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Abstract

It is known that all spatially homogeneous solutions of the vacuum

Einstein equations in four dimensions which exist for an infinite proper

time towards the future are future geodesically complete. This paper

investigates whether the analogous statement holds in higher dimensions.

A positive answer to this question is obtained for a large class of models

which can be studied with the help of Kaluza-Klein reduction to solutions

of the Einstein-scalar field equations in four dimensions. The proof of

this result makes use of a criterion for geodesic completeness which is

applicable to more general spatially homogeneous models.

1 Introduction

The solutions of the Einstein equations most commonly applied in cosmology are
spatially homogeneous and include some that recollapse and some that expand
for ever. In the former case the proper length of the timelike curves orthogonal
to the hypersurfaces of homogeneity (the worldlines of comoving observers) is
finite. Along a curve of this type the expansion of this congruence of curves is
first positive, then zero and finally negative. This is what is meant by recollapse.
In the latter case the expansion is always positive and the length of the curves
orthogonal to the hypersurfaces of homogeneity is infinite towards the future.
This is what is meant by saying that the solution expands for ever.

On physical grounds it is reasonable to expect that a forever expanding
solution will be future geodesically complete, i.e. there should be no singularities
in the future. A theorem which confirms this expectation is proved in [16]
(Theorem 2.1 of that paper). In order to explain this result let t be a Gaussian
time coordinate based on one of the hypersurfaces of homogeneity and let trk
be the mean curvature of these hypersurfaces. Then trk is a function of t. The
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expansion of the congruence of timelike geodesics mentioned above is − 1
3 trk.

Define an expanding phase of the solution to be a time interval (t1, t2) on which
trk < 0. Here t1 and t2 may be finite or infinite. The theorem says that,
under certain assumptions, if t2 < ∞ the solution can be extended to a time
interval (t1, t3) with t3 > t2. Moreover, if t2 = ∞ then the spacetime is future
geodesically complete. The theorem is formulated for spatially homogeneous
solutions of the Einstein equations coupled to a matter model satisfying three
assumptions. Two of these are inequalities on the energy-momentum tensor,
the dominant energy and non-negative sum pressures conditions. The third is a
continuation property for solutions of the Einstein-matter equations. The only
thing about these conditions which is important in what follows is that they are
all satisfied in the case of the Einstein vacuum equations. Hence the theorem
applies in the vacuum case.

In a spatially homogeneous spacetime, by definition the isometry group acts
transitively on the hypersurfaces of homogeneity. In four dimensions there is a
well-known classification of the possible isometry groups. Either the group can
be taken to have dimension three or a higher-dimensional group is necessary. In
the second of these cases there is only one possibility, which is called Kantowski-
Sachs symmetry. In the first case any connected three-dimensional Lie group
can occur. For the purposes of what follows it may be assumed without loss of
generality that the spacetime is simply connected. This is because passing to
the universal cover of a given spacetime has no effect on the dynamics. With
this assumption the hypersurfaces of homogeneity can be identified with the
group itself and the induced metric on one of these hypersurfaces with a left-
invariant metric on that group. The classification of connected and simply
connected Lie groups reduces to that of the corresponding Lie algebras. The
three-dimensional Lie algebras were classified by Bianchi into types I to IX. It
turns out that a maximally extended vacuum spacetime of Bianchi type I-VIII
expanding at some time is forever expanding while one which is of type IX or has
Kantowski-Sachs symmetry recollapses [13]. The cases where recollapse takes
place are precisely those where there is a spatial metric in the class whose scalar
curvature R is positive. That this is a necessary condition for recollapse is not
hard to see. The Hamiltonian constraint on a hypersurface of homogeneity is
(in the vacuum case)

R− kabk
ab + (trk)2 = 0 (1)

where kab is the second fundamental form. Recollapse means that there is a
maximal hypersurface, i.e. one where trk = 0. There R is clearly non-negative.
If it is zero then kab = 0. Moreover it can be shown that if R = 0 the induced
metric of that hypersurface is flat and that the solution arising from those data is
a flat spacetime where trk vanishes at all times. The latter case cannot occur in
the context of spatially homogeneous cosmological models which are expanding
at some time.

The aim of this paper is to investigate to what extent the results just stated
for four-dimensional spatially homogeneous vacuum spacetimes extend to higher
dimensions n + 1. In particular, sufficient conditions for future geodesic com-

2



pleteness are derived. Only the case where the isometry group can be taken
to be of dimension n is considered. This is the analogue in higher dimensions
of Bianchi models. The analogue of Kantowski-Sachs models is not considered.
The same argument as in four dimensions applies to show that a necessary con-
dition for recollapse is the existence of a left-invariant metric of positive scalar
curvature on the group of interest. This motivates us to restrict attention to
Lie groups admitting no left-invariant metric of positive scalar curvature. In
this case it has been shown that vacuum spacetimes with this type of symmetry
exist for infinite Gaussian time in the future ([17], Theorem 5.3). On the other
hand it turns out that the arguments used to prove geodesic completeness in
the four-dimensional case do not easily generalize to higher dimensions. In what
follows partial results on this question are obtained.

