is the capital of Spain
or that Barcelona is located by the sea and use this infor-
mation to make a decision. Behavioral studies have shown
that to make memory-based decisions people often rely
on simple strategies (e.g., Bröder & Schiffer, 2003,
2006). Gigerenzer, Todd, and the ABC Research Group
(1999; see also Gigerenzer, Hertwig, & Pachur, 2011) pro-
posed a set of simple strategies (“heuristics”) to model
decision-making. A key heuristic is take-the-best (TTB;
Gigerenzer & Goldstein, 1996), in which attributes are
processed sequentially according to their importance. In
TTB, the most relevant attribute is inspected first, and if
this attribute discriminates between the alternatives,

search is stopped and a decision is made; that is, no
further attribute is inspected. If the attribute does not
discriminate, then the second-most important attribute
is inspected, and so on. Assuming that people rely on such
a heuristic when making memory-based decisions, the
memory representation of an attribute (such as the fact
that Madrid is the capital of Spain) should, strictly speak-
ing, be activated only if it is necessary for a decision; all
other representations should not be activated. Moreover,
the order of the activation in the relevant representational
areas should be guided by the hierarchy of attribute
importance.
However, in contrast to this assumed controlled activa-

tion, memory retrieval is usually assumed to lead to an
automatic spread of activation to all information asso-
ciated with a particular memory entry (e.g., Anderson,
1983). Some researchers have, therefore, proposed an
automatic activation of all attributes (in our example, the
capital, the location, etc.) during decision-making, upon
which, in a second step, controlled processes work to focus
on one or the other activated piece of information (e.g.,
Glöckner & Betsch, 2008; Juslin & Persson, 2002; Beach
& Mitchell, 1987). Behavioral studies alone, however, are
unable to show whether memory search under the use
of TTB is automatic or selective (and thus modulated by
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the relevance of the respective memory contents for the
decision). Brain activation measures might help to address
this question.
LTM representations are most likely located in cell

assemblies of posterior brain regions (see, e.g., Martin,
2007, for a review). Activation of these cell assemblies
can be monitored by brain imaging methods, hence spe-
cific activation patterns can be used to indicate which type
of LTM representation is retrieved for a given decision.
Automatic activation should be reflected by simultaneous
and uniform neural responses in all areas representing in-
formation that is associated with the decision alternatives,
whereas controlled and restricted activation should be
reflected by activation patterns that match the sequential
retrieval demands according to TTB.
Posterior activation during memory retrieval is assumed

to be controlled by the PFC (e.g., Badre & Wagner, 2007;
Buckner & Wheeler, 2001). If the same principle holds
for memory-based decision-making, then the PFC should
be involved here, too. In particular, we expect increasing
frontal activation with an increasing number of attributes
that have to be processed.

METHODS

Overview of the Experimental Design

In two fMRI experiments, participants were instructed to
use the TTB heuristic to decide which of two companies
will be more successful in the future. Decisions had to be
made on the basis of memorized attribute information
about the companies. For different trials, different num-
bers and types of attributes had to be retrieved. For each
company, participants learned information on four attri-
butes, consisting of four types of visual stimuli that are as-
sumed to be represented in different parts of the posterior
cortex (e.g., Ishai, Ungerleider, Martin, & Haxby, 2000;
Mishkin, Ungerleider, & Macko, 1983). In a learning phase,
each company namewas associated with one of two spatial
locations (“location of the company”), faces (“manager
of the company”), visual objects (“product the company
is producing”), and colors (“color of the product”; see
Figure 1A). According to TTB, the attributes should be in-
spected sequentially according to their importance, and
information search is stopped and a decision is made as
soon as one attribute discriminates between the companies.
That is, the two companies are first compared on the top-
ranked (most predictive) attribute (e.g., the location of the
company). If the companies differ on this attribute, no
further attribute will be inspected, and the company with
a positive value (i.e., the one that indicates higher success)
on that attribute is selected as the one that is more success-
ful in the future (in our experiments, participants learned
which attribute values indicate success before the decision
task). If, however, the top-ranked attribute does not dis-
criminate, then the attribute with the next-highest rank
(e.g., the manager of the company) will be inspected, and

so on. Therefore, depending on which companies are com-
pared, TTB requires the retrieval of one, two, three, or all
the four attributes from LTM to make a decision.

To identify the brain areas involved in the representa-
tion of the attributes, we ran so-called functional localizer

Figure 1. (A) Overview of stimuli used as attributes in the decision
task and as stimuli in the localizer scans. The attributes for the decision
task consisted of one of two locations (the location of the company),
faces (the manager of the company), objects (the item the company
produces), and colors (the color of the product). As the color attribute
in Experiment 1 did not yield a reliable activation in the localizer
scans, we replaced this attribute with buildings (i.e., front views of
houses) in Experiment 2, which yielded a reliable activation in the
parahippocampal gyrus (see Results). For the localizer scans, two
new stimuli from each attribute category were added and participants
were instructed to make an old/new distinction on each trial (see
Procedure for details). (B) In the decision task, participants were shown
pairs of company names and decided, using the TTB heuristic, which
company would be more successful in the next year. Importantly,
throughout the decision task only the names of the companies were
shown, so participants had to retrieve the attribute information from
memory.
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scans in which fMRI was recorded while participants
processed the visual stimuli representing the attributes.
Brain areas identified as most responsive to the respec-
tive stimuli were defined as ROIs for the analysis of brain
activation during decision-making. These ROIs are as-
sumed to be involved in the storage of the attributesʼ
LTM representations. This assumption is based on of
theories concerning the role of the neocortex in storing
LTM representations. According to these theories, the
memory representation and the perceptual processing
of a stimulus are mediated by the same cortical areas
(e.g., OʼReilly & Rudy, 2001; McClelland, McNaughton,
& OʼReilly, 1995; Squire & Alvarez, 1995; for recent re-
views, see Danker & Anderson, 2010; Khader & Rösler,
2009).

In the decision task, in which only the company names
were presented and participants had to retrieve the rele-
vant attribute information from LTM, we examined ac-
tivation in the ROIs as a function of the number of the
to-be-retrieved attributes. If this activation is systemati-
cally modulated by the relative importance of the infor-
mation for making a decision, this would be evidence
for a controlled retrieval of decision-relevant attributes.
To test the generality of our results, we repeated the
experiment with a modified attribute hierarchy. For ex-
ample, whereas the location of the company was the
most important attribute for predicting a companyʼs suc-
cess in Experiment 1, it was the least important attribute
in Experiment 2.

