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Abstract. The goal of this paper is to establish the existence of a
foliation of the asymptotic region of an asymptotically flat manifold
with nonzero mass by surfaces which are critical points of the Will-
more functional subject to an area constraint. Equivalently these
surfaces are critical points of the Geroch-Hawking mass. Thus our
result has applications in the theory of General Relativity.

Introduction

In this paper we study foliations of asymptotically flat manifolds by surfaces
of Willmore type. This means that we are interested in constructing em-
bedded spheres 3 in a three dimensional Riemannian manifold (M, g) which
satisfy the equation

—AH — H|A]? = MRe(v,v)H = \H. (0.1)
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Here H is the mean curvature of ¥, A is the traceless part of the second
fundamental form A of ¥ in M, that is A=A- %H v, and ~ is the induced
metric on 3. Moreover ”Rc is the Ricci curvature of M and A the Laplace-
Beltrami operator on .

Equation (0.1) is the Euler-Lagrange equation of the functional

W) = %/zm du (0.2)

subject to the constraint that |X| be fixed. Then A becomes the Lagrange
parameter.

In mathematics this functional is known as the Willmore functional, at least
in flat space, whereas for curved ambient manifolds the literature [23] also
considers the functional

Ux) = /E A2 dp.

In flat space these two functionals only differ by a topological constant.
However, the second functional is conformally invariant and thus translation
invariant in all conformally flat manifolds. Since our model space, the spatial
Schwarzschild metric g5 = ¢ ¢¢, with ¢ = 1 + 35> g° the Fuclidean metric
and m > 0 a mass parameter, is conformally flat, we could not hope to find
unique surfaces minimizing the corresponding constrained problem.

Furthermore, the functional (0.2) appears naturally in general relativity in
form of the Hawking mass my(2) of a surface X, defined as

B |E|1/2
m (L) = Q67 (167 — 2W(%)) .

This quantity is used to measure the mass of a region enclosed by . Due
to the area constraint, equation (0.1) also appears as the Euler-Lagrange
equation when maximizing my(X) subject to fixed area |X|.

Foliations of asymptotically flat manifolds using constant mean curvature
surfaces have been considered in [9], [24] and [6]. The uniqueness of such
foliations was considered in [18]. In [9] these foliations have been used to
define a center of mass for initial data sets for isolated gravitating systems
in general relativity. Such data sets are three dimensional asymptotically
flat manifolds. We argue here that, due to its relation to the Hawking
mass, equation (0.1) is the most natural equation to consider when defining
a geometric center of the Hawking mass. In fact, surfaces maximizing the
Hawking mass are the optimal surfaces to calculate the Hawking mass. This



intuition is backed by our observation that along the foliation we construct,
the Hawking mass is non-negative and non-decreasing in the outward direc-
tion, provided the scalar curvature Sc > 0 is non-negative, cf. theorem 3.2.
We remark that on stable surfaces of constant mean curvature the Hawking
mass is also non-negative as was shown by Christodoulou and Yau [2].

Moreover, we wish to mention here that in [7] Huisken argues in the other
direction and introduces a definition of quasi-local mass with the constant
mean curvature equation as Euler-Lagrange equation for the optimal surfaces
at a given enclosed volume. This then fits together with the center of mass
definition by CMC spheres.

CMC foliations have also been studied in other contexts, in particular with
asymptotically hyperbolic background in [16, 17, 13]. This setting is also
relevant in general relativity when studying data sets which are asymptot-
ically light-like. We expect that our results extend to the asymptotically
hyperbolic case.

In R3, minima of functional (0.2) are round spheres, and since the functional
is scale and translation invariant, we get an (at least) four dimensional trans-
formation group. In particular, we can not expect solutions of (0.1) to be
unique. The existence of surfaces ¥ C R” of higher genus which minimize
the Willmore functional and in particular satisfy (0.1) with A = 0 has been
shown by Simon [21] and Bauer & Kuwert [1].

This changes when we take the background M not to be R? but the exterior
region of an asymptotically flat manifold. That is M = R3\ B,(0) and the
metric on M is asymptotic to the spatial Schwarzschild metric g7 . This
metric is the spatial part of the Schwarzschild metric which describes a
single, static black hole of mass m. Thus m has the interpretation of a mass
parameter.

In the g°-metric we no longer have translation and scaling invariance. In
fact we will show that solutions of (0.1) which are close enough to large
centered round spheres are in fact equal to centered round spheres. The
radius of the sphere is then uniquely determined by A, provided A € (0, Ag)
is small enough. If the metric on M is asymptotic to ¢° with appropriate
decay conditions, we can show that solutions to (0.1) behave accordingly
and form a smooth foliation of the asymptotic region of (M, g).

To be precise, we consider metrics g on R?\ B, (0) with the following asymp-
totics

sup  (r2lg—g5 |+ 7|V = VS |+ |Re—Rel, | +7°| VRe— VSRS |) < 7,
R3\ B, (0)



where g7 is the spatial Schwarzschild metric of mass m > 0, V% its Levi-
Civita connection and Rci its Ricci-curvature. Correspondingly, V and Re,
are the connection and curvature of g. Furthermore, r is the Euclidean radius
function on R3\ B,(0). Such metrics shall be called (m,n, o)-asymptotically
Schwarzschild.

In this setting, we will prove the following theorem.

Theorem 0.1. For allm > 0 and o there exists ng > 0, \g > 0 and C' < o0
depending only on m and o such that the following holds.

Let (M, g) be an (m,n,o)-asymptotically flat manifold with n < ny and
MSe| < nr—°

then for each \ € (0, \g) there exists a surface ¥y satisfying equation (0.1).

In Euclidean coordinates this surface is W%?-close to a Euclidean sphere
Sk, (ax) with radius Ry and center ay such that

|ax| + |Ry — (A/2m) 713 < O

Moreover, there exists a compact set K C M such that M \ K is foliated by
the surfaces {X)}aec(on)-

For an arbitrary surface ¥ C R® we can define a best matching sphere by
introducing the geometric area radius and the center of gravity, both with
respect to the Euclidean background:

R(X) =1/ ‘i‘: and . (%) = |Z|;1/Ea:d,ue

where in the second integral, the integrand is the position vector. Then we
define the scale-invariant translation parameter

7(2) = ac(X)/Re(X)

and we can state the uniqueness theorem

Theorem 0.2. Let m > 0 and o be given. Then there exists ng > 0, 19 > 0,
e >0 and ry < oo depending only on m and o such that the following holds.

If (M, g) is an (m,n, o)-asymptotically flat manifold with n < ny and
MSe| < mr?

then every spherical surface ¥ C M with ryy, = ming r > ro, 7(X) < 79,
R. < er?, and H > 0 satisfying equation (0.1) for some A > 0 equals one

of the surfaces X5 constructed in theorem 0.1. In particular X € (0, X\g).



The outline of the paper and the proof of the above theorems is as follows.
After setting the stage by presenting some preliminary material in section 1,
we calculate the first and second variation of (0.2), to arrive at (0.1) and its
linearization. This is done in section 2.

In section 3 we prove a priori estimates for solutions to (0.1) under the
assumption that H > 0 and A > 0. These estimates in particular show that
with increasing area also the Hawking mass of the Y, increases.

Section 4 is devoted to a technical improvement of the curvature estimates
in section 3, under the additional assumption that the surface in question
is not too far off center in the sense that the translation parameter above is
not too large.

This allows us to break the translation invariance in section 5, where we
prove position estimates. These estimates are at the heart of the uniqueness
and are quite delicate. In this section we also state the final version of our
a priori estimates. These estimates allow to control both the position and
the shape of solutions to (0.1) in a very precise way.

In section 6 we analyze the linearization of equation (0.1) and use the pre-
vious a priori estimates to show that this operator is invertible. The reason
why we are able to do this, is that the estimates in section 5 allow to compare
the linearization of (0.1) to the corresponding operator on a centered sphere
in Schwarzschild. The latter operator is invertible and thus invertability of
the former one follows.

This is used in section 7 to prove the existence and uniqueness of theorem 0.1
and theorem 0.2 using an argument based on the implicit function theorem.

1 Preliminaries

1.1 Geometric equations

We will consider three dimensional Riemannian manifolds (M, g), where ¢ is
the metric tensor, which we write as g;; in coordinates. Its inverse is denoted
by ¢¥, its Levi-Civita connection by V. For the Riemanninan curvature
tensor we use the convention

(VZVj — V]vl)ak = MRmijklglmﬁm-

Here we use the Einstein summation convention and sum over repeated
indices. Then the Ricci-curvature is given by

M kM
Rey = ¢’ Rmijkl



and the scalar curvature by *Sc = g Re;;.
Our sign convention implies that commuting derivatives on a 2-tensor Ty,
gives

VvaTcd = vaaTcd - MRmabcegefod - MRmabdegechf-

For a three dimensional manifold the Riemannian curvature tensor can be
expressed in terms of the Ricci curvature as follows

MRm;j = MReagjr—" Reagj—""Rejgint+ " Rejrga— 5V Sc(gugin— gingi)-
(1.1)

If ¥ € M ia a surface we denote by 7 the induced metric and by v its
normal. The second fundamental form of ¥ is denoted by A and its mean
curvature by H. The Riemannian curvature tensor “Rm of ¥ is given by
the Gauss equation

Ry = YRy + A Ay, — AiAj. (1.2)
Taking the trace twice implies

*Sc = MSc — 2MRe(v, v) + H* — | A% (1.3)
Furthermore, we have the Codazzi equation

ViAi; = ViAy; + MRmpigv™. (1.4)

Denote by w := Re(v, -)” the tangential projection of the 1-form Re(v, -) to
Y. Then using the Gauss equation (1.2), the Codazzi equation (1.4) and

equation (1.1), the Simons identity [22] becomes
AA;j =V, V;H + HAY Ay — |APAy 15)
+ A?’}/lmMleikm + AklRikjl + QVZ-wj — div Wij- '

For any two-tensor 7', we denote the traceless part by T°, that is T}) =
T;; — 3(tr T')v;;. In particular we have
Aij = Aij — 3 Hi.
This implies that
AP+ LH? = A2
With the help of these facts we get from Simons identity that
Ay = (VP H)) + HAF A + YH? Ay — |AP Ay — JH|AP; (1.6)
+ fi?’}/lmMleikm -+ zziklMRmikjl + 2V2-wj —div WYij,

and therefore
ATIAA = (A, V2H) + LH2AP - | A

(o] O.. O o 17
— AP Re(v,v) + QAZJAz'MRCu + 2(A, Vw). (.7



1.2 Asymptotically Schwarzschild manifolds

Let g2 be the spatial, conformally flat Schwarzschild metric on R?\ {0}
of mass m. That is g° = ¢ ¢°, where ¢, = 1 + 5> g° 1s the Euclidean
metric on R? and r the distance to the origin in R3. We will suppress the
depencence of g° and ¢,, on m and denote the metric simply by ¢° and ¢,,
by ¢. The following lemma summarizes the relationship of the geometry of
g° and ¢°.

Lemma 1.1. 1. The Ricci curvature of g° is given by

S m., e
Rey; = ﬁ‘b 2(92']' - 3/)iﬂj)7 (1.8)
where p, 1s the 1-form dual to the vector % on R3. In particular, the
scalar curvature of g° vanishes.

2. If ¥ C R3\0 is a surface, we denote by v° the normal of ¥ with respect
to g¢ and by v° the normal of ¥ with respect to g°. Analogously due,
du® denote the respective volume forms, A€, AS the respective traceless
second fundamental forms and H® and H® the mean curvatures. We
find the following relations:

I/S — (;5_2Ve, (1'9)
dp® = ¢ dus, (1.10)
AS = ¢ 24°, and (1.11)
H® = ¢72H® + 4630, 6. (1.12)

Definition 1.2. We say that (M, g) is (m,n, o)-asymptotically Schwarzschild
if there exists a compact set B C M, and a diffeomorphism x : M \ B —
R3\ B,(0), such that in these coordinates

sup (r2]g— g% + 7| V9 = V9| +r4[Re? — Re¥| + 77| VRe? — VSReS|) < 1,
25\ Bo (0)

where g° is the metric for mass m.

For brevity we will subsequently refer to Re? simply by Re or by “Re.

In the next lemma we relate geometric quantities with respect to g to quan-
tities with respect to ¢°.

Lemma 1.3. If (M, g) is (m,n, o) asymptotically Schwarzschild and if ¥ C
R3\ B,(0) is a surface, we have the following relation between the normals
v with respect to g and v° with respect to g°

v — v < Cn.



Furthermore, the area elements du and dp® satisfy dp — dp® = hdp with
r?|h| < Cn,

The second fundamental forms A and A® satisfy
[A— A% < On(r=> +172|A])
VA - VAS| < Cn(r~ +r73|A| +r 2|V A|).

To estimate integrals of decaying quantities we use the variant of [9, Lemma
5.2] as stated in [14, Lemma 2.3].

Lemma 1.4. Let (M,g) be (m,n,o)-asymptotically Schwarzschild, and let
po > 2 be fixed. Then there exists c(py) and ro = ro(m,n, o), such that for
every surface ¥ C R3\ B, (0), and every p > py, the following estimate holds

/r‘p du < c(po)rfn;f/ H?dy.
s s

Here rp;, := miny, r, where r is the Euclidean radius.

In the sequel we will also need decay properties of volume integrals.

Lemma 1.5. Let Q) be an exterior domain with compact interior boundary 3.
Then for all p > 3 there exists a constant C(p) and rq such that if ryim > 7o
we have

/r‘pdV < C(p)ri_if/ H?dp.
Q b
Proof. Let p be the Euclidean radial direction, and let X = r—?*1p. With
respect to g we have
divX = (3 —p)r?+ 0> P1).

Choose ry so large that the error term is dominated by the main term in
this equation, that is

(p—3—¢e)r P < —divX,

where ¢ is such that p — 3 — ¢ > 0. Integrating this relation over €2 and
partially integrating on the right hand side yields the estimate

1
r‘pdvgi/ X, 0.
/Q p—3—¢ 2< )

Note that the boundary integral at infinity vanishes as the surface integrand
decays like rP*1. The claim then follows from lemma 1.4. O



o
Using the conformal invariance of || A[|;2(x;), which can be seen via lemma 1.1,
we derive:

Lemma 1.6. Let (M,g) be (m,n,o)-asymptotically Schwarzschild. Then
there exists 1o = ro(n, ) such that for every surface ¥ C R3\ B, (0) we
have

A e g0y — 12

< Oy (e + 1H ez Allagsy + | H sy )

Corollary 1.7. Let (M, g), ro and X be as in the previous lemma. Assume
in addition that ||H| 2y < C', then

1A% 22y < Cro)ll Al p2s.g) + Clro, C Y

min*

We need the following variant of the Michael-Simon Sobolev inequality [15]
as stated in [9, Proposition 5.4].