For a general dimension there is no known analogue of the Bianchi classifica-
tion of Lie algebras. In some of the lower dimensions there are results. A review
of what is known in the case of four-dimensional Lie algebras can be found in [8].
The strategy in the following is to identify some classes of Lie groups for which
geodesic completeness can be proved. The main case considered is that where
there is an isometry group of the form G3× (R⋊Z2)

n−3 for a three-dimensional
groupG3. The spatial manifold is given by the identity component of this group,
G3×Rn−3. The strategy for handling these groups is to use Kaluza-Klein reduc-
tion. The presence of the discrete symmetry defined by the group Z

n−3
2 ensures

that the result is the Einstein equations coupled to linear scalar fields in four
dimensions. Without it a more complicated reduced system would be obtained.
In the case n = 4, for instance, it would be the Einstein-Maxwell-dilaton sys-
tem. Section 2 contains the basic notation and equations, including those for
the Kaluza-Klein reduction. In the third section results on the Einstein-scalar
field system in four dimensions are proved. These are used in treating higher-
dimensional vacuum spacetimes in later sections and are also of interest in their
own right. A general criterion for geodesic completeness is stated and proved
in Section 4. It is then combined with the results on the scalar field to obtain
the main theorem, Theorem 5. Section 5 discusses geodesic completeness in
some examples with other types of symmetry and illustrates how the results of
Section 4 can be applied. Conclusions and an outlook are contained in Section
6.

This paper is based in part on the diploma thesis of the first author [7].

2 The basic equations

Let G be a connected and simply connected Lie group and θa a basis of the
space of left-invariant one-forms on G. Consider the metric

− dt2 + gab(t)θ
a ⊗ θb (2)

on the manifold [t0,∞)×G for some constant t0. Let kab be the components in
the given basis of the second fundamental form of the level hypersurfaces of t.
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By the definition of the second fundamental form

∂tgab = −2kab. (3)

It will now be supposed that this metric satisfies the Einstein vacuum equations
and these will be decomposed using the foliation by the level hypersurfaces of
t. The Einstein constraint equations are

R− kabk
ab + (trk)2 = 0, (4)

∇ak
a
b = 0. (5)

The evolution equations are given by

∂tk
a
b = (trk)kab +Ra

b. (6)

A real number λ is said to be an eigenvalue of kab with respect to gab if there
is a non-zero vector va which satisfies the equation kabv

b = λgabv
b. In n space

dimensions there are n eigenvalues of kab with respect to gab, counting multi-
plicity. Call them λa. The mean curvature trk =

∑

a λa never vanishes in an
expanding phase. Define the generalized Kasner exponents (GKE) by pa = λa

trk .
When the Lie groupG is Abelian the pa are independent of time and the solution
can be written explicitly as

− dt2 +

n
∑

a=1

t2pa(dxa)2 (7)

where
∑n

a=1 pa = 1 and
∑n

a=1 p
2
a = 1. In the case n = 3 this is the Kasner

solution.
These equations will now be specialized to the case that the Lie group is of

the form G3×R
n−3 for a three-dimensional group G3 and the left-invariant basis

θa is adapted to the product decomposition. Call the basis vectors tangent to the
first factor θi, i = 1, 2, 3. The basis vectors corresponding to the second factor
commute and so can be chosen to be of the form dyI , I = 1, . . . , n− 3. Suppose
further that the action of the group extends to an action of G3 × (R ⋊ Z2)

n−3

which preserves the hypersurfaces of constant t and the product decomposition
of the initial hypersurface. Then the generators of Z

n−3
2 act by commuting

reflections of Rn−3. Without loss of generality they may be assumed to be
given by reflections in the coordinates yI . The invariance of the metric under
these transformations implies that it can be written in the form

− dt2 + gij(t)θ
i ⊗ θj +

∑

i

e2φ
I(t)(dyI)2 (8)

for scalar functions φI . Let φ =
∑

I φ
I and write gij = e−φg̃ij . Let t̃ be

a Gaussian coordinate for the conformally rescaled metric. Then dt̃
dt

= e
φ

2 .
Rewriting the Einstein equations in terms of g̃ij and φI gives the equations

−k̃ij k̃ij + (trk̃)2 = ρ, (9)

∂t̃k̃
i
j = (trk̃)k̃ij + R̃i

j − ρδij , (10)

∂2
t̃
φI − (trk̃)∂t̃φ

I = 0. (11)
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Here

ρ =
1

2

∑

I

(∂t̃φ
I)2. (12)

These equations are identical to the Einstein equations in four dimensions cou-
pled to n− 3 non-interacting massless scalar fields. For prescribed initial data
it is possible to do a rotation in Rn−3 so as to set all ∂t̃φ

I except ∂t̃φ
1 to

zero. By the equations of motion for the scalar fields all φI except φ1 will be
constant during the evolution. Then only φ1 makes a contribution to the energy-
momentum tensor. The essential dynamics is that of a single scalar field. The
four-dimensional metric and the scalar field φ1 define a five-dimensional metric.
The full spacetime is obtained by taking the product of the five-dimensional
metric with a flat time-independent metric.