Participants

Eighteen (14 women; mean age = 22.7 years, SD =
1.4 years) and 16 students (11 women; mean age =
20.9 years, SD = 1.6 years) participated in Experiments
1 and 2, respectively. In both experiments, one partici-
pant had to be excluded because of excessive head
movement and fMRI signal inhomogeneity. The final
samples, thus, consisted of 17 students (13 women; mean
age = 22.6 years, SD = 1.4 years) in Experiment 1 and
15 students (10 women; mean age = 21 years, SD =
1.6 years) in Experiment 2. Because of technical prob-
lems, the functional localizer scan of one participant in
Experiment 2 could not be analyzed. Thus, these data
were based on of 14 participants. All participants were
students of the University of Marburg, right-handed, healthy
with normal or corrected-to-normal vision, and native
speakers of German. They had no history of neurological
illness, were naive with respect to the objective of the ex-
periment, gave informed consent to participate, and re-
ceived either money or course credit for their participation.

Material

In both experiments, the same 16 company names were
used, which consisted of pronounceable five- to six-letter
pseudowords: GNINT, NARCH, CLEEF, KUSQUE, SLARB,

KLILK, COLKS, TIRCH, CRYPSE, WRELKS, KNARFS,
BLOOR, TINKS, SMAUDS, BLAUB, and SNILM (cf. Newell
& Shanks, 2004). These items were taken from the MRC
nonword database (www.psy.uwa.edu.au/MRCDataBase/
uwa_mrc.htm; Rastle, Harrington, & Coltheart, 2002).
Figure 1A shows the visual stimuli that the participants
learned to associate with these company names. The
stimuli for the “objects” attribute consisted of grayscale
photographs of either a cup or a plate. Colors consisted
of squares that were filled with one of two specific colors.
To avoid that the participants recoded color information
as verbal labels, we used colors that are difficult to name
(red green blue [RGB] values: 128/0/64 and 0/128/128).
The spatial locations, which indicated whether a com-
pany is located in the northern or in the southern part
of Germany, were represented as crosses located either
in the upper or the lower compartment of a rectangle. Face
stimuli consisted of grayscale pictures of one of two male
faces (courtesy of S. Schweinberger, University of Jena,
Germany). Like the colors, the faces could not easily be
tagged with a verbal label. This was confirmed by the ma-
jority of our participants in postexperimental debriefings.
Size, brightness, and contrast were kept constant for both
stimuli of each type of attribute.
As mentioned above, the selection of the stimuli types

for the four attributes was based on of previous work
showing that they differ in terms of the brain regions in-
volved in both their encoding and retrieval. Specifically, re-
calling faces activates the fusiform gyrus (Khader, Burke,
Bien, Ranganath, & Rösler, 2005; Ishai, Ungerleider, Martin,
et al., 2000), recalling locations activates the posterior pari-
etal cortex (Khader et al., 2005, 2007; Moscovitch, Kapur,
Köhler, & Houle, 1995), recalling objects activates various
areas in the visual association cortex (Khader et al., 2007;
Ishai, Ungerleider, Martin, et al., 2000; Moscovitch et al.,
1995; Mishkin et al., 1983), and recalling colors activates
the fusiform gyrus (Chao & Martin, 1999; Martin, Haxby,
Lalonde, Wiggs, & Ungerleider, 1995) anterior to regions
associated with color perception (e.g., Zeki et al., 1991).
As, however, the color attribute in Experiment 1 did not
yield a reliable ROI in the functional localizer scan, this at-
tribute was replaced by buildings (i.e., front views of
houses; see Figure 1A) in Experiment 2. Views of buildings
are known to activate the parahippocampal cortex (Ishai,
Ungerleider, Martin, et al., 2000; OʼCraven & Kanwisher,
2000).
For the localizer scans, both old (i.e., those used in the

decision task) and new stimuli from the four attribute cate-
gories were presented (see Figure 1A) and participants
were instructed to make an old/new decision on each
trial (see Procedure for details). The new objects were
grayscale photographs of a jug and a can; the new colors
had RGB values of 32/0/128 and 118/128/0; the new faces
were two other Japanese male faces; the new spatial loca-
tions were crosses located in either the left or right com-
partment of a box; and the new buildings were front views
of two other houses.
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Procedure

All parts of the experiment were presented using
the Presentation software (Neurobehavioral Systems;
Version 11.0).

Learning of the Attribute Information

Participants learned by trial and error to associate four
stimuli with each of the 16 company names. Each com-
pany was associated with a specific stimulus pattern. In
each trial, participants were presented with a company
name and the two picture stimuli of a specific attribute
(e.g., the two faces) and had to indicate (by pressing the
left or right Alt key on a computer keyboard) the correct
stimulus representing the attribute value of a company.
After giving a response, participants received feedback
(“correct” or “incorrect”) for 1000 msec, followed by the
presentation of the correct stimulus, which remained on
the screen until the participants pressed the space bar.
Participants were instructed not to verbalize the stimuli,
and to carefully inspect and encode them by forming an
integrated picture of the display. After all attributes of a
single company had been learned (correct responses twice
in a row), the next company was presented, etc. The order
in which the four stimuli were presented for a company
name was determined randomly for each learning cycle.
The learning phase was completed as soon as correct re-
sponses were given for all 16 company names twice in a
row. This took about 2 hr 30 min (ranges: 1 hr 30 min to
3 hr 15 min in Experiment 1 and 1 hr to 3 hr 30 min in
Experiment 2). Participants returned to the laboratory on
the following day. They freshened up the learned attribute
knowledge until again reaching perfect performance. This
took between 10 and 30 min.