Proposition 1.8. Let (M, g) be (m,n, o)-asymptotically Schwarzschild. Then
there is ro = ro(m,n,o) and an absolute constant Cs such that for each
surface ¥ C M \ B,,(0) and each Lipschitz function f on ¥ we have the
estimate

1/2
([uran) < [wninsian (113)
b b
Via Holder’s inequality, this implies that for all ¢ > 2

%ﬂ 2q 2q
( / |f|qdu) < Co [ 199155+ 171 g (1.14)
> >

and for all p > 1,
1/p
( JLE du) < Catluppf 7 [ V57 4+ B2 dg (1.15)
> >

1.3 Almost umbilical surfaces in Euclidean space

To conclude that the surfaces we consider are close to spheres, we use the
following theorem for surfaces in Euclidean space. This is proved in [3,
Theorem 1] and [4, Theorem 2].



Theorem 1.9. There exists a universal constant ¢ such that for each compact
connected surface without boundary ¥ C R with area |X| = 4, the following
estimate holds

4° =¥l < el Az

If in addition ||/(ie||L2(2,,ye) < 8w, then X is a sphere, and there ezists a
conformal map 1 : S? — ¥ C R3 such that

19 — (a + idg2) w22y < el A°) 2y,

where idg2 is the standard embedding of S* onto the sphere S1(0) in R3, and

a= |2|;1/idE dps
%

1s the center of gravity of 3. The conformal factor h of the embedding 1,
that is 1V*y¢ = h%vyg2, satisfies

|h — 1||W1,2(52) + Suzp |h—1] < CHﬁEHLQ(EWE)‘
S

The normal v° of ¥ satisfies
||N — UV O w||W1,2(32) S C||Ae||L2(Z,*yE)>
where N is the normal of S (a).

To get the scale-invariant form of these estimates, we proceed as follows.
For a surface ¥ with arbitrary area |X|. let R, = /|X|./47. Then the first
part of theorem 1.9 implies that

A = R 2sne) < el A% 25 ve)-

Again let a. denote the center of gravity of ¥,

1
Qe 1=
4m R?

/ idy du € R®,
by

Then if ||ﬁe|| r2(z,4¢) < 8, the second part of theorem 1.9 gives that there
exists a conformal parametrization ¢ : Sg_(a.) — X. The estimates from
theorem 1.9 imply together with the Sobolev-embedding theorems on S?,
that the following estimates hold

sup W—idsRe(ae) < CReHAeHH(z,»ye), (1.16)
Ske(ac)
IV ©idsy, (a0) =V © ¥llr2(s) < ORe[|A%|| L2(550)- (1.17)

10



and

sup |h? — 1] < O A%| p2(se)- (1.18)
SRe (a‘e)
Here, as before, h denotes the conformal factor of the map ¢ and N is the
normal of Sk, (a.).

2 First and Second Variation

In this section we calculate the first and second variation of the Willmore
functional subject to an area constraint.

To compute the first variation of W let ¥ C M be a surface and let F' :
Y X (—e,e) — M be a variation of ¥ with F'(X,s) = X, and lapse %—5‘8:0 =
av. Recall the following well known evolution equations for deformations
of hypersurfaces (see for example [8]). Here and in the following we will
understand that all s-derivatives are evaluated at s = 0, and will not further
denote this explicitely:

s = 2045,
% dp = aH,
%7’9 = —2aAY,
%V = —Va,
%Aij = —ViVa + a(AgAL = Ty),
%H = La,
where
Lf =—=Af — f(JAP 4+ YRe(v,v)) (2.1)

is the well known Jacobi operator for minimal surfaces,
Ti; = YRm(0;,v,v,0;) = MRel; + G(v,v)y;
and G = MRc — %MSC - ¢ is the Einstein tensor.

The first variation of WW can then be computed as

d

0= —
ds

WIS :/EHLcH—%H?’ad,u:/E(LH+%H3)ad,u. (2.2)

s=0

11



A critical point for W therefore satisfies the Euler-Lagrange equation
LH+1H? =0. (2.3)

To compute the second variation of W, note that by (2.2)

d? 2 M 1773
| Eg(—AH—H|A| — HYRe(v,v) + $H?)adp Y
13y (90 2
+ | (LH +3H?)(+— + Ho?)|  du.
5 0s s=0
(2.4)

Thus we have to compute the linearization of the Willmore operator defined
as follows

Waw— L (— AH — H|AP? — HYRe(v,v) + 1H?)
ds %=0 5 (2.5)
= — [8 JAJH — Ho \A|2 HgMRc(V, v)+ LLa + 3H’La.
S

Using the above formula for the variations of the metric and the second
fundamental form we compute
0

8—Aij = —3aA*A] —V'Va —aT"
S

and therefore

2‘z4|2 = Q(AwAw> = —2atr A3 — 2AijViVjoz — 20&14”717‘. (26)
Os Os
The next term we compute is a MRe(v, v), yielding

0

85MRC(V v) = aV,MRe(v,v) — 2MRe(Va, v). (2.7)

We turn to computing the commutator [2 ,A]. We write A = divV and

we compute the commutator of [Z, div] and [Z, V] individually. First note
that since V¥¢ = 7’” 9 we have

%(Vcb) QA@J 7@@&
and hence
0
[%, V]p = —20AFV'¢ = —2a5(V ). (2.8)

12



Here S is the shape operator, that is the tensor defined by
Y(S(X),Y) = A(X,Y)

for all X, Y € X(X). Now we turn to the computation of [%, div], operating
on vector fields. Let X, Y € X(X) be vector fields. We compute

AT XY, X) = 5Ty X, X) (X, V], X) = SV (X, X)) 49X, [X, V)
(2.9)

We choose a local orthonormal frame {e;} and propagate it using the ODE

0
956 = —aS(e;).

Then the {e;} remain orthonormal under the evolution. Plugging X = e;
into equation (2.9) yields

V(VQYv 62-) = 7(62'7 [62-, Y])

Differentiating this equation and using the above formulas we get by a fairly
standard computation

%V(VQY> 6i) = 20&/1(6,', [6,’, Y]) - ’7(0(5(61'), [62" Y]) - 7(62" [O‘S(ei)a Y])

= aA(e;, Ve, Y) — aA(e;, Vye;) — ay(ei, Vse,)Y)

+ aY (v(e;, S(e;))) — ay(Vye;, S(e;)) + Y(a)A(e;, e)
= aA(e;, Ve,Y) —avy(e;, VsenY)

+ aVyA(e;,e) +Y(a)A(e;, e;).

If we now choose {e;} to be an orthogonal system of eigenvectors for S,
that is S(e;) = A\e;, then we see that the first two terms cancel, and after
summation over i we infer

[%, div]y’ = ;aVyA(ei, e:) +Y(a)A(es, e) = Vy(aH).  (2.10)
We combine equations (2.10) and (2.8) and get, using A = div V,

[&, Alp = (V¢,V(aH)) — 2A(Va, V) — 2adiv (S(Ve)).  (2.11)
Using an ON frame {e;}, we compute further that

div (S(V¢)) = Z Ve AV, ei) + A(Ve, Vo, )

13



and in view of the Codazzi equation this yields
div (S(V9)) = (Vo, VH) + ) “Rm(e;, Vo,v,e;) + AV, V9, )

= (V, VH) +MRe(Ve,v) + (A, V2¢).
Plugging this formula into (2.11) gives

[ﬁ Alp = H(Va,V¢) —a(Ve, VH) —2A(Va, Vo)

0s’ (2.12)
—20MRe(Vo, v) — 20(A, V26).

Finally we substitute the results (2.6), (2.7) and (2.12) into (2.5) to obtain

Wa = LLa+ 3H?La — H(Na, VH) + o| VH|?
+2A(Va, VH) + 2aMRe(VH, v) + 2a(A, V*H)
+2aH tr A* + 2H (A, V?a) + 2aH(A, T)

— aHV,MRe(v,v) + 2HMRc(Va, v).

(2.13)

We rewrite equation (2.13) in dimension two, as it somewhat simplifies. We
split A = A+ %HV in the following terms

(A, V%) = (A, V2a) + LHAq,

A(Va,VH) = A(Va,VH) + LH(Va,VH),
(V2H,A) = LHAH + (A, V*H),
tr A% = tr A* + H|A]? + LH|A]? = HIAP? + LH|AP,
(A, T) = LHMRe(v,v) + (A, T).
Plugging these into (2.13), and setting w = Re(v, -)T yields
Wa = LLa + LH?La + 2H(A, V?a) + 2Hw(Va) + 24(Va, VH)
+a(|[VH +2w(VH) + HAH + 2(V2H, A) (2.14)
+2H% AP + 2H(A, T) — HV,MRe(v,v)).

To demonstrate that W is L?-self adjoint we compute, with D = |A]? +
Re(v,v),

/ BH*Ladp = / BH*(—Aa — aD)du
b b

_ / HX(Va, V) + 2HB(VH, Va) — afHD dp,
by

14



and, using divA = %VH + w,

/ﬁH(/i, Via) du

b

=— / BA(Va, VH) + HA(Va,VB) + LBH(Va, VH) + HpBw(Va) du.
b

Thus

/ﬁWozd,u

Y

_ / LaLB + 1H%(Va,VB) — 2HA(Va, V) (2.15)
P

+aB(|VH? + 20(VH) + HAH + 2(V2H, A) + 2H?| A?
+2H(A,T) — HV,MRe(v,v) — LH?|AP? — LH*MRe(v,v)).
and from this representation it is obvious that the bilinear form associated
to W is symmetric, and hence W is L%-self adjoint.

Recall that the goal is to find a critical point of the Willmore energy in the
class of surfaces with given area. From (2.3) we get that for a critical point
of this problem we have

0= /(LH + 1H%)ardp (2.16)
)
for all o which respect the constraint [, aH dy = 0. We thus find the
Euler-Lagrange equation
LH+1H° = \H, (2.17)
where \ is a constant. Let us turn to the computation of the second variation

& — 1 73y O 2
952 SZOW[ES] = /Eonoz + (LH + ;H )(g + Ha?) dp. (2.18)

At this point we only consider variations that leave the area constant up to
second order. This gives

0? 0

=2, = 5

/ aHdu:/a—aH+0zLa+0z2H2du. (2.19)
bR b 88

s=0 s=0

Thus we can compute

da

/(LH—I—%H?’)( —I—Ha2)du:/)\H(a—a—l—Haz)du:—)\/aLa. (2.20)
) Js ) Js )

15



Plugging this into (2.18) yields that the second variation of WV on a station-
ary surface X is given by

W, a) = / aWa — AaLadu, (2.21)
>

for all valid test functions v € C*(%) satisfying [ o dp = 0.

3 Integral curvature estimates

In this section we derive a priori bounds on the curvature of surfaces which
are solutions of the equation (0.1). We will later make the assumption that
both H > 0 and A > 0 on these surfaces. Without the assumption on A we
can derive the following lemma.

Lemma 3.1. If a spherical surface ¥ satisfies equation (0.1) with H > 0,
then

)\\E\Jr/ |VlogH|2+iH2+%|ﬁ\2du§47T—/%MSCdu.
b b
If MQe > 0 we have that

4N +/H2du < 167.
%

Proof. Multiply equation (0.1) by H~! and integrate the first term by parts.
This yields

AlX —I—/ IV log H|? + |A]? + MRe(v, v) dp = 0. (3.1)
>

We can now use the Gauss equation (1.3) and the Gauss-Bonnet formula to
get

A\EH/IV1ogH|2+§H2+%|2i\2dug4w—/%Mscdu.
P Y
O

The above lemma already implies that the Hawking mass is positive on such
surfaces.

16



Theorem 3.2. If (M, g) satisfies ™Sc > 0 and if ¥ is a compact spherical
surface satisfying equation (0.1) with H > 0, then my(X) >0 if A > 0.

Furthermore if ' : 3 x [0,e) — M s a variation with initial velocity

5elomg = av and [;aH du >0, then

d

gm[{ (F(Z, S)) 2 0.

Note that the condition on o means that the area is increasing along the
variation.

Proof. Non-negativity of the Hawking-mass is obvious from lemma 3.1. To
observe monotonicity, we compute the variation of the Hawking-mass. We
denote F'(3,s) = 3.

d
(16m)%2 —|  mpy(%,)
ds <0

1
== (/ aHd,u) <167r—/H2d,u) —2\2\1/2/)\aHdu
2[8V2 \Js > >

as equation (0.1) implies that the variation of [, H*du is given by 2AH.
This yields

d 1
167)%% — = / Hdy ) (16 —4>\E—/H2d :
6 o= s [ atran) (107 —ai = [
Lemma 3.1 implies non-negativity of the right hand side. U

Subsequently we assume that the manifold (M, g) is (m, n, o)-asymptotically
Schwarzschild for some n < 1y, where 7q is fixed. Furthermore ¥ C M is a
surface with ry;, > rg large enough. The particular ry will only depend on
m, Ny and o, and we will no longer explicitly denote the dependence on these
quantities. Similarly, constants denoted with a capital C' are understood to
depend on m, 19 and o, in addition to quantities explicitly mentioned. In
contrast, constants denoted by ¢ will not have any implicit dependency. We
no longer require the condition Mge > 0.

Lemma 3.3. Let (M,g) be (m,n,o)-asymptotically Schwarzschild. Then
there exists ro = ro(m,n,0) and a constant C = C(m,n, o) such that for
all spherical surfaces ¥ C M\ B,,(0) satisfying equation (0.1) with A > 0
and H > 0, we have the following estimates.

/ |fi|2 +|Viog H>dpu < Cr}
2

/szu— 167 < Or-}
5

min?

17



and

MY < Crd

min*

Proof. From lemma 3.1 we get the bound

/H2du§167r—2/MScd,u
5 b

As [MSc| < C(n)r~* we find that in view of lemma 1.4

/ H?dp < 167 + Cri2 / H?*dp.
b s
So if ry, is large enough, eventually
/ H?dp < 167 + Cr 2.
s
We can write the Gauss equation (1.3) in the following form

° 1
1¥Se < 1¥Se + J|A]? = ZHQ + 1MSe — MRe(v, v).