The generalized Kasner exponents of the (n + 1)-dimensional metric are
related to the four-dimensional quantities by

pa =
λ̃a +

1
2e

−
φ

2 ∂tφ

trk̃ + 1
2e

−
φ

2 ∂tφ
, (13)

pI =
−e−φ

2 ∂tφ
I

trk̃ + 1
2e

−
φ

2 ∂tφ
. (14)

In a spatially homogeneous situation a scalar field is equivalent to an untilted
stiff fluid. Thus to understand the dynamics of the scalar field case known
results for a stiff fluid can be applied. The matter variables of the two models

are related by ρ = 1
2 (∂t̃φ)

2. Note that e−
φ

2 ∂t = ∂t̃.
It was pointed out in the introduction that it is important whether a given

Lie group G admits left-invariant metrics with positive scalar curvature. If G
is a Lie group of any of the Bianchi types except IX it admits no metric of
this kind. This is equivalent, for simply connected Lie groups, to the property
that they are diffeomorphic to Euclidean space [2]. It follows that a Lie group
with topology G×R

n−3 is also homeomorphic to Euclidean space and thus also
admits no left-invariant metrics of positive scalar curvature. Hence groups of this
type fail the necessary condition for recollapse mentioned in the introduction.
This is a sign that they are good candidates for the symmetry groups of future
geodesically complete metrics.

3 Four-dimensional models with a scalar field

This section contains results on the late-time behaviour of solutions of the
Einstein-scalar field system in four dimensions, some of which are deduced from
results on untilted stiff fluids taken from the literature. When information on
the dynamics of the energy density is available the asymptotics of φ can be
obtained by integration. Much of the analysis is based on the Wainwright-Hsu
formulation of the equations for Bianchi models [22], which will now be recalled.
Since the only case of interest in the following is that of a stiff fluid the equations
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are only written down for the case where the parameter γ in the equation of
state p = (γ−1)ρ of the fluid is equal to two. The system of evolution equations
is

N ′
1 = (q − 4Σ+)N1, (15)

N ′
2 = (q + 2Σ+ + 2

√
3Σ−)N2, (16)

N ′
3 = (q + 2Σ+ − 2

√
3Σ−)N3, (17)

Σ′
+ = −(2− q)Σ+ − 3S+, (18)

Σ′
− = −(2− q)Σ− − 3S−, (19)

Ω′ = −2(2− q)Ω (20)

where

q = 2(Ω + Σ2
+ +Σ2

−), (21)

S+ =
1

2
[(N3 −N2)

2 −N1(2N1 −N2 −N3)], (22)

S− =
1

2
(N3 −N2)(N1 −N2 −N3). (23)

The prime denotes d
dτ

and τ is related to the Gaussian time t by dτ
dt

= − 1
3 trk.

There is also the equation which expresses the Hamiltonian constraint in these
variables which is

Ω + Σ2
+ +Σ2

− +
3

4
(N2

1 +N2
2 +N2

3 − 2(N1N2 +N2N3 +N1N3)) = 1. (24)

It will not be necessary to recall the definition of all the variables in the system
here. What is important is that Σ+ and Σ− are linear combinations of the
generalized Kasner exponents which are linearly independent. This means that
if Σ+ and Σ− tend to finite limits as t → ∞ the same is true of p1, p2 and
p3. The density parameter Ω is equal to 3ρ

(trk)2 . The mean curvature can be

recovered from a solution of the Wainwright-Hsu system using the equation

(trk)′ = −(1 + q)(trk). (25)

Theorem 1 Let (M, g) be a solution of the Einstein equations coupled to a

scalar field φ in four dimensions with symmetry of a Bianchi type other than

IX or VI− 1

9

. If the solution is expanding at some time and the time interval of

definition of the solution is maximal then the upper limit of the interval is infinity

and the generalized Kasner exponents and the density parameter Ω converge to

limits as t→ ∞.

Proof Bianchi type I solutions are defined by the condition N1 = N2 = N3 = 0.
It follows from the Hamiltonian constraint that q = 2 and that Σ+, Σ− and
Ω are constant. That the conclusion of the theorem holds for Bianchi type II
solutions, which are defined by the conditions N2 = N3 = 0 and N1 6= 0, was
shown in Lemma 7.1 of [18]. Bianchi type VI0 solutions are defined by the
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conditions N1 = 0, N2 > 0 and N3 < 0. The evolution equation for Σ+ reduces
to

Σ′
+ = −(2− q)(Σ+ + 1). (26)

It follows from the Hamiltonian constraint that q < 2. This in turn implies
that Σ+ + 1 is strictly positive and that Σ+ is strictly decreasing. Applying
the monotonicity principle to Σ+ shows that there can be no ω-limit point with
q < 2. Since the solution stays in a compact region it follows that q → 2 as
τ → ∞ and that N1 and N2 tend to zero. Since Σ+ and Ω are monotone and
bounded both of them tend to limits as τ → ∞. By the Hamiltonian constraint
the same is true of Σ−. Bianchi type VII0 solutions are defined by the conditions
N1 = 0, N2 > 0 and N3 > 0. Locally rotationally symmetric solutions of type
VII0 are defined by the additional conditions N2 = N3 and Σ− = 0. In this
case S+, S1 are zero and q = 2. Hence Ω and Σ+ are constant. The proof
for solutions of type VII0 which are not locally rotationally symmetric results
from a small modification of the proof of Proposition 5 of [19], which treats
the corresponding question in the vacuum case. First it can be shown by an
argument similar to that used for type VI0 case that Ω and Σ+ are strictly
monotone. This makes use of the equation