Strategy Training

Subsequently, participants were trained to make deci-
sions using the TTB heuristic. To avoid participants mak-
ing inferences about the companies during the strategy
training, we used a fictitious job-selection scenario. Partic-
ipants were instructed to decide, on the basis of four at-
tributes (e.g., programming experience) and using TTB,
which of two applicants is more suitable for a job. Pairs
of applicants were presented along with their values
(“+” or “−”) on the four attributes (e.g., the applicant
either had programming experience or not). Moreover,
for each attribute its relative importance was indicated
by the numbers 7, 8, 9, or 10, with a higher number indi-
cating higher importance. Participants indicated the deci-
sion according to TTB by pressing the left or right Alt key.
After each trial, feedback concerning the accuracy of the
decision (i.e., whether it was indeed the decision man-
dated by TTB) was provided for 500 msec. For the strategy
training only those nine pairs of applicants were used in
which TTB makes a different prediction than a strategy

that integrates across all attributes (e.g., a weighted-
additive strategy). This allowed us to ensure that partici-
pants had indeed understood and used TTB. Participants
were presented with the 9 pairs until they had given the
correct response to each of them four times in a row. The
hierarchy of attribute importance (for deciding between
the applicants) was varied randomly across participants.

Learning of the Attribute Hierarchy

Next, participants learned by trial and error the impor-
tance of the different attributes for predicting which of
two companies would be more successful. Each attribute
category was shown separately and participants had to in-
dicate its importance (7, 8, 9, or 10, with higher numbers
for more important attributes) by pressing the F7, F8,
F9, or F10 key on a computer keyboard. After each re-
sponse, they received feedback (“correct” or “incorrect”)
for 500 msec, followed by the presentation of the correct
answer, which remained on the screen until the partici-
pants pressed the space bar. This procedure was repeated
until correct responses were given to each of the four
attribute categories three times in a row, which took about
5–10 min. Participants learned the attribute hierarchy
faces > locations > colors > objects in Experiment 1
and objects > houses > locations > faces in Experiment 2.

Learning of the Attribute Direction

Next, participants learned for each attribute category
which stimulus was predictive of higher success (i.e.,
the attribute direction). Participants saw the two stimuli
of each attribute category (e.g., a cup and a plate for the
“objects” attribute) and had to indicate, by pressing the
left or right Alt key, which stimulus is associated with
higher success. After each response, participants received
feedback (“correct” or “incorrect”) for 500 msec, followed
by the presentation of the correct stimulus (which re-
mained on the screen until the participants pressed the
space bar). The complete procedure was repeated until
participants gave the correct response three times in a
row, which took between 5 and 10 min. The attribute
direction was varied randomly across participants.

To ensure that participants were able to apply their
knowledge about the correct attribute hierarchy and attri-
bute directions quickly during the subsequent decision
task, the respective learning phases were repeated under
time pressure (i.e., participants had only 2 sec to respond).

Decision Task

The decision task, during which fMRI was recorded, took
place immediately after the last learning task. Participants
saw pairs of company names and had to decide, using
TTB, which company will be more successful in the next
year. In each trial, the company names appeared on the
left and right sides of a fixation cross until the participantʼs
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response (see Figure 1B). Participants indicated whether
the company presented on the left or right side would be
more successful by pressing the left or right response but-
ton. They were instructed to respond as quickly and as
accurately as possible. The interval between a decision
and the next trial varied randomly between 2, 4, or 6 sec.
No feedback was provided in the MRI scanner.

From the 16 company names, 16 × 15/2 = 120 pairs
can be constructed. Sixty-four of these pairs require the
retrieval of the most important attribute only (because
it already discriminates between the companies), for
32 pairs TTB requires the retrieval of the most and
second-most important attributes, for 16 pairs the retrieval
of three attributes, and for 8 pairs the retrieval of all four
attributes. The number of attributes that TTB requires to
be retrieved was our main experimental factor. We ran-
domly drew 37 of the 64 possible pairs for the first level
(comparing one attribute) and merged the 16 + 8 pairs
of the third and fourth levels into one level. Furthermore,
there were seven trials included in the first level and two
trials in the second level for which TTB as a noncom-
pensatory strategy leads to a different response than a
compensatory strategy (e.g., a weighted-additive strat-
egy). Therefore, we decided to present these “critical”
trials twice. In total, there were, thus, three factor levels:
retrieving one (44 trials), two (34 trials), and three or four
attributes (24 trials). Furthermore, the decision task also
included 30 control trials (interspersed among the other
trials), in which no attributes had to be retrieved. Here,
the same company name was shown both on the left
and the right side, and participants were instructed to
press both response buttons simultaneously. Note that
in these trials participants were exposed to the same visual
stimulation as in the experimental trials (i.e., company
names) and were also required to give a response but
did not need to retrieve any information from memory
to respond correctly.

During the decision task, participants lay in the MRI
scanner in supine position with their head immobilized
by a soft foam pillow to minimize involuntary head move-
ments. Additionally, headphones were used to dampen
scanner noise. Participants gave responses by pressing
one or both of two buttons on an MRI-compatible (fiber-
optic) response device attached to their thighs. Stimuli
were projected on a canvas that the participants could
see via mirrors mounted on the MRI head coil. The experi-
ment consisted of three runs with 44 trials each. Between
the second and third run, an anatomical reference volume
was recorded, which took about 10 min. Before the first
run, several practice trials were presented to familiarize
the participants with the testing procedure.

The three runs were followed by the localizer scan.
Here, both old (i.e., the experimental) and new stimuli
from the four attribute categories were presented in
random order and participants had to make an old/new
distinction by pressing the left or right button on the re-
sponse device (counterbalanced across participants).

Each stimulus was presented in the center of the screen
for 2 sec, followed by a fixation cross for 4–7.5 sec (varied
randomly in steps of 500 msec; see Figure 1B). Each of
the two old and the two new stimuli from each of the
four attribute categories was presented six times, result-
ing in 96 trials. The localizer scan took about 10 min. In
total, participants were in the MRI scanner for approxi-
mately 1 hr 15 min.

