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Abstract. The goal of this paper is to establish the existence of a
foliation of the asymptotic region of an asymptotically flat manifold
with nonzero mass by surfaces which are critical points of the Will-
more functional subject to an area constraint. Equivalently these
surfaces are critical points of the Geroch-Hawking mass. Thus our
result has applications in the theory of General Relativity.

Introduction

In this paper we study foliations of asymptotically flat manifolds by surfaces
of Willmore type. This means that we are interested in constructing em-
bedded spheres Σ in a three dimensional Riemannian manifold (M, g) which
satisfy the equation

−∆H −H| ◦
A|2 − MRc(ν, ν)H = λH. (0.1)
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Here H is the mean curvature of Σ,
◦
A is the traceless part of the second

fundamental form A of Σ in M , that is
◦
A = A− 1

2
Hγ, and γ is the induced

metric on Σ. Moreover MRc is the Ricci curvature of M and ∆ the Laplace-
Beltrami operator on Σ.

Equation (0.1) is the Euler-Lagrange equation of the functional

W(Σ) =
1

2

∫

Σ

H2 dµ (0.2)

subject to the constraint that |Σ| be fixed. Then λ becomes the Lagrange
parameter.

In mathematics this functional is known as the Willmore functional, at least
in flat space, whereas for curved ambient manifolds the literature [23] also
considers the functional

U(Σ) =

∫

Σ

| ◦
A|2 dµ.

In flat space these two functionals only differ by a topological constant.
However, the second functional is conformally invariant and thus translation
invariant in all conformally flat manifolds. Since our model space, the spatial
Schwarzschild metric gSm = φ4

mg
e, with φ = 1 + m

2r
, ge the Euclidean metric

and m > 0 a mass parameter, is conformally flat, we could not hope to find
unique surfaces minimizing the corresponding constrained problem.

Furthermore, the functional (0.2) appears naturally in general relativity in
form of the Hawking mass mH(Σ) of a surface Σ, defined as

mH(Σ) =
|Σ|1/2

(16π)3/2
(16π − 2W(Σ)) .

This quantity is used to measure the mass of a region enclosed by Σ. Due
to the area constraint, equation (0.1) also appears as the Euler-Lagrange
equation when maximizing mH(Σ) subject to fixed area |Σ|.
Foliations of asymptotically flat manifolds using constant mean curvature
surfaces have been considered in [9], [24] and [6]. The uniqueness of such
foliations was considered in [18]. In [9] these foliations have been used to
define a center of mass for initial data sets for isolated gravitating systems
in general relativity. Such data sets are three dimensional asymptotically
flat manifolds. We argue here that, due to its relation to the Hawking
mass, equation (0.1) is the most natural equation to consider when defining
a geometric center of the Hawking mass. In fact, surfaces maximizing the
Hawking mass are the optimal surfaces to calculate the Hawking mass. This
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intuition is backed by our observation that along the foliation we construct,
the Hawking mass is non-negative and non-decreasing in the outward direc-
tion, provided the scalar curvature MSc ≥ 0 is non-negative, cf. theorem 3.2.
We remark that on stable surfaces of constant mean curvature the Hawking
mass is also non-negative as was shown by Christodoulou and Yau [2].

Moreover, we wish to mention here that in [7] Huisken argues in the other
direction and introduces a definition of quasi-local mass with the constant
mean curvature equation as Euler-Lagrange equation for the optimal surfaces
at a given enclosed volume. This then fits together with the center of mass
definition by CMC spheres.

CMC foliations have also been studied in other contexts, in particular with
asymptotically hyperbolic background in [16, 17, 13]. This setting is also
relevant in general relativity when studying data sets which are asymptot-
ically light-like. We expect that our results extend to the asymptotically
hyperbolic case.

In R3, minima of functional (0.2) are round spheres, and since the functional
is scale and translation invariant, we get an (at least) four dimensional trans-
formation group. In particular, we can not expect solutions of (0.1) to be
unique. The existence of surfaces Σ ⊂ R

n of higher genus which minimize
the Willmore functional and in particular satisfy (0.1) with λ = 0 has been
shown by Simon [21] and Bauer & Kuwert [1].

This changes when we take the background M not to be R3 but the exterior
region of an asymptotically flat manifold. That is M = R3 \Bσ(0) and the
metric on M is asymptotic to the spatial Schwarzschild metric gSm. This
metric is the spatial part of the Schwarzschild metric which describes a
single, static black hole of mass m. Thus m has the interpretation of a mass
parameter.

In the gS-metric we no longer have translation and scaling invariance. In
fact we will show that solutions of (0.1) which are close enough to large
centered round spheres are in fact equal to centered round spheres. The
radius of the sphere is then uniquely determined by λ, provided λ ∈ (0, λ0)
is small enough. If the metric on M is asymptotic to gS with appropriate
decay conditions, we can show that solutions to (0.1) behave accordingly
and form a smooth foliation of the asymptotic region of (M, g).

To be precise, we consider metrics g on R3 \Bσ(0) with the following asymp-
totics

sup
R3\Bσ(0)

(

r2|g−gSm|+r3|∇−∇S
m|+r4|Rc−RcSm|+r5|∇Rc−∇SRcSm|

)

≤ η,
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where gSm is the spatial Schwarzschild metric of mass m > 0, ∇S
m its Levi-

Civita connection and RcSm its Ricci-curvature. Correspondingly, ∇ and Rc,
are the connection and curvature of g. Furthermore, r is the Euclidean radius
function on R3 \Bσ(0). Such metrics shall be called (m, η, σ)-asymptotically
Schwarzschild.

In this setting, we will prove the following theorem.

Theorem 0.1. For all m > 0 and σ there exists η0 > 0, λ0 > 0 and C <∞0
depending only on m and σ such that the following holds.

Let (M, g) be an (m, η, σ)-asymptotically flat manifold with η < η0 and

|MSc| ≤ ηr−5

then for each λ ∈ (0, λ0) there exists a surface Σλ satisfying equation (0.1).

In Euclidean coordinates this surface is W 2,2-close to a Euclidean sphere
SRλ

(aλ) with radius Rλ and center aλ such that

|aλ| +
∣

∣Rλ − (λ/2m)−1/3
∣

∣ ≤ Cη.

Moreover, there exists a compact set K ⊂M such that M \K is foliated by
the surfaces {Σλ}λ∈(0,λ0).

For an arbitrary surface Σ ⊂ R3 we can define a best matching sphere by
introducing the geometric area radius and the center of gravity, both with
respect to the Euclidean background:

Re(Σ) =

√

|Σ|e
4π

and ae(Σ) = |Σ|−1
e

∫

Σ

x dµe

where in the second integral, the integrand is the position vector. Then we
define the scale-invariant translation parameter

τ(Σ) = ae(Σ)/Re(Σ)

and we can state the uniqueness theorem

Theorem 0.2. Let m > 0 and σ be given. Then there exists η0 > 0, τ0 > 0,
ε > 0 and r0 <∞ depending only on m and σ such that the following holds.

If (M, g) is an (m, η, σ)-asymptotically flat manifold with η < η0 and

|MSc| ≤ ηr−5

then every spherical surface Σ ⊂ M with rmin := minΣ r > r0, τ(Σ) < τ0,
Re ≤ εr2

min and H > 0 satisfying equation (0.1) for some λ > 0 equals one
of the surfaces Σλ constructed in theorem 0.1. In particular λ ∈ (0, λ0).
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The outline of the paper and the proof of the above theorems is as follows.
After setting the stage by presenting some preliminary material in section 1,
we calculate the first and second variation of (0.2), to arrive at (0.1) and its
linearization. This is done in section 2.

In section 3 we prove a priori estimates for solutions to (0.1) under the
assumption that H > 0 and λ > 0. These estimates in particular show that
with increasing area also the Hawking mass of the Σλ increases.

Section 4 is devoted to a technical improvement of the curvature estimates
in section 3, under the additional assumption that the surface in question
is not too far off center in the sense that the translation parameter above is
not too large.

This allows us to break the translation invariance in section 5, where we
prove position estimates. These estimates are at the heart of the uniqueness
and are quite delicate. In this section we also state the final version of our
a priori estimates. These estimates allow to control both the position and
the shape of solutions to (0.1) in a very precise way.

In section 6 we analyze the linearization of equation (0.1) and use the pre-
vious a priori estimates to show that this operator is invertible. The reason
why we are able to do this, is that the estimates in section 5 allow to compare
the linearization of (0.1) to the corresponding operator on a centered sphere
in Schwarzschild. The latter operator is invertible and thus invertability of
the former one follows.

This is used in section 7 to prove the existence and uniqueness of theorem 0.1
and theorem 0.2 using an argument based on the implicit function theorem.

1 Preliminaries

1.1 Geometric equations

We will consider three dimensional Riemannian manifolds (M, g), where g is
the metric tensor, which we write as gij in coordinates. Its inverse is denoted
by gij, its Levi-Civita connection by ∇. For the Riemanninan curvature
tensor we use the convention

(∇i∇j −∇j∇i)∂k = MRmijklg
lm∂m.

Here we use the Einstein summation convention and sum over repeated
indices. Then the Ricci-curvature is given by

MRcil = gjkMRmijkl
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and the scalar curvature by MSc = gijMRcij.

Our sign convention implies that commuting derivatives on a 2-tensor Tab
gives

∇a∇bTcd = ∇b∇aTcd − MRmabceg
efTfd − MRmabdeg

efTcf .

For a three dimensional manifold the Riemannian curvature tensor can be
expressed in terms of the Ricci curvature as follows

MRmijkl = MRcilgjk−MRcikgjl−MRcjlgik+
MRcjkgil− 1

2
MSc(gilgjk−gikgjl).

(1.1)

If Σ ⊂ M ia a surface we denote by γ the induced metric and by ν its
normal. The second fundamental form of Σ is denoted by A and its mean
curvature by H . The Riemannian curvature tensor ΣRm of Σ is given by
the Gauss equation

ΣRmijkl =
MRmijkl + AilAjk − AikAjl. (1.2)

Taking the trace twice implies
ΣSc = MSc − 2MRc(ν, ν) +H2 − |A|2. (1.3)

Furthermore, we have the Codazzi equation

∇kAij = ∇iAkj + MRmkiajν
a. (1.4)

Denote by ω := Rc(ν, ·)T the tangential projection of the 1-form Rc(ν, ·) to
Σ. Then using the Gauss equation (1.2), the Codazzi equation (1.4) and
equation (1.1), the Simons identity [22] becomes

∆Aij = ∇i∇jH +HAkiAkj − |A|2Aij
+ Akjγ

lmMRmlikm + AklRikjl + 2∇iωj − divωγij.
(1.5)

For any two-tensor T , we denote the traceless part by T 0, that is T 0
ij =

Tij − 1
2
(trT )γij. In particular we have
◦
Aij = Aij − 1

2
Hγij.

This implies that

| ◦
A|2 + 1

2
H2 = |A|2.

With the help of these facts we get from Simons‘ identity that

∆
◦
Aij = (∇2H)0

ij +H
◦
Aki

◦
Akj + 1

2
H2 ◦

Aij − | ◦
A|2 ◦

Aij − 1
2
H| ◦
A|2γij

+
◦
Akjγ

lmMRmlikm +
◦
AklMRmikjl + 2∇iωj − div ωγij,

(1.6)

and therefore
◦
Aij∆

◦
Aij = 〈 ◦

A,∇2H〉 + 1
2
H2| ◦

A|2 − | ◦
A|4

− | ◦
A|2MRc(ν, ν) + 2

◦
Aij

◦
Alj

MRcil + 2〈 ◦
A,∇ω〉.

(1.7)
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1.2 Asymptotically Schwarzschild manifolds

Let gSm be the spatial, conformally flat Schwarzschild metric on R3 \ {0}
of mass m. That is gSm = φ4

mg
e, where φm = 1 + m

2r
, ge is the Euclidean

metric on R3 and r the distance to the origin in R3. We will suppress the
depencence of gSm and φm on m and denote the metric simply by gS and φm
by φ. The following lemma summarizes the relationship of the geometry of
gS and ge.

Lemma 1.1. 1. The Ricci curvature of gS is given by

RcSij =
m

r3
φ−2
(

geij − 3ρiρj
)

, (1.8)

where ρa is the 1-form dual to the vector ∂
∂r

on R3. In particular, the
scalar curvature of gS vanishes.

2. If Σ ⊂ R3\0 is a surface, we denote by νe the normal of Σ with respect
to ge and by νS the normal of Σ with respect to gS. Analogously dµe,
dµS denote the respective volume forms,

◦
Ae,

◦
AS the respective traceless

second fundamental forms and He and HS the mean curvatures. We
find the following relations:

νS = φ−2νe, (1.9)

dµS = φ4 dµe, (1.10)
◦
AS = φ−2 ◦

Ae, and (1.11)

HS = φ−2He + 4φ−3∂νeφ. (1.12)

Definition 1.2. We say that (M, g) is (m, η, σ)-asymptotically Schwarzschild
if there exists a compact set B ⊂ M , and a diffeomorphism x : M \ B →
R3 \Bσ(0), such that in these coordinates

sup
R3\Bσ(0)

(

r2|g−gS|+r3|∇g−∇S|+r4|Rcg−RcS|+r5|∇Rcg−∇SRcS|
)

≤ η,

where gS is the metric for mass m.

For brevity we will subsequently refer to Rcg simply by Rc or by MRc.

In the next lemma we relate geometric quantities with respect to g to quan-
tities with respect to gS.

Lemma 1.3. If (M, g) is (m, η, σ) asymptotically Schwarzschild and if Σ ⊂
R3 \ Bσ(0) is a surface, we have the following relation between the normals
ν with respect to g and νS with respect to gS

r2|ν − νS| ≤ Cη.

7



Furthermore, the area elements dµ and dµS satisfy dµ− dµS = h dµ with

r2|h| ≤ Cη,

The second fundamental forms A and AS satisfy

|A−AS| ≤ Cη(r−3 + r−2|A|)
|∇A−∇AS| ≤ Cη(r−4 + r−3|A| + r−2|∇A|).

To estimate integrals of decaying quantities we use the variant of [9, Lemma
5.2] as stated in [14, Lemma 2.3].

Lemma 1.4. Let (M, g) be (m, η, σ)-asymptotically Schwarzschild, and let
p0 > 2 be fixed. Then there exists c(p0) and r0 = r0(m, η, σ), such that for
every surface Σ ⊂ R

3\Br0(0), and every p > p0, the following estimate holds
∫

Σ

r−p dµ ≤ c(p0)r
2−p
min

∫

Σ

H2 dµ.

Here rmin := minΣ r, where r is the Euclidean radius.

In the sequel we will also need decay properties of volume integrals.

Lemma 1.5. Let Ω be an exterior domain with compact interior boundary Σ.
Then for all p > 3 there exists a constant C(p) and r0 such that if rmin > r0
we have

∫

Ω

r−pdV ≤ C(p)r3−p
min

∫

Σ

H2 dµ.

Proof. Let ρ be the Euclidean radial direction, and let X = r−p+1ρ. With
respect to g we have

divX = (3 − p)r−p +O(r−p−1).

Choose r0 so large that the error term is dominated by the main term in
this equation, that is

(p− 3 − ε)r−p ≤ − divX,

where ε is such that p − 3 − ε > 0. Integrating this relation over Ω and
partially integrating on the right hand side yields the estimate

∫

Ω

r−pdV ≤ 1

p− 3 − ε

∫

Σ

〈X, ν〉.

Note that the boundary integral at infinity vanishes as the surface integrand
decays like r−p+1. The claim then follows from lemma 1.4. �
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Using the conformal invariance of ‖ ◦
A‖L2(Σ), which can be seen via lemma 1.1,

we derive:

Lemma 1.6. Let (M, g) be (m, η, σ)-asymptotically Schwarzschild. Then
there exists r0 = r0(η, σ) such that for every surface Σ ⊂ R3 \ Br0(0) we
have

∣

∣

∣
‖ ◦
Ae‖2

L2(Σ,ge) − ‖ ◦
A‖2

L2(Σ,g)

∣

∣

∣

≤ Cηr−2
min

(

‖ ◦
A‖2

L2(Σ,g) + ‖H‖L2(Σ)‖
◦
A‖L2(Σ) + ηr−2

min‖H‖2
L2(Σ)

)

.

Corollary 1.7. Let (M, g), r0 and Σ be as in the previous lemma. Assume
in addition that ‖H‖L2(Σ) ≤ C ′, then

‖ ◦
Ae‖L2(Σ) ≤ C(r0)‖

◦
A‖L2(Σ,g) + C(r0, C

′)ηr−2
min.

We need the following variant of the Michael-Simon Sobolev inequality [15]
as stated in [9, Proposition 5.4].

Proposition 1.8. Let (M, g) be (m, η, σ)-asymptotically Schwarzschild. Then
there is r0 = r0(m, η, σ) and an absolute constant Cs such that for each
surface Σ ⊂ M \ Br0(0) and each Lipschitz function f on Σ we have the
estimate

(
∫

Σ

|f |2 dµ

)1/2

≤ Cs

∫

Σ

|∇f | + |Hf | dµ. (1.13)

Via Hölder’s inequality, this implies that for all q ≥ 2

(
∫

Σ

|f |q dµ

)
2

2+q

≤ Cs

∫

Σ

|∇f |
2q

2+q + |Hf |
2q

2+q dµ, (1.14)

and for all p ≥ 1,

(
∫

Σ

|f |2p dµ

)1/p

≤ Csp
2|suppf |1/p

∫

Σ

|∇f |2 +H2f 2 dµ. (1.15)

1.3 Almost umbilical surfaces in Euclidean space

To conclude that the surfaces we consider are close to spheres, we use the
following theorem for surfaces in Euclidean space. This is proved in [3,
Theorem 1] and [4, Theorem 2].
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Theorem 1.9. There exists a universal constant c such that for each compact
connected surface without boundary Σ ⊂ R3 with area |Σ| = 4π, the following
estimate holds

‖Ae − γe‖L2(Σ,γe) ≤ c‖ ◦
Ae‖L2(Σ,γe).

If in addition ‖ ◦
Ae‖L2(Σ,γe) ≤ 8π, then Σ is a sphere, and there exists a

conformal map ψ : S2 → Σ ⊂ R3 such that

‖ψ − (a+ idS2)‖W 2,2(S2) ≤ c‖ ◦
Ae‖L2(Σ,γe),

where idS2 is the standard embedding of S2 onto the sphere S1(0) in R3, and

a = |Σ|−1
e

∫

Σ

idΣ dµe

is the center of gravity of Σ. The conformal factor h of the embedding ψ,
that is ψ∗γe = h2γS2, satisfies

‖h− 1‖W 1,2(S2) + sup
S2

|h− 1| ≤ c‖ ◦
Ae‖L2(Σ,γe).

The normal νe of Σ satisfies

‖N − ν ◦ ψ‖W 1,2(S2) ≤ c‖ ◦
Ae‖L2(Σ,γe),

where N is the normal of S1(a).

To get the scale-invariant form of these estimates, we proceed as follows.
For a surface Σ with arbitrary area |Σ|e let Re =

√

|Σ|e/4π. Then the first
part of theorem 1.9 implies that

‖A−R−1
e γe‖L2(Σ,γe) ≤ c‖ ◦

Ae‖L2(Σ,γe).

Again let ae denote the center of gravity of Σ,

ae :=
1

4πR2
e

∫

Σ

idΣ dµe ∈ R
3.