(N2 −N3)
′ = (q + 2Σ+)(N2 −N3) + 2

√
3Σ−(N2 +N3) (27)

to treat the points where Σ′
+ vanishes. Since Ω and Σ+ are also bounded they

must converge as t → ∞. It is not known a priori that the whole solution is
bounded and so it may not have an ω-limit point. Suppose that it does have such
a point. Using the monotonicity principle it can be shown that if τn is a sequence
of times along which the solution converges then either (Σ2

− + (N2 −N3)
2)(τn)

tends to zero or N1 + N2 does so. It can then be concluded as in [19], using
the monotone function Z−1 of that paper that Σ− → 0 as τ → ∞. Note that
Z−1 is monotone in the case with matter (see [19], Lemma 10.1). It remains to
treat the case in which the solution has no ω limit point. Then N1 and N2 must
tend to infinity and it can be assumed without loss of generality that the limit
of Ω+Σ2

+ is less than one. In particular this means that the limit of Σ+ cannot
be minus one. Hence, by (26) the quantity 2−q must be in L1. It can, however,
be shown by a slight modification of an argument of Ringström ([19], proof of
Proposition 5) that 2− q is not in L1. That argument uses two quantities called
x and y and the necessary modification is to replace them by

x =
Σ−

(1− Σ2
+ − Ω)

1

2

, (28)

y =

√
3

2

N2 −N3

(1− Σ2
+ − Ω)

1

2

. (29)

Bianchi type VIII solutions are defined by the conditions N1 < 0, N2 > 0 and
N3 < 0. The result of the theorem in this case follows from Theorem 3.1 and
Corollary 3.1 of [11].
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For models of Bianchi class B it follows from Proposition 5.3 of [10] that the
ω-limit set of any solution lies in a set L̄k. The parameter k distinguishes the
different Bianchi types and is equal to h−1 in types VIh and VIIh. For each
value of k, the set L̄k consists of equilibrium solutions. It is an open curve
Lk together with its two endpoints. The ω-limit set of a solution is in fact a
single point of L̄k. This can be seen as follows. A generic point of the curve
is transversely hyperbolic and so if it belongs to the ω-limit set no other point
can. The remaining points form a discrete set and so by connectedness of the
ω-limit set it cannot contain more than one of them.

The fact that Bianchi type IX is excluded in the hypotheses of this theorem is
essential. For the metric product of a four-dimensional solution of Bianchi type
IX with the real line fails to exist globally towards the future. On the other
hand there is no reason to expect that type VI− 1

9

has to be excluded. It appears
nevertheless that up to now no proof is available in that case.

Some more precise information will now be given on the asymptotics of scalar
field models. LetD be the disk in the space with coordinates (Σ+,Σ−, N1, N2, N3)
defined by the conditions that the Ni are all zero and Σ2

+ +Σ2
− < 1. Let L be

the line defined by N1 = 0, N2 = N3 > 0, Σ+ = −1 and Σ− = 0.

Theorem 2 Let (M, g) be a solution of the Einstein equations coupled to a

scalar field in four dimensions with symmetry of Bianchi class A. If the Bianchi

type is I, II or VI0 then the variables in the Wainwright-Hsu system converge

to limits as τ → ∞. If the Bianchi type is VIII the ω-limit set of each solution

is empty. In type VII0 both types of behaviour occur. The sets of points which

occur as ω-limit points is the disk D in type I, the open subset of D defined by

the inequality Σ+ > 1
2 in type II, the point of D̄ with (Σ+,Σ−) = (−1, 0) in type

VI0 and L in LRS type VII0. The limit of Ω is non-zero in types I and II and

zero in types VI0 and VIII.

Proof The Bianchi type I solutions of the Wainwright-Hsu system with a stiff
fluid are time independent and are exactly the points of D. It follows from
Theorem 1 that any solution of type II converges to a point of D as τ → ∞. It
is a consequence of the evolution equation for N1 that this point must satisfy
Σ+ ≥ 0. A more detailed analysis reveals that this inequality is strict. To
see this note that all terms on the right hand side of the equations for Bianchi
type II solutions have a common factor N1. Omitting this factor leads to a new
system whose integral curves are the same as those of the original system in the
region where N1 6= 0. The new system is

Ṅ1 = 2(1− 2Σ+)−
3

2
N2

1 , (30)

Σ̇+ = 3

(

1− 1

2
Σ+

)

N1, (31)

Σ̇− = −3

2
N1Σ−. (32)
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This system has a line of stationary solutions defined by the conditions N1 = 0
and Σ+ = 1

2 . Linearizing the system about one of these points reveals that it
has the eigenvalues 0,±3i. Because of the reduction theorem (cf. [17], section
5.6) the qualitative behaviour of the solutions can be determined by analysing
the dynamics on a centre manifold. The system on the centre manifold is such
that no solution can converge to the stationary point while staying in the region
N1 > 0 (cf. [15], p. 144, Theorem 5) and this implies the desired result. Any
point of D with Σ0 >

1
2 occurs as the ω-limit point of a solution of type II since

the linearization there has a negative eigenvalue. By Theorem 1 any solution of
type VI0 converges to a point of D̄. As a consequence of the evolution equations
for N2 and N3 this can only be the point where Σ+ = −1. In particular
Ω → 0 and the solution looks asymptotically like a vacuum solution. Any
locally rotationally symmetric solution of type VII0 has Σ− = 0, N2 = N3 and
a constant value of Σ+. As τ → ∞ the quantity N2 tends to infinity. For type
VII0 solutions which are not LRS it has already been shown that Σ2

+ + Ω → 1
and that Σ− and N2 − N3 tend to zero. If the solution has no ω-limit point
then Ω → 0 as τ → ∞ and Σ+ → 1. For general type VIII it is shown in [11]
that Ω → 0 and N+ → ∞.