fMRI Data Acquisition, Preprocessing, and
Statistical Analysis

Anatomical and functional imaging was performed with a
1.5-T MR scanner (Sigma, GE Medical Systems). Func-
tional BOLD images with 19 oblique slices covering the
whole brain were acquired with a T2*-weighted EPI se-
quence (repetition time= 2 sec, echo time= 60msec, flip
angle= 80°, field of view=240/240mm,matrix= 64×64,
ascending slice acquisition, slice thickness = 5 mm, inter-
slice gap = 1 mm, in-plane resolution = 3.75 × 3.75 mm)
using a standard quadrature head coil. Anatomical whole-
head images were acquired from 124 axial slices (1.4-mm
thick) using a spoiled gradient-echo recalled acquisition se-
quence (field of view = 240 × 180 mm, TE/TR = 6.0 msec/
33.0 msec, flip angle= 40°, acquisitionmatrix = 256× 192,
in-plane resolution = 0.9375 × 0.9375 mm).
Preprocessing and statistical analysis were performed

with the BrainVoyager2000/QX software package (www.
brainvoyager.com). The first four volumes of each run
were discarded to allow for signal equilibration. After mo-
tion and slice scan time correction, temporal filtering
(0.01 Hz highpass) and linear trend removal, the func-
tional data were aligned with the anatomical reference
from the same session, transformed into Talairach space
(Talairach & Tournoux, 1988), spatially smoothed with a
Gaussian kernel (FWHM = 8 mm) and z-standardized for
each run.
To delineate brain areas that are involved in controlling

the retrieval of the attributes, we tried to isolate voxels
that exhibit uniform signal increases with an increasing
number of to-be-retrieved attributes. To this end, we per-
formed voxelwise multisubject multiple regression analy-
sis using a general linear model with separate predictors
for trials in which either zero (control condition), one, two,
or three/four attributes had to be retrieved. To account
for the fact that RTs varied substantially across trials, the
regressor functions were adjusted to the specific RTs asso-
ciated with each trial by convolving the model hemo-
dynamic response function (HRF) with a boxcar function
with length = RT (“RT-convolved HRF analysis”; see
Christoff et al., 2001). With these experimental regressors,
a parametric contrast (0 < 1 < 2< 3/4 attributes) was com-
puted with contrast coefficients −3, −1, 1, and 3. To get
only positive parametric signal modulations, we added a
contrast with coefficients 1, 1, 1, 1 and computed a con-
junction analysis. This analysis, which was thresholded at
p < .005 (random effects, uncorrected; revealing voxels
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for which both individual contrasts surpass this significance
level), has to be regarded as exploratory and served to find
those voxels that responded most parametrically to the ex-
perimental manipulation. In a second step, we elevated the
statistical threshold to p < .001. This value was chosen a
posteriori, because here for both experiments a highly cir-
cumscribed cluster of voxels remained that resembled the
locus of maximum parametric variation. In a further step, we
extracted event-related time courses from these areas to eval-
uate the parametric increases with t tests for dependent sam-
ples. Therefore, we did not intend to adhere to a specific a
priori defined significance level but just increased the thresh-
old to detect the place of maximum parametric activation.
For the localizer scan, which served to isolate attribute-

specific representation areas, t contrasts were computed
with p < .0001, in which each attribute category was con-
trasted with the three other categories (with contrast coef-
ficients 3,−1,−1,−1). The activated areas served as ROIs
from which event-related BOLD signals were extracted and
averaged for the different experimental conditions of the
decision task. Differences between these averaged BOLD
responses were evaluated by t tests for dependent samples
to determine possible deviations from a systematic signal
increase with the number of retrieved attributes.

RESULTS

Behavioral Data

The RTs and error rates in the decision task are shown in
Figure 2, separately for Experiments 1 and 2. Incorrect
responses and outliers (RT > 2.5* SD, computed sepa-
rately for each participant and experimental condition)
were excluded from the RT analysis (there were, on
average, 3.05 [SD = 1.43] and 3.53 [SD = 1.30] outliers
per participant in Experiments 1 and 2, respectively). As-
suming that the attribute retrieval is sequential, TTB pre-
dicts that RTs increase as a function of the number of
attributes to be retrieved (whereas a compensatory strat-
egy would predict no such increase; cf. Bergert & Nosofsky,
2007; Bröder & Gaissmaier, 2007). As can be seen, an in-
crease was clearly visible in both experiments, indicating
that participants used the TTB strategy as instructed.
Repeated-measurements ANOVAs showed significant

main effects of the number of to-be-retrieved attributes
(excluding the control condition), F(2, 32) = 133.98, p <
.001; ε (after Huynh & Feldt, 1976) = .624 for Experiment 1
and F(2, 28) = 69.70, p < .001; ε = .682 for Experiment 2.
Planned t tests for dependent samples showed that RTs
were significantly higher for trials requiring the retrieval
of two attributes, as compared with one attribute, as well
as for trials requiring the retrieval of three or four, as com-
pared with two, attributes. Furthermore, RTs were longer
for trials requiring the retrieval of one attribute compared
with trials in the control condition ( p< .001 for all t tests).
Although participants were instructed to implement

TTB at every decision trial, it is in principle possible that

they successively learned the relative success of each
company and increasingly used this knowledge to make
a decision. If this was the case, however, the magnitude
of the uniform RT increase with increasing comparisons
should diminish across the fMRI runs of the retrieval phase.
Neither visual inspection of the data nor postexperimental
debriefings provided any evidence for this possibility (in
either experiment). In other words, we have no reason
to assume that participants did not adhere to the TTB
strategy throughout the decision task.

Figure 2 shows that the error rates were, on average,
rather low. Visual inspection suggests a pattern that par-
allels the pattern obtained for the RTs. ANOVAs showed
main effects of the number of to-be-retrieved attributes,
F(2, 28) = 7.27, p = .003; ε = .929 for Experiment 1 (on
the basis of data from 15 participants, as two participants
had to be excluded because of a coding error in the log-
files) and F(2, 28) = 9.97, p= .001; ε= 1 for Experiment 2.
Planned t tests showed that that error rates were lower for
trials requiring the retrieval of one attribute, as compared
with two attributes, in Experiment 2 and for trials requiring
two attributes, as compared with three or four attributes, in
Experiment 1 ( p< .01 for both t tests). Furthermore, error
rates were higher for trials requiring the retrieval of one at-
tribute compared with trials in the control condition ( p <
.01 for the first and p < .05 in the second experiment).
These results show that the greater the number of attri-
butes that have to be retrieved and processed, the more
errors occurred in the use of TTB.