Then if ‖ ◦
Ae‖L2(Σ,γe) ≤ 8π, the second part of theorem 1.9 gives that there

exists a conformal parametrization ψ : SRe
(ae) → Σ. The estimates from

theorem 1.9 imply together with the Sobolev-embedding theorems on S2,
that the following estimates hold

sup
SRe(ae)

∣

∣ψ − idSRe (ae)

∣

∣ ≤ CRe‖
◦
Ae‖L2(Σ,γe), (1.16)

‖N ◦ idSRe (ae) −ν ◦ ψ‖L2(S) ≤ CRe‖
◦
Ae‖L2(Σ,γe). (1.17)
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and

sup
SRe (ae)

|h2 − 1| ≤ C‖ ◦
Ae‖L2(Σ,γe). (1.18)

Here, as before, h denotes the conformal factor of the map ψ and N is the
normal of SRe

(ae).

2 First and Second Variation

In this section we calculate the first and second variation of the Willmore
functional subject to an area constraint.

To compute the first variation of W let Σ ⊂ M be a surface and let F :
Σ× (−ε, ε) → M be a variation of Σ with F (Σ, s) = Σs and lapse ∂F

∂s

∣

∣

s=0
=

αν. Recall the following well known evolution equations for deformations
of hypersurfaces (see for example [8]). Here and in the following we will
understand that all s-derivatives are evaluated at s = 0, and will not further
denote this explicitely:

∂

∂s
γij = 2αAij,

∂

∂s
dµ = αH,

∂

∂s
γij = −2αAij ,

∂

∂s
ν = −∇α,

∂

∂s
Aij = −∇i∇jα + α

(

AikA
k
j − Tij

)

,

∂

∂s
H = Lα,

where

Lf = −∆f − f
(

|A|2 + MRc(ν, ν)
)

(2.1)

is the well known Jacobi operator for minimal surfaces,

Tij = MRm(∂i, ν, ν, ∂j) = MRcTij +G(ν, ν)γij

and G = MRc − 1
2
MSc · g is the Einstein tensor.

The first variation of W can then be computed as

0 =
d

ds

∣

∣

∣

∣

s=0

W[Σs] =

∫

Σ

HLα+ 1
2
H3α dµ =

∫

Σ

(

LH + 1
2
H3
)

α dµ. (2.2)

11



A critical point for W therefore satisfies the Euler-Lagrange equation

LH + 1
2
H3 = 0. (2.3)

To compute the second variation of W, note that by (2.2)

d2

ds2

∣

∣

∣

∣

s=0

W[Σs] =

∫

Σ

∂

∂s

(

− ∆H −H|A|2 −HMRc(ν, ν) + 1
2
H3
)

α dµ
∣

∣

∣

s=0

+

∫

Σ

(

LH + 1
2
H3
)(∂α

∂s
+Hα2

)

∣

∣

∣

s=0
dµ.

(2.4)

Thus we have to compute the linearization of the Willmore operator defined
as follows

Wα :=
d

ds

∣

∣

∣

∣

s=0

(

− ∆H −H|A|2 −HMRc(ν, ν) + 1
2
H3
)

= − [
∂

∂s
,∆]H −H

∂

∂s
|A|2 −H

∂

∂s
MRc(ν, ν) + LLα + 3

2
H2Lα.

(2.5)

Using the above formula for the variations of the metric and the second
fundamental form we compute

∂

∂s
Aij = −3αAikAjk −∇i∇jα− αT ij

and therefore

∂

∂s
|A|2 =

∂

∂s
(AijAij) = −2α trA3 − 2Aij∇i∇jα− 2αAijTij . (2.6)

The next term we compute is ∂
∂s
MRc(ν, ν), yielding

∂

∂s
MRc(ν, ν) = α∇ν

MRc(ν, ν) − 2MRc(∇α, ν). (2.7)

We turn to computing the commutator [ ∂
∂s
,∆]. We write ∆ = div∇ and

we compute the commutator of [ ∂
∂s
, div] and [ ∂

∂s
,∇] individually. First note

that since ∇kφ = γkl ∂φ
∂xl we have

∂

∂s

(

∇kφ
)

= −2αAkl
∂φ

∂xl
+ γkl

∂

∂xl
∂

∂s
φ,

and hence

[
∂

∂s
,∇]φ = −2αAkl∇lφ = −2αS(∇φ). (2.8)

12



Here S is the shape operator, that is the tensor defined by

γ(S(X), Y ) = A(X, Y )

for all X, Y ∈ X (Σ). Now we turn to the computation of [ ∂
∂s
, div], operating

on vector fields. Let X, Y ∈ X (Σ) be vector fields. We compute

γ(∇XY,X) = γ(∇YX,X)+γ([X, Y ], X) =
1

2
Y (γ(X,X))+γ(X, [X, Y ]).

(2.9)

We choose a local orthonormal frame {ei} and propagate it using the ODE

∂

∂s
ei = −αS(ei).

Then the {ei} remain orthonormal under the evolution. Plugging X = ei
into equation (2.9) yields

γ(∇ei
Y, ei) = γ(ei, [ei, Y ]).

Differentiating this equation and using the above formulas we get by a fairly
standard computation

∂

∂s
γ(∇ei

Y, ei) = 2αA(ei, [ei, Y ]) − γ(αS(ei), [ei, Y ]) − γ(ei, [αS(ei), Y ])

= αA(ei,∇ei
Y ) − αA(ei,∇Y ei) − αγ(ei,∇S(ei)Y )

+ αY (γ(ei, S(ei))) − αγ(∇Y ei, S(ei)) + Y (α)A(ei, ei)

= αA(ei,∇ei
Y ) − αγ(ei,∇S(ei)Y )

+ α∇YA(ei, ei) + Y (α)A(ei, ei).

If we now choose {ei} to be an orthogonal system of eigenvectors for S,
that is S(ei) = λiei, then we see that the first two terms cancel, and after
summation over i we infer

[
∂

∂s
, div]Y =

∑

i

α∇YA(ei, ei) + Y (α)A(ei, ei) = ∇Y (αH). (2.10)

We combine equations (2.10) and (2.8) and get, using ∆ = div∇,

[
∂

∂s
,∆]φ = 〈∇φ,∇(αH)〉 − 2A(∇α,∇φ) − 2α div

(

S(∇φ)
)

. (2.11)

Using an ON frame {ei}, we compute further that

div
(

S(∇φ)
)

=
∑

i

∇ei
A(∇φ, ei) + A(∇ei

∇φ, ei)
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and in view of the Codazzi equation this yields

div
(

S(∇φ)
)

= 〈∇φ,∇H〉 +
∑

i

MRm(ei,∇φ, ν, ei) + A(∇ei
∇φ, ei)

= 〈∇φ,∇H〉 + MRc(∇φ, ν) + 〈A,∇2φ〉.

Plugging this formula into (2.11) gives

[
∂

∂s
,∆]φ = H〈∇α,∇φ〉 − α〈∇φ,∇H〉 − 2A(∇α,∇φ)

− 2αMRc(∇φ, ν) − 2α〈A,∇2φ〉.
(2.12)

Finally we substitute the results (2.6), (2.7) and (2.12) into (2.5) to obtain

Wα = LLα + 3
2
H2Lα −H〈∇α,∇H〉+ α|∇H|2

+ 2A(∇α,∇H) + 2αMRc(∇H, ν) + 2α〈A,∇2H〉
+ 2αH trA3 + 2H〈A,∇2α〉 + 2αH〈A, T 〉
− αH∇ν

MRc(ν, ν) + 2HMRc(∇α, ν).

(2.13)

We rewrite equation (2.13) in dimension two, as it somewhat simplifies. We

split A =
◦
A + 1

2
Hγ in the following terms

〈A,∇2α〉 = 〈 ◦
A,∇2α〉 + 1

2
H∆α,

A(∇α,∇H) =
◦
A(∇α,∇H) + 1

2
H〈∇α,∇H〉,

〈∇2H,A〉 = 1
2
H∆H + 〈 ◦

A,∇2H〉,
trA3 = tr

◦
A3 +H| ◦

A|2 + 1
2
H|A|2 = H| ◦

A|2 + 1
2
H|A|2,

〈A, T 〉 = 1
2
H MRc(ν, ν) + 〈 ◦

A, T 〉.

Plugging these into (2.13), and setting ω = Rc(ν, ·)T yields

Wα = LLα + 1
2
H2Lα + 2H〈 ◦

A,∇2α〉 + 2Hω(∇α) + 2
◦
A(∇α,∇H)

+ α
(

|∇H|2 + 2ω(∇H) +H∆H + 2〈∇2H,
◦
A〉

+ 2H2| ◦
A|2 + 2H〈 ◦

A, T 〉 −H∇ν
MRc(ν, ν)

)

.

(2.14)

To demonstrate that W is L2-self adjoint we compute, with D = |A|2 +
Rc(ν, ν),

∫

Σ

βH2Lα dµ =

∫

Σ

βH2(−∆α − αD) dµ

=

∫

Σ

H2〈∇α,∇β〉+ 2Hβ〈∇H,∇α〉 − αβH2D dµ,

14



and, using div
◦
A = 1

2
∇H + ω,

∫

Σ

βH〈 ◦
A,∇2α〉 dµ

= −
∫

Σ

β
◦
A(∇α,∇H) +H

◦
A(∇α,∇β) + 1

2
βH〈∇α,∇H〉+Hβω(∇α) dµ.

Thus
∫

Σ

βWα dµ

=

∫

Σ

LαLβ + 1
2
H2〈∇α,∇β〉 − 2H

◦
A(∇α,∇β)

+ αβ
(

|∇H|2 + 2ω(∇H) +H∆H + 2〈∇2H,
◦
A〉 + 2H2| ◦

A|2

+ 2H〈 ◦
A, T 〉 −H∇ν

MRc(ν, ν) − 1
2
H2|A|2 − 1

2
H2MRc(ν, ν)

)

.

(2.15)

and from this representation it is obvious that the bilinear form associated
to W is symmetric, and hence W is L2-self adjoint.

Recall that the goal is to find a critical point of the Willmore energy in the
class of surfaces with given area. From (2.3) we get that for a critical point
of this problem we have

0 =

∫

Σ

(LH + 1
2
H3)α dµ (2.16)

for all α which respect the constraint
∫

Σ
αH dµ = 0. We thus find the

Euler-Lagrange equation

LH + 1
2
H3 = λH, (2.17)

where λ is a constant. Let us turn to the computation of the second variation

∂2

∂s2

∣

∣

∣

∣

s=0

W[Σs] =

∫

Σ

αWα+ (LH + 1
2
H3)(

∂α

∂s
+Hα2) dµ. (2.18)

At this point we only consider variations that leave the area constant up to
second order. This gives

0 =
∂2

∂s2

∣

∣

∣

∣

s=0

|Σs| =
∂

∂s

∣

∣

∣

∣

s=0

∫

Σs

αH dµ =

∫

Σ

∂α

∂s
H+αLα+α2H2 dµ. (2.19)

Thus we can compute
∫

Σ

(LH+ 1
2
H3)(

∂α

∂s
+Hα2) dµ =

∫

Σ

λH(
∂α

∂s
+Hα2) dµ = −λ

∫

Σ

αLα. (2.20)
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Plugging this into (2.18) yields that the second variation of W on a station-
ary surface Σ is given by

δ2W(α, α) =

∫

Σ

αWα− λαLα dµ, (2.21)

for all valid test functions α ∈ C∞(Σ) satisfying
∫

Σ
αH dµ = 0.

3 Integral curvature estimates

In this section we derive a priori bounds on the curvature of surfaces which
are solutions of the equation (0.1). We will later make the assumption that
both H > 0 and λ > 0 on these surfaces. Without the assumption on λ we
can derive the following lemma.

Lemma 3.1. If a spherical surface Σ satisfies equation (0.1) with H > 0,
then

λ|Σ| +
∫

Σ

|∇ logH|2 + 1
4
H2 + 1

2
| ◦
A|2 dµ ≤ 4π −

∫

Σ

1
2
MSc dµ.

If MSc ≥ 0 we have that

4λ|Σ| +
∫

Σ

H2 dµ ≤ 16π.

Proof. Multiply equation (0.1) by H−1 and integrate the first term by parts.
This yields

λ|Σ| +
∫

Σ

|∇ logH|2 + | ◦
A|2 + MRc(ν, ν) dµ = 0. (3.1)

We can now use the Gauss equation (1.3) and the Gauss-Bonnet formula to
get

λ|Σ| +
∫

Σ

|∇ logH|2 + 1
4
H2 + 1

2
| ◦
A|2 dµ ≤ 4π −

∫

Σ

1
2
MSc dµ.

�

The above lemma already implies that the Hawking mass is positive on such
surfaces.
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Theorem 3.2. If (M, g) satisfies MSc ≥ 0 and if Σ is a compact spherical
surface satisfying equation (0.1) with H > 0, then mH(Σ) ≥ 0 if λ ≥ 0.

Furthermore if F : Σ × [0, ε) → M is a variation with initial velocity
∂F
∂s

∣

∣

s=0
= αν and

∫

Σ
αH dµ ≥ 0, then

d

ds
mH

(

F (Σ, s)
)

≥ 0.

Note that the condition on α means that the area is increasing along the
variation.

Proof. Non-negativity of the Hawking-mass is obvious from lemma 3.1. To
observe monotonicity, we compute the variation of the Hawking-mass. We
denote F (Σ, s) = Σs.

(16π)3/2 d

ds

∣

∣

∣

∣

s=0

mH(Σs)

=
1

2|Σ|1/2
(
∫

Σ

αH dµ

)(

16π −
∫

Σ

H2 dµ

)

− 2|Σ|1/2
∫

Σ

λαH dµ

as equation (0.1) implies that the variation of
∫

Σ
H2 dµ is given by 2λH .

This yields

(16π)3/2 d

ds

∣

∣

∣

∣

s=0

mH =
1

2|Σ|1/2
(
∫

Σ

αH dµ

)(

16π − 4λ|Σ| −
∫

Σ

H2 dµ

)

.

Lemma 3.1 implies non-negativity of the right hand side. �

Subsequently we assume that the manifold (M, g) is (m, η, σ)-asymptotically
Schwarzschild for some η < η0, where η0 is fixed. Furthermore Σ ⊂ M is a
surface with rmin ≥ r0 large enough. The particular r0 will only depend on
m, η0 and σ, and we will no longer explicitly denote the dependence on these
quantities. Similarly, constants denoted with a capital C are understood to
depend on m, η0 and σ, in addition to quantities explicitly mentioned. In
contrast, constants denoted by c will not have any implicit dependency. We
no longer require the condition MSc ≥ 0.

Lemma 3.3. Let (M, g) be (m, η, σ)-asymptotically Schwarzschild. Then
there exists r0 = r0(m, η, σ) and a constant C = C(m, η, σ) such that for
all spherical surfaces Σ ⊂ M \ Br0(0) satisfying equation (0.1) with λ > 0
and H > 0, we have the following estimates.

∫

Σ

| ◦
A|2 + |∇ logH|2 dµ ≤ Cr−1

min,
∣

∣

∣

∣

∫

Σ

H2 dµ− 16π

∣

∣

∣

∣

≤ Cr−1
min,
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and

λ|Σ| ≤ Cr−1
min.

Proof. From lemma 3.1 we get the bound
∫

Σ

H2 dµ ≤ 16π − 2

∫

Σ

MSc dµ

As |MSc| ≤ C(η)r−4 we find that in view of lemma 1.4
∫

Σ

H2 dµ ≤ 16π + Cr−2
min

∫

Σ

H2 dµ.

So if rmin is large enough, eventually
∫

Σ

H2 dµ ≤ 16π + Cr−2
min.

We can write the Gauss equation (1.3) in the following form

1
2
ΣSc ≤ 1

2
ΣSc + 1

2
| ◦
A|2 =

1

4
H2 + 1

2
MSc − MRc(ν, ν).

Integrating and using lemma 1.4 gives

16π ≤
∫

Σ

H2 dµ+ Cr−1
min.

The remaining claims now follow from lemma 3.1. �

The initial bound on
◦
A derived above is crucial for higher curvature estimates

on Σ. We vary on the strategy outlined in [10, Section 2]. The estimates
there were derived in flat ambient space and therefore we review them here
for the readers convenience. More importantly, we can use the fact that
H > 0, which improves the estimates, as the absolute error is slightly better
behaved.

Lemma 3.4. Under the assumtions of lemma 3.3 we have
∫

Σ

|∆H|2
H2

dµ ≤ 2

∫

Σ

| ◦
A|4 dµ+ 2

∫

Σ

(

MRc(ν, ν) + λ
)2

dµ.

Proof. We use equation (0.1), divided by H , which gives
∫

Σ

|∆H|2
H2

dµ =

∫

Σ

(

| ◦
A|2 + MRc(ν, ν) + λ

)2
dµ

≤ 2

∫

Σ

| ◦
A|4 dµ+ 2

∫

Σ

(

MRc(ν, ν) + λ
)2

dµ.

�
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Lemma 3.5. Under the assumtions of lemma 3.3 we have

∫

Σ

|∇2H|2
H2

dµ+ 1
2
|∇H|2 dµ

≤ Cr−3
min

∫

Σ

|∇ logH|2 +

∫

Σ

(

MRc(ν, ν) + λ
)2

+ | ◦
A|4 + |∇ logH|4 dµ.

Proof.

∫

Σ

|∇2H|2
H2

dµ =

∫

Σ

−H−2∇i∇j∇iH∇jH + 2H−3∇2H(∇H,∇H) dµ

=

∫

Σ

−H−2∇j∆H∇jH −H−2ΣRmijki∇jH∇kH dµ

+

∫

Σ

2H−3∇2H(∇H,∇H) dµ

=

∫

Σ

|∆H|2
H2

−H−2ΣRmijki∇jH∇kH dµ

+

∫

Σ

2H−3∇2H(∇H,∇H)− 2H−3|∇H|2∆H dµ.

(3.2)

In view of the Gauss equation (1.2) the curvature term yields

ΣRmijki∇jH∇kH =
(

MRmijki +
1
4
H2γjk −

◦
Aik

◦
Aij
)

∇jH∇kH

=
1

4
H2|∇H|2 + MRmijki∇jH∇kH − ◦

Aik
◦
Aij∇jH∇kH.

Furthermore, we estimate

∫

Σ

2H−3∇2H(∇H,∇H) − 2H−3|∇H|2∆H dµ

≤
∫

Σ

1

2

|∇2H|2
H2

+ c|∇ logH|4 dµ.

The first term can be absorbed to the right hand side of equation (3.2). We
infer

∫

Σ

1

2

|∇2H|2
H2

+
1

4
|∇H|2 dµ

≤
∫

Σ

|∆H|2
H2

+ c|∇ logH|4 + c| ◦
A|4 + c|MRm||∇ logH|2 dµ.

We use |MRm| ≤ Cr−3
min and lemma 3.4 to conclude the claimed inequality.

�
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Lemma 3.6. Under the assumtions of lemma 3.3 we have

∫

Σ

|∇ ◦
A|2 dµ+ 1

2
H2| ◦

A|2 dµ ≤
∫

Σ

|ω|2+Cr−3
min

∫

Σ

| ◦
A|2 dµ+

∫

Σ

|∇H|2+| ◦
A|4 dµ.

Proof. Integrate equation (1.7), and use integration by parts on the left hand
side, and on the first and the last term on the right hand side to conclude

∫

Σ

|∇ ◦
A|2 dµ+

1

2

∫

Σ

H2| ◦
A|2 dµ =

∫

Σ

2〈div
◦
A, 1

2
∇H + ω〉 + | ◦

A|4

+ | ◦
A|2MRc(ν, ν) − 2

◦
Aij

◦
Alj

MRcil dµ.