Integrating and using lemma 1.4 gives

min*

167 < / H?*dp+Crl
b
The remaining claims now follow from lemma 3.1. U

The initial bound on A derived above is crucial for higher curvature estimates
on ¥. We vary on the strategy outlined in [10, Section 2]. The estimates
there were derived in flat ambient space and therefore we review them here
for the readers convenience. More importantly, we can use the fact that
H > 0, which improves the estimates, as the absolute error is slightly better
behaved.

Lemma 3.4. Under the assumtions of lemma 3.3 we have
AH|? o
/ | 2| du§2/|A\4d,u+2/ (MRC(V,V)+)\)2d/J,.
s H b b

Proof. We use equation (0.1), divided by H, which gives

[AH?
H?2

d,u:/ (\fi|2+MRC(V, V) +)\)2d,u
>

§2/ |f<i|4du—|—2/ (MRC(I/,V)+)\)2du.
5 2

18



Lemma 3.5. Under the assumtions of lemma 3.3 we have
2H 2
/|V | dp+ $|VH|* dp

< Cr;lm/ |V log H|? +/ (MRe(v,v) + )\)2 +AI* + |V 1og H|* dp.
> >

Proof.

[V2H 2
s H?

= / —~H*V,V,;V;HV,;H +2H *V*H(VH,VH) du
%

= / —~H*V;AHV;H — H**Rm;;,,V;HV . H du
%

+ / 2H3V2H(VH,VH)du (3.2)
Y

[AH]?
s H?

+ / 2H3V2H(VH,VH) — 2H 3 VH|?AH du.
Y

— H Ry, V,HV H dp

In view of the Gauss equation (1.2) the curvature term yields
ERmZ]]ﬂijVkH = (MR,IHZ]]“ + iHZij — /Lk/i”)ijVkH
1 o o
= 1HZ\VHP + MRy, V;HV  H — Ay AV HV L H.
Furthermore, we estimate

/ 2H3V2H(VH,VH) — 2H 3| VH|?AH du
P

1|V2H? 4
§/2§ 72 + ¢|Vlog H|" dp.

The first term can be absorbed to the right hand side of equation (3.2). We

infer
1|V2H|?
/2| H2| —|VH|2d,U

+ c|V1og H|* + c|A[* + ¢/MRm||V log H|? dp.

We use |YRm| < Cr2 and lemma 3.4 to conclude the claimed inequality.
O
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Lemma 3.6. Under the assumtions of lemma 3.3 we have
/ VAP dp+LH?AP dp < / |w\2+0rmm/ |ﬁ\2du+/ IVH|*+|A|* dp.
b b

Proof. Integrate equation (1.7), and use integration by parts on the left hand
side, and on the first and the last term on the right hand side to conclude

o 1 o [} o
/2 |VAI*dp + 5 /z H?|AP?dp :/22(divA, %VH +w) + |A]*
+ [APMRe(v, v) — QEijﬁéMRcil du.
From the Codazzi equation we conclude that div A= %VH + w, and hence
o ]_ o [} (o]
/ VAPt / H2 AR dp < / VH P+ | A+ 4Jw P+ | A2 MR dpe.
b b b

In view of |[YRm| < Or?, the claimed estimate follows. O

Combining lemma 3.5 and lemma 3.6, we infer the following estimate.

Lemma 3.7. Under the assumtions of lemma 3.3 we have

V2H|?
[+ 1vap s 1apLAR g,
< c/ w|* + (MRe(v,v) + A)? d,u+c/ |f<i|4 + |V log H|* dpu
z 2

+0m/wmmummu

At this point we need a variation on the multiplicative Sobolev inequality
from [10, Lemma 2.5].

Lemma 3.8. Under the assumtions of lemma 3.3 we have

/ A+ [V log HI* dy
b

<c (/ A2 + |VlogH|2d,u>

2H2
</ v 4] +|VA|2+|VlogH|4+H2|A|2du)

20



Proof. We use the Michael-Simon-Sobolev inequality from Proposition 1.8
and Holder’s inequality to estimate

1/2
(/ (|VlogH|2)2du)
>
Byl
¢ Tm

1/2 |V2H‘2 1/2
c (/ \VlogH\2du) (/ 77+ |V log H|* + \VHPdu) :
) %

Furthermore

o 1/2 (o] o o
(/ \A|4d,u) < c/ |A||VA| + H|A” dp
) %
. 1/2 . . 1/2
c(/ \A|2du) (/\VA\2+H2|A\2du) :
% %

Combining both inequalities yields the claim. U

+ H|Vlog HI*dp

The estimates above yield the initial curvature estimates.
Theorem 3.9. For every m,n,o there exist constants ro = ro(m,n, o) and
C = C(m,n, o) with the following properties:

If (M, g) is (m,n, 0)-asymptotically Schwarzschild and ¥ C M\ B,, satisfies
equation (0.1) with H > 0 and A > 0, then ¥ satisfies the estimate

V2H2
/| | + VAP + Vg H* + |A]2|A]? dp
< [ 1oP + (MRelws ) + X)* du+ Crh, [ [Vlog HP + AP dy
b}

Proof. This is a consequence of lemma 3.3, lemma 3.7 and lemma 3.8. [

Corollary 3.10. Under the assumptions of theorem 3.9 we have the estimate

+ Cr2

ven
/ L IVAP + |Viog HI* + |APIAR du < Crit + Cro2 5]

Proof. The claim follows in view of |w| 4+ |[Re| < Cr™3, lemma 1.4 and the
estimates from lemma 3.3. O

Corollary 3.11. Under the assumptions of theorem 3.9, we have the estimate

/ AP + |Viog H|?dp < Crit 15| + Cr2.

min
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Proof. This follows from the Michael-Simon-Sobolev inequality and Kato‘s
inequality. For example

1/2
(/ \A|2du) gcs/ |V|A|| + H|A| dp
) )

1/2
< Cy5[? ( / VAR + H2|ﬁ|2du)
>

Using corollary 3.10 the claimed inequality for [ |/<i|2 du follows. The proof
for [|Vlog H|*dy is similar. O

4 Improved curvature estimates

Before we can approach the position estimates, we discuss how the decay
rates in the curvature estimates in section 3 can be improved. First we
note that the estimates in section 3 and theorem 1.9 imply that solutions to
equation (0.1) are close to spheres.

Proposition 4.1. Let R, be the geometric area radius of X with respect to
the Euclidean metric, i.e. [, du® =4 R2, and let a. be the Euclidean center
of gravity of X, that is

fZ} ldg d,ue
fz dpe
Let S := Sk, (a.) be the sphere of radius R, centered at a. and let N be

the Fuclidean normal of S. Then there exists a conformal parameterization
v S — (3,9 with conformal factor h? satisfying the following estimates.

Qe =

up v — ids | < CR(||Allz2 + i) (4.1)

IN oidg —1° 0 9| 125y < CRe (| Al 2 + mr2) (4.2)

sup [h? — 1] < C (| Al 2 + nri2) (4.3)
S

Proof. This follows immediately from corollary 1.7, theorem 1.9 and corol-
lary 3.10. U

In the sequel, an essential quantity will be the ratio between the center of
mass and the radius of the approximating sphere. We denote it by
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where a, and R, are as in proposition 4.1. Note that by corollary 3.10 and
(4.1) we have

T'min > R |a’€| - CR (||A||L2 + nrmln)
> Re(l - T) - ClR (R Tmln + Tmln + nrmln) (45>

Analogously we can estimate 7.,;, from above. If we now assume that

< — < — .
7T<(l—¢) and R, 40 Th (4.6)

for some arbitrary € > 0, we get for r;, large enough

Cl(Rerr;?n + Tr;iln + 777};12n) <

DO ™

and this shows that
C1_17"min S Re S CYfr’min-

Hence R, and r.;, are comparable to each other and therefore we will not
distinguish between them any more and we phrase the estimates only in
terms of r;,. Constants C' in this section will also depend on €.

We can use the fact that ¥ is well approximated by a round sphere to
compute a precise expression for .

Proposition 4.2. If (M, g) and ¥ are as in theorem 3.9, then if assump-
tion (4.6) holds, we have

2m 9
= 2] < O 1A+ 17 o HI) + Crghr -+ ral A+

S

Here we set Rg = ¢”R. where ¢ = ¢(R.) = 1+ 5.
Proof. Recall that from (3.1) we have
‘)\|E| + / Re(v, v) d,u‘ < / A2 + |V 1og H|> du (4.7)
5 2

The goal is now to calculate the integral on the left. We start by estimating
the error to the respective integral in Schwarzschild.

/Rc(u, V) d,u—/RcS(VS,I/S) dp®
b
<c/|RC—RCS|+|Rc||1/—1/5|—|—|RC||d,u dps|dp < Cnr 2

min*
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We furthermore replace v° and du® by the respective Euclidean quantities.
This introduces some factors of ¢ which all cancel, and we therefore get no
further error in the following step:

[ Retvyan— [ ReSwr ) ape ‘ < Oy,
> M

The second integral on the left can be replaced by an integration over the
sphere S = Sy, (a.) from proposition 4.1, introducing only acceptable error
terms. This technique was used extensively in [14]. To see how this works,
we use the parameterization ¢ : S — ¥ from proposition 4.1 to calculate

/ Re® (v%,v°) dp® — / Rc¥(N, N) dp®
) S

(Re® o) (v° 0 1h, v 0 9p)h* — Re® (N, N) du*
S

< c/ IRc® 0 ) — R¢®| + |Rc®||h? — 1] + |Rc®|[v° 0 o) — N|dpe
S
< | VR [ — 1d [| o= |Z] + €l Re® [ 12 [|h* — 1] =
+ || Re™|| 2|V 0 ¢ — N| 2
< O (rmin[ Al 22 + 17l

Now use coordinates ¢, on Sg(a) such that cos¢p = g (‘a |,N). Then
the representation Re®(N,N) = ¢722(1 — 3¢°(p, N)?) together with p =
r~Y(R.N + a.), implies that

/Rc (N, N) dye

_m/¢ (--332——63 |ae|cos‘p 3l = ‘p> du
T

Letting ¢ := 1+ s~ we can use the expression 7 = R?+2R.|a.| cos p+|a,
to estimate that

‘ 2

Sup |¢ - 9 < Crrgg,

n

which renders
/ Rc¥(N, N) du®
s

1
%/(——332 — 6RJa.| =5 = 3la.[*= S”)d +0(ry)
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Integrals of this type can be computed explicitly as follows. First write

l T 1
[ L
s T 0 r

de.

We have = R.N + a., and hence r = \/R2 + 2R.|a.| cos ¢ + |ac|2. Thus
dp _ v and cos p = w

dr Relae|sinp’ 2Re|ae|

yields

. Substituting this into the integral

! 2 Re Re+|ae‘
27rR§/ singoCO:k(pdgo. _ AT (2R6|a6|)_l/
0 |

R (r? = R —|a.|?) dr.
|acl Re—lacl|

Thus we can compute (see appendix A.1), if |a.| < R,

/ RS (N, N) du = 42 8;;”1 O(rr=2
S e

min)

Collecting all error terms we introduced, this yields that

/ Re(v,v)du + ST
> Rg

< Crmm (T + TmlnHAHLQ + nrmln)

The next step is to calculate the area of . Similar to the above argument
we estimate

1dp —
2

1dp®
2

< (Ch.

From lemma 1.1 we get
/ 1dp® = / ot dps.
) b
We now replace ¢ by ¢ in this integral. This yields an error of the following
form

/Z Bty /E B dpe

In conclusion we find that

=] -

S C'Tmin (T + Tmianzi||L2 + 777";11111)

47TR ‘ < C”f’mm (7— + TmlHHAHLZ + 777'mm)
Using lemma 3.3 we get

IA[Z] — 47 RN < Ol (7 + Panin|| Al L2 + i)
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Plugging this expression into equation (4.7), we arrive at the estimate

\A - | < Oraki (14117 + 11V log H|[72) 4+ Crighy (74 sl AlL 2 4+
S

(4.8)

This yields the claim. U

If 7 behaves as above, we have more control over the curvature terms which
did not allow us to increase the decay rates in section 3. In particular,

Proposition 4.3. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, then

lv — 6720132y < Crlin(7* + 1Al + )
IRe(v,v) — 6™ Re®(p, p) 3215y < Cramm (7> + [ Al32 + 1)
w325y < Cram (P + A3 +0rpk)

(72 )

min

IRe” = P2 Re® |72y < Crii

min

T+ ||14HL2 + 777’mm
Here, PS 2, Rc® denotes the g°-orthogonal projection of Re® to the subspace
perpendzcular to ¢~ 2p.

Proof. The proof is the similar to [14, Proposition 4.6]. However the claimed
estimate here is somewhat more precise, so we briefly sketch the argument.
To show the first assertion we first replace the quantities in the integral by
the respective quantities computed with respect to the Schwarzschild metric

/ g(v = ¢ %p,v —¢~p) dp — / (W — ¢, V% — ¢72p) dp®| < O
> >

Then we note that
/gS(VS _ ¢—2p’ I/S o ¢—2p) dILLS — / ge(ye —p, Ve _p) due.
by by

We now parameterize again by v and calculate the difference to the respec-
tive quantity on S. We obtain

/Eg“’(lf"—p,ve—p)du“’—/Sge(N—p,N—p)due

< C(rr2 | Al + 12l AN 2e + 72 4+ + P2
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Since

/ (N = p, N — p) du <C / 7 2(r — R + la?) d
S S
<Or2 (P4 JA|2 + ),

where we used (4.5), we obtain the first inequality.

The other inequalities are then a consequence of the first, since they basically

follow from expressing the quantities in terms of the respective quantities in
Schwarzschild. O

This proposition can be used to improve the mean value estimate we ob-
tained in proposition 4.2 to the following L2-estimate.

Proposition 4.4. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, we have

A+ Re(v,v)|| 2y < Cri T+]|A||L2+]|VlogH||L2+nr

min ( mm)

Proof. We use the second estimate of proposition 4.3 to express Re(v, v)
in terms of ¢ *Rc®(p, p) plus error. Then we use that up to second order
d~*Rc(p, p) = _?%_-72 plus error. In combination with proposition 4.2 this

yields the estimate. l

Propositions 4.3 and 4.4 give more precise estimates of the terms on the
right hand side of theorem 3.9. In combination with the initial estimate for
|Al|z2 we thus infer the following improved curvature estimates.