Figure 2. RTs and error rates (i.e., responses deviating from the
correct responses according to the TTB heuristic) in the decision task,
separately for Experiments 1 and 2 (the error bars are the standard
deviations across participants). Consistent with the predictions of
the TTB heuristic, RT increased as a function of the number of
to-be-retrieved attributes. Moreover, error rates followed the same
pattern, indicating that more incorrect responses were made, the
more attributes had to be retrieved and compared.
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fMRI Data

Prefrontal Control Processes: Material-unspecific
Activation that Reflects the Number of
To-be-retrieved Attributes

On the basis of models of memory control (Badre &
Wagner, 2007; Buckner & Wheeler, 2001), we expected
that control processes in the decision task would be re-
flected by parametric activation in the PFC that increases
systematically with the number of retrieved attributes. As
can be seen in the top part of Figure 3, the left dorsolateral
PFC (DLPFC; middle frontal gyrus, BA 9/46) responded
maximally to increasing processing demands (i.e., to the
number of to-be-retrieved attributes). The close agreement
of this maximum across both experiments (which had
different attribute hierarchies; cf. Table 1) suggests that
the activation of the PFC is independent of the specific type
of attribute that has to be retrieved and processed. Another
area (also the DLPFC) showing a material-unspecific
uniform signal increase was found in the superior parietal
cortex (see Figure 3). The bottom two panels of Figure 3

show the event-related hemodynamic signals (time-locked
to the presentation of the pair of companies) extracted
from the areas that showed the maximum activation in
the two experiments. As can be seen, there was a uniform
signal increase with the number of to-be-retrieved attri-
butes in both experiments. In addition, it can be seen that
in the control condition—in which no attribute informa-
tion had to be retrieved—there was no response at all (in
fact, Figure 3 suggests that there was even a small negative
response in this condition). It might appear puzzling that
the event-related signal for the control condition shows a
strong response beginning at about 9 sec. Note, however,
that this activation reflects the (average) response to the
subsequent trial.

Is Activation in Material-specific Posterior Areas
Modulated by the Sequential Retrieval Demands of TTB?

In a first step, we identified material-specific processing
areas in the posterior cortex using the functional localizer

Figure 3. Brain areas showing a systematic activation increase with the number of to-be-retrieved attributes. The parametric contrasts of the number
of to-be-retrieved attributes in both Experiments (thresholded at p < .005, RFX uncorrected) revealed the strongest parametric activation in the
left DLPFC (middle frontal gyrus, BA 9), showing that this area reflects general processing demands that are independent of the specific attribute
hierarchy, that is, the order in which the attributes have to be compared. Also the left DLPFC, the superior parietal cortex also exhibited this
effect, albeit to a weaker extent. Statistical maps were projected onto a slightly inflated cortex reconstruction of one participant, on which concave
curvature (i.e., sulci) appears in dark and convex curvature (i.e., gyri) in light gray. Below are shown the plots of event-related hemodynamic
signals (averaged to the presentation of the pair of companies) from the area of maximum activation in each experiment. This area was derived by
elevating the statistical threshold to p < .001, yielding closely matching locations across the two experiments located in the left DLPFC (cf. Table 1).
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scans. These areas were defined as ROIs for the activation
of material-specific stimuli representing the attributes
that were required in the decision task. As can be seen in
Figure 4 and Table 2, we were able to identify material-
specific ROIs in Experiment 1 in the left middle occipital
gyrus for locations, in the right fusiform gyrus for faces,
and in the left lingual gyrus for objects and in Experiment 2
in the left superior-to-inferior parietal lobe for locations,
in the right fusiform gyrus for faces, and in the left cuneus
for objects. Moreover, buildings (replacing colors in Experi-
ment 2) yielded a reliable ROI in the left parahippocampal
cortex (part of the fusiform gyrus).
In a second step, we extracted from the ROIs the aver-

aged hemodynamic responses during the decision task,
separately for the different levels of the experimental fac-
tor “number of to-be-retrieved attributes.” As can be seen
in Figures 5 and 6, there is a monotonically increasing re-
sponse in all ROIs; that is, the maximum of the activation
increases with the number of attributes required for a de-
cision. At a first glance, the fact that such an increase is
found for basically all ROIs seems to speak against a con-
trolled activation of LTM representations. Instead, it sug-

gests that there is an automatic activation of all attributes
associated with a company—even if an attribute is not
relevant for the decision. However, we argue that such
a conclusion is not warranted. For example, that the
face-specific ROI is activated even when positions have
to be retrieved could simply be due to the fact that the
face area is, to a certain degree, generally responsive to
positions. As Figure 4 shows, a coding overlap was appar-
ent in all ROIs. It seems physiologically implausible to
assume that areas respond in an all-or-none fashion only
to one specific kind of visual stimulus, but not to others.
Therefore, we refrain from inferring that there is an auto-
matic retrieval process on the basis of the observation of a
uniform increase across all ROIs. Instead, we ask, is there
evidence for systematic deviations from a uniform signal
increase? Such deviations would indicate the existence of
a controlled modulation of representations, even if part of
the activation is automatic.

A closer look at the BOLD signals extracted from the
ROIs indeed reveals such systematic deviations. As argued
below, these deviations reflect the importance of the attri-
butes for decision-making. In the following, we focus on
those experimental conditions in which more than one
attribute has to be retrieved; we do not consider the con-
dition where only one attribute has to be retrieved, be-
cause it is possible that, in comparison with the control
condition, activation in this condition may just indicate
the retrieval of visual stimuli in general, rather than the
retrieval of a specific attribute. If TTB leads to a controlled
retrieval, there should be a selective boosting of activation
specifically in those ROIs that represent the attributes that
are relevant for a comparison.

Let us first turn to the results of Experiment 1. The top
left plot of Figure 5 shows the responses of the face-
specific ROI (which represents the second-most important
attribute), which has to be retrieved only when locations
(the most important attribute) do not discriminate be-
tween the companies. As can be seen, there is some activa-
tion in the face-specific ROI even when TTB requires only
the retrieval of locations (light green line; the maximum of
this activation is indicated by a blue arrow). However,
when faces do become relevant for a decision (i.e., when
two attributes—locations and faces—have to be retrieved
because locations do not discriminate; medium green
line), there is an additional increase in activation in the
face-specific ROI, reflecting the retrieval of this attribute
(indicated by another blue arrow). Importantly, however,
when three or four attributes have to be retrieved (i.e., col-
ors, and colors and objects, respectively; dark green line),
the additional increase in activation in the face-specific ROI
is rather small. In other words, there is a strong activation
increase in the face-specific ROI only in those trials in
which faces are relevant for the decision.