From the Codazzi equation we conclude that div
◦
A = 1

2
∇H + ω, and hence

∫

Σ

|∇ ◦
A|2 dµ+

1

2

∫

Σ

H2| ◦
A|2 dµ ≤

∫

Σ

|∇H|2+ | ◦
A|4 +4|ω|2+c| ◦

A|2|MRm| dµ.

In view of |MRm| ≤ Cr−3
min the claimed estimate follows. �

Combining lemma 3.5 and lemma 3.6, we infer the following estimate.

Lemma 3.7. Under the assumtions of lemma 3.3 we have

∫

Σ

|∇2H|2
H2

+ |∇A|2 + |A|2| ◦
A|2 dµ

≤ c

∫

Σ

|ω|2 +
(

MRc(ν, ν) + λ)2 dµ+ c

∫

Σ

| ◦
A|4 + |∇ logH|4 dµ

+ Cr−3
min

∫

Σ

|∇ logH|2 + | ◦
A|2 dµ.

At this point we need a variation on the multiplicative Sobolev inequality
from [10, Lemma 2.5].

Lemma 3.8. Under the assumtions of lemma 3.3 we have

∫

Σ

| ◦
A|4 + |∇ logH|4 dµ

≤ c

(
∫

Σ

| ◦
A|2 + |∇ logH|2 dµ

)

·
(
∫

Σ

|∇2H|2
H2

+ |∇A|2 + |∇ logH|4 +H2| ◦
A|2 dµ

)

.
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Proof. We use the Michael-Simon-Sobolev inequality from Proposition 1.8
and Hölder’s inequality to estimate

(
∫

Σ

(

|∇ logH|2
)2

dµ

)1/2

≤ c

∫

Σ

|∇2H|
H

|∇ logH| + |∇ logH|3 +H|∇ logH|2 dµ

≤ c

(
∫

Σ

|∇ logH|2 dµ

)1/2(∫

Σ

|∇2H|2
H2

+ |∇ logH|4 + |∇H|2 dµ

)1/2

.

Furthermore
(
∫

Σ

| ◦
A|4 dµ

)1/2

≤ c

∫

Σ

| ◦
A||∇ ◦

A| +H| ◦
A|2 dµ

≤ c

(
∫

Σ

| ◦
A|2 dµ

)1/2(∫

Σ

|∇ ◦
A|2 +H2| ◦

A|2 dµ

)1/2

.

Combining both inequalities yields the claim. �

The estimates above yield the initial curvature estimates.

Theorem 3.9. For every m, η, σ there exist constants r0 = r0(m, η, σ) and
C = C(m, η, σ) with the following properties:

If (M, g) is (m, η, σ)-asymptotically Schwarzschild and Σ ⊂M \Br0 satisfies
equation (0.1) with H > 0 and λ > 0, then Σ satisfies the estimate

∫

Σ

|∇2H|2
H2

+ |∇A|2 + |∇ logH|4 + |A|2| ◦
A|2 dµ

≤ c

∫

Σ

|ω|2 +
(

MRc(ν, ν) + λ
)2

dµ+ Cr−3
min

∫

Σ

|∇ logH|2 + | ◦
A|2 dµ

Proof. This is a consequence of lemma 3.3, lemma 3.7 and lemma 3.8. �

Corollary 3.10. Under the assumptions of theorem 3.9 we have the estimate
∫

Σ

|∇2H|2
H2

+ |∇A|2 + |∇ logH|4 + |A|2| ◦
A|2 dµ ≤ Cr−4

min + Cr−2
min|Σ|−1

Proof. The claim follows in view of |ω| + |Rc| ≤ Cr−3, lemma 1.4 and the
estimates from lemma 3.3. �

Corollary 3.11. Under the assumptions of theorem 3.9, we have the estimate
∫

Σ

| ◦
A|2 + |∇ logH|2 dµ ≤ Cr−4

min|Σ| + Cr−2
min.
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Proof. This follows from the Michael-Simon-Sobolev inequality and Kato‘s
inequality. For example

(
∫

Σ

| ◦
A|2 dµ

)1/2

≤ Cs

∫

Σ

∣

∣∇| ◦
A|
∣

∣+H| ◦
A| dµ

≤ cCs|Σ|1/2
(
∫

Σ

|∇ ◦
A|2 +H2| ◦

A|2 dµ

)1/2

Using corollary 3.10 the claimed inequality for
∫

| ◦
A|2 dµ follows. The proof

for
∫

|∇ logH|2 dµ is similar. �

4 Improved curvature estimates

Before we can approach the position estimates, we discuss how the decay
rates in the curvature estimates in section 3 can be improved. First we
note that the estimates in section 3 and theorem 1.9 imply that solutions to
equation (0.1) are close to spheres.

Proposition 4.1. Let Re be the geometric area radius of Σ with respect to
the Euclidean metric, i.e.

∫

Σ
dµe = 4πR2

e, and let ae be the Euclidean center
of gravity of Σ, that is

ae =

∫

Σ
idΣ dµe
∫

Σ
dµe

.

Let S := SRe
(ae) be the sphere of radius Re centered at ae and let N be

the Euclidean normal of S. Then there exists a conformal parameterization
ψ : S → (Σ, γe) with conformal factor h2 satisfying the following estimates.

sup
S

|ψ − idS | ≤ CRe

(

‖ ◦
A‖L2 + ηr−2

min

)

(4.1)

‖N ◦ idS −νe ◦ ψ‖L2(S) ≤ CRe

(

‖ ◦
A‖L2 + ηr−2

min

)

(4.2)

sup
S

|h2 − 1| ≤ C
(

‖ ◦
A‖L2 + ηr−2

min

)

(4.3)

Proof. This follows immediately from corollary 1.7, theorem 1.9 and corol-
lary 3.10. �

In the sequel, an essential quantity will be the ratio between the center of
mass and the radius of the approximating sphere. We denote it by

τ :=
|ae|
Re

, (4.4)
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where ae and Re are as in proposition 4.1. Note that by corollary 3.10 and
(4.1) we have

rmin ≥ Re − |ae| − CRe(||
◦
A||L2 + ηr−2

min)

≥ Re(1 − τ) − C1Re(Rer
−2
min + r−1

min + ηr−2
min). (4.5)

Analogously we can estimate rmin from above. If we now assume that

τ ≤ (1 − ε) and Re ≤
ε

4C1
r2
min (4.6)

for some arbitrary ε > 0, we get for rmin large enough

C1(Rer
−2
min + r−1

min + ηr−2
min) ≤

ε

2

and this shows that

C−1rmin ≤ Re ≤ Crmin.

Hence Re and rmin are comparable to each other and therefore we will not
distinguish between them any more and we phrase the estimates only in
terms of rmin. Constants C in this section will also depend on ε.

We can use the fact that Σ is well approximated by a round sphere to
compute a precise expression for λ.

Proposition 4.2. If (M, g) and Σ are as in theorem 3.9, then if assump-
tion (4.6) holds, we have

∣

∣

∣

∣

λ− 2m

R3
S

∣

∣

∣

∣

≤ Cr−2
min

(

‖ ◦
A‖2

L2 +‖∇ logH‖2
L2

)

+Cr−4
min(τ +rmin‖

◦
A‖L2 +ηr−1

min)

Here we set RS := φ̄2Re where φ̄ = φ(Re) = 1 + m
2Re

.

Proof. Recall that from (3.1) we have

∣

∣

∣

∣

λ|Σ| +
∫

Σ

Rc(ν, ν) dµ

∣

∣

∣

∣

≤
∫

Σ

| ◦
A|2 + |∇ logH|2 dµ (4.7)

The goal is now to calculate the integral on the left. We start by estimating
the error to the respective integral in Schwarzschild.

∣

∣

∣

∣

∫

Σ

Rc(ν, ν) dµ−
∫

Σ

RcS(νS, νS) dµS
∣

∣

∣

∣

≤ c

∫

Σ

|Rc − RcS| + |Rc||ν − νS| + |Rc|| dµ− dµS| dµ ≤ Cηr−2
min.
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We furthermore replace νS and dµS by the respective Euclidean quantities.
This introduces some factors of φ which all cancel, and we therefore get no
further error in the following step:

∣

∣

∣

∣

∫

Σ

Rc(ν, ν) dµ−
∫

Σ

RcS(νe, νe) dµe
∣

∣

∣

∣

≤ Cηr−2
min.

The second integral on the left can be replaced by an integration over the
sphere S = SRe

(ae) from proposition 4.1, introducing only acceptable error
terms. This technique was used extensively in [14]. To see how this works,
we use the parameterization ψ : S → Σ from proposition 4.1 to calculate

∣

∣

∣

∣

∫

Σ

RcS(νe, νe) dµe −
∫

S

RcS(N,N) dµe
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

S

(RcS ◦ ψ)
(

νe ◦ ψ, νe ◦ ψ
)

h2 − RcS(N,N) dµe
∣

∣

∣

∣

≤ c

∫

S

|RcS ◦ ψ − RcS| + |RcS||h2 − 1| + |RcS||νe ◦ ψ −N | dµe

≤ c‖∇eRcS‖L∞‖ψ − Id ‖L∞|Σ| + c‖RcS‖L1‖h2 − 1‖L∞

+ c‖RcS‖L2‖νe ◦ ψ −N‖L2

≤ Cr−2
min(rmin‖

◦
A‖L2 + ηr−1

min)

Now use coordinates ϕ, ϑ on SR(a) such that cosϕ = ge( ae

|ae|
, N). Then

the representation RcS(N,N) = φ−2m
r3

(1 − 3ge(ρ,N)2) together with ρ =
r−1(ReN + ae), implies that

∫

S

RcS(N,N) dµe

= m

∫

S

φ−2

(

1

r3
− 3R2

e

1

r5
− 6Re|ae|

cosϕ

r5
− 3|ae|2

cos2 ϕ

r5

)

dµe

Letting φ̄ := 1+ m
2Re

we can use the expression r2 = R2
e+2Re|ae| cosϕ+ |ae|2

to estimate that

sup
S

|φ− φ̄| ≤ Cτr−1
min

which renders
∫

S

RcS(N,N) dµe

=
m

φ̄2

∫

S

(

1

r3
− 3R2

e

1

r5
− 6Re|ae|

cosϕ

r5
− 3|ae|2

cos2 ϕ

r5

)

dµe +O(τr−2
min)

24



Integrals of this type can be computed explicitly as follows. First write

∫

S

cosl ϕ

rk
dµe = 2πR2

e

∫ π

0

sinϕ
cosl ϕ

rk
dϕ.

We have x = ReN + ae, and hence r =
√

R2
e + 2Re|ae| cosϕ+ |ae|2. Thus

dϕ
dr

= − r
Re|ae| sinϕ

, and cosϕ = r2−R2
e−|ae|2

2Re|ae|
. Substituting this into the integral

yields

2πR2
e

∫ π

0

sinϕ
cosl ϕ

rk
dϕ. =

2πRe

|ae|
(2Re|ae|)−l

∫ Re+|ae|

|Re−|ae||

r1−k(r2−R2
e−|ae|2)ldr.

Thus we can compute (see appendix A.1), if |ae| < Re,

∫

S

RcS(N,N) dµe = −φ̄−2 8πm

Re
+O(τr−2

min)

Collecting all error terms we introduced, this yields that

∣

∣

∣

∣

∫

Σ

Rc(ν, ν) dµ+
8πm

RS

∣

∣

∣

∣

≤ Cr−2
min

(

τ + rmin‖
◦
A‖L2 + ηr−1

min

)

The next step is to calculate the area of Σ. Similar to the above argument
we estimate

∣

∣

∣

∣

∫

Σ

1 dµ−
∫

Σ

1 dµS
∣

∣

∣

∣

≤ Cη.

From lemma 1.1 we get

∫

Σ

1 dµS =

∫

Σ

φ4 dµe.

We now replace φ by φ̄ in this integral. This yields an error of the following
form

∣

∣

∣

∣

∫

Σ

φ4 dµe −
∫

Σ

φ̄4 dµe
∣

∣

∣

∣

≤ Crmin

(

τ + rmin‖
◦
A‖L2 + ηr−1

min

)

In conclusion we find that

∣

∣|Σ| − 4πR2
S

∣

∣ ≤ Crmin

(

τ + rmin‖
◦
A‖L2 + ηr−1

min

)

Using lemma 3.3 we get

∣

∣λ|Σ| − 4πR2
Sλ
∣

∣ ≤ Cr−2
min

(

τ + rmin‖
◦
A‖L2 + ηr−1

min

)
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Plugging this expression into equation (4.7), we arrive at the estimate

∣

∣

∣

∣

λ− 2m

R3
S

∣

∣

∣

∣

≤ Cr−2
min

(

‖ ◦
A‖2

L2 +‖∇ logH‖2
L2

)

+Cr−4
min

(

τ +rmin‖
◦
A‖L2 +ηr−1

min

)

(4.8)

This yields the claim. �

If τ behaves as above, we have more control over the curvature terms which
did not allow us to increase the decay rates in section 3. In particular,

Proposition 4.3. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, then

‖ν − φ−2ρ‖2
L2(Σ) ≤ Cr2

min(τ
2 + ‖ ◦

A‖2
L2 + ηr−2

min)

‖Rc(ν, ν) − φ−4RcS(ρ, ρ)‖2
L2(Σ) ≤ Cr−4

min(τ
2 + ‖ ◦

A‖2
L2 + ηr−2

min)

‖ω‖2
L2(Σ) ≤ Cr−4

min(τ
2 + ‖ ◦

A‖2
L2 + ηr−2

min)

‖RcT − P S
φ−2ρRcS‖2

L2(Σ) ≤ Cr−4
min(τ

2 + ‖ ◦
A‖2

L2 + ηr−2
min)

Here, P S
φ−2ρRcS denotes the gS-orthogonal projection of RcS to the subspace

perpendicular to φ−2ρ.

Proof. The proof is the similar to [14, Proposition 4.6]. However the claimed
estimate here is somewhat more precise, so we briefly sketch the argument.
To show the first assertion we first replace the quantities in the integral by
the respective quantities computed with respect to the Schwarzschild metric

∣

∣

∣

∣

∫

Σ

g(ν − φ−2ρ, ν − φ−2ρ) dµ−
∫

Σ

gS(νS − φ−2ρ, νS − φ−2ρ) dµS
∣

∣

∣

∣

≤ Cη.

Then we note that
∫

Σ

gS(νS − φ−2ρ, νS − φ−2ρ) dµS =

∫

Σ

ge(νe − ρ, νe − ρ) dµe.

We now parameterize again by ψ and calculate the difference to the respec-
tive quantity on S. We obtain

∣

∣

∣

∣

∫

Σ

ge(νe − ρ, νe − ρ) dµe −
∫

S

ge(N − ρ,N − ρ) dµe
∣

∣

∣

∣

≤ C(τr2
min‖

◦
A‖L2 + r2

min‖
◦
A‖2

L2 + τ 2 + τη + η2r−2
min)
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Since
∫

S

ge(N − ρ,N − ρ) dµe ≤C
∫

S

r−2(|r − Re|2 + |ae|2) dµe

≤Cr2
min(τ

2 + ‖ ◦
A‖2

L2 + ηr−2
min),

where we used (4.5), we obtain the first inequality.

The other inequalities are then a consequence of the first, since they basically
follow from expressing the quantities in terms of the respective quantities in
Schwarzschild. �

This proposition can be used to improve the mean value estimate we ob-
tained in proposition 4.2 to the following L2-estimate.

Proposition 4.4. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, we have

‖λ+ Rc(ν, ν)‖L2(Σ) ≤ Cr−2
min

(

τ + ‖ ◦
A‖L2 + ‖∇ logH‖L2 + ηr−1

min

)

Proof. We use the second estimate of proposition 4.3 to express Rc(ν, ν)
in terms of φ−4RcS(ρ, ρ) plus error. Then we use that up to second order
φ−4RcS(ρ, ρ) = −2m

R3
S

plus error. In combination with proposition 4.2 this

yields the estimate. �

Propositions 4.3 and 4.4 give more precise estimates of the terms on the
right hand side of theorem 3.9. In combination with the initial estimate for
‖ ◦
A‖L2 we thus infer the following improved curvature estimates.

Theorem 4.5. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, then

∫

Σ

|∇2H|2
H2

+ |∇A|2 + |∇ logH|4 + |A|2| ◦
A|2 dµ ≤ Cr−4

min

(

τ 2 + ηr−2
min

)

and furthermore

∫

Σ

| ◦
A|2 + |∇ logH|2 dµ ≤ Cr−2

min

(

τ 2 + ηr−2
min

)

Proof. First of all note that by the calculation in corollary 3.11 we can
estimate

∫

Σ

| ◦
A|2+|∇ logH|2 dµ ≤ C|Σ|

∫

Σ

|∇2H|2
H2

+|∇A|2+|∇ logH|4+|A|2| ◦
A|2 dµ.
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(4.9)

Since, under assumption (4.6) we have that |Σ|r−3
min → 0, we can eventually

absorb the second term on the right in theorem 3.9 to the left hand side. In
combination with proposition 4.3 and proposition 4.4 this yields that

∫

Σ

|∇2H|2
H2

+ |∇A|2 + |∇ logH|4 + |A|2| ◦
A|2 dµ

≤ Cr−4
min

(

τ 2 + ηr−2
min + ‖ ◦

A‖2
L2 + ‖∇ logH‖2

L2

)

(4.10)

together with (4.9) we infer

∫

Σ

| ◦
A|2 + |∇ logH|2 dµ ≤ Cr−2

min

(

τ 2 + ηr−2
min + ‖ ◦

A‖2
L2 + ‖∇ logH‖2

L2

)

We absorb ‖ ◦
A‖2

L2 + ‖∇ logH‖2
L2 to the left and obtain the second estimate.

The first estimate follows from (4.10) and this estimate. �

Using this estimate, we also get a better control on derivatives of ω. In
particular, we have the following

Proposition 4.6. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, then

‖∇ω‖2
L2(Σ) ≤ Cr−6

min

(

τ 2 + ηr−2
min

)

,

and

‖∇Rc(ν, ν)‖2
L2(Σ) ≤ Cr−6

min

(

τ 2 + ηr−2
min

)

,

Proof. To prove the first estimate calculate for {ei} a ON-frame on Σ that

∇ei
ω(ek) = ei(

MRc(ν, ek)) − MRc(ν, Σ∇ei
ek)

= M∇ei

MRc(ν, ek) + 1
2
HMRc(ei, ek) − 1

2
HMRc(ν, ν)

+ MRc(el, ek)
◦
Ail − MRc(ν, ν)

◦
Aik.

(4.11)

The last two terms including
◦
A have the claimed decay, so we focus on the

first three terms.

In Schwarzschild we have that on the centered spheres ∇SωS vanishes as ωS

vanishes, so we find that on centered spheres for a ON-frame {eSi } tangent
to the centered spheres

0 = ∇eS
i
ωS = ∇S

eS
i
RcS(φ−2ρ, eSk )+ 1

2
HSRcS(eSi , e

S
k )− 1

2
HRcS(φ−2ρ, φ−2ρ).
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(4.12)

Following proposition 4.3 we get that the first three terms of (4.12) equal the
right hand side of (4.11) up to an error with L2-norm bounded by Cτr−3

min.
This yields the first estimate. The second one is proved similarly. �

In the sequel we will use the improved integral estimates to derive improved
pointwise estimates of the second fundamental form and its derivatives. Be-
fore doing this we need the following Lemma which is due to Kuwert and
Schätzle [10] in the case that M = Rn.