4 A criterion for geodesic completeness

The aim of this section is to prove the following criterion for geodesic com-
pleteness. The general set-up is a spatially homogeneous spacetime defined
by a one-parameter family gab(t) of left-invariant metrics on a Lie group G of
dimension n.

Theorem 3 Let (M, g) be a locally spatially homogeneous vacuum spacetime

of dimension n + 1 < 10 whose symmetry is defined by a Lie group G which

admits no left-invariant metrics of positive scalar curvature. If for some t0 the

generalized Kasner exponents satisfy

sup
t≥t0

min
a
pa(t)− inf

t≥t0
min
a
pa(t) ≤

9− n

4n
(33)

then the spacetime is geodesically complete.

Proof Since the scalar curvature is non-positive it follows from the Hamiltonian
constraint that kabk

ab ≤ (trk)2 and hence that
∑

a p
2
a ≤ 1. The minimum of

∑

a p
2
a subject to the constraint

∑

a pa = 1 occurs when all pa are equal, as
follows from the method of Lagrange multipliers. Hence

kabk
ab ≥ (trk)2

n
. (34)

The minimum possible value of pa is −n−2
n

, as has been proved in [17], p. 96. By
symmetry this is also the minimum value of any other pa. It can be concluded
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that the maximum eigenvalue λmax satisfies

1

n
trk ≤ λmax ≤ −n− 2

n
trk. (35)

If the value of λmax is fixed the inequality (34) can be improved. Assume that
λmax = λ1. Using Lagrange multipliers again it can be seen that the minimum
of kabk

ab is attained when all λa other than λ1 are equal. Hence the lower bound
for kabk

ab is got by setting

λ2 = . . . = λn =
trk − λmax

n− 1
. (36)

It follows that kabk
ab is bounded below by

λ2max +
(trk − λmax)

2

n− 1

= (trk)2(np2min − 2pmin + 1)(n− 1)−1

= (trk)2P (pmin). (37)

The function P is positive and decreasing on
[

−n−2
n
, 1
n

]

. Let p0 be the supre-
mum in t of pmin(t). Then by definition pmin(t) ≤ p0 for all t. On the
other hand the hypotheses of the theorem imply that pmin(t) ≥ p0 −∆ where
∆ = p0 − inft≥t0 mina pa(t). Assume that p0 −∆ < 0. (Geodesic completeness
in the case p0 ≥ ∆ is treated in Theorem 4.) Now

∂t(trk) = kabk
ab ≥ P (p0)(trk)

2. (38)

Integrating this in t gives

(trk)(t) ≥ −P (p0)−1

C + t
(39)

for a constant C depending on t0 and trk(t0). Let qa be the projection of the
tangent vector to a causal geodesic onto the hypersurfaces of constant t. Then

d

dt
(gabq

aqb) = 2kabq
aqb ≤ 2(p0 −∆)(trk)gabq

aqb. (40)

Replacing trk in this inequality using (39) and integrating gives

(gabq
aqb)−

1

2 ≥ C(1 + t)−λ (41)

where λ = ∆−p0

P (p0)
. The affine parameter length of a causal geodesic up to time τ

is given by
∫ τ

to

(ǫ + gabq
aqb)−

1

2 dt (42)

where ǫ is one for timelike geodesics parametrized by arc length and zero for
null geodesics. This integral diverges provided λ ≤ 1. It remains to show that
this follows from the inequality ∆ ≤ 9−n

4n . Now

∆− p0

P (p0)
≤ 1 (43)
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is equivalent to

p20 +
n− 3

n
p0 +

1

n
− n− 1

n
∆ ≥ 0. (44)

The expression on the left hand side of this inequality has its minimum at
p0 = −n−3

2n . Its value there is

n− 1

n

(

9− n

4n
−∆

)

. (45)

This completes the proof of the theorem.

For simplicity this theorem has been stated for the vacuum case only. In
fact the theorem, and its proof, generalize straightforwardly to the case where
matter is present provided the matter satisfies the dominant and strong energy
conditions and has reasonable evolution properties. The precise formulation of
the last property is the matter continuation criterion (MCC) introduced in [17].
A variant of Theorem 3 is given by

Theorem 4 Let (M, g) be a locally spatially homogeneous vacuum spacetime of

dimension n+ 1 whose symmetry is defined by a Lie group G which admits no

left-invariant metrics of positive scalar curvature. If for some t0 the generalized

Kasner exponents satisfy pa ≥ − 1
n
then the spacetime is geodesically complete.

Proof The proof proceeds in a similar way to that of the previous theorem.

This time the inequality ∂t(trk) ≥ (trk)2

n
implies that

(trk)(t) ≥ − n

C + t
(46)

and that
(gabq

aqb)−
1

2 ≥ C(1 + t)−λ. (47)

This completes the proof.