Theorem 4.5. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, then

‘V2H|2 2 4 2
+ VAP +|Viog H* + |AP|A]” du < Cro (7° + i)
and furthermore
J AP+ ¥ log HE du < Cr 2 (7 4 1 2)
5

Proof. First of all note that by the calculation in corollary 3.11 we can
estimate

\V2H|2

/|A| +|VlogH|2du<C|Z|/ +|VA|?+ |V log H[*+|AJ? |A|2d,u

27



(4.9)

Since, under assumption (4.6) we have that |S|r? — 0, we can eventually
absorb the second term on the right in theorem 3.9 to the left hand side. In
combination with proposition 4.3 and proposition 4.4 this yields that

/ \atil + VAP + Vg H* + |A]2|A]? dp
s H? (4.10)

< Croh (7 iy + | All72 + |V log H|72)

min

together with (4.9) we infer
/ AP + [V log HP du < Cri2 (2 + s+ | A2 + IV log H %)

We absorb HfiH%g + ||V log H||2., to the left and obtain the second estimate.
The first estimate follows from (4.10) and this estimate. O

Using this estimate, we also get a better control on derivatives of w. In
particular, we have the following

Proposition 4.6. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, then

HV(“)HL2 < Crmln (T + nrmm)
and

HVR'C<V V)||L2 < Crmln (T + nrmm)

Proof. To prove the first estimate calculate for {e;} a ON-frame on X that

Ve,w(er) = e;(MRe(v, er)) — MRe(v, *Ve,ex)
= Mg, MRe(v, e) + %HMRc(ei, er) — %HMRC(I/, v) (4.11)
+ MRe(er, 6’1@)1&'1 — MRe(, V)fziik-

The last two terms including A have the claimed decay, so we focus on the
first three terms.

In Schwarzschild we have that on the centered spheres V°w® vanishes as w®

vanishes, so we find that on centered spheres for a ON-frame {e7} tangent
to the centered spheres

0= V5w’ = VSR (67, ef) + LHOR(eF, ) — L HRe (6720, 672p).
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(4.12)

Following proposition 4.3 we get that the first three terms of (4.12) equal the
right hand side of (4.11) up to an error with L?-norm bounded by Crr_?

min*

This yields the first estimate. The second one is proved similarly. O

In the sequel we will use the improved integral estimates to derive improved
pointwise estimates of the second fundamental form and its derivatives. Be-
fore doing this we need the following Lemma which is due to Kuwert and
Schétzle [10] in the case that M = R™.

Lemma 4.7. Under the assumptions of theorem 3.9 we have for every smooth
form ¢ along ¥

ol zoe () < Cllelias) /E(IV%I2 + [H[*|l*) dp. (4.13)

Proof. The proof of lemma 2.8 in [10] can be carried over to our situation
since we saw in proposition 1.8 that the Michael-Simon Sobolev inequality
remains unchanged if (M, g) is (m,n, o)-asymptotically Schwarzschild. [

In the next lemma we derive an L?-estimate for V2H.

Lemma 4.8. Under the assumptions of theorem 3.9, if conditions (4.6) hold,
then

min min min

/ |V2H[*dpu < Ort (||HH%Oo + 2 ) (7’2 + 2 ) (4.14)
5

Proof. We multiply equation (0.1) with AH and integrate to get

/|AH|2du: -/HAH(|21|2+MRC(V, V) + ) du

> > (4.15)

< %/ |AH|2du—|—c/H2|ﬁ|4+H2(MRC(1/,I/)+)\) du
by b

Defining f = |f<i\2|H | and applying proposition 1.8 we get

(/Elf‘il4H2du)1/2 < C/E(|A||2i||VA| +1ARH?) du

i 1/2 . 1/2
go( / |A|2|A|2du) ( / IVA|2+H2|A|2du)
> >
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In combination, we infer

/|AH|2d,u§/H2(MRC(V,I/)+)\)2du
2 2

+C’</ |A|2|ﬁ|2du) (/ |VA|2+H2|/‘i|2du)
> »

This implies the claim, since the first term is estimated in view of propo-
sition 4.4 and the second one in view of theorem 4.5. Using the Bochner
identity as in the proof of lemma 3.5 finishes the proof. O

Now we are in a position to prove a pointwise estimate for H.

Proposition 4.9. Let S = Sg,(a.) be the approxvimating sphere for ¥ from
proposition 4.1. As in proposition 4.2 we let ¢ =1+ 57— and define

_ -5 2 —am
S _ 72 -3
B =0 g =20 5

Under the assumptions of theorem 3.9, if conditions (4.6) hold, we have that

HH - E[SHLOO(E) < Crr:’lizn (T + \/ﬁrr:nln) (416>

Proof. Since

|H — H?|[Z200) < CrPro

min

and H = ¢2H® — 22¢3¢°(p,1°) by lemma 1.1, we can estimate using
propositions 4.1, 4.3 and theorem 4.5 that

2 2

| HS — FISH%z(g) < C(ll¢~(H® — E)H%?(z) + (7% = 5_2)§6H%2(2)

_ — a2 2m
+l(¢° —¢ 3)@”%2(2)

_g.2m o 2m
+ [|lo 3(?9 (p, %) — ﬁ)”%?(z))

< C||,Ziy|;@) + O 2 4+ Cprd

min min

< O (72 4 raia)-
Combining these two estimates we conclude

HH - FISH%Q(E) S CTI:]?H (T2 + UT;]?H)
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We apply lemma 4.7 to ¢ = H — H® and get

HH—H%%@SCMLJ#mwmlﬂWHﬁH%W—HWmQ
=T +1I. (4.17)

Now we estimate term by term. We use lemma 4.8 and the fact that
[H | ooy < 1H|[poe(s) + | H = H || () to get
I < Croia(HH e sy + rnin) (72 i) 1 H = H|[ s,
< Ol H = B[y + Orh (7 4 )

min

where we also used the above estimate for ||[H — H SH%Q(E). Next we note
that

/ HYH — A5 du < o/ H?((HS)2|H HS]? 4 |H — HS|4) dp
> >
< C)! [ 1 = I du+ CIH = ¥,
Hence we get
1T < Cr || H - HSH%OO(Z) +Crph (TP + 777”;12]0)2-
Inserting these two estimates into (4.17) we conclude

|H — B[ feqsy < CrpfllH = B [oeqsy + Crofa (7 i)

min
and therefore, by choosing rg large enough we can absorb the first term on

the right hand side and this finishes the proof of the proposition. O

In the next lemma we derive pointwise estimates for higher derivatives of
the curvature.

Lemma 4.10. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, we have that

Paninl |V H [ 1oy + [ All =) < Criada (7 + V7 (4.18)
Proof. Using (1.6) we estimate

IAA]l: <e(IV2H]| 12 + [ Hl|e Al + | H T | Allz2 + [|All 2 ]| AllZe
+ {1 Rml| o | All 2 + (V]| 22)
< Croin (7 + V7 in) + Cll AN 2| All e
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where we used theorem 4.5, definition 1.2, corollary 4.9 and propositions 4.6
and 4.8. Using an integration by parts argument as in the proof of lemma
3.5 we get

HV2A||L2 < Crmm(T + \/T_]Tmm) + C||AHL2 )HAH%‘X’(E)
Hence we can apply lemma 4.7 and get

1A Zoe () < el ALy V2 ALz () + IH 2o () [ All o))
1A Zoe (5

mlH

< CTmm(T —i—m’mm) +Crt

where we used the above estimate for V2A and theorem 4.5. Absorbing the
last term on the right hand side mto the term on the left hand side finishes
the proof of the L>-estimate for A. For the estimate of VH we differentiate
(0.1) and get
IVAH || 2wy < cAIVH | 2wy + A7 ) I VH | 2

+ ||H||Loo<z>||ﬁ||Lw<z>||VA||L2@>

+ [[Re(, v) || oo ) IVH || 22

+ |Re" (-, V)||L2(E)||A||2L°°(E)

+ [ H [ o) [ VRe(v, v)[ 22wy

< O (7 + V17 i)
Hence by interchanging derivatives and integration by parts we get as before
IVPH | 2y < Ot (T + V1T i)
Applying theorem 4.5 and lemma 4.7 once more, we conclude

IVH| Lo (s) < CIVH 2wy (VP H |25y + 7
< Crmllr? (7_ +nrmin)2'

inll VH[72(5))

min

This finishes the proof of the Lemma. O

5 Position estimates

To get estimates on the position of the approximating sphere, we exploit the
translation sensitivity of surfaces satisfying

LH+iH? = )\H. (5.1)
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As it turns out, this position estimate is a delicate matter. The goal is
to obtain an estimate for 7 = |a.|/R. where a. and R, are the center and
radius of the approximating sphere constructed in proposition 4.1. In fact,
we subsequently prove the following theorem

Theorem 5.1. For allm > 0, ny and o there exist ro < 00, 79 > 0 and e > 0
with the following properties. Assume that (M, g) is (m,n, o)-asymptotically
Schwarzschild with n < ny and

MSe| < nr5.

Then if 3 is a surface satisfying equation (0.1) with H > 0, A > 0, ryin > 7o
and

7 <79 and R, < er?

7 < C\/Mrin-

Note that the assumptions of theorem 5.1 imply the assumptions (4.6). We
will therefore take ry large enough to be able to apply the estimates derived
in section 4.

Theorem 5.1 follows from proposition 5.3, which states that under the as-
sumptions of theorem 5.1 we have in fact

< 0(7'2 + \/ﬁrn_ﬁlﬂ),

for some constant C' depending only on m,ny and o, whenever ry is large
enough. Assuming that 73 < 1/2C yields the claim.

The crucial ingredients for this estimate are the quadratic structure of certain
error terms, the translation invariance of the functional ¢ with respect to
the Schwarzschild background, the Pohozaev identity, and the contribution
of the Schwarzschild geometry to break the translation invariance. We split
the proof of the theorem into the following subsections.

5.1 Splitting
Integrating the Gauss equation on 3 yields

8r(l—q(X)) =W(E) -U(E) - V(E),
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where ¢(X) is the genus of ¥ and

UE) = / AR dp,
V(%) ::2/EG(1/, v)du,

where G = MRe¢ — %M Scg is the Einstein tensor of M. Denoting by d; the
variation induced by a normal variation of ¥ with normal velocity f, we
infer from the above relation that

SV(E) = 6 US) + 5, V(5).

By assumption we have
IW(E) = )\/EHfdu,
hence
\ /Z Hfdp = 5,U(S) + 6,V(5). (5.2)

By a fairly straightforward computation (given all the expressions in sec-
tion 2), we find

SUT) = — /E 2452 £+ 20 AR + FHIAP du. (5.3)

5.2 The variations of I/ in g and ¢°

Here we compute the difference of the variation of U with respect to g and
to ¢°, that is the error when changing the metric.

To do this, we restrict to the special case where

_ 9w

f H )

and b = ‘Z:‘, where a, is as in proposition 4.1 and v is the normal of ¥ with

respect to g. Thus, up to the factor of H~!, the function f is the normal
velocity induced by translating ¥ in the direction of b. We also define

S(,,S
S_g (V 7b)
f - HS ’
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where H* is as in proposition 4.9. As |V—I/S| < Cnr=? and HH_I:ISHLOO(E) <
Cri2(r+ \/7_77”;111]0) we find that

[f = I < Clr+ Virgn).
Before we proceed, we compute the first and second derivative of f.

Vif = H 7 (g(Vib,v) + g(b, Ale;)) — H>V,;Hg(b,v), (5.4)
and hence, as |Vb| < Cr~2, we find that

. |AP  |VH]?
/E|Vf|2dugc/2(r 2+‘H—|2+‘ H4‘ Ydu < Cr2, .

The second derivative of f is given by
ViV,f
= —AFAjf +2H°V;HV ;Hg(b,v) — H*V; Hg(b,v)
+ H ' (g(ViV;b,v) + g(Vib, ek)A§ + 9(Vib, ex) Af + VA g (b, er))
— H2(Vil(g(V;b,v) + g(b, ex) A}) + V; H(g(Vib,v) + g(b, e) A7)).
In view of our estimates and the rapid decay of Vb, Vb, VH and V2H, the
first term on the right hand side of this equation is one magnitude larger
than the other ones. However, the main contribution is in the trace of V2f.
We will not have to consider the trace part, as V2f is contracted with the

traceless A in equation (5.3). The traceless part (V2f)? can be estimated as
follows

[l perdusc [ rtan <o, (5.5)
b} b

Note the jump in decay rates compared to the L?-norm of |V f|. Finally we
need to calculate the second derivative of f°

VIVE T =(H) T (g7 (VIVI0,07) + g% (V7€) (A%)S + g° (V5 b, ) (A%)F
+ VI (A%)Fg% (b, ex)) — (A”)F(A”)jnf.

We are now in the position to examine
0,U(E) — §psU (D))

We will do this in detail, as this requires some care. First, consider the first
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term in equation (5.3):

B = / g(A (V2)0) du — / (A5, (V)5 1)) dps

(9= A1) du‘ .

JRC e du‘

_|_

/Z g5 (A5, (T2)°)(dp — dpi)
/Z gS(AS (V2F — (V5)215)0) dpis

The first three terms can be estimated using the asymptotics of g and the
curvature estimates from theorems 3.9 and 3.11.

Bl < O, / AI(V2H0)]+ (7 + JADI(V2H)0)] + | AS][(V2)0)] du

mm”(V2 )0||L2(Z) (H‘AHL2 + Tr;iln|2|l/2)

min"*

_|_

< Chnr
< Cnr}

Using again the fact that we are contracting with the traceless second fun-
damental form and the above equations for the second derivatives of f and
f* we see that we can estimate the last term for E;, denoted by E?Y, by

E'<C / AS|H2(|VH||[Vb| + [VH|A| + [V2H| + H[VH?) d®
>

AS||\H - s i
C/z %(ww + [Vbl| Al + [VA| + H|A]) dp®

+CH5 [ LANIg(V93b0) = (VIS0
+ | A5||g(Vib, ex) AL — g5 (V5b, e0) (A5)Y] (5.6)
+ | A%]g(V b, ex) AF — g°(V5b, er) (A5)]
+ A%V, AR (b, er) — V5 (A%)Eg5 (b, er)] dp®

C [ 1APIAEADS - ((A%)EA5)° 5] i
By the curvature estimates from section 4 the terms on the first two lines in
equation (5.6) are estimated by
Cl A 2 (ruin [V All 25y + 7iinl V2 H | 225y + 7aain [V (log H) [
+ V20l 22 + il All2 + il All 2y
S Crr;?n (7- + Trmin + \/7Tmin) .
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We estimate the terms on the last five lines of equation (5.6) seperately. The
third line yields

/ AS)19(V,,b, ) — g5 (VD)) dp®
>
< / A1 — 9% (ViVb,0)] + g3 (VaV; — TV, °)
+19%(V, Vb, v — v*)]) dp®
< Cnr;?