Lemma 4.7. Under the assumptions of theorem 3.9 we have for every smooth
form ϕ along Σ

‖ϕ‖4
L∞(Σ) ≤ C‖ϕ‖2

L2(Σ)

∫

Σ

(|∇2ϕ|2 + |H|4|ϕ|2) dµ. (4.13)

Proof. The proof of lemma 2.8 in [10] can be carried over to our situation
since we saw in proposition 1.8 that the Michael-Simon Sobolev inequality
remains unchanged if (M, g) is (m, η, σ)-asymptotically Schwarzschild. �

In the next lemma we derive an L2-estimate for ∇2H .

Lemma 4.8. Under the assumptions of theorem 3.9, if conditions (4.6) hold,
then

∫

Σ

|∇2H|2 dµ ≤ Cr−4
min

(

‖H‖2
L∞ + r−2

min

)(

τ 2 + ηr−2
min

)

. (4.14)

Proof. We multiply equation (0.1) with ∆H and integrate to get

∫

Σ

|∆H|2 dµ = −
∫

Σ

H∆H(| ◦
A|2 + MRc(ν, ν) + λ) dµ

≤ 1
2

∫

Σ

|∆H|2 dµ+ c

∫

Σ

H2| ◦
A|4 +H2

(

MRc(ν, ν) + λ
)

dµ

(4.15)

Defining f = | ◦
A|2|H| and applying proposition 1.8 we get

(
∫

Σ

| ◦
A|4H2 dµ

)1/2

≤ C

∫

Σ

(|A|| ◦
A||∇A| + | ◦

A|2H2) dµ

≤ C

(
∫

Σ

|A|2| ◦
A|2 dµ

)1/2(∫

Σ

|∇A|2 +H2| ◦
A|2 dµ

)1/2
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In combination, we infer

∫

Σ

|∆H|2 dµ ≤
∫

Σ

H2
(

MRc(ν, ν) + λ
)2

dµ

+ C

(
∫

Σ

|A|2| ◦
A|2 dµ

)(
∫

Σ

|∇A|2 +H2| ◦
A|2 dµ

)

This implies the claim, since the first term is estimated in view of propo-
sition 4.4 and the second one in view of theorem 4.5. Using the Bochner
identity as in the proof of lemma 3.5 finishes the proof. �

Now we are in a position to prove a pointwise estimate for H .

Proposition 4.9. Let S = SRe
(ae) be the approximating sphere for Σ from

proposition 4.1. As in proposition 4.2 we let φ̄ = 1 + m
2Re

and define

H̄S = φ̄−2 2

Re
− 2φ̄−3 m

R2
e

Under the assumptions of theorem 3.9, if conditions (4.6) hold, we have that

‖H − H̄S‖L∞(Σ) ≤ Cr−2
min

(

τ +
√
ηr−1

min

)

. (4.16)

Proof. Since

‖H −HS‖2
L2(Σ) ≤ Cη2r−4

min

and HS = φ−2He − 2m
r2
φ−3ge(ρ, νe) by lemma 1.1, we can estimate using

propositions 4.1, 4.3 and theorem 4.5 that

‖HS − H̄S‖2
L2(Σ) ≤ C(‖φ−2(He − 2

Re
)‖2
L2(Σ) + ‖(φ−2 − φ̄−2)

2

Re
‖2
L2(Σ)

+ ‖(φ−3 − φ̄−3)
2m

R2
e

‖2
L2(Σ)

+ ‖φ−3(
2m

r2
ge(ρ, νe) − 2m

R2
e

)‖2
L2(Σ))

≤ C‖ ◦
A‖2

L2(Σ) + Cτ 2r−2
min + Cηr−4

min

≤ Cr−2
min

(

τ 2 + ηr−2
min

)

.

Combining these two estimates we conclude

‖H − H̄S‖2
L2(Σ) ≤ Cr−2

min

(

τ 2 + ηr−2
min

)

.
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We apply lemma 4.7 to ϕ = H − H̄S and get

‖H − H̄S‖4
L∞(Σ) ≤ C‖H − H̄S‖2

L2(Σ)

(
∫

Σ

(|∇2H|2 +H4|H − H̄S|2 dµ

)

= I + II. (4.17)

Now we estimate term by term. We use lemma 4.8 and the fact that
‖H‖L∞(Σ) ≤ ‖H̄S‖L∞(Σ) + ‖H − H̄S‖L∞(Σ) to get

I ≤ Cr−4
min(‖H‖2

L∞(Σ) + r−2
min)(τ

2 + ηr−2
min)‖H − H̄S‖2

L2(Σ)

≤ Cr−2
min‖H − H̄S‖4

L∞(Σ) + Cr−8
min

(

τ 2 + ηr−2
min

)2

where we also used the above estimate for ‖H − H̄S‖2
L2(Σ). Next we note

that
∫

Σ

H4|H − H̄S|2 dµ ≤ C

∫

Σ

H2
(

(H̄S)2|H − H̄S|2 + |H − H̄S|4
)

dµ

≤ C(H̄S)4

∫

Σ

|H − H̄S|2 dµ+ C‖H − H̄S‖4
L∞(Σ).

Hence we get

II ≤ Cr−2
min‖H − H̄S‖4

L∞(Σ) + Cr−8
min

(

τ 2 + ηr−2
min

)2
.

Inserting these two estimates into (4.17) we conclude

‖H − H̄S‖4
L∞(Σ) ≤ Cr−2

min‖H − H̄S‖4
L∞(Σ) + Cr−8

min

(

τ 2 + ηr−2
min

)2

and therefore, by choosing r0 large enough we can absorb the first term on
the right hand side and this finishes the proof of the proposition. �

In the next lemma we derive pointwise estimates for higher derivatives of
the curvature.

Lemma 4.10. Under the assumptions of theorem 3.9, if conditions (4.6)
hold, we have that

rmin‖∇H‖L∞(Σ) + ‖ ◦
A‖L∞(Σ) ≤ Cr−2

min

(

τ +
√
ηr−1

min

)

(4.18)

Proof. Using (1.6) we estimate

‖∆ ◦
A‖L2 ≤ c(‖∇2H‖L2 + ‖H‖L∞‖ ◦

A‖2
L4 + ‖H‖2

L∞‖ ◦
A‖L2 + ‖ ◦

A‖L2‖ ◦
A‖2

L∞

+ ‖MRm‖L∞‖ ◦
A‖L2 + ‖∇ω‖L2)

≤Cr−3
min

(

τ +
√
ηr−1

min

)

+ C‖ ◦
A‖L2‖ ◦

A‖2
L∞,
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where we used theorem 4.5, definition 1.2, corollary 4.9 and propositions 4.6
and 4.8. Using an integration by parts argument as in the proof of lemma
3.5 we get

‖∇2 ◦
A‖L2(Σ) ≤ Cr−3

min

(

τ +
√
ηr−1

min

)

+ C‖ ◦
A‖L2(Σ)‖

◦
A‖2

L∞(Σ),

Hence we can apply lemma 4.7 and get

‖ ◦
A‖4

L∞(Σ) ≤ c‖ ◦
A‖2

L2(Σ)(‖∇2 ◦
A‖2

L2(Σ) + ‖H‖4
L∞(Σ)‖

◦
A‖2

L2(Σ))

≤ Cr−8
min

(

τ 2 + ηr−2
min

)2
+ Cr−4

min‖
◦
A‖4

L∞(Σ),

where we used the above estimate for ∇2
◦
A and theorem 4.5. Absorbing the

last term on the right hand side into the term on the left hand side finishes
the proof of the L∞-estimate for

◦
A. For the estimate of ∇H we differentiate

(0.1) and get

‖∇∆H‖L2(Σ) ≤ c(λ‖∇H‖L2(Σ) + ‖ ◦
A‖2

L∞(Σ)‖∇H‖L2(Σ)

+ ‖H‖L∞(Σ)‖
◦
A‖L∞(Σ)‖∇

◦
A‖L2(Σ)

+ ‖Rc(ν, ν)‖L∞(Σ)‖∇H‖L2(Σ)

+ ‖RcT (·, ν)‖L2(Σ)‖A‖2
L∞(Σ)

+ ‖H‖L∞(Σ)‖∇Rc(ν, ν)‖L2(Σ))

≤Cr−4
min

(

τ +
√
ηr−1

min

)

.

Hence by interchanging derivatives and integration by parts we get as before

‖∇3H‖L2(Σ) ≤ Cr−4
min

(

τ +
√
ηr−1

min

)

.

Applying theorem 4.5 and lemma 4.7 once more, we conclude

‖∇H‖4
L∞(Σ) ≤ C‖∇H‖2

L2(Σ)(‖∇3H‖2
L2(Σ) + r−4

min‖∇H‖2
L2(Σ))

≤ Cr−12
min

(

τ 2 + ηr−2
min

)2
.

This finishes the proof of the Lemma. �

5 Position estimates

To get estimates on the position of the approximating sphere, we exploit the
translation sensitivity of surfaces satisfying

LH + 1
2
H3 = λH. (5.1)
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As it turns out, this position estimate is a delicate matter. The goal is
to obtain an estimate for τ = |ae|/Re where ae and Re are the center and
radius of the approximating sphere constructed in proposition 4.1. In fact,
we subsequently prove the following theorem

Theorem 5.1. For all m > 0, η0 and σ there exist r0 <∞, τ0 > 0 and ε > 0
with the following properties. Assume that (M, g) is (m, η, σ)-asymptotically
Schwarzschild with η ≤ η0 and

|MSc| ≤ ηr−5.

Then if Σ is a surface satisfying equation (0.1) with H > 0, λ > 0, rmin > r0
and

τ ≤ τ0 and Re ≤ εr2
min,

then

τ ≤ C
√
ηr−1

min.

Note that the assumptions of theorem 5.1 imply the assumptions (4.6). We
will therefore take r0 large enough to be able to apply the estimates derived
in section 4.

Theorem 5.1 follows from proposition 5.3, which states that under the as-
sumptions of theorem 5.1 we have in fact

τ ≤ C
(

τ 2 +
√
ηr−1

min

)

,

for some constant C depending only on m, η0 and σ, whenever r0 is large
enough. Assuming that τ 2

0 < 1/2C yields the claim.

The crucial ingredients for this estimate are the quadratic structure of certain
error terms, the translation invariance of the functional U with respect to
the Schwarzschild background, the Pohozaev identity, and the contribution
of the Schwarzschild geometry to break the translation invariance. We split
the proof of the theorem into the following subsections.

5.1 Splitting

Integrating the Gauss equation on Σ yields

8π(1 − q(Σ)) = W(Σ) − U(Σ) − V(Σ),
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where q(Σ) is the genus of Σ and

U(Σ) :=

∫

Σ

| ◦
A|2 dµ,

V(Σ) := 2

∫

Σ

G(ν, ν) dµ,

where G = MRc − 1
2
MScg is the Einstein tensor of M . Denoting by δf the

variation induced by a normal variation of Σ with normal velocity f , we
infer from the above relation that

δfW(Σ) = δfU(Σ) + δfV(Σ).

By assumption we have

δfW(Σ) = λ

∫

Σ

Hf dµ,

hence

λ

∫

Σ

Hf dµ = δfU(Σ) + δfV(Σ). (5.2)

By a fairly straightforward computation (given all the expressions in sec-
tion 2), we find

δfU(Σ) = −
∫

Σ

2
◦
Aij∇2

ijf + 2f
◦
AijMRcTij + fH| ◦

A|2 dµ. (5.3)

5.2 The variations of U in g and gS

Here we compute the difference of the variation of U with respect to g and
to gS, that is the error when changing the metric.

To do this, we restrict to the special case where

f =
g(ν, b)

H
,

and b = ae

|ae|
, where ae is as in proposition 4.1 and ν is the normal of Σ with

respect to g. Thus, up to the factor of H−1, the function f is the normal
velocity induced by translating Σ in the direction of b. We also define

fS =
gS(νS , b)

H̄s
,
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where H̄S is as in proposition 4.9. As |ν−νS| ≤ Cηr−2 and ||H−H̄S||L∞(Σ) ≤
Cr−2

min(τ +
√
ηr−1

min) we find that

|f − fS| ≤ C(τ +
√
ηr−1

min).

Before we proceed, we compute the first and second derivative of f .

∇if = H−1
(

g(∇ib, ν) + g(b, Ajiej)
)

−H−2∇iHg(b, ν), (5.4)

and hence, as |∇b| ≤ Cr−2, we find that

∫

Σ

|∇f |2 dµ ≤ C

∫

Σ

(r−2 +
|A|2
H2

+
|∇H|2
H4

) dµ ≤ Cr2
min.

The second derivative of f is given by

∇i∇jf

= −AkiAjkf + 2H−3∇iH∇jHg(b, ν) −H−2∇2
i,jHg(b, ν)

+H−1
(

g(∇i∇jb, ν) + g(∇ib, ek)A
k
j + g(∇jb, ek)A

k
i + ∇jA

k
i g(b, ek)

)

−H−2
(

∇iH(g(∇jb, ν) + g(b, ek)A
k
j ) + ∇jH(g(∇ib, ν) + g(b, ek)A

k
i )
)

.

In view of our estimates and the rapid decay of ∇b, ∇2b, ∇H and ∇2H , the
first term on the right hand side of this equation is one magnitude larger
than the other ones. However, the main contribution is in the trace of ∇2f .
We will not have to consider the trace part, as ∇2f is contracted with the
traceless

◦
A in equation (5.3). The traceless part (∇2f)0 can be estimated as

follows
∫

Σ

|(∇2f)0|2 dµ ≤ C

∫

Σ

r−4 dµ ≤ Cr−2
min. (5.5)

Note the jump in decay rates compared to the L2-norm of |∇f |. Finally we
need to calculate the second derivative of fS

∇S
i ∇S

j f
S =(H̄S)−1

(

gS(∇S
i ∇S

j b, ν
S) + gS(∇S

i b, ek)(A
S)kj + gS(∇S

j b, ek)(A
S)ki

+ ∇S
j (A

S)ki g
S(b, ek)

)

− (AS)ki (A
S)jkf

S.

We are now in the position to examine

|δfU(Σ) − δfSUS(Σ)|.

We will do this in detail, as this requires some care. First, consider the first

35



term in equation (5.3):

E1 =

∣

∣

∣

∣

∫

Σ

g(
◦
A, (∇2f)0) dµ−

∫

Σ

gS(
◦
AS, ((∇2)Sf)0) dµS

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Σ

(g − gS)(
◦
A, (∇2f)0) dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Σ

gS(
◦
A− ◦

AS, (∇2f)0) dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Σ

gS(
◦
AS, (∇2f)0)( dµ− dµS)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Σ

gS(
◦
AS, (∇2f − (∇S)2fS)0) dµS

∣

∣

∣

∣

.

The first three terms can be estimated using the asymptotics of g and the
curvature estimates from theorems 3.9 and 3.11.

Ea
1 ≤ Cηr−2

min

∫

Σ

| ◦
A||(∇2f)0)| + (r−1 + |A|)|(∇2f)0)| + | ◦

AS||(∇2f)0)| dµ

≤ Cηr−2
min‖(∇2f)0‖L2(Σ)

(

‖A‖L2 + r−1
min|Σ|1/2

)

≤ Cηr−3
min.

Using again the fact that we are contracting with the traceless second fun-
damental form and the above equations for the second derivatives of f and
fS we see that we can estimate the last term for E1, denoted by Eb

1, by

Eb
1 ≤ C

∫

Σ

| ◦
AS|H−2

(

|∇H||∇b| + |∇H||A|+ |∇2H| +H−1|∇H|2
)

dµS

+ C

∫

Σ

| ◦
AS||H − H̄S|

HH̄S

(

|∇2b| + |∇b||A| + |∇A| +H| ◦
A|
)

dµS

+ CH̄−1
S

∫

Σ

| ◦
AS||g(∇i∇jb, ν) − gS(∇S

i ∇S
j b, ν

S)|

+ | ◦
AS||g(∇ib, ek)A

k
j − gS(∇S

i b, ek)(A
S)kj |

+ | ◦
AS||g(∇jb, ek)A

k
i − gS(∇S

j b, ek)(A
S)ki |

+ | ◦
AS||∇jA

k
i g(b, ek) −∇S

j (A
S)ki g

S(b, ek)| dµS

+ C

∫

Σ

| ◦
AS||(AkiAjk)0f − ((AS)kiA

S
jk)

0fS| dµS.

(5.6)

By the curvature estimates from section 4 the terms on the first two lines in
equation (5.6) are estimated by

C‖ ◦
AS‖L2(Σ)

(

rmin‖∇A‖L2(Σ) + r2
min‖∇2H‖L2(Σ) + rmin‖∇(logH)‖2

L4(Σ)

+ ‖∇2b‖L2(Σ) + r−2
min‖A‖L2 + r−1

min‖
◦
A‖L2(Σ)

≤ Cr−2
min

(

τ 2 + τr−1
min +

√
ηr−1

min

)

.
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We estimate the terms on the last five lines of equation (5.6) seperately. The
third line yields

∫

Σ

| ◦
AS||g(∇i∇jb, ν) − gS(∇S

i ∇S
j b, ν

S)| dµS

≤
∫

Σ

| ◦
AS|
(

|(g − gS)(∇i∇jb, ν)| + |gS((∇i∇j −∇S
i ∇S

j )b, ν
S)|

+ |gS(∇i∇jb, ν − νS)|) dµS

≤ Cηr−5
min.

The fourth and fifth line of (5.6) are estimated as follows
∫

Σ

| ◦
AS||g(∇ib, ek)A

k
j − gS(∇S

i b, ek)(A
S)kj | dµS

≤
∫

Σ

| ◦
AS|
(

|(g − gS)(∇ib, ek)A
k
j | + |gS((∇i −∇S

i )b, ek)(A
S)kj |

+ |gS(∇ib, ek)(A
k
j − (AS)kj )|

)

dµS

≤ Cηr−4
min.

For the sixth line of (5.6) we get
∫

Σ

| ◦
AS||g(b, ek)∇iA

k
j − gS(b, ek)∇S

i (A
S)kj | dµS

≤
∫

Σ

| ◦
AS|
(

|(g − gS)(b, ek)∇iA
k
j | + |gS(b, ek)∇S

i (A
k
j − (AS)kj )|

+ |gS(b, ek)(∇i −∇S
i )A

k
j |
)

dµS

≤ Cηr−4
min.

It remains to estimate the last line of (5.6)
∫

Σ

| ◦
AS|| ◦

AkiAjkf − (
◦
AS)kiA

S
jkf

S| dµS

≤ C

∫

Σ

| ◦
AS|
(

| ◦
AkiAjk||f − fS| + |A−AS||A||fS|

)

dµS

≤ Cr−3
min

(

τ +
√
ηr−1

min

)

.

Combining all these estimates we arrive at the estimate for the first error
term

E1 ≤ Cr−2
min

(

τ 2 + τr−1
min +

√
ηr−1

min

)

.
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Similarly, the second term in equation (5.3) gives the error

E2 :=

∣

∣

∣

∣

∫

Σ

f〈 ◦
A,RcT 〉 dµ−

∫

Σ

fS〈 ◦
AS, (RcS)T 〉 dµS

∣

∣

∣

∣

≤
∫

Σ

| ◦
A− ◦

AS||RcT ||f | dµ+

∫

Σ

| ◦
AS||RcT − (RcS)T ||f | dµ

+

∫

Σ

| ◦
AS||(RcS)T ||f || dµ− dµS| +

∫

Σ

| ◦
AS||(RcS)T ||f − fS| dµS

≤ Cr−3
min

(

τ +
√
η
)

.