This theorem also generalizes easily to the case with matter satisfying the DEC,
SEC and MCC. In the case n = 3 the hypothesis on the pa is satisfied identically.

Next a large class of Lie groups will be exhibited for which the assumptions of
Theorem 3 are satisfied. They are obtained using products of three-dimensional
Lie groups with Abelian groups of arbitrary dimensions.

Theorem 5 Let (M, g) be a spatially homogeneous solution of the vacuum Ein-

stein equations in n+1 dimensions with 3 ≤ n < 9. Suppose that the group defin-

ing the homogeneity is of the form G3× (R⋊Z2)
n−3 for some three-dimensional

Lie group G whose Bianchi type is neither IX or VI− 1

9

. If the solution is max-

imally extended to the future then it is geodesically complete.

Proof Under the hypotheses of this theorem Kaluza-Klein reduction can be
used to relate the generalized Kasner exponents of the higher dimensional vac-
uum model to the generalized Kasner exponents of the reduced Einstein-scalar
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field model in four dimensions. By Theorem 1 and the formulae (13) and (14) it
follows that the generalized Kasner exponents of the (n+1)-dimensional space-
time converge as t → ∞. This conclusion makes use of the fact that, since
2Ω
3 = (

∂t̃φ

trk̃
)2, the convergence of

∂t̃φ

trk̃
is equivalent to that of Ω. Hence p0 = 0

and the hypotheses of Theorem 3 are satisfied.

5 Further examples

In the previous section geodesic completeness was proved for models based on
Lie groups belonging to a certain class not admitting metrics of positive scalar
curvature. To go further it is necessary to enter into the structure of more
general Lie algebras. (A good general reference for the theory of Lie groups
and Lie algebras is [21].) For this some definitions are necessary. If L is a Lie
algebra denote by [L,L] the subalgebra generated by the elements of L of the
form [x, y] for x and y in L. Define L(n) recursively by L(n+1) = [L(n), L(n)] and
L(1) = L. If L(n) = {0} for some n then L is called solvable. The radical R of
a Lie algebra L is an ideal of L which is solvable and which contains all other
solvable ideals. A Levi subalgebra is a subalgebra which, as a vector space, is
complementary to the radical. It is semisimple which means that it has no non-
trivial solvable ideals. A derivation of L is a linear mapping D which satisfies
D([x, y]) = [Dx, y] + [x,Dy] for all x and y. A particular type of derivations
are the inner derivations which are of the form [x, ] for some element x of the
algebra. Let L1 and L2 be two Lie algebras. Denote by DerL2 the vector space
of all derivations of L2. It is closed under commutators and in this way acquires
the structure of a Lie algebra. Let φ be a Lie algebra homomorphism from L1

to DerL2. A Lie algebra L can be defined as the direct sum of the underlying
vector spaces of L1 and L2 with the Lie bracket defined by

[(xi, y1), (x2, y2)] = ([x1, x2], [y1, y2] + φ(x1)(y2)− φ(x2)(y1)). (48)

The Lie algebra L is called the semidirect sum of L1 and L2. The Levi-Malcev
theorem says that any finite-dimensional Lie algebra can be written as a semidi-
rect sum of its radical R with a semisimple Lie algebra.

Consider now the case of four-dimensional Lie algebras. It is known that
the only semisimple Lie algebras of dimension no greater than four are su(2)
and sl(2,R). It follows that the only four-dimensional Lie algebras which are
not solvable are semidirect sums of the real numbers with su(2) and sl(2, R).
In fact the semidirect sum of the real numbers with a semisimple Lie algebra is
isomorphic to a direct sum. To see this note that every derivation of a semisimple
Lie algebra is inner. Hence the mapping φ defining the semidirect sum must
be of the form φ(x) = φS(x)[y0, ] for a linear map φS from L1 to R and some
y0 ∈ L2. It then follows that the linear map ψ from L to itself defined by

ψ(x, y) = (x, y + φS(x)y0) (49)

is an isomorphism from the given Lie algebra to the direct sum. The group
SU(2) × R admits left-invariant metrics of positive scalar curvature because

12



SU(2) does. On the other hand it is well-known that the simply connected
Lie group with Lie algebra sl(2,R) is diffeomorphic to R3. Hence the group
corresponding to the Lie algebra sl(2,R)⊕R is diffeomorphic to R4. Any simply
connected solvable Lie group is diffeomorphic to Rn for some n and hence admits
no metric of positive scalar curvature. Putting these facts together it can be
concluded that the only connected and simply connected four-dimensional Lie
group which admits a metric of positive scalar curvature is SU(2) × R. This
fact was noted in the thesis of Hervik [9], who refers to a paper of Patera et.
al. [14]. In the latter a list of Lie algebras of dimensions 4 and 5 is given which
are not direct sums and they are all stated to be solvable. It may be noted in
passing that on the basis of this the only types for which recollapse can occur in
five space dimensions are su(2)⊕R2 and su(2)⊕A2,1. The facts just mentioned
suggest the following conjecture:

Conjecture Let G be a connected and simply connected four-dimensional Lie
group which is not isomorphic to SU(2)× R. Then any spatially homogeneous
solution of the vacuum Einstein equations with this symmetry group which is
expanding at some time is future geodesically complete.