To substantiate this visual impression statistically, we
extracted the maximum amplitudes of the BOLD signals
in the face-specific ROI for each participant, separately
for the different experimental conditions. Consistent

Table 1. Prefrontal Control Processes Involved in Memory-
based Decision-making: Locations (Anatomical Label and
Brodmannʼs Area), Peak t Values, and Numbers of Significantly
Activated Voxels of Brain Areas that Reflect the Number of
To-be-retrieved Attributes

Region BA X Y Z t Voxels

Experiment 1

p < .005

L middle frontal gyrus 6/9/46 −50 19 34 4.34 1984

L middle frontal gyrus 6 −43 6 39 5.02 1837

L superior frontal gyrus 6 −48 2 55 3.70 81

L inferior parietal lobe 7/19 −33 68 43 4.18 1055

p < .001

L middle frontal gyrus 9 −48 22 35 4.34 85

Experiment 2

p < .005

L middle frontal gyrus 6/9/46 −47 17 34 4.92 3135

L middle frontal gyrus 6 −41 1 38 4.03 38

L middle frontal gyrus 6 −31 −1 55 4.11 325

L medial frontal gyrus 6 −8 11 52 3.97 346

L inferior parietal lobe 7/19 −33 −66 42 4.34 1532

p < .001

L middle frontal gyrus 9 −47 17 36 4.92 598

The activation at the higher significance level was used to extract the
event-related hemodynamic signal curves shown in Figure 3. L = left.
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with the visual impression, dependent-sample t tests
indicated a significant increase in activation when two
attributes, as compared with one attribute, have to be
retrieved, t(16) = 6.89; p < .001. However, when three
or four attributes, as compared with two, have to be re-
trieved, the increase was rather small, t(16) = 1.97; p =
.067. Another t test confirmed that the increase from
one to two attributes was significantly larger than the in-
crease from two to three or four attributes, t(16) = 4.63;
p < .001.

To validate this finding we next looked for a corre-
sponding pattern in Experiment 2. Importantly, note that
in Experiment 2 the buildings rather than the faces were
the second-most important attribute (the different hierar-
chies of attribute importance are depicted in the center
panels of Figures 5 and 6). In close correspondence
with the findings for Experiment 1, the top right plot in
Figure 5 shows that there is a pronounced signal increase
in the building-specific ROI in those trials in which two
attributes (objects and buildings) have to be retrieved,

Figure 4. Material-specific ROIs in the posterior cortex identified by the functional localizer scans. On the basis of the assumption (detailed in
the overview of the experimental design) that stimulus representations are located in the same cortical areas that are also involved in the perceptual
processing of the information, these areas were defined as target areas for the representation of the attributes.
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Table 2. Material-specific Processing Areas in the Posterior Cortex: Locations, Peak t Values, and Numbers of Significantly Activated
Voxels ( p < .0001, Uncorrected) of Material-specific Posterior Areas Identified by the Functional
Localizer Scans

Region BA X Y Z t Voxels

Experiment 1

Locations: L middle occipital gyrus 18/19 −28 −79 10 7.26 1408

Faces: R fusiform gyrus 19 22 −76 −8 10.84 2901

Objects: L lingual gyrus 18/19 −19 −54 0 10.44 3951

Experiment 2

Locations: L superior/inferior parietal lobe 7/40 −37 −45 40 7.02 823

Faces: R fusiform gyrus 37 39 −43 −16 7.93 116

Objects: L cuneus 18 −3 −77 14 10.27 6846

Buildings: L fusiform gyrus 37 −28 −58 −10 11.53 4472

L = left; R = right.

Figure 5. Selective modulation of systematic signal increases in attribute-specific regions. The areas representing the second most important
attribute show a substantial increase of the maximum hemodynamic response when not only the most but also the second-most important attributes
have to be retrieved. Importantly, however, when three or four attributes have to be retrieved, the additional increase in activation is rather small. In
other words, there is a strong activation increase only in those trials in which the respective attribute becomes relevant for the decision.
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but no further increase when also faces or faces and loca-
tions have to be retrieved (again indicated by two blue
arrows). As in Experiment 1, this visual impression was
substantiated statistically: In the building-specific ROI, there
was a significant increase when two attributes, as compared
with one attribute, have to be retrieved, t(14) = 2.74; p =
.016, but not when three or four, rather than two, attributes
have to be retrieved, t(14) = 0.31; p = .763. Furthermore,
the increase from one to two attributes was larger than the
increase from two to three or four attributes, t(14) = 1.90;
p = .078.

To summarize, areas representing the attributes with
the second-highest importance (faces in Experiment 1
and buildings in Experiment 2) show an increase of the
maximum BOLD response when the second-most impor-
tant attribute becomes relevant as compared with when
already the most important attribute leads to a decision.
However, when three or four attributes have to be re-
trieved, the additional increase in the areas representing

the second-most important attribute is much smaller or
even completely absent. Importantly, in Experiment 2, in
which the faces are no longer the second-most important
attribute (Figure 5, bottom right plot), the face-specific
ROI does not show this effect. This selective modulation
of neural activation that follows the retrieval order accord-
ing to TTB supports the notion of controlled retrieval pro-
cesses. Overall, the maximum of the BOLD response in
attribute-specific ROIs seems to be boosted only when
the respective attribute is relevant for a decision.
If the second-most important attribute affects the max-

imum of the BOLD response, then the third-most and
least important attributes should affect signal parts after
the maximum. Indeed, a closer look at the bottom right
plot in Figure 5 shows an interesting pattern in the time
courses of the hemodynamic response in the face-specific
ROI in Experiment 2: Only for those trials in which three or
four attributes have to be retrieved does the descending
flank of the hemodynamic response seem to be prolonged