And the third term in equation (5.3) contributes

E3 :=

∣

∣

∣

∣

∫

Σ

fH| ◦
A|2 dµ−

∫

Σ

fSHS| ◦
AS|2 dµS

∣

∣

∣

∣

≤ C

∫

Σ

| ◦
A− ◦

AS|| ◦
A| dµ+ C

∫

Σ

| ◦
AS|2| dµ− dµS| dµ

+ C

∫

Σ

|fSHS − gS(b, νS)|| ◦
AS|2 dµS

≤ Cr−3
min

(

τ +
√
η
)

.

In summary, we find that

|δfU(Σ) − δfSUS(Σ)| ≤ Cr−2
min

(

τ 2 + τr−1
min +

√
ηr−1

min

)

. (5.7)

As the functional US is translation invariant, due to conformal invariance
and conformal flatness of gS, we find that

δfSUS(Σ) = 0

and hence

|δfU(Σ)| ≤ Cr−2
min

(

τ 2 + τr−1
min +

√
ηr−1

min

)

. (5.8)

5.3 The left hand side of (5.2)

Here we estimate the left hand side of equation (5.2). By our choice of test
function this becomes (omitting λ for now).

∫

Σ

g(b, ν) dµ.
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First, we estimate the error when we take all quantities with respect to the
metric gS.

∣

∣

∣

∣

∫

Σ

g(b, ν) dµ−
∫

Σ

gS(b, νS) dµS
∣

∣

∣

∣

≤
∫

Σ

|g − gS| dµ+

∫

Σ

|ν − νS| dµ+

∫

Σ

| dµ− dµS| dµ ≤ Cη.

Then we insert the relations from lemma 1.1 to compute
∫

Σ

gS(b, νS) dµS =

∫

Σ

φ6ge(b, νe) dµe

=

∫

Σ

(

1 + 3m
r

+ lower order
)

ge(b, νe) dµe.

We deal with the highest order term first. Note that by translation invariance
of the volume enclosed by Σ in Euclidean space, we find

∫

Σ

ge(b, νe) dµe = 0, (5.9)

and hence
∫

Σ

gS(b, νS) dµS =

∫

Σ

(

3m
r

+ lower order
)

ge(b, νe) dµe.

The lower order terms are of the form ckr
−k where ck depends only on m

and k = 2, . . . , 6. We can replace r by Re in these integrals, and in view of
proposition 4.1 and theorem 4.5 we find that

∣

∣r−k − R−k
e

∣

∣ ≤ Cr−kmin

(

τ +
√
ηr−1

min

)

.

Since k ≥ 2, we can estimate all resulting error terms by

6
∑

k=2

∫

Σ

∣

∣

∣

∣

ck
rk

− ck
Rk
e

∣

∣

∣

∣

dµ ≤ C
(

τ +
√
ηr−1

min

)

.

The remaining integrals satisfy
∫

Σ

ck
Rk
e

ge(b, νe) dµe = 0

due to relation (5.9). Combining the above calculations, we find that

∣

∣

∣

∣

∫

Σ

g(b, ν) dµ−
∫

Σ

3m
r
ge(b, νe) dµe

∣

∣

∣

∣

≤ C
(

τ +
√
ηr−1

min + η
)

.
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The estimate on ‖ ◦
A‖L2(Σ) allows us to change the domain of integration to

the round sphere S := SRe
(ae), and change νe to N , the normal of S while

introducing only an error estimated by C(τ +
√
ηr−1

min). The corresponding
integral on the sphere can be computed using the methods introduced in the
proof of proposition 4.2. The result is (see appendix A.2)

∫

S

3m
r
ge(b, N) dµe = −4πm|ae|.

Hence, collecting the error terms acquired on the way, we find

∣

∣

∣

∣

∫

Σ

Hf dµ+ 4πm|ae|
∣

∣

∣

∣

≤ C
(

τ +
√
ηr−1

min + η
)

. (5.10)

recall that |λ− 2m
R3

S

| ≤ C
(

r−4
min(τ +

√
ηr−1

min)
)

, whence

∣

∣

∣

∣

λ

∫

Σ

Hf dµ+
8πm2τ

φ̄2R2
s

∣

∣

∣

∣

≤ Cr−3
min(τ +

√
ηr−1

min + η
)

, (5.11)

where φ̄ = 1 + m
2Re

, RS = φ̄2Re as in proposition 4.2 and we used the
definition τ = |ae|/Re.

5.4 The Pohozaev identity

Before we study the variation of V, we recall the (geometric) Pohozaev iden-
tity. To this end we denote the conformal Killing operator by

DX := LXg −
1

3
tr(LXg)g

where X is a vector field on M and LXg denotes the Lie derivative of g with
respect to X. Let Ω ⊂M be a smooth domain with boundary Σ and let dV
be the volume form of M . Then the Pohozaev identity1 can be stated as

1

2

∫

Ω

〈G,DX〉dV − 1

6

∫

Ω

MSc divXdV =

∫

Σ

G(X, ν) dµ. (5.12)

This identity can be seen as follows: In local coordinates we have

(DX)kl = ∇kXl + ∇lXk −
2

3
divXgkl

1In the literature (see for example [19]) the Pohozaev identity is usually stated for the
trace-free Ricci tensor, not for the Einstein tensor. For our purposes however, it is more
convenient to write it in terms of G.
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and therefore

1

2

∫

Ω

〈G,DX〉dV =
1

2

∫

Ω

(

gikgjlGij(∇kXl + ∇lXk) −
2

3
Gii divX

)

dV

= −
∫

Ω

〈divG,X〉dV +
1

6

∫

Ω

MSc divXdV

+

∫

Σ

G(X, ν) dµ,

which proves (5.12) since G is divergence free.

Lemma 5.2. Let Σ be a surface as in theorem 5.1 which bounds an exterior
domain Ω, and let b ∈ R3 be a constant vector. Then

∣

∣

∣

∣

∫

Σ

G(b, ν) dµ

∣

∣

∣

∣

≤ Cηr−3
min.

Proof. Consider the vector field b, where b ∈ R3 is constant. Then b is a
Killing vector field in flat R3 and hence a conformal Killing vector field with
respect to gS. Denoting by DS the conformal Killing operator with respect
to gS, we thus find

DSb = 0.

With respect to the general metric g, this implies the decay rate

|Db| ≤ Cηr−3,

since |∇ − ∇S| ≤ Cηr−3. The other terms in equation (5.12) have decay
|G| ≤ Cr−3, |MSc| ≤ Cηr−4, and | div b| ≤ Cr−2.

Let Sσ be a coordinate sphere of radius σ outside of Σ and let Ωσ be the
domain bounded by Σ and Sσ. The contribution of Sσ to the boundary
integral in equation (5.12) decays like σ−1 and thus we infer that

∫

Σ

G(b, ν) dµ = lim
σ→∞

(

−1

2

∫

Ωσ

〈G,Db〉dV +
1

6

∫

Ωσ

MSc div b dV

)

. (5.13)

The sign of the right hand side is different to (5.12), as our conventions are
that ν is the outward pointing normal to Σ which points into Ω.

The integrand in the volume integral decays like Cηr−6, which implies via
lemma 1.5 that the integral can be estimated by Cηr−3

min as claimed. �
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5.5 The variation of V(Σ)

The variation of V can be computed to be

1
2
δfV(Σ) =

∫

Σ

f
(

∇νG(ν, ν) +HG(ν, ν)
)

− 2G(ν,∇f)
)

dµ. (5.14)

Since G is divergence-free we calculate

∇νG(ν, ν) = divG(ν) −∇ei
G(ν, ei) = −∇ei

G(ν, ei)

= −∇ei

MRc(ν, ei)

= − Σdivω + MRc(hikek, ei) −HMRc(ν, ν)

= − Σdivω −HMRc(ν, ν) +
◦
Aik

MRcik

+
1

2
H(MSc − MRc(ν, ν))

= − Σdivω + 〈 ◦
A,GT 〉 − 1

4
HMSc − 3

2
HG(ν, ν), (5.15)

where, as usual, ω = MRc(ν, ·)T = G(ν, ·)T . Inserting this into (5.14), we
find that

1
2
δfV(Σ) =

∫

Σ

f〈 ◦
A,GT 〉 − fΣdivω − 1

2
fHG(ν, ν) − 1

4
fHMSc − 2ω(∇f) dµ

=

∫

Σ

−1
2
fHG(ν, ν) − 1

4
fHMSc + f〈 ◦

A,GT 〉 − ω(∇f) dµ.

We specialize again to the test function

f =
g(b, ν)

H

for a fixed vector b ∈ R3. In the expression (5.4) for ∇f we can split

A =
◦
A+ 1

2
Hγ and obtain

∇if = H−1
(

g(∇ib, ν) + g(b, ej)
◦
Aji −∇i logHg(b, ν)

)

+ 1
2
g(b, ei). (5.16)

Inserting this into equation (5.14), we find that

1
2
δfV(Σ) =

∫

Σ

−1
2
fHG(ν, ν) − 1

4
fHMSc + f〈 ◦

A,GT 〉 − 1
2
G(ν, bT )

−H−1ω(ei)
(

g(∇ib, ν) + g(b, ej)
◦
Aji −∇i logHg(b, ν)

)

dµ

=

∫

Σ

−1
2
G(b, ν) − 1

4
g(b, ν)MSc +H−1g(b, ν)〈 ◦

A,GT 〉

−H−1ω(ei)
(

g(∇ib, ν) + g(b, ej)
◦
Aji −∇i logHg(b, ν)

)

dµ.
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(5.17)

It is this expression for δfV which will give rise to the position estimates.
We will thus spend some time on understanding the error terms. Because
of propositions 4.3 and 4.5 we have the estimate

∫

Σ

H−1
(

|〈 ◦
A,GT 〉| + |ω|| ◦

A|+ |ω||∇ logH|
)

dµ ≤ Cr−2
min

(

τ 2 + ηr−2
min

)

.

Note that proposition 4.3 implies that ‖(GT )◦‖2
L2(Σ) ≤ Cr−4

min

(

τ 2 + ηr−2
min

)

.

Assuming that |MSc| ≤ ηr−5 we find that
∣

∣

∣

∣

∫

Σ

MSc dµ

∣

∣

∣

∣

≤ Cηr−3
min.

Lemma 5.2 implies that the first term on the right hand side of (5.17) is also
estimated by Cηr−3

min, so that the only term which yields a contribution of
order r−2

min is
∫

Σ

H−1ω(ei)g(∇ei
b, ν) dµ.

We will explicitly evaluate this term. To this end note that
∣

∣

∣

∣

∫

Σ

H−1ω(ei)g(∇ei
b, ν) dµ−

∫

Σ

(H̄S)−1RcS(eSi , ν
S)gS(∇S

eS
i
b, νS) dµS

∣

∣

∣

∣

≤ Cr−3
min(τ +

√
η)

where H̄S is the quantity from corollary 4.9 and eSi constitute a tangential
ON-frame with respect to the metric induced by gS. This estimate follows
since the integrand scales like r−4 and the transition errors to Schwarzschild
decay at least one order faster and have factor η. Furthermore, the replace-
ment of H by H̄S introduces an extra error term of the form Cr−3

min(τ +√
ηr−1

min). We calculate, using that Deb ≡ 0 and the transformation proper-
ties of the Christoffel symbols under a conformal change of the metric (see
for example [20]),

∇S
eS
i
b = 2φ−1

(

eSi (φ)b+ b(φ)eSi −Deφge(b, eSi )
)

,

which implies that

gS(∇S
eS
i
b, νS) = φ−1m

r2

(

ge(ρ, νe)ge(b, eei ) − ge(ρ, eei )g
e(b, νe)

)

.

Here eei = φ2eSi is a tangential ON-frame with respect to the metric induced
by ge. Furthermore, the formula from lemma 1.1 yields that

RcS(νS, eSi ) = −3
m

r3
φ−6ge(ρ, νe)ge(ρ, eei ).
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Multiplying these terms gives (note that we sum over i = 1, 2)

RcS(νS, eSi )g
S(∇s

eS
i
b, νS)

= 3
m2

r5
φ−7
(

|ρT |2ge(ρ, νe)ge(b, νe) − |ρ⊥|2ge(ρT , bT )
)

= 3
m2

r5
φ−7ge(ρ, νe)

(

ge(b, νe) − ge(ρ, νe)ge(b, ρ)
)

.

As in the proof of proposition 4.2, we replace the integral over Σ by an
integral over S = SRe

(ae) while introducing error terms of one order lower.
This implies that

∣

∣

∣

∣

3m2

φ̄7H̄S

∫

S

1

r5
ge(ρ,N)

(

ge(b, N) − ge(ρ,N)ge(b, ρ)
)

dµe

−
∫

Σ

H−1ω(ei)g(∇ei
b, ν) dµ

∣

∣

∣

∣

≤ Cr−3
min(τ +

√
η),

where N is the Euclidean normal vector to S and φ̄ = 1 + m
2Re

the quantity
introduced in proposition 4.2. The first integral can be evaluated explicitly,
where we again introduce coordinates ϑ, ϕ in which ge(b, N) = cosϕ. As
ρ = r−1(ReN + ae) we can express this integral by

Q(|a|, R) :=
3m2

φ̄7H̄S

∫

S

1

r5
ge(ρ,N)

(

ge(b, N) − ge(ρ,N)ge(b, ρ)
)

dµe

=
3m2

φ̄7H̄S

∫

S

(

Re
cosϕ
r6

+ |ae| cos
2 ϕ
r6

− |ae|R2
e

1
r8

− (R3
e + 2|ae|2Re)

cosϕ
r8

− (|ae|3 + 2|ae|R2
e)

cos2 ϕ
r8

− |ae|2Re
cos3 ϕ
r8

)

dµe.

Explicitly evaluating these terms (see appendix A.3), we obtain the following
expression for Q. We already substituted τ := |ae|/Re:

Q(τ, Re) =
m2π

4φ̄7H̄SR3
e

3(τ 6 − 3τ 4 + 3τ 2 − 1) ln 1−τ
1+τ

+ 6τ 5 − 16τ 3 − 6τ

τ 2(1 + τ)3(1 − τ)3
.

To analyze this expression we set

f(τ) =
3(τ 6 − 3τ 4 + 3τ 2 − 1) ln 1−τ

1+τ
+ 6τ 5 − 16τ 3 − 6τ

τ 2(1 + τ)3(1 − τ)3
. (5.18)

Recall the Taylor expansion of the function ln 1−τ
1+τ

:

ln
1 − τ

1 + τ
= −2τ − 2

3
τ 3 +O(τ 4),
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for small τ . Thus we find that the numerator in equation (5.18) is

3(3τ 2 − 1)(−2τ − 2

3
τ 3) − 16τ 3 − 6τ +O(τ 4) = −32τ 3 +O(τ 4).

Hence we get that

Q(τ, R) = − 8πm2τ

φ̄7H̄SR3
e

+
O(τ 2)

R2
e

for small τ . In summary, the above computation implies the following esti-
mate

∣

∣

∣

∣

δfV(Σ) − 16πm2τ

φ̄7H̄SR3
e

∣

∣

∣

∣

≤ Cr−2
min

(

τ 2 + τr−1
min +

√
ηr−1

min

)

. (5.19)

5.6 Position estimates

Theorem 5.1 is a consequence from an iterative application of the following
proposition.

Proposition 5.3. If (M, g) and Σ are as in theorem 5.1, then

τ ≤ C
(

τ 2 + τr−1
min +

√
ηr−1

min

)

,

Proof. We computed in section 5.3 that (cf. (5.11)),

∣

∣

∣

∣

λ

∫

Σ

Hf dµ+
8πm2τ

φ̄2R2
S

∣

∣

∣

∣

≤ Cr−3
min

(

τ +
√
η
)

,

in section 5.2 that (cf. (5.8)),

|δfU(Σ)| ≤ Cr−2
min

(

τ 2 + τr−1
min +

√
ηr−1

min

)

,

and in section 5.5 that (cf. (5.19))

∣

∣

∣

∣

δfV(Σ) − 16πm2τ

H̄SR3
S

∣

∣

∣

∣

≤ Cr−2
min

(

τ 2 + τr−1
min +

√
ηr−1

min

)

.

Inserting these equations into equation (5.2) we find, after absorbing the
lower order terms on the left into the error terms, that

24πm2τ ≤ C
(

τ 2 + τr−1
min +

√
ηr−1

min

)

,

which is the claimed estimate. �
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5.7 Final version of the curvature estimates

In this subsection we state our final version of the previous curvature esti-
mates.

Theorem 5.4. For all m > 0, η0 and σ there exist r0 < ∞, τ0 > 0, ε > 0,
and C depending only on m, σ and η0 with the following properties.

Assume that (M, g) is (m, η, σ)-asymptotically Schwarzschild with η ≤ η0

and

|MSc| ≤ ηr−5.

Then if Σ is a surface satisfying equation (0.1) with H > 0, λ > 0, rmin > r0
and

τ ≤ τ0 and Re ≤ εr2
min,

where Re and τ are as in section 4, we have the following estimates

‖H − H̄S‖L∞ + ‖ ◦
A‖L∞ + rmin‖∇H‖L∞ ≤ C

√
ηr−3

min. (5.20)

Here H̄S = 2
RS

− φ̄2m
R2

S

with RS = φ̄2Re and φ̄ = 1 + m
2Re

. Furthermore, we

have that

‖ν − φ−2ρ‖L∞ ≤ C
√
ηr−1

min. (5.21)

This implies,

‖λ+ Rc(ν, ν)‖L∞ + ‖Rc(ν, ν) + 2mR−3
S ‖L∞ ≤ C

√
ηr−4

min.

‖ω‖L∞ + rmin‖∇ω‖L∞ ≤ C
√
ηr−4

min.
(5.22)

Proof. The estimates in (5.20) are straight-forward consequences of the es-
timates in section 4 and the position estimate 5.1. The estimate for the
gradient of the traceless second fundamental form is proven similarly as in
lemma 4.10. To prove (5.21) note that we can calculate the gradient of
ν − φ−2ρ as follows. We let ei be a vector tangent to Σ and calculate

∇ei
ν = 1

2
Hei +

◦
A(ei, ·).

Since φ−2ρ is the normal to Sr(0) in the Schwarzschild metric, and Sr(0) is
umbilical in this metric, we find that

∇S
ei
(φ−2ρ) = 1

2
HS(r)

(

ei − gS(ei, ρ)ρ
)
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for HS(r) = φ−2 2
r
− 2φ−3m

r2
. We calculate further and find

gS(ei, ρ) = (gS − g)(ei, ρ) + g(ei, ρ− φ2ν) + g(ei, φ
2ν).

Note that the last term vanishes. In view of the estimates in (5.20) and
definition 1.2 we thus have

∣

∣∇(ν − φ−2ρ)
∣

∣ ≤ C
(

r−1
min|g − gS| + |∇ −∇S| + | ◦

A| + |H − H̄S|
+ |H̄S −HS(r)| + r−1

min|ν − φ−2ρ|
)

≤ C
√
ηr−3

min + Cr−1
min|ν − φ−2ρ|.

(5.23)

Proposition 4.3 then yields that

‖∇(ν − φ−2ρ)‖L2 ≤ C
√
ηr−1

min.

We can now use the Michael-Simon-Sobolev inequality, proposition 1.8, to
get L4-estimates

‖ν − φ−2ρ‖L4 ≤ C
√
ηr

−1/2
min .

Together with equation (5.23), this implies L4-bounds for the derivative of
ν − φ−2ρ. Thus an obvious modification of theorem 5.6 in [11] then yields
the desired L∞-estimate:

‖ν − φ−2ρ‖L∞ ≤ C
√
ηr−1

min.

The estimates in (5.22) easily follow from (5.21). �

6 Estimates for the linearized operator

In this section we show that the linearized operator Wλ = W −λL is invert-
ible.