Theorem 5 proves this conjecture for Lie algebras which are the direct sum
of a three-dimensional Lie algebra and the real numbers and metrics which have
an additional discrete symmetry. Another case where something is known is
that where the four-dimensional algebra is a direct sum of two non-Abelian
subalgebras [1]. In the notation of [14] and [8] this is the case A2,1 ⊕A2,1. The
metrics covered by the theorem of [1] are not the most general left-invariant
metrics. They have a six-dimensional symmetry group. By Theorem 3.1 of [1]
the quantities P and Q converge to positive limits as t → ∞ and these are
essentially the generalized Kasner exponents. Hence Theorem 4 above applies.
Similar results are obtained in higher dimensions. These apply for example to
Lie algebras of the form A2,1 ⊕ Rn for any n. The limits of the generalized
Kasner exponents are non-negative. It is once again the case that only metrics
with additional symmetry are included.

The Lie algebras which define Bianchi models of class A are those which are
unimodular, i.e. those for which the trace of the structure constants is zero.
A four-dimensional Lie algebra which is the direct sum of a three-dimensional
algebra with the real numbers is unimodular if and only if the three-dimensional
Lie algebra is of class A. The unimodular four-dimensional Lie algebras which
are not of this form can be read off from Table 1 in [8]. In the notation used
there they are A4,1, A

−2
4,2, A

pq
4,5 for p + q = −1, Apq

4,6 for p + 2q = 0, A4,8

and A4,10. Some explicit solutions are known. In the cases A−2
4,2 and A

pq
4,5

explicit diagonal solutions are given in [5]. In both cases the generalized Kasner
exponents converge to (1, 0, 0, 0) and thus these solutions are future geodesically
complete by Theorem 4. In the case A4,8 a solution which is diagonal and self-
similar is given in [3]. Its generalized Kasner exponents are time-independent.
They are equal to (34 ,− 1

4 ,
1
4 ,

1
4 ). Theorem 4 applies to this solution and it is

interesting to note that this is a borderline case for that theorem. In the case
A4,10 an explicit solution is mentioned in [3] but the authors note that it has a
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higher dimensional symmetry group and can also be considered as corresponding
to the Lie algebra which is the direct sum of the Bianchi type II Lie algebra
with the real numbers. It admits a reflection symmetry of the type which makes
it belong to the class covered by Theorem 5.

There is a way of fitting many of these Lie algebras in a common geometrical
framework. In [16] the notion of local U(1)×U(1) symmetry was introduced and
it was shown how the Bianchi types I, II, VI0 and VII0 can be identified among
spacetimes with two commuting spacelike local Killing vectors and a global
topology which is a bundle over the circle with fibre T 2. The different Bianchi
types are distinguished by the algebraic structure of a certain 2× 2 matrix with
unit determinant. If both eigenvalues are real with unit modulus and the matrix
is diagonalizable then type I is obtained. A matrix which is not diagonalizable
gives rise to type II. When the eigenvalues are real and distinct type VI0 results.
Finally type VII0 is obtained when the eigenvalues are imaginary. The same
analysis can be repeated for one dimension higher, although it does not cover
all relevant algebras. In this case local U(1) × U(1) × U(1) symmetry is the
basic input and different cases are classified by the algebraic properties of a 3×3
matrix with unit determinant. If there is a real eigenvalue with unit modulus and
the corresponding Jordan block is one by one then a case is obtained where the
Lie algebra is the direct sum of one of the algebras seen in the three-dimensional
case with the real numbers. The only other case where all eigenvalues have are
real with unit modulus is that of a 3 × 3 Jordan block. This gives the algebra
A4,1. When the eigenvalues are real and all distinct type Apq

4,5 results. In the
case that there is pair of non-real eigenvlaues the Lie algebra which arises is Apq

4,6.
If there is a non-trivial Jordan block corresponding to a double eigenvalue then
A−2

4,2 occurs1. This construction does not apply to types A4,8 and A4,10 since
it can be shown straightforwardly that neither of these has a three-dimensional
Abelian subalgebra. This point of view shows that in all the cases where the
Lie algebra has a three-dimensional Abelian subalgebra the group can be made
to act on the universal cover of a spacetime with a compact Cauchy surface by
isometries of the pull-back of the spacetime metric. The topology of the Cauchy
surface is that of a bundle over S1 with fibre T 3.

A convenient feature of vacuum Bianchi models of class A is that initial
data whose components in a suitable basis are diagonal lead to solutions which
are also diagonal in that basis. Call a basis of this kind a canonical basis.
It is moreover the case that for any initial data of Bianchi class A there is a
canonical basis in which it is diagonal. These facts together mean that in order
to understand the dynamics of vacuum models of Bianchi class A it is enough
to understand the dynamics of diagonal models. The fact that models which
are initially diagonal remain diagonal can be proved using automorphisms of
the Lie algebras involved. For convenience let the linear transformation which
multiplies ei by (−1)ai , ai ∈ {0, 1}, be denoted by (a1a2a3). In a canonical
basis the transformations (110), (101) and (011) are automorphisms. In other