The fourth and fifth line of (5.6) are estimated as follows
[ 1oV, 45 = (90, 0) (4%
< [ 100 = 9)(Tib.cu) 45+ 1o™((: = V)b ea) (4}
+ g% (Vib, ex) (A7 — (A%))]) dp®
< Cnr?

For the sixth line of (5.6) we get
[ 185l 091 - 0,0 VA%
< /E 1A51(1(g — 9%) (b, 1) Vi AE| + |g5 (b, e,) VE(AF — (A%)F)]
+19%(b, ) (Vi — V2) A]) dp®
< Cnroi

It remains to estimate the last line of (5.6)
[ VSIS A — (a5
5
< [ LIRS - 5] 1A - 451175
n

< Crop (T 4+ Vi) -

Combining all these estimates we arrive at the estimate for the first error
term

By <Crpt (72 4 i+ VT i) -
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Similarly, the second term in equation (5.3) gives the error

E2 =

/ FOART) dji / PSS (Re$YT) d
) >

< / A~ AS|IRT||f) dpu+ / AS|RET — (ReS)YT||f| du
> >

+ / |AS||(Re™)T]| f]] dpe — dps®] + / |AS||(ReT|| f = f5] dp®
< Croin(7 + V1)

And the third term in equation (5.3) contributes

E3 =

[ ruApan— [ prsap o
> >

< c/ |/i—f15||/°1|du+0/ A9 dpe — eS| du
> >

e / FSHS — g5(b, 9| A% 4y
>

< C’rn_]f’n (7’ + \/ﬁ)

In summary, we find that

07U (Z) — 655U (D) < Cropt (T2 + 7rhy + /1) - (5.7)

min min

As the functional U° is translation invariant, due to conformal invariance
and conformal flatness of ¢°, we find that

6psUS(X) =0
and hence
0;UR)] < Cro (T2 + T i + Vi) - (5.8)

5.3 The left hand side of (5.2)

Here we estimate the left hand side of equation (5.2). By our choice of test
function this becomes (omitting A for now).

/E g(b,v) dp.
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First, we estimate the error when we take all quantities with respect to the
metric ¢°.

/Eg(l% v) du—/gs(h Vo) dp®

by

< / Ig—gsldwr/ \V—Vs|du+/ |dp — dp®dp < Cn.
b b b
Then we insert the relations from lemma 1.1 to compute
[ o an = [ b
b b
- / (1 + 22 + lower order)g®(b, v°) du’.
»

We deal with the highest order term first. Note that by translation invariance
of the volume enclosed by ¥ in Euclidean space, we find

/ge(b, ve)du® =0, (5.9)
b
and hence

/gs(b, Vo) dp® = / (22 + lower order) g°(b, v°) dpu°.
s s

The lower order terms are of the form c;r~* where ¢, depends only on m
and k= 2,...,6. We can replace r by R, in these integrals, and in view of
proposition 4.1 and theorem 4.5 we find that

[rF = RF| < Crik (7 + Vo)

Since k > 2, we can estimate all resulting error terms by

>

The remaining integrals satisfy

C, Ck, 1
T_k — R_/g d,u S C(T"‘ \/ﬁrmin)’

due to relation (5.9). Combining the above calculations, we find that

< O(T+ rph, +1).

/ g(b,v) dpt / 3m ge (b, 1) i
> >
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The estimate on ||/(i|| r2(x) allows us to change the domain of integration to
the round sphere S := Sg_(a.), and change v¢ to N, the normal of S while
introducing only an error estimated by C(7 + \/ﬁrn_ﬁln). The corresponding
integral on the sphere can be computed using the methods introduced in the
proof of proposition 4.2. The result is (see appendix A.2)

/ 3m e (b, N) d® = —dmmla.|.
S

Hence, collecting the error terms acquired on the way, we find

< C(r+ iz +n). (5.10)

/ Hf dp + 4mm|a.|
>

recall that [\ — 22| < C'(rpi (7 + /i) ), Whence
S

STm>T

(52R2 S CTI:I?H(T + \/ﬁrr:liln + 77)> (511)

')\/EHfd/H—

where ¢ = 1 + o Bs = #’R, as in proposition 4.2 and we used the

definition 7 = |a.|/R..

5.4 The Pohozaev identity

Before we study the variation of V, we recall the (geometric) Pohozaev iden-
tity. To this end we denote the conformal Killing operator by

1
DX :=Lxg— 3 tr(Lxg)g

where X is a vector field on M and Lxg denotes the Lie derivative of g with
respect to X. Let 2 C M be a smooth domain with boundary > and let dV/
be the volume form of M. Then the Pohozaev identity! can be stated as

1 1
- / (G, DX)dV — = / MSe div XdV = / G(X,v)dpu. (5.12)
2 Ja 6 Jo >

This identity can be seen as follows: In local coordinates we have

2
(DX ) = ViXi + ViXy = 5 div Xgu

n the literature (see for example [19]) the Pohozaev identity is usually stated for the
trace-free Ricci tensor, not for the Einstein tensor. For our purposes however, it is more
convenient to write it in terms of G.
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and therefore
= [(@, DX)dV == (g GG (ViX) + ViXy) — =Gy div X) dv
2 o 2 3

:_/<divG,X>dV+é/MScdideV
Q

Q

+/G(X, v) du,
>

which proves (5.12) since G is divergence free.

Lemma 5.2. Let X be a surface as in theorem 5.1 which bounds an exterior
domain €, and let b € R? be a constant vector. Then

/ G(b,v) du' < Onri:
b

Proof. Consider the vector field b, where b € R3 is constant. Then b is a
Killing vector field in flat R* and hence a conformal Killing vector field with
respect to ¢°. Denoting by D the conformal Killing operator with respect
to ¢°, we thus find

D% = 0.
With respect to the general metric g, this implies the decay rate
|Db| < Copr™?,

since |V — V9| < Cnr=3. The other terms in equation (5.12) have decay
|G| < Or=3, |MSc| < Cnr~*, and | divb| < Or2.

Let S, be a coordinate sphere of radius o outside of ¥ and let 2, be the
domain bounded by ¥ and S,. The contribution of S, to the boundary
integral in equation (5.12) decays like 0=* and thus we infer that

g—00

1 1
/G(b, v)dp = lim (-5/ (G,Db)dv+6/ MScdivde). (5.13)
b o o

The sign of the right hand side is different to (5.12), as our conventions are
that v is the outward pointing normal to Y which points into (2.

The integrand in the volume integral decays like Cnr=9, which implies via
lemma 1.5 that the integral can be estimated by Cnr;?n as claimed. O
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5.5 The variation of V()

The variation of V can be computed to be
V() = /Ef(VVG(V, v) + HG(v,v)) — 2G(v,Vf)) dp. (5.14)

Since G is divergence-free we calculate
V.G(v,v) =divG(v) — V. G(v,e;) = =V, G(v,e;)
= — VeiMRc(l/, e;)
= — “divw + MRe(hirer, ¢;) — HYRe(v, v)
= — *divw — HMRc(v,v) + fiikMRc,-k
1

+ §H(MSC — MRe(v, 1))
= — divw + (A, GT) — LHMSc - 2HG(v,v), (5.15)

where, as usual, w = MRe(v, )T = G(v,-)T. Inserting this into (5.14), we

find that

10V(E) = /2 f(/i, G") — frdivw — L fHG(v,v) — L fHMSc — 2w(V f) dp
:/Z—%fHG(V,I/) -1 HMSC+f<zZi,GT) —w(Vf)du.

We specialize again to the test function
g(b,v)
H

for a fixed vector b € R3. 1In the expression (5.4) for Vf we can split
A=A+ %ny and obtain

f=

Vif = H ' (9(Vib,v) + g(b, ;) A — Vi log Hg(b,v)) + Lg(b,e;). (5.16)

Inserting this into equation (5.14), we find that
L6V(E) = /2 —LFHG(v,v) — LFHMSe + f(A,GT) — LG(v,bT)
— H'w(e;) (9(Vib,v) + g(b, e;) A — V;log Hg(b,v)) du
= [ ~46.0) = Jalb.0) e+ Hg(0.0) (4.6

— H'w(e;) (9(Vib, v) + g(b, ej)fig — V;log Hg(b,v)) dp.
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(5.17)

It is this expression for d;) which will give rise to the position estimates.
We will thus spend some time on understanding the error terms. Because
of propositions 4.3 and 4.5 we have the estimate

/H_1 (A, G + [wl| Al + ]|V log H|) du < Cr (72 + k).

Note that proposition 4.3 1mphes that ||(GT)°||? T2 < Cri (7‘2 + nrr;?n).
Assuming that [*Sc| < nr~® we find that

[ se du' < omd,
>

Lemma 5.2 implies that the first term on the right hand side of (5.17) is also

estimated by Cnr_3 . so that the only term which yields a contribution of

-2

order r_; is

min?

/ H ™ 'w(e;)g(Ve,b,v) dp.
>

We will explicitly evaluate this term. To this end note that

ey (V) du— [ (%) ReS (8, 0)g5 (V5 %) du®
2 1
< COrpin (T + /1)

where H® is the quantity from corollary 4.9 and e} constitute a tangential
ON-frame with respect to the metric induced by ¢°. This estimate follows
since the integrand scales like 7% and the transition errors to Schwarzschild
decay at least one order faster and have factor n. Furthermore, the replace-
ment of H by H introduces an extra error term of the form Cr_? (7 +
N r1). We calculate, using that D°b = 0 and the transformation proper-
ties of the Christoffel symbols under a conformal change of the metric (see
for example [20]),

Vish =207 (€7 (9)b + b(¢)e; — D g (b, 7)),
which implies that
9°(V2sb,v®) = cbl S (9°(p, %) g (b, €5) — g°(p, €5)g° (b, v°)).

Here ¢ = ¢%c? is a tangential ON-frame with respect to the metric induced
by ¢¢. Furthermore, the formula from lemma 1.1 yields that

Re® (1%, ed) = 3 09 (p, ) g (s €5).

43



Multiplying these terms gives (note that we sum over i = 1,2)
R‘CS(Vsuef)gs(vzsbu VS)
_3@2—7 T2 e Na¢(b e_J_2eTbT
=350 "(Ip""g"(p, )9 (b,1°) = | [Pg (0", 1))
m2 -7 e e e e e e\ e
= 350779 () (g°(6,) = ¢°(p, )9 (b, p))-

As in the proof of proposition 4.2, we replace the integral over ¥ by an
integral over S = Sg_(a.) while introducing error terms of one order lower.
This implies that

o /S%ge(p, N)(g°(b, N) = g°(p, N)g*(b, p)) dp’
— [ le)n(Vbr) d| < Crh V)

where N is the Euclidean normal vector to S and ¢ = 1 + 37 the quantity
introduced in proposition 4.2. The first integral can be evaluated explicitly,
where we again introduce coordinates ¥, ¢ in which ¢¢(b, N) = cos¢. As
p=7r"1(R.N + a.) we can express this integral by

3m? I . . . .
Q(lal, R) := W/S;g (0, N)(9°(b, N) = g°(p, N)g® (b, p)) dp
3m2 COSs COS COSs
- é?HS /S (Re TGSD + |a5| ngo - |a8|Rzrl8 - (RZ’ + 2|ae|2Re) rsw

0052 COS3 e
— (lao* + 2lac|R2) <52 — |a,|*R, TS@) dpe.

Explicitly evaluating these terms (see appendix A.3), we obtain the following
expression for (). We already substituted 7 := |a.|/R.:

m?r 3(7% =37 + 372 — 1) In =L + 67° — 167° — 67

Qm Re) = 4¢THSR? (1 +7)3(1-1)

To analyze this expression we set

1—71
3(r0 =37 +37% — 1) In{== + 67° — 167" — 67

= 5.18
fr) AT (1 =) (518)
Recall the Taylor expansion of the function In ;—::
1— 2
In T

= —27 — 57'3 + O(14),
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for small 7. Thus we find that the numerator in equation (5.18) is
2
3(37° = 1)(=2r — 37°) — 167" — 67+ O(7") = =327 + O(7").

Hence we get that

8rmi*rt  O(7?)
CFHE R

Q(Tv R) =

for small 7. In summary, the above computation implies the following esti-
mate

167m?2t - - -
- (57FISR3 S C’I“m?n (7-2 + 7-fr’miln + \/ﬁrmiln) . (519)

V(Y)
5.6 Position estimates

Theorem 5.1 is a consequence from an iterative application of the following
proposition.

Proposition 5.3. If (M, g) and X are as in theorem 5.1, then
T < C(7 + i+ VT in),
Proof. We computed in section 5.3 that (cf. (5.11)),

STm?T

PIE

‘)\/Hfdu—l— < Crid (T +vn),
s

in section 5.2 that (cf. (5.8)),
SUEN < Crofy (7 4 77+ VI in)

and in section 5.5 that (cf. (5.19))

5fV(Z) - I7 S Crn_’li2n (72 + 7_fr’n_’liln _I— \/ﬁrr:uln) :
Inserting these equations into equation (5.2) we find, after absorbing the
lower order terms on the left into the error terms, that

24rm*r < C (7’2 +rrol o+ \/7_]7”;111]0),

which is the claimed estimate. O
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5.7 Final version of the curvature estimates

In this subsection we state our final version of the previous curvature esti-
mates.

Theorem 5.4. For all m > 0, ng and o there exist ro < oo, 79 > 0, € > 0,
and C' depending only on m, o and ny with the following properties.

Assume that (M, g) is (m,n,o)-asymptotically Schwarzschild with n < 1
and

MSe| < 5.