6.1 Eigenvalues of the Jacobi operator

To fix the notation let νi be the i-th eigenvalue of the negative of the Laplace
operator on S2, where we count the eigenvalues with multiplicitites, i.e.
ν0 = 0, ν1 = ν2 = ν3 = 2, ν4 = . . . = ν8 = 4 and νi > 4 for i ≥ 9. We
denote by γei the eigenvalues of the negative of the Laplace operator on Σ,
with respect to the Euclidean metric. We will need the following estimate
from [4, Corollary 1].
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Theorem 6.1. There exist constants Ci such that for every surface Σ as in
theorem 5.4 there holds

|γei − R−2
e νi| ≤ Ci

√
ηr−4

min
.

Proof. Note that by theorem 5.4 and lemma 1.3 we have that

‖ ◦
Ae‖2

L2(Σ,ge) ≤ Cηr−4
min .

Scaling the estimate in [4, Corollary 1] gives the result. �

It can be checked from [4] that

Ci ≤ Cνi , (6.1)

where C does not depend on i.

In the following we let ḡS := φ̄4ge be a uniform Schwarzschild-reference
metric on Σ. Thus ∆̄S := ∆ḡS

= φ̄−4∆ge

and we denote the eigenvalues of
−∆̄S by γ̄Si .

Corollary 6.2. For any surface Σ as in theorem 5.4 we have the estimate

|γ̄Si − R−2
S νi| ≤ Ci

√
ηr−4

min
.

To compute the eigenvalues of the Jacobi operator on Σ we aim to compare
it with the operator

L̄α := −∆̄Sα−
(

1
2

(

H̄S
)2 − λ

)

α. (6.2)

Let the eigenvalues and eigenfunctions of L and L̄ be denoted by µi, ϕi and
µ̄i, ϕ̄i, respectively. Note that

µ̄i = γ̄Si − 1
2

(

H̄S
)2

+ λ. (6.3)

Lemma 6.3. For any surface Σ as in theorem 5.4 we have the estimate

|µi − µ̄i| ≤ C(|µ̄i| + r−2
min

)
√
ηr−2

min
.

Proof. We use the following characterization of the i-th eigenvalue

µi = inf
V⊂W 1,2(Σ)
dim(V )=i+1

sup
ψ∈V

∫

Σ
ψLψ dµ
∫

Σ
ψ2 dµ

,
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where V is any linear subspace ofW 1,2(Σ). Let ϕ̄ ∈W 1,2(Σ) with
∫

ϕ̄2 dµ̄S =
1. We estimate, using (5.20) and (5.22)

∫

ϕ̄Lϕ̄ dµ =

∫

|∇ϕ̄|2 − ϕ̄2
(

| ◦
A|2 +

1

2
H2 + MRc(ν, ν)

)

dµ

≤
∫

|∇ϕ̄|2 − ϕ̄2
(1

2
(H̄S)2 − λ

)

dµ+ C
√
ηr−4

min.

(6.4)

In the following we repeatedly use the estimates from definition 1.2 and
lemma 1.3. We can estimate the first term on the right hand side by

∫

|∇ϕ̄|2 dµ ≤
∫

|∇ϕ̄|2 dµS + Cηr−2
min

∫

|∇ϕ̄|2gS dµ
S

≤
∫

|∇ϕ̄|2gS dµ
S + Cηr−2

min

∫

|∇ϕ̄|2gS dµ
S

≤
∫

|∇ϕ̄|2ḡS dµ̄
S + Cηr−2

min

∫

|∇ϕ̄|2ḡS dµ̄
S,

(6.5)

where we used the conformal invariance of the Dirichlet energy from the
second to the third line. The second term on the right hand side is estimated
similarly by

−
∫

ϕ̄2
(

1
2
(H̄S)2 − λ

)

dµ ≤ −
∫

ϕ̄2
(

1
2
(H̄S)2 − λ

)

dµS

+ Cηr−2
min

∫

ϕ̄2
∣

∣

1
2
(H̄S)2 − λ

∣

∣ dµS

≤ −
∫

ϕ̄2
(

1
2
(H̄S)2 − λ) dµ̄S + C

√
ηr−4

min,

(6.6)

where we used that dµS = (φ/φ̄)4dµ̄S and

∣

∣

∣

∣

φ

φ̄
− 1

∣

∣

∣

∣

≤ Cm

∣

∣

∣

∣

1

r
− 1

Re

∣

∣

∣

∣

≤ C

rmin

(

τ +

√
η

rmin

)

≤ C
√
ηr−2

min,

by proposition 4.1 and theorem 5.1. Now
∫

|∇ϕ̄|2ḡS dµ̄
S =

∫

ϕ̄L̄ϕ̄ dµ̄S +

∫

ϕ̄2
(

1
2
(H̄S)2 − λ) dµ̄S

≤
∫

ϕ̄L̄ϕ̄ dµ̄S + Cr−2
min.

(6.7)

Combining (6.5), (6.6) and (6.7) we see that

∫

ϕ̄Lϕ̄ dµ ≤ (1 + Cηr−2
min)

∫

ϕ̄L̄ϕ̄ dµ̄S + C
√
ηr−4

min. (6.8)
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Moreover, by arguing as above, we have the estimate
∣

∣

∣

∣

∫

ϕ̄2 dµ− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ϕ̄2 dµ−
∫

ϕ̄2 dµ̄S
∣

∣

∣

∣

≤ C
√
ηr−2

min.

Combining this with (6.8) and the variational characterization of the eigen-
values, we see that

µi ≤ µ̄i + C
√
ηr−2

min|µ̄i| + C
√
ηr−4

min.

The reverse inequality follows from a similar calculation, interchanging L̄
and L. �

From theorem 5.4, (6.3) and lemma 6.3 we get the following

Corollary 6.4. For any surface Σ as in theorem 5.4 we have the estimate
∣

∣

∣

∣

µi −
(

νi − 2

R2
S

+ 3λ

)
∣

∣

∣

∣

≤ C(1 + νi)
√
ηr−4

min + Cr−5
min + Cνi

√
ηr−6

min.

6.2 The linearized Willmore equation

In the following we aim at proving a positive lower bound for the first eigen-
value of the linearization of the Willmore equation with prescribed area. We
start by recalling the expression (see (2.15))

∫

Σ

αWλα dµ =

∫

Σ

αWα− λαLα dµ

=

∫

Σ

(Lα)2 − λαLα + 1
2
H2|∇α|2 − 2H

◦
A(∇α,∇α)

+ α2
(

|∇H|2 + 2ω(∇H) +H∆H + 2〈∇2H,
◦
A〉

+ 2H2| ◦
A|2 + 2H〈 ◦

A, T 〉 −H∇ν
MRc(ν, ν)

− 1
2
H2|A|2 − 1

2
H2MRc(ν, ν)

)

dµ.

Integration by parts of the third term on the right yields

1

2

∫

Σ

H2|∇α|2 dµ =
1

2

∫

Σ

α2
(

|∇H|2 +H∆H
)

−H2α∆α dµ.

Together with Lα = −∆α − α
(

|A|2 + MRc(ν, ν)
)

and (0.1) this yields
∫

Σ

αWλα dµ

=

∫

Σ

(Lα)2 + 1
2
H2αLα− λαLα− 2H

◦
A(∇α,∇α)

+ α2
(

3
2
|∇H|2 − 3

2
(H2| ◦

A|2 +H2MRc(ν, ν) + λH2) + 2ω(∇H)

+ 2〈∇2H,
◦
A〉 + 2H2| ◦

A|2 + 2H〈 ◦
A, T 〉 −H∇ν

MRc(ν, ν)
)

dµ.
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To understand the last term on the RHS above we recall that the Einstein
tensor is divergence free and (5.15), which implies

∇ν
MRc(ν, ν) = −∇ei

G(ν, ei) − 1
2
∇ν

MSc

= −Σdivω + 〈 ◦
A,GT 〉 + 1

2
HMSc − 3

2
HMRc(ν, ν) − 1

2
∇ν

MSc.

(6.9)

Note that

1

2

∫

Σ

H2αLα dµ =
1

2

∫

Σ

(Hα)L(Hα) + α2H∆H +H〈∇H,∇(α2)〉 dµ

=
1

2

∫

Σ

(Hα)L(Hα)− α2|∇H|2 dµ.

Putting all together we arrive at
∫

Σ

αWλα dµ

=

∫

Σ

Lα(Lα − 3λα) + 1
2

(

(Hα)L(Hα)− 3λ(Hα)2
)

+ 2λαLα

− 2H
◦
A(∇α,∇α) + α2

(

|∇H|2 + 1
2
H2| ◦

A|2 + 2〈∇2H,
◦
A〉

+H〈 ◦
A, T 〉 − 1

2
H2MSc + 1

2
H∇ν

MSc +HΣdivω + 2ω(∇H)
)

dµ.

(6.10)

We decompose W 2,2(Σ) using the eigenspaces of L, more precisely con-
sider the L2(Σ)-orthonormal decomposition W 2,2(Σ) = V0 ⊕ V1 ⊕ V2 where
V0 = span{ϕ0}, V1 = span{ϕ1, ϕ2, ϕ3}, V2 = span{ϕ4, ϕ5, . . .}. For any
α ∈W 2,2(Σ) let α0, α1, α2 be the respective orthogonal projections on these
subspaces. Our aim is to show that

∫

αWλα is positive on V ⊥
0 .

Lemma 6.5. For any surface Σ as in theorem 5.4 we have the estimate
∫

Σ

Lα(Lα−3λα)+2λαLα dµ ≥
(

24m2R−6
S −C√ηr−7

min−Cr−8
min

)

∫

Σ

α2 dµ

for all α ∈ V ⊥
0 .

Proof. This follows from the estimates on the eigenvalues of L in corollary
6.4 and theorem 5.4. �

Lemma 6.6. For any surface Σ as in theorem 5.4 we have the estimate
∫

Σ

(Hα)L(Hα) − 3λ(Hα)2 dµ

≥ −C√ηr−6
min

∫

Σ

α2
1 dµ+

1

4
r−2
min

∫

Σ

|∇α2|2 dµ+
1

4
r−4
min

∫

Σ

α2
2 dµ

for all α ∈ V ⊥
0 .
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Proof. We can write
∫

Σ

(Hα)L(Hα) − 3λ(Hα)2 dµ =

∫

Σ

(Hα1)L(Hα1) − 3λ(Hα1)
2 dµ

+ 2

∫

Σ

(Hα1)L(Hα2) − 3λ(Hα1)(Hα2) dµ

+

∫

Σ

(Hα2)L(Hα2) − 3λ(Hα2)
2 dµ,

and we denote the terms on the RHS by (i), (ii) and (iii). Note that we can
always estimate

∣

∣〈Hαi, ϕj〉L2(Σ)

∣

∣ =

∣

∣

∣

∣

∫

Σ

Hαiϕj dµ

∣

∣

∣

∣

≤
∫

Σ

|H − H̄S||αi| |ϕj| dµ ≤ C
√
ηr−3

min

(
∫

Σ

α2
i dµ

)1/2

(6.11)

for i 6= j. So we see

(i) ≥ −|µ0 − 3λ|
∫

Σ

|(Hα1)0|2 dµ− max
j=1,2,3

|µj − 3λ|
∫

Σ

∣

∣(Hα1)V ⊥

0

∣

∣

2
dµ

≥ −Cηr−8
min

∫

Σ

α2
1 dµ− C

√
ηr−4

min

∫

Σ

∣

∣(Hα1)V ⊥

0

∣

∣

2
dµ

≥ −Cηr−8
min

∫

Σ

α2
1 dµ− C

√
ηr−4

min

(
∫

Σ

(Hα1)
2 dµ+ Cηr−6

min

∫

Σ

α2
1 dµ

)

≥ −Cηr−8
min

∫

Σ

α2
1 dµ− C

√
ηr−6

min

∫

Σ

α2
1 dµ.

(6.12)

To estimate (ii) we write

(ii) ≥ −2|µ0 − 3λ|
∫

Σ

∣

∣(Hα1)0

∣

∣

∣

∣(Hα2)0

∣

∣dµ

− 2 max
j=1,2,3

|µj − 3λ|
∫

Σ

∣

∣(Hα1)
∣

∣

∣

∣(Hα2)1

∣

∣ dµ

+ 2

∫

Σ

(Hα1)2(L− 3λ)(Hα2) dµ

≥ −Cηr−8
min

(
∫

Σ

α2
1 dµ

)1/2(∫

Σ

α2
2 dµ

)1/2

+ 2

∫

Σ

(Hα1)2(L− 3λ)(Hα2) dµ.

(6.13)
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For the last term in (6.13) we write

(Hα1)2 = Hα1 −
3
∑

j=0

〈Hα1, ϕj〉ϕj =
3
∑

j=0

βjϕj ,

where βj = H〈α1, ϕj〉 − 〈Hα1, ϕj〉. Note that

|∇βj| ≤ C
√
ηr−4

min

(
∫

Σ

α2
1 dµ

)1/2

and

|βj| ≤ 2||H − H̄S||L∞

3
∑

j=0

|〈α1, ϕj〉| ≤ C
√
ηr−3

min

(
∫

Σ

α2
1 dµ

)1/2

.

Then

2

∫

Σ

(Hα1)2(L− 3λ)(Hα2) dµ

= 2

∫

Σ

〈

∇
3
∑

j=0

βjϕj ,∇(Hα2)

〉

− (Hα1)2(Hα2)
(

|A|2 + MRc(ν, ν) + 3λ
)

dµ

≥ −C
(

∫

Σ

3
∑

j=0

|∇βjϕj + βj∇ϕj |2 dµ

)1/2
(
∫

Σ

|∇(Hα2)|2 dµ

)1/2

− C
√
ηr−6

min

(
∫

Σ

α2
1 dµ

)1/2(∫

Σ

α2
2 dµ

)1/2

≥ −C√ηr−4
min

(
∫

Σ

α2
1 dµ

)1/2(∫

Σ

|∇(Hα2)|2 dµ

)1/2

− C
√
ηr−6

min

(
∫

Σ

α2
1 dµ

)1/2(∫

Σ

α2
2 dµ

)1/2

,

(6.14)

where we used in the last step that
∫

Σ
|∇ϕj |2 dµ ≤ Cr−2

min for 0 ≤ j ≤ 3.
This follows from

∫

Σ

|∇ϕj|2 dµ =

∫

Σ

ϕjLϕj + ϕ2
j

(

|A|2 + MRc(ν, ν)
)

dµ

≤ ( max
j=0,1,2,3

|µj| + Cr−2
min)

∫

Σ

ϕ2
j dµ ≤ Cr−2

min.

(6.15)
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Putting (6.14) and (6.13) together we see

(ii) ≥ −Cηε−1r−8
min

∫

Σ

α2
1 dµ− εr−4

min

∫

Σ

α2
2 dµ− ε

∫

Σ

|∇(Hα2)|2 dµ

≥ −Cηε−1r−8
min

∫

Σ

α2
1 dµ− εr−4

min

∫

Σ

α2
2 dµ− 2ε

∫

Σ

H2|∇α2|2 dµ

− Cεηr−8
min

∫

Σ

α2
2 dµ

(6.16)

for an arbitrary ε > 0.

For the term (iii), we see

(iii) ≥ −|µ0 − 3λ|
∫

Σ

∣

∣(Hα2)0

∣

∣

2
dµ− max

j=1,2,3
|µj − 3λ|

∫

Σ

∣

∣(Hα2)1

∣

∣

2
dµ

+

∫

Σ

(Hα2)2(L− 3λ)(Hα2)2 dµ

≥ −Cηr−8
min

∫

Σ

α2
2 dµ+

∫

Σ

(Hα2)2(L− 3λ)(Hα2)2 dµ.

If β ∈ V2 and δ > 0 are arbitrary, we have the estimate
∫

Σ

β(L− 3λ)β dµ =

∫

Σ

δ|∇β|2 + β(L+ δ∆ − 3λ)β dµ

=

∫

Σ

δ|∇β|2 + (1 − δ)β(L− 3λ)β − δβ2
(

|A|2 + MRc(ν, ν) + 3λ
)

dµ

≥ δ

∫

Σ

|∇β|2 dµ+ (1 − δ)
(

(ν4 − 2)R−2
S − C

√
ηr−4

min

)

∫

Σ

β2 dµ

− 3δr−2
min

∫

Σ

β2 dµ

≥ δ

∫

Σ

|∇β|2 dµ+ (1 − 4δ)r−2
min

∫

Σ

β2 dµ.

With β = (Hα2)2 and δ = 1/5 this yields

(iii) ≥ −Cηr−8
min

∫

Σ

α2
2 dµ+

1

5

∫

Σ

|∇(Hα2)2|2 dµ+
1

5
r−2
min

∫

Σ

∣

∣(Hα2)2

∣

∣

2
dµ

≥ 2

5
r−2
min

∫

Σ

|∇α2|2 dµ+
2

5
r−4
min

∫

Σ

α2
2 dµ,

(6.17)

where we used that
∫

Σ

∣

∣(Hα2)2

∣

∣

2
dµ =

∫

Σ

H2α2
2 dµ−

∫

Σ

∣

∣(Hα2)0

∣

∣

2
+
∣

∣(Hα2)1

∣

∣

2
dµ

≥
∫

Σ

H2α2
2 dµ − Cηr−6

min

∫

Σ

α2
2 dµ ≥ 3r−2

min

∫

Σ

α2
2 dµ,
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and

∫

Σ

|∇(Hα2)2|2 dµ =

∫

Σ

|∇(Hα2 −
3
∑

j=0

〈Hα2, ϕj〉ϕj)|2 dµ

≥ 3

4

∫

Σ

|∇(Hα2)|2 dµ− C

3
∑

j=0

|〈Hα2, ϕj〉|2
∫

Σ

|∇ϕj |2 dµ

≥ 2

3

∫

Σ

H2|∇α2|2 dµ− C

∫

Σ

|∇H|2α2
2 dµ− Cηr−8

min

∫

Σ

α2
2 dµ

≥ 2r−2
min

∫

Σ

|∇α2|2 dµ− Cηr−8
min

∫

Σ

α2
2 dµ.

Combining the estimates for (i), (ii) and (iii), and choosing ε = 1/100 and
r0 big enough we arrive at the claimed statement. �

Theorem 6.7. In addition to the hypotheses of theorem 5.4, there exists η0

and r0, depending only on m, σ and ε such that on such a surface Σ it holds
∫

Σ

αWλα dµ ≥ 12m2R−6
S

∫

α2 dµ

for all α ∈ V ⊥
0 .

Proof. By lemma 6.5 and lemma 6.6 we only have to check that the remain-
ing terms in (6.10) have the right decay. First we note that by arguing as in
the estimate (6.15) we get

∫

Σ

|∇α1|2 dµ ≤ Cr−2
min

∫

Σ

α2
1 dµ.

Thus we have
∣

∣

∣

∣

∫

Σ

2H
◦
A(∇α,∇α) dµ

∣

∣

∣

∣

≤ C
√
ηr−4

min

∫

Σ

|∇α1|2 + |∇α2|2 dµ

≤ C
√
ηr−4

min

(

r−2
min

∫

Σ

α2
1 dµ+

∫

Σ

|∇α2|2 dµ

)

.

We rewrite
∫

Σ

2α2〈∇2H,
◦
A〉 dµ = −

∫

Σ

4α∇iα∇jH
◦
Aij + 2α2〈∇H, div

◦
A〉 dµ.