Figure 6. Selective modulation of systematic signal increases in attribute-specific regions. Only for those trials in which up to four attributes
have to be retrieved is the descending flank of the hemodynamic response in the areas that represent the least important attribute (i.e., objects
in Experiment 1 and positions in Experiment 2) prolonged, rather than descending smoothly to baseline activity after having reached its maximum—
as one would expect with a strictly uniform signal modulation (see bottom left and right maps). In other words, attributes that are relevant relatively
late during the decision process (i.e., those with low importance) generally show a prolonged response during the descending part of the
hemodynamic response. When the attributes are high in importance, by contrast, this is not the case (see top left and right maps).
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rather than descending smoothly to baseline activity after
having reached its maximum—as one would expect with a
strictly uniform signal modulation. In other words, attri-
butes that are relevant relatively late during the decision
process (i.e., those low in importance) generally show a
prolonged response during the descending part of the he-
modynamic response. To illustrate, consider the location
and object attributes, whose ranks in the attribute
hierarchy are exactly reversed between Experiments 1
and 2 (locations are the most important attribute in
Experiment 1—and thus relevant in each trial—but the
least important attribute in Experiment 2—and thus rele-
vant only when all four attributes have to be retrieved;
for the object attribute, the opposite holds). As can be seen
in Figure 6 (indicated by blue arrows in the bottom left
and right maps), in both the location-specific and object-
specific ROIs, there is a prolonged descending part of
the hemodynamic response when the attributes are low
in importance. When the attributes are high in importance,
by contrast, this is not the case (see top left and right maps
in Figure 6).
To corroborate this observation of prolonged re-

sponses statistically, we required a measure that could
capture deviations from a smooth return to baseline activ-
ity. Because any such deviation necessarily produces an
additional inflection point that occurs earlier than would
be expected under a smoothly descending signal, we fo-
cused on the time of the first inflection point after the
signal maximum for the different curves of the posterior
ROIs. As a control analysis, we analyzed the signals in the
PFC (see Figure 3), in which such prolonged responses
should be absent; as a consequence, in the PFC the inflec-
tion points should only depend on themaximum amplitude
of the signal and, thus, occur later the more attributes have
to be retrieved.
As can be seen in Figure 3, there is a uniform signal in-

crease in the PFC, and the first inflection point is succes-
sively delayed in time as the number of to-be-retrieved
attributes increases. More specifically, for Experiment 1
(left graph in Figure 3), the inflection points occurred,
on average, at 4.13 sec in the control condition (i.e., when
no attribute has to be retrieved), at 7.87 sec when one at-
tribute has to be retrieved, at 8.93 sec when two attributes
have to be retrieved, and at 9.73 sec when three or four
attributes have to be retrieved. For Experiment 2 (right
graph in Figure 3), the inflection points occurred at
5.40, 8.00, 9.77, and 11.41 sec, respectively. t tests, for
which the inflection points in each condition were ex-
tracted for each participant, showed that in Experiment
1 the inflection point occurred significantly later when
one, rather than no, attribute has to be retrieved, t(16) =
5.83; p< .001. Moreover, the inflection point occurred sig-
nificantly later when two attributes, rather than one, have
to be retrieved, t(16) = 5.60; p < .001, and when three
or four attributes, rather than two, have to be retrieved,
t(16) = 2.67; p = .017. Similarly, in Experiment 2, the in-
flection point occurred significantly later when one, rather

than no, attribute, t(14) = 6.42; p < .001, and when two
attributes, rather than one, have be retrieved, t(14) =
2.87; p = .012. The increase from two to more than two
attributes was not significant.

In contrast to these uniform signal increases in the PFC,
the posterior ROIs show a rather different pattern. Speci-
fically, when locations and objects are the least important
attributes (i.e., Experiments 2 and 1, respectively), the in-
flection points of the hemodynamic responses in the cor-
responding ROIs (bottom left and right maps in Figure 6
for Experiments 2 and 1, respectively) occur earlier
(rather than later) than when only two attributes have
to be retrieved: 7.41 versus 8.06 sec, t(16) = 2.02, p =
.060 (Experiment 1, object ROI) and 8.93 versus 10.13 sec,
t(14) = 2.28, p = .039 (Experiment 2, location ROI). By
contrast, when locations and objects are the most impor-
tant attributes, the inflection point in the corresponding
brain areas occurs significantly later when three or four,
rather than two, attributes have to be retrieved, 8.71 versus
10.29 sec, t(16) = 7.85; p < .001 (Experiment 1, location-
specific ROI; cf. top left graph in Figure 6) and 8.73 versus
9.27 sec, t(14) = 3.74; p = .002 (Experiment 2, object-
specific ROI; cf. top right graph in Figure 6). This is con-
sistent with what one would expect from a uniform signal
increase, as observed in the PFC.

To conclude, although in the posterior areas there
were increasing activation patterns across all ROIs—
which might suggest that using TTB is associated with
an automatic spreading activation—we found evidence
for systematic modulations of this activation that reflect
the retrieval order mandated by the attribute hierarchy.
These systematic modulations are consistent with the
hypothesis of a controlled retrieval of decision-relevant
attribute information.

DISCUSSION

In two fMRI experiments, we examined the neural dy-
namics of heuristic decision-making when information
about alternatives has to be retrieved from LTM. Behav-
ioral studies have shown that the TTB heuristic is a key
strategy that people often use to make memory-based
decisions (e.g., Bröder & Schiffer, 2003, 2006). According
to TTB, information retrieval, is controlled and sequential
guided by attribute importance. Crucially, information
search is terminated as soon as an attribute discriminates
between the alternatives; other attributes associated with
the alternatives that are not required for making a deci-
sion are not activated. Here, we tested TTBʼs assumption
of controlled and limited retrieval by monitoring the ac-
tivation of specific LTM representations with fMRI.

Participants first learned attribute information (repre-
sented by visual stimuli) about companies and then made
decisions on the basis of this information using TTB. The
attributes consisted of visual stimuli (e.g., faces, objects)
that are known to be processed and represented in differ-
ent parts of the posterior cortex. By means of functional
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localizer scans, we identified brain areas involved in pro-
cessing and representing these specific types of attributes
(cf. Table 2). The delineated material-specific brain areas
are all fully consistent with findings of previous studies.
Specifically, faces are assumed to be represented in the
fusiform gyrus (Khader et al., 2005; Ishai, Ungerleider,
Martin, et al., 2000), locations in the parietal cortex (Khader
et al., 2005, 2007; Moscovitch et al., 1995), objects in the
visual association cortex (Khader et al., 2007; Ishai,
Ungerleider, Martin, et al., 2000; Moscovitch et al., 1995;
Mishkin et al., 1983), and buildings in the parahippocampal
cortex (Ishai, Ungerleider, Martin, et al., 2000; OʼCraven &
Kanwisher, 2000).