Then if ¥ is a surface satisfying equation (0.1) with H > 0, A > 0, rmin > 7o
and

T<79 and R, < er?
where Re and T are as in section 4, we have the following estimates

|H — HS|| o + | All e + rinl|[ VH|| 1 < C\/iri (5.20)

min*

Here H® = Ris — QE%—Z; with Rg = ¢*R. and ¢ = 1 + TR Furthermore, we
have that

[ = ¢72plle < O/ i (5.21)
This implies,

A+ Re(v,v)|| 1= + [|[Re(v, v) + 2mRg? || < Cy/mros. (5.22)

@l e + Fminl| Vwll e < CV/r. '

Proof. The estimates in (5.20) are straight-forward consequences of the es-
timates in section 4 and the position estimate 5.1. The estimate for the
gradient of the traceless second fundamental form is proven similarly as in
lemma 4.10. To prove (5.21) note that we can calculate the gradient of
v — ¢~ 2p as follows. We let e; be a vector tangent to ¥ and calculate

Vev=3He; + f(i(ei, ).

Since ¢~2p is the normal to S,(0) in the Schwarzschild metric, and S,.(0) is
umbilical in this metric, we find that

V2 (67%p) = $Hs(r)(ei — g°(ei, p)p)
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for Hg(r) = ¢722 — 2¢~32%. We calculate further and find

9°(ei.p) = (9° = 9)(ei, p) + glei, p — &°v) + glei, o).

Note that the last term vanishes. In view of the estimates in (5.20) and
definition 1.2 we thus have

V(v —¢72p)| < C(ratlg — ¢°) + |V = V5| + |A| + |H — Hs|

min

+[Hs — Hs(r)| + rplv — ¢72pl) (5.23)

min

< C\/T_]T;l?n + Crr:liln‘y - ¢_2p"
Proposition 4.3 then yields that
IV (= 67%p)llz2 < CVirgin-

We can now use the Michael-Simon-Sobolev inequality, proposition 1.8, to
get L*-estimates

_ —1/2
lv — 6 2p||s < O/l

Together with equation (5.23), this implies L*-bounds for the derivative of
v — ¢~2?p. Thus an obvious modification of theorem 5.6 in [11] then yields
the desired L°°-estimate:

lv = ¢7%pllzoe < CV/irggin-

The estimates in (5.22) easily follow from (5.21). O

6 Estimates for the linearized operator

In this section we show that the linearized operator Wy = W — AL is invert-
ible.

6.1 Eigenvalues of the Jacobi operator

To fix the notation let v; be the i-th eigenvalue of the negative of the Laplace
operator on S?, where we count the eigenvalues with multiplicitites, i.e.
vo =0,y =1y =13 =2, 1y =...=vg =4and y; >4 fori >9. We
denote by ¢ the eigenvalues of the negative of the Laplace operator on 3,
with respect to the Euclidean metric. We will need the following estimate
from [4, Corollary 1].
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Theorem 6.1. There exist constants C; such that for every surface ¥ as in
theorem 5./ there holds

h/z R VZ| <C\/ﬁrmm‘
Proof. Note that by theorem 5.4 and lemma 1.3 we have that

||Ae||L2(E g°) < 0777“

min *

Scaling the estimate in [4, Corollary 1] gives the result. O

It can be checked from [4] that
C; <Cy, (6.1)

where C' does not depend on 1.

be a uniform Schwarzschild-reference

In the following we let g g°
¢ *AY" and we denote the eigenvalues of

me_tric on Y. Thus A :=
—AS by 75,

Corollary 6.2. For any surface 2 as in theorem 5.4 we have the estimate

77— R5%vi| < Cin/rp.

S

¢!

To compute the eigenvalues of the Jacobi operator on ¥ we aim to compare
it with the operator

Lo = —ASa — (%(fls)z — A (6.2)

Let the eigenvalues and eigenfunctions of L and L be denoted by 1, ¢; and
i, @i, respectively. Note that

fii =57 — S(HS)? + A (6.3)
Lemma 6.3. For any surface X2 as in theorem 5.4 we have the estimate

| IU’Z‘ < C(|,U/Z‘ + Tmm)\/ﬁrr_mzn .

Proof. We use the following characterization of the i-th eigenvalue

w; = inf sup fz VLY du
‘ VCWbh2(8) eV fz’(/i d,u
dim(V)=i+1

48



where V is any linear subspace of W2(X). Let ¢ € W3(X) with [ @?di® =
1. We estimate, using (5.20) and (5.22)

o e 1
/s@Lwduz/|V<p|2—<P2(|A|2+§H2+MRC(V,V))du
. (6.4)
< [ 1962 = @GP = N) du+ C i,

In the following we repeatedly use the estimates from definition 1.2 and
lemma 1.3. We can estimate the first term on the right hand side by

[1vekaus [1vapant + curd, [ 1902 dus
< [IVelsdn® + ity [ 196 an’ (65
< [ 196 an® + g, [ 196l an,

where we used the conformal invariance of the Dirichlet energy from the
second to the third line. The second term on the right hand side is estimated
similarly by

+ Cnri2 @2}%(}75)2 - )\} dp® (6.6)
< [ PEUE? - N+,

where we used that du® = (¢/¢)*di® and

1 1

r R,

< ¢ <7+ \/ﬁ) < Cynril,

T'min min

oo

by proposition 4.1 and theorem 5.1. Now

/|Vso|§s dus=/wiwdus+/w2(%(HS)Q—A) dp®

(6.7)
< / pLpdi® + Crl,.
Combining (6.5), (6.6) and (6.7) we see that
/ @Lodp < (1+ Cnropiy) / PLEdi® + C /o, (6.8)

49



Moreover, by arguing as above, we have the estimate
/«p%iu—l /¢2du—/w2dus < Cr i

Combining this with (6.8) and the variational characterization of the eigen-
values, we see that

pi < i + O\ i | + /T iy
The reverse inequality follows from a similar calculation, interchanging L
and L. U

From theorem 5.4, (6.3) and lemma 6.3 we get the following

Corollary 6.4. For any surface X2 as in theorem 5.4 we have the estimate
Vi — 2
i — ( + 3)\)
R

6.2 The linearized Willmore equation

< C(1 4 V) /M + Crooy + CUin/ri-

In the following we aim at proving a positive lower bound for the first eigen-
value of the linearization of the Willmore equation with prescribed area. We
start by recalling the expression (see (2.15))

/ aWyadp = / aWa — AaLadp
b b

= /(La)2 —XaLa + H*Vaf? - 2HA(Va, Va)
P

+o*(|VH? + 2w(VH) + HAH + 2(V?H, A)
+2H2AP 4+ 2H(A, T) — HV,MRc(v,v)
— 1H?|A]? — 1H*MRe(v, v)) dp.
Integration by parts of the third term on the right yields

1 1
3 / H*|Val|*dy = 3 / *(|VH|> + HAH) — H*aAa dp.
2 2
Together with La = —Aa — o(|A|* + Re(v,v)) and (0.1) this yields
/ aWyadp
2
= /(La)2 + 1H?aLo— AaLa — 2HA(Va,Va)
2

+2(3|VH? - 3(H?| AP + H*Rc(v,v) + AH?) + 20(VH)
+2(V2H, A) + 2H*| AP + 2H (A, T) — HV,MRe(v,v)) du.
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To understand the last term on the RHS above we recall that the Einstein
tensor is divergence free and (5.15), which implies

V. MRe(v,v) = =V.,G(v,e;) — 3V,MSc
= —“divw + (/ci, G") + LHMSc — $HYRe(v,v) — 1V, MSc.
(6.9)
Note that

% / H?*aLodp = % / (Ha)L(Ha) + o*HAH + H(VH,V(a?)) du
) %

- % / (Ha)L(Ha) — o?|VH? dp.
by

Putting all together we arrive at

/ aW adp
)

= / La(La —3)\a) + 3 ((Ha)L(Ha) — 3X\(Ha)?) + 2)\aLa (6.10)
g .
—2HA(Va,Va) + o (|[VH|? + LH2|AP + 2(V2H, A)

+ H(A,T) - LH*MSc + LHV,MSc + H divw + 2w(VH)) dp.

We decompose W?22(X) using the eigenspaces of L, more precisely con-
sider the L?*(X)-orthonormal decomposition W2%(X) = Vo @ V; @ Vs where

Vo = span{yo}, Vi = span{pi, s, @3}, Vo = span{ps, ps,...}. For any
a € W22(X) let oy, ay, ay be the respective orthogonal projections on these
subspaces. Our aim is to show that [ aW,« is positive on Vj".

Lemma 6.5. For any surface X2 as in theorem 5.4 we have the estimate
/La(La 3A\a) +2XaLadp > (24m’R3° — C\/nrt — Ot ) / o dpu
b 5
for all a € V5-.

Proof. This follows from the estimates on the eigenvalues of L in corollary
6.4 and theorem 5.4. U

Lemma 6.6. For any surface X as in theorem 5.4 we have the estimate

/Z (Ha)L(Ha) — 3\(Ha)? dy

1
2 _C\/ﬁrr?uﬁn/ Oél dlu+ Tmln/ |VOZ2| d:u_l_ rmm/ O42 d:u
b b

for all o € V5.
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Proof. We can write

/E(Hoz)L(Hoz) —3\(Ha)*du = /E(Hozl)L(Hozl) — 3\ (Hay)?*dp
+ 2/(Ha1)L(Ha2) — 3N Haon)(Hay) dp
+ /(Hag)L(Hag) — 3N Hay)? dp,

and we denote the terms on the RHS by (7), (éi) and (éi7). Note that we can
always estimate

}<Haia90j>L2(E)} = ‘/EHa,-gpj du'

1/2
< [ 1 = A1l Iyl < € s, (/ a?du>
> >
(6.11)

for i # j. So we see
() 2 ~lpo = 3A] [ |(Haw)du— ma |n; — 33| [ |(Haw)y | du
s j=1,2,3 s 0
> ~Corgs, [ addu— g, [ |(Hany [ an
Y P
= —C’f]’f’n_fn/ Oé% d,U, o C\/T_]Tn_liln (/ (Ha1)2 d,U, + Cnrn_nﬁn/ Oé% dlu’)
b b b

> —Cnr b / af dp — C/mr, / af du.
» >

(6.12)
To estimate (i7) we write
() 2 ~2lpo = 3] [ |(Haw)ol|(Haz)o| e
>
— 2 max |u; — SA\/ |(Ha)||(Haz):| du
j:1,2,3 )
) / (Han)s(L — 37\)(Ha) du (6.13)
>

1/2 1/2
> —Cpro, ( / af du) ( / a3 du)
Y Y
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For the last term in (6.13) we write

3
(HOél)z:HOél—Z Hau, )¢ Zﬂg%a

=0
where 3; = H(ou, ;) — (Hay, ;). Note that
1/2
V5 < gt [Latan)
s

and

) 3 1/2
8] < 201H — B S Ko, )] < Cirad ( [t du) |
>

J=0

Then
2 /E (Ho)s(L — 3\ (Ha) d

/ <V Zﬁjgoj, (Ho) > — (Hon)o(Hao) (JAP + MRe(v,v) 4 3X) du

1/2 12
> —C (/E;) IV, +5JV%\2d/~L> (/E \V(Ha2)|2dﬂ)

(6.14)

where we used in the last step that [i,|Ve,?dp < Cr2 for 0 < j < 3.
This follows from

O / oiLg; + G| AP + MRe(v, 1) dy
= (6.15)
S ( maX |/"L.7| + Crmm) / ()0] dlu“ < Crmm
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Putting (6.14) and (6.13) together we see
(i) 2 ~Cnetrl, [ abdp—er, [ adduc [ V(HaP
> > s
> —Cne™ lrm?n/ozl d,u—armm/ozg du—25/H2|Voz2\2du (6.16)
> s >

- C15777“m1n/v Oég dlu“
b

for an arbitrary € > 0.

For the term (7i7), we see
(iii) > —|u0—3)\|/ [(Has)o|* dp — max |u; —zw/ |(Fao)|* du
n 7=1,2,3 )
n / (Ha)s(L — 3\ (Han)s dy

> C'nrmm/ a3 du+/(Hoz2)2(L—3)\)(Hoz2)2 du.
2 s

If 3 €V, and § > 0 are arbitrary, we have the estimate
/ZB(L —3\)pBdu = /26|V6|2 + B(L + 6A — 3\ Bdp
= /26|Vﬁ|2 + (1= 8)B(L —3N)B — 6B (JA]? + MRe(v,v) + 3\) dp
5 [ 1VBE e (1= 8) (0 = 25 = Oyt [
-8, [ A
>5/ VA dp + (1 — 46) mm/ﬁde
With 8 = (Has)s and § = 1/5 this yields
(i) > —Cyr&. /E aZdp+ = / IV (Hag) dp + <2 / |[(Has)o| dps

2 2
g m1n/|va2| d:u_l_ rmln/a2d:u>
by
(6.17)

where we used that

L\(Haz)ﬂzdll:/szzagdu—/ [(Han)o|” + [(Hag): | dp

z/H2 5dp — C’m’mm/a2 d,u>37“mm/a§ du,
2 2 s
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and

3
/|V (Haw)o|* dp = /|V (Has — Z Hay, p;)p;)|* du
7=0

/\v Hao)[>dp — CZ| (H o, ;)] /IWﬂzdu
Y

—/H2|Va2|2du—0/ |VH|2 sdp — Cnrmm/agdu
>
mln/ ‘VOKQPdIM Cnrmm/OQ d:u
5

Combining the estimates for (i), (i7) and (¢i¢), and choosing € = 1/100 and
ro big enough we arrive at the claimed statement. O

Theorem 6.7. In addition to the hypotheses of theorem 5.4, there exists ng
and rq, depending only on m, o and € such that on such a surface X it holds

/aW,\a dp > 12m2R§6/a2 dp

by

for all a € V.

Proof. By lemma 6.5 and lemma 6.6 we only have to check that the remain-

ing terms in (6.10) have the right decay. First we note that by arguing as in
the estimate (6.15) we get

/\Va1\2du<0rmm/afd,u.
s

Thus we have

/QHA(Va Va) du‘ < C\/ﬁrmm/ Vi |* + [Vaz]* du
>

< Cﬁr;fn( i [atan [ \Va2\2du) |
>

We rewrite
/ 202 (V?H, A) dp = — / 1aV,;aV,;HA;; + 20*(VH, div A) dyu.
b b

Furthermore

/ 20*(V H, div fi> d,u‘ =
>

20°(VH, 5VH +w) du‘ < Cnrmm/ a®dp,
b b
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and

/2
/4aV aV; HAZJ d,u’ < Cnr;. 1 </ ! d,u) </ |Val? d,u)
2
1/2
< Cnrih (/ o? d,u) (rmm / aidu —i—/ |Voz2|2d,u)
2 2

< C’nrn_fn/ o dp + CWn_ﬁn/ \Vozg\z dp.
n n

In view of the estimates of theorem 5.4 we find

/ Q2(VHP + LIPIAP + HUA,T) — LH*MSc + LHV,MSe
b

+ H divw + 2w(VH)) du

< C\/ﬁrn_l?n/ o dp.
b
Altogether this finishes the proof of the theorem. U

6.3 Invertibility of the linearized operator

In this subsection we show that the linearized operator W) is invertible. In
order to do this, we need good estimates for the projection of a function
onto Vy. We start with a different calculation for the first eigenvalue pg of
L.