Furthermore
∣

∣

∣

∣

∫

Σ

2α2〈∇H, div
◦
A〉 dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Σ

2α2〈∇H, 1
2
∇H + ω〉 dµ

∣

∣

∣

∣

≤ Cηr−8
min

∫

Σ

α2 dµ,
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and
∣

∣

∣

∣

∫

Σ

4α∇iα∇jH
◦
Aij dµ

∣

∣

∣

∣

≤ Cηr−7
min

(
∫

Σ

α2 dµ

)1/2(∫

Σ

|∇α|2 dµ

)1/2

≤ Cηr−7
min

(
∫

Σ

α2 dµ

)1/2(

r−2
min

∫

Σ

α2
1 dµ+

∫

Σ

|∇α2|2 dµ

)1/2

≤ Cηr−8
min

∫

Σ

α2 dµ+ Cηr−6
min

∫

Σ

|∇α2|2 dµ.

In view of the estimates of theorem 5.4 we find
∣

∣

∣

∣

∣

∫

Σ

α2
(

|∇H|2 + 1
2
H2| ◦

A|2 +H〈 ◦
A, T 〉 − 1

2
H2MSc + 1

2
H∇ν

MSc

+HΣdivω + 2ω(∇H)
)

dµ

∣

∣

∣

∣

∣

≤ C
√
ηr−6

min

∫

Σ

α2 dµ.

Altogether this finishes the proof of the theorem. �

6.3 Invertibility of the linearized operator

In this subsection we show that the linearized operator Wλ is invertible. In
order to do this, we need good estimates for the projection of a function
onto V0. We start with a different calculation for the first eigenvalue µ0 of
L.

Lemma 6.8. For any surface Σ as in theorem 5.4 we have the estimate

∣

∣µ0 + |A|2 + MRc(ν, ν)
∣

∣ ≤ C
√
ηr−4

min. (6.18)

Proof. From theorem 5.4 we know that

∣

∣

1
2
H̄2
S − |A|2

∣

∣ ≤ C
√
ηr−4

min

and
∣

∣

∣

∣

1
2
H̄2
S −

2

R2
S

+
4m

R3
S

∣

∣

∣

∣

≤ Cr−5
min.

Combining these two estimates with theorem 5.4 and corollary 6.4 we get

∣

∣µ0 + |A|2 + MRc(ν, ν)
∣

∣ ≤
∣

∣

∣

∣

3λ− 2

R2
S

+
2

R2
S

− 6m

R3
S

∣

∣

∣

∣

+ C
√
ηr−4

min ≤ C
√
η

r4
min

.

�
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Next we prove a W 2,2-estimate for the eigenfunction of L corresponding to
the eigenvalue µ0.

Lemma 6.9. Let Σ be a surface as in theorem 5.4 and let u ∈ C∞(Σ) be a
solution of Lu = µ0u. Then we have

∫

Σ

|u− ū|2 dµ+ r2
min

∫

Σ

|∇u|2 dµ+ r6
min

∫

Σ

|∇2u|2 dµ ≤ C
√
ηr−2

min‖u‖2
L2(Σ),

(6.19)

where ū = |Σ|−1
∫

Σ
u dµ. Moreover we have the pointwise estimate

‖u− ū‖L∞(Σ) ≤ Cη1/4r−2
min‖u‖L2(Σ). (6.20)

Proof. By a scaling argument we see that we can assume without loss of
generality that ‖u‖L2(Σ) = 1. Using the definition of L and lemma 6.8 we
get

∫

Σ

|∇u|2 dµ =

∫

Σ

uLu+ u2
(

|A|2 + MRc(ν, ν)
)

dµ

=

∫

Σ

u2
(

µ0 + |A|2 + MRc(ν, ν)
)

dµ

≤ C
√
ηr−4

min.

In view of theorem 6.1 there is a Poincaré inequality on Σ with constant
close to the one on S2

R. This yields

∫

Σ

|u− ū|2 dµ ≤ cR2
S‖∇u‖2

L2(Σ) ≤ C
√
ηr−2

min.

Similarly as above we calculate

∫

Σ

|∆u|2 dµ =

∫

Σ

(Lu)2 + 2uLu
(

|A|2 + MRc(ν, ν)
)

+ u2
(

|A|2 + MRc(ν, ν)
)2

dµ

=

∫

Σ

u2
(

µ0 + |A|2 + MRc(ν, ν)
)2

dµ.

Hence, again by lemma 6.8, we get the estimate

∫

Σ

|∆u|2 dµ ≤ Cηr−8
min.
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Integrating by parts and interchanging derivatives as in (3.2) (note that by
doing this we get an additional Gauss curvature term from which we now
know that it is positive) we conclude

∫

Σ

|∇2u|2 dµ ≤
∫

Σ

|∆u|2 dµ ≤ C
√
ηr−8

min.

Lemma 4.7 and the previous estimates now give

‖u− ū‖4
L∞(Σ) ≤ C

∫

Σ

|u− ū|2 dµ

∫

Σ

|∇2u|2 +H4|u− ū|2 dµ ≤ Cηr−8
min.

This finishes the proof of the lemma. �

In the following lemma we show an L2-estimate for solutions of Wλu = f .

Lemma 6.10. Let δ > 0, let Σ be a surface as in theorem 5.4 and let u ∈
C∞(Σ) be a solution of Wλu = f with

∫

Σ
(f−f0)

2 dµ ≤ δR−12
S ‖u‖2

L2(Σ), where
f0 and u0 are the projections of f respectively u onto V0. Then we have

‖u− u0‖L2(Σ) ≤ C(
√
δ +

√
η +R−1

S )‖u‖L2(Σ). (6.21)

Proof. By a scaling argument we see that we can assume without loss of
generality that ‖u‖L2(Σ) = 1. Next we combine our assumption with equation
(2.14) and the fact that Lu0 = µ0u0 to get

Wλ(u− u0) =f − µ0u0(µ0 + 1
2
H2 − λ) + 2H〈 ◦

A,∇2u0〉 + 2Hω(∇u0)

+ 2
◦
A(∇u0,∇H) + u0

(

|∇H|2 + 2ω(∇H) +H∆H

+ 〈∇2H,
◦
A〉 + 2H2| ◦

A|2 + 2H〈 ◦
A, T 〉 −H∇ν

MRc(ν, ν)
)

.
(6.22)

With the help of theorem 6.7 we conclude
∫

Σ

(u− u0)Wλ(u− u0) dµ ≥ 12m2R−6
S

∫

Σ

(u− u0)
2 dµ.

To get an upper bound for this intergral we multiply equation (6.22) by
(u− u0) and estimate term by term. We start with the term involving f

∣

∣

∣

∣

∫

Σ

f(u− u0) dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Σ

(f − f0)(u− u0) dµ

∣

∣

∣

∣

≤ m−2R6
S

∫

Σ

(f − f0)
2 dµ+m2R−6

S

∫

Σ

(u− u0)
2 dµ

≤ CδR−6
S +m2R−6

S

∫

Σ

(u− u0)
2 dµ.
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Next, using a variant of lemma 6.8, we estimate
∣

∣

∣

∣

∫

Σ

µ0u0(µ0 + 1
2
H2 − λ)(u− u0) dµ

∣

∣

∣

∣

≤ m2R−6
S

∫

Σ

(u− u0)
2 dµ+m−2R2

S

∫

Σ

u2
0(µ0 + 1

2
H2 − λ)2 dµ

≤ m2R−6
S

∫

Σ

(u− u0)
2 dµ+ CηR−6

S .

Now we estimate all terms containing derivatives of u0. By arguing as before
we see that we only have to bound the term

Cm2R6
S

∫

Σ

H2| ◦
A|2|∇2u0|2 + |∇u0|2(H2|ω|2 + | ◦

A|2|∇H|2) dµ ≤ CR−8
S ,

where we used theorem 5.4 and lemma 6.9. Finally we estimate the terms
involving u0. We start with

R6
S

∫

Σ

u2
0

(

|∇H|4 + |ω|2|∇H|2 +H2|∆H|2 + | ◦
A|2|∇2H|2 +H4| ◦

A|4
)

dµ

≤ CR−8
S + cR4

S

∫

Σ

u2
0|∆H|2 dµ+ Cη

∫

Σ

u2
0|∇2H|2 dµ

≤ CR−8
S + CR2

S

∫

Σ

u2
0

(

| ◦
A|4 + λ+ MRc(ν, ν)

)2
dµ

≤ CR−8
S + CηR−6

S ,

where we used lemma 4.8, theorem 5.4 and lemma 6.9. In the third term in
the second line we can use lemma 6.9 to replace u2

0 by ū2
0. Finally, we use

(6.9) and Theorem 5.4 to get
∣

∣

∣

∣

∫

Σ

(u− u0)u0H∇ν
MRc(ν, ν) dµ

∣

∣

∣

∣

≤ 3

2

∣

∣

∣

∣

∫

Σ

(u− u0)u0H
2MRc(ν, ν) dµ

∣

∣

∣

∣

+m2R−6
S

∫

Σ

(u− u0)
2 dµ+

Cη

R6
S

.

Now we use the L2-orthogonality of u0 and u− u0 to estimate

3

2

∣

∣

∣

∣

∫

Σ

(u− u0)u0H
2MRc(ν, ν) dµ

∣

∣

∣

∣

≤ 3

2

∣

∣

∣

∣

∫

Σ

(u− u0)u0H
2
(

MRc(ν, ν) + 2m
R3

S

)

dµ

∣

∣

∣

∣

+ 3mR−3
S

∣

∣

∣

∣

∫

Σ

(u− u0)u0(H
2 − 4R−2

S ) dµ

∣

∣

∣

∣

≤ m2R−6
S

∫

Σ

(u− u0)
2 dµ+ CηR−6

S .
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Combining all these estimates we get

3m2R−6
S

∫

Σ

(u− u0)
2 dµ ≤ CR−6

S (δ + η +R−2
S )

which finishes the proof of the lemma. �

From the proof of the lemma we directly obtain the following

Corollary 6.11. Let δ > 0, let Σ be a surface as in theorem 5.4 and let
u ∈ C∞(Σ). Then we have
∣

∣

∣

∣

∫

Σ

(u− u0)Wλu0 dµ

∣

∣

∣

∣

≤ 4m2

R6
S

‖u−u0‖2
L2 +

c

R6
S

(δ+η+R−2
S )‖u‖2

L2(Σ). (6.23)

Moreover, if u is a solution of Wλu = f with
∫

Σ

(u− u0)f dµ ≤ δR−6
S ‖u‖L2(Σ)‖u− u0‖L2(Σ),

then we have

‖u− u0‖L2(Σ) ≤ C(
√
δ +

√
η +R−1

S )‖u‖L2(Σ). (6.24)

In the following lemma we prove L2-estimates for the operator Wλ.

Lemma 6.12. Let Σ be as in theorem 5.4. Then we have

‖∇2u‖2
L2(Σ) +R−2

S ‖∇u‖2
L2(Σ) ≤ CR−4

S ‖u‖2
L2(Σ) + CRS

∣

∣

∣

∣

∫

Σ

uWλu dµ

∣

∣

∣

∣

.

Proof. From (2.15), we get the following expression, after integration by
parts of the term u∆u(|A|2 + MRc(ν, ν)) in (Lu)2:
∫

Σ

uWλu dµ =

∫

Σ

(∆u)2 +
(

1
2
H2 − λ− 2|A|2 − 2MRc(ν, ν)

)

|∇u|2

+ u2
(

− 1
2
H2|A|2 − 1

2
H2MRc(ν, ν) −H∇ν

MRc(ν, ν)

+ λ|A|2 + |A|4 + 2|A|2MRc(ν, ν)
)

+ a(u,∇u) + bu2 + u∇kuA
ij∇kAij dµ.

(6.25)

Here |a(u,∇u)+bu2| ≤ CR−4
S |∇u|2 +CR−6

S u2, where we integrated by parts
and used lemma 1.1, definition 1.2 and theorem 5.4. In particular we can
estimate

∣

∣∇ei

(

MRc(ν, ν)
)
∣

∣ ≤
∣

∣

(

∇ei

MRc
)

(ν, ν) + 2hki ωk
∣

∣

≤
∣

∣

(

∇S
ei

MRcS
)

(ν, ν)
∣

∣+ C
√
ηr−5

min

≤
∣

∣

(

∇S
P⊥

ρ (ei)
MRcS

)

(ρ, ρ)
∣

∣+ C
√
ηr−5

min

≤ C
√
ηr−5

min,

(6.26)
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where we used the above mentioned theorems, and where P⊥
ρ is the projec-

tion onto the gS-orthogonal subspace to ρ. In view of the Gauss equation,
the Bochner formula [5, Chapter IV, Proposition 4.15] implies that
∫

Σ

(∆u)2 dµ =

∫

Σ

2|(∇2u)◦|2 +
(

MSc−2MRc(ν, ν)+ 1
2
H2−| ◦

A|2
)

|∇u|2 dµ.

Together with (6.25) this yields

∫

Σ

uWλu dµ =

∫

Σ

2|(∇2u)◦|2 + |∇u|2
(

− 4MRc(ν, ν) − λ
)

+ u∇kuA
ij∇kAij

+ u2
(

− 1
2
H2MRc(ν, ν) −H∇ν

MRc(ν, ν) + λ|A|2

+ 2|A|2MRc(ν, ν)
)

+ a(u,∇u) + bu2 dµ.

In combination with the estimate |MRc(ν, ν) +λ| ≤ CR−4
S and the fact that

− 1
2
H2MRc(ν, ν) −H∇ν

MRc(ν, ν) + λ|A|2 + 2|A|2MRc(ν, ν)

= −3
2
H2λ+O(R−6

S )

we obtain the estimate

2‖(∇2u)◦‖2
L2 + 2λ‖∇u‖2

L2

≤ CR−2
S λ‖u‖2

L2 + C

∣

∣

∣

∣

∫

Σ

uWλu dµ

∣

∣

∣

∣

+ C

∫

Σ

|u||∇u||A||∇A| dµ.
(6.27)

To treat the last term, observe that
∫

Σ

|u||∇u||A||∇A| dµ ≤
∫

Σ

λ|∇u|2 + 1
4λ
|u|2|A|2|∇A|2 dµ

≤ λ‖∇u‖2
L2 + CR−5

S ‖u‖2
L∞

using theorem 4.5, theorem 5.1 and λ = 2m/R3
S +O(R−4

S ). In particular

‖∇u‖2
L2 ≤ CR−2

S ‖u‖2
L2 + CR3

S

∣

∣

∣

∣

∫

Σ

uWλu dµ

∣

∣

∣

∣

+ CR−2
S ‖u‖2

L∞.

Note that in view of this estimate (6.25) implies that

‖∆u‖2
L2 ≤ CR−2

S ‖∇u‖2
L2 +CR−4

S ‖u‖2
L2 +C

∣

∣

∣

∣

∫

Σ

uWλu dµ

∣

∣

∣

∣

+CR−5
S ‖u‖2

L∞.

Together with (6.27), we obtain that

‖∇2u‖2
L2 +R−2

S ‖∇u‖2
L2 ≤ CR−4

S ‖u‖2
L2 +CRS

∣

∣

∣

∣

∫

Σ

uWλu dµ

∣

∣

∣

∣

+CR−4
S ‖u‖2

L∞.
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(6.28)

From lemma 4.7 we conclude that in view of theorem 5.4

‖u‖2
L∞ ≤ CR−2

S ‖u‖2
L2 + C‖u‖L2‖∇2u‖L2.

Inserting this into equation (6.28), we get

‖∇2u‖2
L2 +R−2

S ‖∇u‖2
L2

≤ CR−4
S ‖u‖2

L2 + CRS

∣

∣

∣

∣

∫

Σ

uWλu dµ

∣

∣

∣

∣

+ CR−4
S ‖u‖L2‖∇2u‖L2.

(6.29)

For large enough RS, we can therefore apply the Cauchy-Schwarz inequality
and absorb the term containing second derivatives to the left. This yields
the claimed estimate. �

With the help of the last two results we are able to show that certain solutions
of Wλu = f are almost constant.

Lemma 6.13. There exists δ0 > 0 such that for all 0 < δ ≤ δ0, all surfaces
Σ as in theorem 5.4 and all solutions u ∈ C∞(Σ) of Wλu = f with

∫

Σ

(u− u0)f dµ ≤ δR−6
S ‖u‖L2(Σ)‖u− u0‖L2

we have

‖u− ū0‖L∞(Σ) ≤ C(
√
δ + η1/4 +R−1

S )|ū0|. (6.30)

Proof. We assume that ‖u‖L2(Σ) = 1 and apply corollary 6.11 to get

‖u− u0‖L2(Σ) ≤ C(
√
δ +

√
η +R−1

S ).

Moreover, by lemma 6.9, we have that

‖u0 − ū0‖L∞(Σ) ≤ Cη1/4R−2
S .

Combining these two facts we get

‖u− ū0‖L2(Σ) ≤ ‖u− u0‖L2(Σ) + CRS‖u0 − ū0‖L∞(Σ)

≤ C(
√
δ + η1/4 +R−1

S ). (6.31)

Using lemma 6.12 (with u replaced by u− u0) we get

‖∇2(u− u0)‖L2(Σ) ≤ CR−4
S ‖u− u0‖L2(Σ) + cRS

∣

∣

∣

∣

∫

Σ

(u− u0)Wλ(u− u0) dµ

∣

∣

∣

∣

≤ CR−4
S (δ +

√
η +R−2

S ),
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where we used corollary 6.11 and the assumption of the lemma. Combining
this with lemma 6.9 we have

‖∇2(u− ū0)‖L2(Σ) ≤ CR−4
S (δ +

√
η +R−2

S )

and therefore, with the help of lemma 4.7 and (6.31), we conclude

‖u− ū0‖L∞(Σ) ≤ CR−1
S (

√
δ + η1/4 +R−1

S ). (6.32)

Next we note that by orthogonality

0 ≤ 1 − ‖u0‖2
L2 = ‖u− u0‖2

L2

and from theorem 6.7, (6.23) and the assumption of the lemma we get

‖u− u0‖2
L2 ≤

R6
S

12m2

∫

Σ

(u− u0)Wλ(u− u0) dµ

≤ C
√
δ‖u− u0‖2

L2 +
1

3
‖u− u0‖2

L2 + C(δ + η +R−2
S )

≤ 1

2
‖u− u0‖2

L2 + C(δ + η +R−2
S ).

Hence for δ, η small enough and RS large enough we have

‖u0‖2
L2 ≥ 1

4

and moreover, by lemma 6.9, this implies that there exists a constant c1 > 0
such that

c−1
1 R−1

S ≤ |ū0| ≤ c1R
−1
S .

Inserting this estimate into (6.32) we get

‖u− ū0‖L∞(Σ) ≤ C(
√
δ +

√
η +R−1

S )|ū0|.

�

Next we show that the above estimates yield the invertibility of the operator
Wλ : C4,α(Σ) → C0,α(Σ).

Theorem 6.14. There exists δ0 > 0 such that for every surface Σ as in
theorem 5.4 the operator Wλ : C4,α(Σ) → C0,α(Σ) is invertible for every
0 < α < 1. Its inverse W−1

λ : C0,α(Σ) → C4,α(Σ) exists and is continuous.
Moreover it satisfies the estimates

‖W−1
λ f‖L2(Σ) ≤

R6
S

δ0
‖f‖L2(Σ) for every f ∈ L2(Σ) and (6.33)

‖W−1
λ f‖C0,α(Σ) ≤

cR6
S

δ0
‖f‖C4,α(Σ) for every f ∈ C4,α(Σ). (6.34)
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Proof. We argue by contradiction as in [14]. Namely we assume that there
exists a smooth function u with ‖u‖L2(Σ) = 1 and

sup
‖v‖

L2(Σ)=1

∣

∣

∣

∣

∫

Σ

vWλu dµ

∣

∣

∣

∣

≤ δ0R
−6
S . (6.35)

Choosing v = u−u0, we conclude from lemma 6.13 that ū0 6= 0 and therefore
we can assume without loss of generality that ū0 > 0. Again from lemma
6.13 we then conclude that for δ0, η small and RS large enough we have for
every x ∈ Σ that ū0

2
≤ u(x) ≤ 2ū0. Arguing as in the proof of lemma 6.13

we get 1
2
≤ ‖u0‖L2(Σ) ≤ 1 and, with the help of lemma 6.9, this implies

1
2
|Σ|−1/2 ≤ |Σ|−1/2‖u0‖L2(Σ) ≤ ū0 ≤ |Σ|−1/2‖u0‖L2(Σ) ≤ |Σ|−1/2.