1Remarks related to the material of this paragraph are contained in an unpublished

manuscript of S. Hervik
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words, they leave the structure constants invariant. Data which are diagonal in
the given basis are invariant under these transformations. Because the structure
constants are invariant the Einstein evolution equations are also invariant under
these transformations. It follows from the unique determination of solutions by
data that invariant data lead to invariant solutions. A solution which is invariant
under all these transformations is diagonal. It would be nice if this argument
could be generalized to the case of unimodular Lie algebras in higher dimensions.
This is no problem if the Lie algebra is a direct sum of a three-dimensional Lie
algebra with the real numbers. For in that case the automorphisms of the
three-dimensional case can be trivially extended to get (in a hopefully obvious
notation) the automorphisms (1100), (1010) and (0110). For the other Lie
algebras this method has very limited success, at least if the bases in which the
Lie algebras are presented in [8] are taken as candidates for a canonical basis.
The only case in which there are enough automorphisms obtained by changing
the signs of some of the basis vectors to make the argument go through is Apq

4,5.
For that Lie algebra any automorphism must fix e4 but the signs of the other
basis vectors can be changed independently. In other words it is possible to use
the automorphisms (1000), (0100) and (0010). The Wainwright-Hsu system has
been very useful for the study of Bianchi class A models. Its simplicity relies
on the diagonalization property and so it may be that nothing of comparable
power is available for general unimodular Lie algebras in any higher dimension.

The theme of the present paper is the late-time behaviour of cosmological
models but the behaviour near the initial singularity is also of great interest.
For the latter subject the issue of diagonalization plays a very important role.
In spacetime dimension four it is believed that generic spatially homogeneous
solutions of the Einstein vacuum equations show oscillatory (Mixmaster) be-
haviour near the initial singularity and this has been proved rigorously in some
cases. (For Bianchi type IX see [18].) In 4 + 1 dimensions it seems that this is
still true but that restricting to the special case of diagonal models removes the
generic oscillations [6]. In particular, generic oscillations can occur for the group
SU(2) × R due to the influence of the non-diagonal degrees of freedom. The
situation is similar in dimensions up to 9 + 1 but beyond that the oscillations
are no longer generic. For some rigorous results on this see [4].

6 Conclusions and outlook

In the preceding sections it has been proved that spatially homogeneous solu-
tions of the Einstein equations in various dimensions with symmetries defined
by a large class of Lie groups are geodesically complete in the future. The case
considered in most detail is that of spacetime dimension five. Even there it
is to be hoped that something much more general can be proved. A sugges-
tion for a generalization of this kind is formulated as a conjecture in Section
5. Making a corresponding conjecture in general dimensions is dependent on
a sufficently good understanding of the structure of general Lie algebras. A
guide in formulating the conjecture was to restrict to those Lie groups which do
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not admit a metric of positive scalar curvature. Another direction of possible
generalization is to consider spatially homogeneous spacetimes where the Lie
group defining the symmetry is necessarily of a dimension higher than the space
dimension. These generalize the Kantowski-Sachs models in spacetime dimen-
sion four. In five spacetime dimensions the list of possibilities is as follows [8]:
the four-sphere S4 with symmetry group SO(4), the complex hyperbolic plane
CP2 with an eight-dimensional symmetry group, S2×S2 with a six-dimensional
symmetry group, S2×R2 and S2×H2 with five-dimensional symmetry groups.
All of these examples admit an invariant metric with positive scalar curvature
and so are not promising candidates for allowing spacetimes which are future
geodesically complete. The theorem of Bérard-Bergery [2] mentioned at the end
of Section 2 extends to homogeneous spaces which are more general than Lie
groups and may be helpful in investigating generalizations of Kantowski-Sachs
models in higher dimensions.

In the previous sections the cosmological constant Λ has always been as-
sumed to vanish. It is likely that the theorem of Wald [23] on the late-time
asymptotics of spatially homogeneous cosmological models with Λ > 0 extends
to arbitrary dimensions with the essential assumption (in the vacuum case) be-
ing the absence of metrics of positive scalar curvature. Combining this with the
ideas in [12] should give geodesic completeness. These ideas have, however, not
yet been worked out in detail.

There are very few results on future geodesic completeness for inhomoge-
neous spacetimes which do not rely on choosing initial data which are close to
those of a known solution (small data results). This applies even in the a priori
simpler case Λ > 0. In fact the only result of this kind for vacuum spacetimes
is that of Ringström [20]. It could be that obtaining a better understanding
of geodesic completeness for homogeneous models in higher dimensions would
provide new ideas for understanding the inhomogeneous case in spacetime di-
mension four.

It is interesting to ask what happens when there is a metric of positive scalar
curvature. Is there always recollapse in that case? It seems that very little is
known about this in spacetime dimensions greater than four. There are also
few results available for inhomogeneous solutions in four dimensions. Perhaps a
better understanding of the homogeneous case in higher dimensions could help
to change this. In particular, higher dimensions could be a good place to look
for a counterexample.

The long-time behaviour of solutions of the vacuum Einstein equations in
higher dimensions gives rise to a rich variety of problems concerning the dy-
namics of the gravitational field. In this paper we have obtained theorems on
some of the simpler of these, while pointing out promising directions for future
research. We have also emphasized that one motivation for studying these ques-
tions is the insights they may bring for the Einstein-matter equations in four
dimensions.
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