Lemma 6.8. For any surface X as in theorem 5.4 we have the estimate

}uo + |A)? + MRe(v, 1/)} < Cynris. (6.18)
Proof. From theorem 5.4 we know that

|35 — AP < Cvirg,
and

—5 2 4m

1 -5

= + < Cr_:
s

2 R% R}

— min*

Combining these two estimates with theorem 5.4 and corollary 6.4 we get

2 2 6 C
}UO+|A|2+MRC(1/,I/)} < '3)\_R—§+R—%_ Rﬂ; + s < \/7_7

mln

O

o6



Next we prove a W22-estimate for the eigenfunction of L corresponding to
the eigenvalue .

Lemma 6.9. Let X be a surface as in theorem 5.4 and let u € C*°(X) be a
solution of Lu = pou. Then we have

/ fu—al du 2y, / IVl du 15, / V22 dpt < O/, [ullas).
> > >
(6.19)

where @ = |S|7! [ udp. Moreover we have the pointwise estimate

ot = all ey < Ol sy (6.20)

Proof. By a scaling argument we see that we can assume without loss of
generality that |u||2) = 1. Using the definition of L and lemma 6.8 we
get

/ |Vul?du :/uLujLuz(VH2 + MRe(v,v)) du
5 2

= / u? (po + |A]? + MRe(v, v)) dp
>
< OV i

In view of theorem 6.1 there is a Poincaré inequality on ¥ with constant
close to the one on S%. This yields

/E 2 dpa < RVl By < CoJiiri,

Similarly as above we calculate

/ |Au|? dp = /(Lu)2 + 2uLu(|A]* + MRe(v, v))
s >
+ u*(JAP + MRe(v, I/))zd,u

_ / (o + AP + MRe(v, 1)) dp.
by

Hence, again by lemma 6.8, we get the estimate

[ 18upan < Cor,
M
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Integrating by parts and interchanging derivatives as in (3.2) (note that by
doing this we get an additional Gauss curvature term from which we now
know that it is positive) we conclude

[1vtupdu< [ 18uPdu< oy,
) )
Lemma 4.7 and the previous estimates now give
ol <€ [ fuaPd [ V2P 4 Y~ du < O,
) b
This finishes the proof of the lemma. O

In the following lemma we show an L?-estimate for solutions of Wyu = f.

Lemma 6.10. Let § > 0, let X be a surface as in theorem 5.4 and let u €
C>=(X) be a solution of Wyu = f with [,(f— fo)*dp < 5R§12||u||2L2(Z), where
fo and ug are the projections of f respectively u onto Vy. Then we have

[u — wol| L2y < C(V3 + i+ RgH)||ul| 12s). (6.21)

Proof. By a scaling argument we see that we can assume without loss of
generality that ||| 2x) = 1. Next we combine our assumption with equation
(2.14) and the fact that Lug = pouo to get
Wi(u —uo) =f — pouo(po + H? — X) + 2H (A, Vuo) + 2Hw(Vuy)
+24(Vuo, VH) + uo(|[VH|? + 20(VH) + HAH
+ (V2H, A) + 2H*| AP + 2H(A, T) — HV,MRe(v, v)).
(6.22)

With the help of theorem 6.7 we conclude
/(u — ug)Wi(u — ug) du > 12m* RS / (u — up)? dp.
) b

To get an upper bound for this intergral we multiply equation (6.22) by
(u— up) and estimate term by term. We start with the term involving f

/fu—uo d,u‘

(7= a0
<m2RY /2(f — fo)2du+m*Rg" /2(u —up)? dp

< CSRg% +m*Rg" / (u — ug)? dy.
s
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Next, using a variant of lemma 6.8, we estimate

/ prouo(po + 5 H? = A\)(u — ug) dpe
%
<m’Rg° / (u —up)*dp +m > R% / ug(po + SH? — N)*dp
) )
<m’Rg° / (u —up)* dp + CnRg°.
%

Now we estimate all terms containing derivatives of uy. By arguing as before
we see that we only have to bound the term

cm2Rg/ H*| AP |V2u0|? + |Vuo|2(H?|w]? + |AP|VH|?) dp < CRZ®,
b

where we used theorem 5.4 and lemma 6.9. Finally we estimate the terms
involving ug. We start with

Rg/ WE(|VH[ + W VH? + HYAH|)? + |AP|V2H|? + HYA[") du
)

< CRg® + cRy /

ud| AH P dp + C’n/ ud| VEH|* dp
2 5

§CR§8+CR§/ug(|ﬁ|4+)\—l—MRc(l/, V))2du
2

< CRg® + CnRg°,

where we used lemma 4.8, theorem 5.4 and lemma 6.9. In the third term in
the second line we can use lemma 6.9 to replace u3 by @3. Finally, we use
(6.9) and Theorem 5.4 to get

/(u — ug)ugHV,MRe(v, v) d,u‘
5

<3 /(“ — up)ugH*"Re(v, v) du) +m*Rg° / (u —up)? dp + C—Z
21/)x 2 RY

Now we use the L2?-orthogonality of ug and u — ug to estimate

g /(u — up)ugH*MRe(v, v) du
s
3
< 3 /(u — wp)uoH*(MRe(v, v) + ;—g) d,u‘
s

+ 3mRg*

/E (u — uo)uo(H?* — 4R3?) d,u‘

<m?Rg° / (u — up)* dp + CnR°.
s
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Combining all these estimates we get
3m*Rg° / (u—up)*dp < CRG(6 +n + R5?)
b
which finishes the proof of the lemma. O

From the proof of the lemma we directly obtain the following

Corollary 6.11. Let 6 > 0, let ¥ be a surface as in theorem 5.4 and let
u € C®(X). Then we have

m2
RS RS
Moreover, if u is a solution of Wyu = f with

(/W—UMﬁM§5R?WMHmW—UﬂB®a
>

— [t —uoll7> + 2

/2(u — ug) Wy du) (5+17+R§2)||u||%2(2). (6.23)

then we have

s — woll 2y < C(VE + 77+ B3 lfullzacey. (6.24)

In the following lemma we prove L2-estimates for the operator Wj.

Lemma 6.12. Let X be as in theorem 5.4. Then we have
/uW,\u du‘.
b

Proof. From (2.15), we get the following expression, after integration by
parts of the term uAu(|A|> + ”Re(v,v)) in (Lu)?:

HV2UH%2(2) + R§2||VUH%2(2) < CR§4||U||2L2(2) + CRsg

/ uWyudp = /(Au)2 + (3H? — X = 2|A]? = 2YRe(v, 1)) [ VUl
> 2
+u*(— LH?AP = LH*YRe(v,v) — HV,MRe(v,v) (6.25)
+ AP + [A[* + 2| AP Re(v, v))
+ a(u, Vu) + bu? + uVuA9VF Ay dp.
Here |a(u, Vu) +bu?| < CRg'|Vu|?+ C Rg%u?, where we integrated by parts

and used lemma 1.1, definition 1.2 and theorem 5.4. In particular we can
estimate

}V (MRCI/V)}S}( )I/V —|—2hkwk‘
< }(VSMRC ) v,V ‘—I—C’\/’rmm
S}( MRC) 0, P }+C\/ﬁrmf’n (6.26)
SC\f -
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where we used the above mentioned theorems, and where Ppl is the projec-
tion onto the g®-orthogonal subspace to p. In view of the Gauss equation,
the Bochner formula [5, Chapter IV, Proposition 4.15] implies that

/(Au)2 dp = / 2[(V?u)°|*+ (MSc — 2 Re(v, v) + S H? — |fi|2) (Vul? dpu.
2 2
Together with (6.25) this yields

/ uWyudp = / 2|(V?u)°]* + |Vul*( = 4" Re(v,v) — A) + uVuAYVFA;
s s

+u*(— 1H*"Re(v,v) — HV,”Re(v,v) + A|A]?

+ 2|APYRe(v, v)) + a(u, Vu) + bu® dp.

In combination with the estimate | Rec(v, v) + A| < CRg* and the fact that
— LH*MRe(v,v) — HV,MRe(v,v) + A|A]? + 2|A*MRe(v, v)
= —3H*X+ O(Ry°)

we obtain the estimate

2[[(V2u)° 12 + 2MVul 12

(6.27)
/uWAud,u +C’/ lu||Vul|A||VA|du.
2 2

< ORGP N|ull2: +C

To treat the last term, observe that
[l AT Al < [ NTuP + KlaPlAPITAP ay
D 2
< N[Vullfz + ORG®||ul 7~

using theorem 4.5, theorem 5.1 and A\ = 2m/R% + O(Rg*). In particular

IVullZ> < CRg?||ullz> + CRS

/ ulWyu d,u‘ + CRG?||ul)3 .
>
Note that in view of this estimate (6.25) implies that
I8l < ORIVl + R fulls+ € | [[uhuda| + CRG Yl
>

Together with (6.27), we obtain that

IV2ullZ2 + Rs* [ VulZ. < CRg||ullZ:+CRs

/ ulWyu d,u‘ +C R |ul3 .
>
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(6.28)
From lemma 4.7 we conclude that in view of theorem 5.4
lullie < CRG®||ull7z + Cllullzz [ VZull 2.
Inserting this into equation (6.28), we get
IV2ullZ2 + Rg* [ Vull7:

6.29
< CR3Yul)?. + CRs (6.29)

/ ulWyu du‘ + C R |ul 22| V?ul| L2
s

For large enough Rg, we can therefore apply the Cauchy-Schwarz inequality
and absorb the term containing second derivatives to the left. This yields
the claimed estimate. U

With the help of the last two results we are able to show that certain solutions
of Wyu = f are almost constant.

Lemma 6.13. There exists o9 > 0 such that for all 0 < 0 < &g, all surfaces
Y as in theorem 5.4 and all solutions u € C*(X) of Wyu = f with

[ = ) e < SRl ol
2
we have
lu = || Lo (s) < C(VS +n"* + Rg")|to) - (6.30)
Proof. We assume that [|ul[2(x) = 1 and apply corollary 6.11 to get
lu = ol 2(zy < C(VS + /i + RgY).
Moreover, by lemma 6.9, we have that
||UQ — 'a()HLoo(z) < C?]l/4R§2.
Combining these two facts we get

lu = ol 22 < [lu = woll2() + CRslluo — Tol| ()
< C(V3 + Y1 + R3Y. (6.31)

Using lemma 6.12 (with u replaced by u — ug) we get

IV2(u = wo)llz2sy < CRg*lu — uol|ras) + cRs

/(u — up)Wi(u — up) dp
2
< CR3' (6 + v+ Rg?),
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where we used corollary 6.11 and the assumption of the lemma. Combining
this with lemma 6.9 we have

IV2(u = ti0) [l 2(s) < CR"(6 + v/ + Rg®)
and therefore, with the help of lemma 4.7 and (6.31), we conclude

lu — ol =(z) < CR' (VS +0'/* + Rg"). (6.32)
Next we note that by orthogonality

0 <1 —Jluollz> = llu — uoll72

and from theorem 6.7, (6.23) and the assumption of the lemma we get

RG
= ol < T [ (0= w0)Watu = o) d

< OVl — ol + 5llu = woll3s + C(6 -+ 5+ B5?)
< %Hu — gl + C(0 +1n+ Rg?).
Hence for 9, n small enough and Rg large enough we have
luollZ> > 5

and moreover, by lemma 6.9, this implies that there exists a constant ¢; > 0
such that

'Rt < || < et Rg'.
Inserting this estimate into (6.32) we get
lu = ol =) < OV + /i + Rg)itol.
U

Next we show that the above estimates yield the invertibility of the operator
Wy : (X)) — Ch (D).

Theorem 6.14. There exists 69 > 0 such that for every surface ¥ as in
theorem 5.4 the operator Wy : C+*(X) — C%(X) is invertible for every
0 < a< 1. Itsinverse W' : CO%%) — C4(X) ewists and is continuous.
Moreover it satisfies the estimates

_ RS
|W 1f||L2(2) < 5_:||f||L2(Z) for every f € L*(X) and (6.33)
_ cRS N
HW)\ 1f“co,a(2) S 5—0S’|f||c4,a(2) fOT every f - C4’ (2) (634)
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Proof. We argue by contradiction as in [14]. Namely we assume that there
exists a smooth function w with |lu||2(x) = 1 and

sup
||U||L2(z;):1

/UW,\u du' < SR (6.35)
2

Choosing v = u—1ug, we conclude from lemma 6.13 that uy # 0 and therefore
we can assume without loss of generality that ug > 0. Again from lemma
6.13 we then conclude that for dp, n small and Rg large enough we have for
every € ¥ that % < u(x) < 2. Arguing as in the proof of lemma 6.13
we get 3 < [lugllz2sy < 1 and, with the help of lemma 6.9, this implies

HETY2 <8172 uol 2y < To < 2172 |uol| oy < 2172

Moreover, by choosing v = 1 in (6.35), we get

/ Wu d,u‘ < 6o RS5|Z[V? < Co RS (6.36)
P

On the other hand, by using (2.15) and the corresponding equation for the
AL term, we get

/ Wy dpt = / u(|Al + 2/ APMRe(v, ) + (MRe(v. 1))
’ ) + A(JA? + MRe(v,v)) + AMJA]? + MRe(v,v)) + |[VH|?
+20(VH) + HAH + 2(V2H, A) + 2H?|A|> + 2H(A, T)
— HV,MRe(v,v) — LH?| A2 — LH*MRe(v, y)) dp.
Now we calculate

|AP(JAP? + 2YRe(v,v) + A) — HV,MRe(v,v) — s H?*(JA] + MRe(v,v))
= 3H*MRe(v,v) + O(RS%).