The identification of material-specific representation
areas allowed us to investigate whether the activation
in these areas during decision-making is modulated by
the retrieval demands posed by TTB. Specifically, we
used the degree to which there was a deviation from a
uniform signal increase as an indicator for the controlled
activation of material-specific LTM representations. On
the one hand, the signal-increase patterns for the differ-
ent decision trials were rather similar across all ROIs. This
might suggest an automatic activation of all attribute infor-
mation associated with the alternatives. However, we also
observed systematic deviations from a uniform signal in-
crease, as the increase was modulated by the necessity
(according to TTB) to inspect the respective attribute
for the decision: First, the maximum of the BOLD re-
sponses in attribute-specific ROIs increased only when
the respective attribute was relevant for the decision. Sec-
ond, the inflection points of the descending flank of the
hemodynamic response, reflecting a prolonged duration
of the underlying cognitive processes, were also found to
be modulated by attribute relevance. Specifically, we
found a prolonged response to an attribute only when it
was relevant late in the decision process (i.e., when the
attribute was low in importance). Overall, we observed
systematic modulations of brain activation that reflect
the retrieval order mandated by the attribute hierarchy.
These systematic modulations are consistent with the
notion of a controlled activation of decision-relevant attri-
bute representations. As outlined in the Results section,
the observation of a uniform signal increase across ROIs
does not necessarily indicate the existence of automatic
retrieval processes. The reason is that activation in an
ROI might not be exclusively because of the retrieval of
the attribute to which the ROI is most sensitive (in fact,
Figure 4 shows that none of the ROIs is completely inactive
when the other attributes are retrieved). Therefore, we re-
frain from inferring automatic retrieval process from the ob-
served patterns. One possibility could be that all attributes
become initially activated by means of spreading activation
(Anderson, 1983), followed by a subsequent controlled ac-
tivation of the decision-relevant associations via memory-
based attentional selection processes. What exactly causes
the selective boosting of decision-relevant memory repre-
sentations, however, is subject to further research.

We found that the left DLPFC responded systematically
to the number of attributes needed for a decision, irre-
spective of the type of the attribute that had to be re-
trieved. This finding shows that the DLPFC is important
during memory-based decision-making when specific vi-
sual information has to be retrieved and subsequently
processed. But what function does the DLPFC have dur-
ing the decision process? The DLPFC is often associated
with working memory (WM) load (e.g., Linden et al.,
2003). WM load, however, is an unlikely factor underlying
the observed parametric effects: As, according to the TTB
heuristic, only one pair of attribute values needs to be
maintained in WM at any time, an increased number of
required attributes does not lead to an increased WM load.
A more likely candidate is, by contrast, WM updating: TTB
requires the sequential comparison of attributes according
to the attribute hierarchy, requiring a constant updating of
the content in WM. The larger the number of required
comparisons, the higher the updating demands. This pre-
sumably leads to successive DLPFC activations that add up
to the parametric increase observed in the present study.
The assumption that the DLPFC mediates WM updating
processes is consistent with studies showing that the
DLPFC plays a critical role for WM (e.g., Postle, 2005; Curtis
& DʼEsposito, 2003; Levy & Goldman-Rakic, 2000). Accord-
ing to Funahashi (2001), the DLPFCmediates selection and
monitoring in WM tasks. Similarly, Achim and Lepage
(2005) found evidence that the DLPFC is involved in post-
retrieval monitoring processes, such as tracking the rel-
evance of the retrieved information with respect to the
task at hand.
Our experiments also show that the DLPFC activity is

material-unspecific and thus seems to reflect general
control demands during the decision task that increase
with the number of to-be-retrieved attributes. Further-
more, the additional activation of the parietal cortex
(see Figure 3) is consistent with the notion of a “frontal-
parietal network” (Corbetta & Shulman, 2002) that is
assumed to regulate content-unspecific higher cognitive
functions, such as mental imagery, WM control, or LTM
retrieval (e.g., Mechelli, Price, Friston, & Ishai, 2004;
Sohn, Goode, Stenger, Carter, & Anderson, 2003; Ishai,
Ungerleider, & Haxby, 2000). The present experiments
show that the fronto-parietal network is recruited during
decision-making when attribute information has to be re-
trieved from LTM. This finding is consistent with results
by Kahn, Davachi, and Wagner (2004), who showed that
the left DLPFC and parietal cortex mediate control pro-
cesses of LTM retrieval (such as retrieval attempts, mainte-
nance of retrieval cues, monitoring of retrieved information;
see also Iidaka, Matsumoto, Nogawa, Yamamoto, & Sadato,
2006; see Wagner, Shannon, Kahn, & Buckner, 2005, for a
review).
Numerous studies have emphasized the role of the

ventrolateral PFC (encompassing BA 45 and surrounding
areas of the inferior frontal gyrus) for the controlled
retrieval of memory representations (for a review, see
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Badre & Wagner, 2007; but see, e.g., Wheeler & Buckner,
2003; Henson, Rugg, Shallice, & Dolan, 2000; Henson,
Shallice, & Dolan, 1999, for evidence for a role of the
DLPFC for this function). One may, therefore, wonder
why the memory-based decision task used in our experi-
ments did not evoke ventrolateral PFC activation. One pos-
sible reason is that our task involved visual information,
whereas the studies reviewed by Badre and Wagner
(2007) mainly employed verbal material (semantic repre-
sentations of conceptual knowledge). Potentially, different
kinds of representation draw on control processes in differ-
ent subsections of the PFC—a possibility that should be
tested in detail by future studies.
To conclude, we proposed an experimental framework

for investigating retrieval processes during memory-based
decision-making that builds on monitoring the activation
of specific LTM representations with fMRI. Our findings
suggest that memory-based decision-making involves
the controlled retrieval of stored attribute information,
which is implemented on a neural level as a selective
modulation of the activation of content-specific represen-
tational areas in the posterior cortex.
The present experiments should be regarded as a start-

ing point. Future studies will need to delineate more clearly
the neural dynamics of memory-based decision-making,
such as possible interactions of the DLPFC and posterior
areas in which attributes are represented. Moreover, it
would be interesting to compare the present results with
brain activations when people use a compensatory strategy
(e.g., a weighted-additive strategy), in which all attributes
are considered for making a decision. In comparison with
TTB, such a compensatory strategy additionally includes in-
tegration and, potentially, weighting processes and in-
volves alternative-wise rather than attribute-wise (as with
TTB) processing of the attributes. The identification of
the specific neural signatures of various decision strategies
may then help identify the decision processes in peopleʼs
spontaneous (in contrast to instructed) strategy use. For in-
stance, neural activation data could be used in combination
with further indicators of the cognitive process (overt deci-
sions, confidence judgments, RTs) and contribute to a multi-
method approach to identify strategies in decision-making.
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