Moreover, by choosing v = 1 in (6.35), we get
∣

∣

∣

∣

∫

Σ

Wλu dµ

∣

∣

∣

∣

≤ δ0R
−6
S |Σ|1/2 ≤ Cδ0R

−5
S . (6.36)

On the other hand, by using (2.15) and the corresponding equation for the
λL term, we get
∫

Σ

Wλu dµ =

∫

Σ

u
(

|A|4 + 2|A|2MRc(ν, ν) + (MRc(ν, ν))2

+ ∆(|A|2 + MRc(ν, ν)) + λ
(

|A|2 + MRc(ν, ν)
)

+ |∇H|2

+ 2ω(∇H) +H∆H + 2〈∇2H,
◦
A〉 + 2H2| ◦

A|2 + 2H〈 ◦
A, T 〉

−H∇ν
MRc(ν, ν) − 1

2
H2|A|2 − 1

2
H2MRc(ν, ν)

)

dµ.

Now we calculate

|A|2
(

|A|2 + 2MRc(ν, ν) + λ
)

−H∇ν
MRc(ν, ν) − 1

2
H2
(

|A|2 + MRc(ν, ν)
)

= 3
2
H2MRc(ν, ν) +O(R−6

S ).

Moreover we estimate ‖∆ ◦
A‖L2(Σ) as in the proof of lemma 4.10, and using

lemma 4.8
∣

∣

∣

∣

∫

Σ

u∆|A|2 dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Σ

u∆(| ◦
A|2 + 1

2
H2) dµ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Σ

uH∆H dµ

∣

∣

∣

∣

+ CR−6
S ≤ CR−5

S .

Now we integrate by parts and use proposition 4.6 and lemma 6.12 to con-
clude

∣

∣

∣

∣

∫

Σ

u∆MRc(ν, ν) dµ

∣

∣

∣

∣

≤ CR−4
S ||∇u||L2(Σ) ≤ CR−5

S ,
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where we used in the last step that |
∫

Σ
uWλu dµ| ≤ δ0R

−6
S , which follows

from (6.35). We combine these estimates with the ones done previously in
this section, (6.36) and theorem 5.4 to conclude

−
∫

Σ

uH2MRc(ν, ν) dµ ≤ C

∣

∣

∣

∣

∫

Σ

Wλu dµ

∣

∣

∣

∣

+ CR−5
S ≤ CR−5

S .

The estimates ū0 ≤ 2u and 1
ū0

≤ 2RS imply

2mR−3
S

∫

Σ

H2 dµ ≤−
∫

Σ

H2MRc(ν, ν) dµ+ CR−4
S

≤− 1

2ū0

∫

Σ

uH2MRc(ν, ν) dµ+ CR−4
S

≤ CR−4
S .

This contradicts the estimate for
∫

Σ
H2 dµ in lemma 3.3. Hence the operator

Wλ is injective. By the Fredholm alternative Wλ is also surjective. The rest
of the statements in the theorem are then a consequence of standard elliptic
theory. �

7 Existence and Uniqueness of the Foliation

In this last section we use the implicit function theorem to prove theorem
0.1 and theorem 0.2.

7.1 Uniqueness in Schwarzschild

In this subsection we show that in Schwarzschild the only surfaces satisfying
the assumptions of theorem 5.1 are the round spheres with center at the
origin.

Theorem 7.1. For all m > 0 there exist r0 <∞, τ0 > 0 and ε > 0 with the
following properties.
Assume that (M, g) = (R3, gSm) and let Σ be a surface satisfying (0.1) with
H > 0, λ > 0, rmin > r0 and

τ ≤ τ0 and Re ≤ εr2
min,

where Re and τ are as in section 4. Then Σ = SRe
(0).

Proof. Since (M, g) = (R3, gSm) we can apply proposition 4.1, theorem 5.1

and theorem 5.4 with η = 0 to get τ = 0,
◦
AS = 0, and λ = 2m

R3
S

. Since
◦
AS = 0,
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we get that Σ is umbilical with respect to the Euclidean background metric,
as

◦
AS = φ−2

◦
Ae. Hence Σ is a sphere. Since τ = 0 in fact Σ = SRe

(0) where
Re = φ−2RS, or otherwise the expression for λ could not be true. �

7.2 Existence and uniqueness for the general case

The main goal in this subsection is to show that for any manifold which is
(m, η, σ)-asymptotically Schwarzschild and all small enough Lagrange mul-
tipliers λ there exists a unique surface Σλ which solves the equation (0.1).
More precisely we have the following theorem.

Theorem 7.2. For all m > 0 and σ there exist η0 > 0, λ0 > 0 and C
depending only on m and σ with the following properties.

If (M, g) is (m, η, σ)-asymptotically Schwarzschild and satisfies

(1) |MSc| ≤ ηr−5 and

(2) η ≤ η0

then for all 0 < λ < λ0 there exists a surface Σλ which solves (0.1) for the
given λ. Moreover the surface is well approximated in the C3-norm by a
coordinate sphere Srλ(aλ) with |aλ| ≤ C.

Proof. We define gτ = (1 − τ)gS + τg and we note that (M, gτ ) is (m, η, σ)-
asymptotically Schwarzschild. For (M, gS) a standard calculation shows that
all spheres Sr(0) centered at the origin solve equation (0.1) with

λ(r) =
2m

r3

(

1 +
m

2r

)−6

.

This function is invertible for r large enough. Moreover this shows that we
can solve equation (0.1) in (M, gS) for any λ small enough. More precisely,
for any small λ there exists a radius r(λ) such that Sr(λ)(0) solves (0.1) with
the given λ. Next we want to use the implicit function theorem to get the
existence of a family of such solutions for all 0 ≤ τ ≤ 1.

In order to do this we consider the following conditions on our surfaces

(A1) H > 0,

(A2) τ ≤ τ0 and

(A3) Re ≤ εr2
min,
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where τ0 and ε are chosen such that we can apply the results from section 5.
From these results we then get that the above conditions hold with better
constants on surfaces Σ with rmin > r0

(B1) |H − 2R−1
S + (1 + m

2Re
)2mR−2

S | ≤ C
√
ηr−3

min,

(B2) τ ≤ C
√
ηr−1

min and

(B3) C−1rmin ≤ Re ≤ Crmin.

Without loss of generality we can furthermore assume that the conditions
(B1)-(B3) imply that the linearized operator Wλ is invertible. From (5.21)
we also get that Σ is globally a graph over S2.

Now we define the sets

S1(τ) = {Σ| rmin > r0 and (A1) − (A3) hold w.r.t. gτ}
S2(τ) = {Σ| rmin > 2r0 and (B1) − (B3) hold w.r.t. gτ}.

We choose λ2 so small that the centered spheres Sr(0) which solve (0.1) with
0 < λ < λ2 are in S2(τ). Finally (for λ1 small) we let

κ : [0, 1] → (0, λ1) × [0, 1]

κ(t) = (λ(t), τ(t))

be a continuous, piecewise smooth curve with τ(0) = 0 and we define

Iκ = {t ∈ [0, 1]|∃ Σ(t) ∈ S2(τ(t)) satisfying (0.1) with λ = λ(t)}.

As in [14] we can show that Iκ is open and closed and since moreover 0 ∈ Iκ
by our assumption we get Iκ = [0, 1] and this finishes the proof of the
Theorem. �

By reversing the process used in the above theorem as in the proof of theorem
6.5 in [14] we furthermore get a uniqueness result for solutions of (0.1).

Theorem 7.3. Let m > 0 and σ be given. Then there exist η0 > 0, τ0,
r0 < ∞, and ε > 0 depending only on m and σ such that the following
holds.

Assume that (M, g) is (m, σ, η)-asymptotically Schwarzschild with

(1) |MSc| ≤ ηr−5, and

(2) η < η0.
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Furthermore, let Σ be a surface with approximating sphere Srλ(aλ) as in
section 4, such that

(3) Σ satisfies equation (0.1),

(4) H > 0,

(5) rmin > r0, and rλ < εr2
min,

(6) τλ = rλ/aλ < τ0,

then Σ = Σλ, where Σλ is the surface from theorem 7.2.

�

7.3 Foliation

Next we show that the surfaces obtained in theorem 7.2 form a foliation.

Theorem 7.4. For all m > 0 and σ there exists η0 > 0 depending only on
m and σ with the following properties.

If (M, g) is (m, η, σ)-asymptotically Schwarzschild and satisfies

(1) |MSc| ≤ ηr−5 and

(2) η ≤ η0

then for all 0 < λ < λ0 the surfaces Σλ constructed in theorem 7.2 form a
foliation. In addition, there is a differentiable map

F : S2 × (0, λ0) × [0, 1] → M

such that the surfaces F (S2, λ, τ) satisfy (0.1) with respect to the metric
gτ = (1− τ)gS + τg for the given λ. This foliation can therefore be obtained
by deforming a piece of the foliation of (R3, gS) by centered spheres.

Proof. The proof follows along the same lines as the one given in [14, The-
orem 6.4]. Therefore we only sketch the main ideas of the argument.

For 0 < λ < λ0 we consider the curve κλ(t) = (λ, t) and by using theorem
7.2 we obtain a family of surfaces Σλ,t which solve (0.1) for the given λ.

The map F can now be defined by F (S2, λ, t) = Σλ,t where we can choose
the parametrization of Σλ,t such that ∂F

∂λ
⊥ Σλ,t. The differentiability of F

with respect to p ∈ S2 and τ follows from the construction of Σλ,t.
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It remains to prove that the surfaces form a foliation. In order to show
this we fix λ1 ∈ (0, λ0) and we get from the above construction a surface
Σλ1,1. For λ2 < λ1 we define the curve hλ2(t) = ((1 − t)λ1 + tλ2, 1). By
combining the curves κλ1 and hλ2 we get a family of surfaces Σ′

λ(t),1 which

solve (0.1) with λ(t) = (1 − t)λ1 + tλ2 for t ∈ [0, 1]. Moreover we get a
differentiable map G : S2 × [λ2, λ1] → M such that G(S2, λ(t)) = Σ′

λ(t),1.
From the local uniqueness statement in the implicit function theorem we get
that Σ′

λ(t),1 = Σλ(t),1 =: Σλ(t).

Now we let νλ(t) be the normal to Σλ(t) in M and we let αλ(t) = g(νλ(t),
∂G
∂λ

).
We calculate

H(λ1 − λ2) =
d

dt

(

− ∆H −H| ◦
A|2 −HMRc(ν, ν)

)

− λ(t)
d

dt
H

= Wλ(t)αλ(t)(λ1 − λ2).

Next we claim that
∫

Σ

(αλ(t) − (αλ(t))0)H dµ ≤ Cη1/4

R6
S

‖αλ(t)‖L2(Σ)‖αλ(t) − (α0)λ(t)‖L2(Σ).

(7.1)

If we assume that this claim is true we see that for η small enough we can
apply lemma 6.13 and get that αλ(t) does not change sign. Therefore the
family Σλ(t) is a foliation.

In order to prove (7.1) we let Wλ(t) = Wλ, α = αλ(t) and we note that we
can argue as in the proof of theorem 6.14 to get

∣

∣

∣

∣

∫

Σ

Wλα dµ

∣

∣

∣

∣

≤ CR−6
S

∫

Σ

|α| dµ+
3

2

∣

∣

∣

∣

∫

Σ

αH2MRc(ν, ν) dµ

∣

∣

∣

∣

+ C

∣

∣

∣

∣

∫

Σ

α∆(|A|2 + MRc(ν, ν)) dµ

∣

∣

∣

∣

.

Using theorem 5.4 we get

3

2

∣

∣

∣

∣

∫

Σ

αH2MRc(ν, ν) dµ

∣

∣

∣

∣

≤ 12mR−5
S

∫

Σ

|α| dµ+ CR−6
S

∫

Σ

|α| dµ.

Moreover, using integration by parts, theorem 5.4, lemma 6.12 and (6.26)
we estimate

∣

∣

∣

∣

∫

Σ

α∆(|A|2 + MRc(ν, ν)) dµ

∣

∣

∣

∣

≤ C
√
ηR−4

S ‖∇α‖L2(Σ)

≤ C
√
η(R−5

S ‖α‖L2(Σ) +R
−5/2
S ‖α‖1/2

L2(Σ)).
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Putting these estimates together we conclude

∣

∣

∣

∣

∫

Σ

Wλα dµ

∣

∣

∣

∣

≤ C1R
−4
S ‖α‖L2(Σ)

+ C(R−5
S ‖α‖L2(Σ) +R

−5/2
S ‖α‖1/2

L2(Σ)). (7.2)

On the other hand we have, using again theorem 5.4,

∣

∣

∣

∣

∫

Σ

Wλα dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Σ

H dµ

∣

∣

∣

∣

≥ C2RS − CR−1
S . (7.3)

Combining the two estimates we get

C2R
5
S − CR3

S ≤ C1‖α‖L2(Σ) + C(R−1
S ‖α‖L2(Σ) +R

3/2
S ‖α‖1/2

L2(Σ)).

From this estimate we easily see that there exists a constant C3 > 0 such
that for RS large enough we have

‖α‖L2(Σ) ≥ C3R
5
S. (7.4)

Using Hölder’s inequality we get

∫

Σ

(α− α0)H dµ ≤ ‖H −H0‖L2(Σ)‖α− α0‖L2(Σ)

and hence, combing this with (7.4), we see that (7.1) will be a consequence
of the estimate

‖H −H0‖L2(Σ) ≤ Cη1/4R−1
S . (7.5)

We note that

LH = (λ− 1

2
H2)H = µ0H + (λ− 1

2
H2 − µ0)H

and therefore we can estimate

µ0 ≤
∫

Σ
HLH dµ
∫

Σ
H2 dµ

≤ µ0 + C
√
ηr−4

min,

where the first inequality follows from the Rayleigh quotient characterization
of the eigenvalues of L and the second inequality follows from the above
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estimate and lemma 6.8. Next we decompose H =
∑

i〈H,ϕi〉ϕi and we
calculate

∫

Σ
HLH dµ
∫

Σ
H2 dµ

=

∑

i µi
∫

Σ
H2
i dµ

∫

Σ
H2 dµ

= µ0 +

∑

i(µi − µ0)
∫

Σ
H2
i dµ

∫

Σ
H2 dµ

.

Hence we get

0 ≤
∞
∑

i=1

(µi − µ0)

∫

Σ

H2
i dµ ≤ C

√
ηr−4

min.

For every i ∈ N we have (µi − µ0) ≥ 2R−2
S (see corollary 6.4) and therefore

‖H −H0‖2
L2(Σ) ≤ CR2

S

∞
∑

i=1

(µi − µ0)

∫

Σ

H2
i dµ ≤ C

√
ηr−2

min,

which finishes the proof of (7.5) and therewith also the proof of the theorem.
�

A Maple scripts for the calculations

For the explicit calculations in the proof of Proposition 4.2, in section 5.3
and in section 5.5 we used Maple [12] to evaluate certain integrals. Here we
present the scripts we used.

A.1 Proposition 4.2

Here it is necessary to evaluate the integral

E1 :=

∫

S

(

1

r3
− 3R2

e

1

r5
− 6Re|ae|

cosϕ

r5
− 3|ae|2

cos2 ϕ

r5

)

dµe (A.1)

where S = SRe
(ae) is a fixed sphere with center a and radius Re. The

calculation is based on the formula

C l
k :=

∫

S

cosl ϕ

rk
dµe =

2πRe

|ae|
(2Re|ae|)−l

∫ Re+|ae|

|Re−|ae||

r1−k(r2 −R2
e −|ae|2)ldr.

which was derived in the proof of proposition 4.2. Hence equation (A.1) can
be written as

E1 = C0
3 − 3R2

eC
0
5 − 6Re|ae|C1

5 − 3|ae|2C2
5 .

This is evaluated using the following Maple script.
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assume (R>0, a>0, R>a);

c0r3 := 2*PI*R/a *(2*R*a)^(0)

* int(r^(-2)*(r^2 - R^2 - a^2 )^(0),r=R-a..R+a);

c0r5 := 2*PI*R/a *(2*R*a)^(0)

* int(r^(-4)*(r^2 - R^2 - a^2)^(0),r=R-a..R+a);

c1r5 := 2*PI*R/a *(2*R*a)^(-1)

* int(r^(-4)*(r^2 - R^2 - a^2 )^(1), r=R-a..R+a);

c2r5 := 2*PI*R/a *(2*R*a)^(-2)

* int(r^(-4)*(r^2 - R^2 - a^2 )^(2), r=R-a..R+a);

E1 := c0r3 -3*R^2*c0r5 - 6*R*a*c1r5 - 3*a^2*c2r5;

simplify(%);

where we used R to denote Re, a to denote |ae| and clrk to denote C l
k.

A.2 Section 5.3

In section 5.3 the integral to evaluate was

E2 :=

∫

S

cosφ

r3
= C1

3

This is evaluated by the script

assume (R>0, a>0, R>a);

c1r3 := 2*PI*R/a *(2*R*a)^(-1)

* int(r^(-2)*(r^2 - R^2 - a^2 )^(1),r=R-a..R+a);

E2 := c1r3;

simplify(%);

A.3 Section 5.5

The longest calculation is for the term

Q̄ :=

∫

S

(

Re
cosϕ
r6

+ |ae| cos
2 ϕ
r6

− |ae|R2
e

1
r8

− (R3
e + 2|ae|2Re)

cosϕ
r8

− (|ae|3 + 2|ae|R2
e)

cos2 ϕ
r8

− |ae|2Re
cos3 ϕ
r8

)

dµe

from section 5.5, where we omit certain fixed factors here. The following
script evaluates this expression.

assume (R>0, a>0, R>a);

c1r6:=2*PI*R/a *(2*R*a)^(-1)

* int(r^(-5)*(r^2 - R^2 - a^2)^(1),r=R-a..R+a);
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c2r6:=2*PI*R/a *(2*R*a)^(-2)

* int(r^(-5)*(r^2 - R^2 - a^2 )^(2),r=R-a..R+a);

c0r8:=2*PI*R/a *(2*R*a)^(0)

* int(r^(-7)*(r^2 - R^2 - a^2 )^(0),r=R-a..R+a);

c1r8:=2*PI*R/a *(2*R*a)^(-1)

* int(r^(-7)*(r^2 - R^2 - a^2 )^(1),r=R-a..R+a);

c2r8:=2*PI*R/a *(2*R*a)^(-2)

* int(r^(-7)*(r^2 - R^2 - a^2 )^(2),r=R-a..R+a);

c3r8:=2*PI*R/a *(2*R*a)^(-3)

* int(r^(-7)*(r^2 - R^2 - a^2 )^(3),r=R-a..R+a);

Q := R * c1r6 + a * c2r6 - a*R^2*c0r8 - (R^3 + 2*a^2*R)*c1r8

- (2*a*R^2 + a^3) *c2r8 - a^2 * R * c3r8);

subs(a = tau * R, Q);

simplify(%);
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