Moreover we estimate ||Af<i|| r2(x) as in the proof of lemma 4.10, and using
lemma 4.8

/UA\A|2d,u‘ = ‘/ uA(JA]? + 1H?) du‘
2 >

<

/ uHAH du’ +CR5® < CR3".
P

Now we integrate by parts and use proposition 4.6 and lemma 6.12 to con-
clude

/uAMRC(V, V) du' < CRY|Vul|r2x) < CR3®,
2
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where we used in the last step that | [, uW udp| < dyRg°, which follows
from (6.35). We combine these estimates with the ones done previously in
this section, (6.36) and theorem 5.4 to conclude

—/quMRC(V, v)du <C
s

/ Wiu du‘ + CRg” < CRy’.
b
The estimates 1wy < 2u and ﬁio < 2Rg imply
2mRg° / H?dp < — / H*Re(v,v)dp + CRg*
P 2

1
<—— [ uH*Re(v,v)du + CRg*
2u0 »

< CRg™.

This contradicts the estimate for fz H?dy in lemma 3.3. Hence the operator
W, is injective. By the Fredholm alternative W) is also surjective. The rest
of the statements in the theorem are then a consequence of standard elliptic
theory. U

7 Existence and Uniqueness of the Foliation

In this last section we use the implicit function theorem to prove theorem
0.1 and theorem 0.2.

7.1 Uniqueness in Schwarzschild

In this subsection we show that in Schwarzschild the only surfaces satisfying

the assumptions of theorem 5.1 are the round spheres with center at the

origin.

Theorem 7.1. For all m > 0 there exist ro < 0o, 179 > 0 and € > 0 with the

following properties.

Assume that (M, g) = (R3,g3) and let 3 be a surface satisfying (0.1) with

H>0,A>0, ropm > 1o and
T<7 and R, < er?

min’

where R, and 7 are as in section 4. Then ¥ = Sg_(0).

Proof. Since (M,g) = (R3, g7) we can apply proposition 4.1, theorem 5.1
and theorem 5.4 with n = 0 to get 7 = 0, AS = 0, and A = ;—@. Since AS = 0,
S
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we get that EO is umbilical with respect to the Euclidean background metric,
as A% = ¢72A°. Hence ¥ is a sphere. Since 7 = 0 in fact X = Sg_(0) where
R. = %Ry, or otherwise the expression for A could not be true. O

7.2 Existence and uniqueness for the general case

The main goal in this subsection is to show that for any manifold which is
(m,n, o)-asymptotically Schwarzschild and all small enough Lagrange mul-
tipliers A there exists a unique surface X, which solves the equation (0.1).
More precisely we have the following theorem.

Theorem 7.2. For all m > 0 and o there exist ng > 0, A\g > 0 and C
depending only on m and o with the following properties.

If (M, g) is (m,n, o)-asymptotically Schwarzschild and satisfies
(1) MSc| < nr=° and
(2) n<mno

then for all 0 < X\ < Ao there exists a surface ¥\ which solves (0.1) for the
given \. Moreover the surface is well approximated in the C®-norm by a
coordinate sphere Sy, (ay) with |ay| < C.

Proof. We define g, = (1 — 7)g° + 7¢g and we note that (M, g,) is (m,n, o)-
asymptotically Schwarzschild. For (M, ¢°) a standard calculation shows that
all spheres S,.(0) centered at the origin solve equation (0.1) with

A(r) = i—? (1+ %) -

This function is invertible for r large enough. Moreover this shows that we
can solve equation (0.1) in (M, ¢g°) for any A small enough. More precisely,
for any small A there exists a radius r(A) such that S, (0) solves (0.1) with
the given A. Next we want to use the implicit function theorem to get the
existence of a family of such solutions for all 0 < 7 < 1.

In order to do this we consider the following conditions on our surfaces
(A1) H >0,
(A2) 7 < 715 and

(A3) R, <er?

min»
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where 7y and ¢ are chosen such that we can apply the results from section 5.
From these results we then get that the above conditions hold with better
constants on surfaces X with ryy, > 79

(B1) |H = 2Rg" + (1 + $&-)2mRg?*| < C\/irs

(B2) 7 < C\/iry;, and
(BB) C'_17nmin S Re S C"rmin-
Without loss of generality we can furthermore assume that the conditions

(B1)-(B3) imply that the linearized operator W) is invertible. From (5.21)
we also get that X is globally a graph over S2.

Now we define the sets

S1(1) ={%| 7mim >710 and (Al) — (A3) hold w.rt. g,}
So(7) ={3| 7Tmin > 219 and (B1) — (B3) hold w.r.t. g,}.

We choose Ay so small that the centered spheres S,.(0) which solve (0.1) with
0 < A < Ag are in Sy(7). Finally (for \; small) we let

k:[0,1] —(0,A) x [0,1]
R(t) = (M), 7())
be a continuous, piecewise smooth curve with 7(0) = 0 and we define
I, ={t €]0,1})|3 X(t) € Sa(7(t)) satisfying (0.1) with A= A(¢)}.

As in [14] we can show that I, is open and closed and since moreover 0 € I,
by our assumption we get [, = [0,1] and this finishes the proof of the
Theorem. U

By reversing the process used in the above theorem as in the proof of theorem
6.5 in [14] we furthermore get a uniqueness result for solutions of (0.1).

Theorem 7.3. Let m > 0 and o be given. Then there exist ng > 0, o,

rg < o0, and € > 0 depending only on m and o such that the following
holds.

Assume that (M, g) is (m,o,n)-asymptotically Schwarzschild with
(1) [MSc| < npr=?, and

(2) n<mno.
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Furthermore, let ¥ be a surface with approzimating sphere S, (ay) as in
section 4, such that

(3) X satisfies equation (0.1),

(4) H >0,

(5) Tmin > 10, and ry < er?

min’

(6) T)\:’/’)\/CL)\ < 7o,

then ¥ = X, where Xy s the surface from theorem 7.2.

7.3 Foliation

Next we show that the surfaces obtained in theorem 7.2 form a foliation.

Theorem 7.4. For all m > 0 and o there exists ng > 0 depending only on
m and o with the following properties.

If (M, g) is (m,n, o)-asymptotically Schwarzschild and satisfies
(1) MSc| < nr=° and
(2) n<mno

then for all 0 < X\ < Xy the surfaces ¥, constructed in theorem 7.2 form a
foliation. In addition, there is a differentiable map

F: 5% x(0,\) x[0,1] = M

such that the surfaces F(S* N\, 7) satisfy (0.1) with respect to the metric
gr = (1=7)g° +7g for the given \. This foliation can therefore be obtained
by deforming a piece of the foliation of (R, g°) by centered spheres.

Proof. The proof follows along the same lines as the one given in [14, The-
orem 6.4]. Therefore we only sketch the main ideas of the argument.

For 0 < A < Ag we consider the curve k)(t) = (A, t) and by using theorem
7.2 we obtain a family of surfaces X, ; which solve (0.1) for the given A.

The map F can now be defined by F(S? A, t) = X, where we can choose
the parametrization of X, such that g—f L ¥y¢. The differentiability of F
with respect to p € S? and 7 follows from the construction of 3y ;.
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It remains to prove that the surfaces form a foliation. In order to show
this we fix A\; € (0, ) and we get from the above construction a surface
Y. For Ay < Ay we define the curve hy,(t) = ((1 — )\ + tAg,1). By
combining the curves k), and h), we get a family of surfaces E’/\(tm which
solve (0.1) with A(t) = (1 —¢t)A\; + tAe for t € [0,1]. Moreover we get a
differentiable map G : S? x [A, \i] — M such that G(S*,\(t)) = ),
From the local uniqueness statement in the implicit function theorem we get
that Z/)\(t),l = Z)\(t),l = Z)\(t).

Now we let vy be the normal to ¥y in M and we let o) = g(vaw), 9@y

o\
We calculate

H(A — X)) = %( —AH — H|fi|2 — HMRe(v, v)) — )\(t)%H
= Wiy onw (A1 — A2).
Next we claim that
Cn'/*
/E(ou(t) — (ax@)o)H dp < I laxw llz2yllane — (@)@ llz2s)-

(7.1)

If we assume that this claim is true we see that for n small enough we can
apply lemma 6.13 and get that ay) does not change sign. Therefore the
family Xy is a foliation.

In order to prove (7.1) we let Wy = Wi, a = ay) and we note that we
can argue as in the proof of theorem 6.14 to get

/WAad,u’ gCRgG/ \oz|d,u+§
> > 2

/ aH*MRe(v, v) du‘
s

+C

/ZQA(|A|2 + MRe(v, v)) d,u‘ .

Using theorem 5.4 we get
3

2

/ H*™Re(v,v) d,u‘ < 12mR§5/ |a|du+CR§6/ || dpe.
5 5 2

Moreover, using integration by parts, theorem 5.4, lemma 6.12 and (6.26)
we estimate

/ aA(JA]? + MRe(v, v)) d,u‘ < CViR5" |V r2s
by

_ —5/2 1/2
< CVi(RS® ol 2wy + Bs™ ol oy
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Putting these estimates together we conclude

/ W)\Oé d,u‘ S CIR§4HOK||L2(Z)
b
_ —5/2) 111/2
+ CRS ol 2y + Bs™ [l oty (7.2)
On the other hand we have, using again theorem 5.4,

/W,\ozd,u‘ = /Hd,u‘
b b

> CyRs — CRy". (7.3)

Combining the two estimates we get
Co R — CRE < Ci[lall ) + C(Rg ol 2y + RS [l ts))-

From this estimate we easily see that there exists a constant C5 > 0 such
that for Rg large enough we have

||Oé||L2(g) Z CgRg (74)
Using Holder’s inequality we get
[ (@~ a0 du < |1 = Hollilla - aollacs
)

and hence, combing this with (7.4), we see that (7.1) will be a consequence
of the estimate

|H — Ho|| 2y < CnM*Rg" (7.5)
We note that
| - | -
LH:()\—§H )H:u0H+()\—§H — o) H

and therefore we can estimate

o < Jo HLH dp

0 >="7 779 71 SMO_'_C nrr:fna
Js H? dp va

where the first inequality follows from the Rayleigh quotient characterization
of the eigenvalues of L and the second inequality follows from the above
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estimate and lemma 6.8. Next we decompose H = ) .(H,p;)¢p; and we
calculate

Js HLH dp 3% i [y HE dps
Sy H? dp S H? dp
21 — po) [y HE dp
Js H? dp .

= o +

Hence we get
0< Y (1 — o) / H} dp < C /i,
i=1 >z
For every i € N we have (y; — pg) > 2Rg” (see corollary 6.4) and therefore

I = Holfoey < CREY (s — o) [ H20 < O irg?,
i=1 X

which finishes the proof of (7.5) and therewith also the proof of the theorem.
O

A Maple scripts for the calculations

For the explicit calculations in the proof of Proposition 4.2, in section 5.3
and in section 5.5 we used Maple [12] to evaluate certain integrals. Here we
present the scripts we used.

A.1 Proposition 4.2

Here it is necessary to evaluate the integral

1 1 °
B ;:/ <_ 3R — 6R,Ja,|<2F - 3|ae|2cosf) dut (A1)
s r r "

r3

where S = Sg_(a.) is a fixed sphere with center a and radius R.. The
calculation is based on the formula
Re+‘ae|

l 2 .
Ci = / i = ZR (2Relac|)™ / PR ? = RE —Jac ) dr.
s |

|a.| Re—|acl|

which was derived in the proof of proposition 4.2. Hence equation (A.1) can
be written as

B, = CY —3R2CY — 6R.|a.|Cs — 3|a.|*Cz.
This is evaluated using the following Maple script.
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assume (R>0, a>0, R>a);
c0r3 := 2xPI*R/a *(2*Rx*a) "~ (0)
* int(r~(-2)*(r"2 - R"2

a“2 )~ (0),r=R-a..R+a);

cOr5 := 2*PI*R/a *(2*R*a)~(0)

* int(r~(-4)*(r"2 - R"2 - a~2)~(0),r=R-a..R+a);
clrb := 2xPIxR/a *(2*R*a)”(-1)

* int(r~(-4)*(r"2 - R"2 - a2 )~ (1), r=R-a..R+a);
c2r5 := 2*PIxR/a *(2*Rx¥a)”(-2)

* int(r~(-4)*(r"2 - R"2 - a2 )~ (2), r=R-a..R+a);
El := c0r3 -3*%R"2%c0rb5 - 6%Rxaxclrb — 3*%a~2*c2rb;
simplify (%) ;

where we used R to denote R., a to denote |a.| and clrk to denote C..

A.2 Section 5.3

In section 5.3 the integral to evaluate was

This is evaluated by the script

assume (R>0, a>0, R>a);
clr3 := 2xPI*R/a *(2*Rx*a) "~ (-1)
* int(r~(-2)*(r"2 - R"2 - a2 )~ (1),r=R-a..R+a);
E2 := clr3;
simplify (%) ;

A.3 Section 5.5

The longest calculation is for the term

Qi= [ (R 4 0|52 — fa B — (B + 20 R
S
= (Jacf? + 2lac | B2) 2522 — [a,*R. =52 ) dpe

from section 5.5, where we omit certain fixed factors here. The following
script evaluates this expression.

assume (R>0, a>0, R>a);

clr6:=2*%PI*R/a *(2%R*a)~(-1)
* int(r~(-5)*(r"2 - R"2 - a"2)"(1),r=R-a..R+a);
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c2r6:=2%PI*R/a *(2*R*xa) " (-2)

* int(r~(-5)*(r"2 - R"2 - a”2 )~ (2),r=R-a..R+a);

c0r8:=2%PI*R/a *(2*xRx*xa) "~ (0)

* int(r~(-7)*(r"2 - R"2 - a2 )~ (0),r=R-a..R+a);

clr8:=2%PI*R/a *(2%R*a) "~ (-1)

* int(r~(-7)*(r"2 - R"2 - a2 )~ (1),r=R-a..R+a);

c2r8:=2%PI*R/a *(2%R*a) "~ (-2)

* int(r~(-7)*(r"2 - R"2 - a2 )~ (2),r=R-a..R+a);

c3r8:=2%PI*R/a *(2%R*a) "~ (-3)

Q

subs(a

* int(r~(-7)*(r"2 - R"2 - a2 )~ (3),r=R-a..R+a);
:= R * clr6 + a * c2r6 - a*R™2*xc0r8 - (R"3 + 2*xa"2xR)*cl1r8
(2%a*R"2 + a”3) *c2r8 - a2 * R * c3r8);
tau * R, Q);

simplify (%) ;
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