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Abstract

We consider gluon and gluino scattering amplitudes in large N β-deformed N = 4 SYM with real β. A direct inspection of the planar diagrams
shows that the scattering amplitudes to all orders in perturbation theory are the same as in the undeformed N = 4 SYM theory. Using the dual
σ -model description, we find the same equality at strong coupling to all orders in the σ -model loop expansion. Finally, we show that the same
analysis holds for gluon scattering amplitudes in a three-parameter deformation of planar N = 4 SYM that breaks all the supersymmetry.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Recently, a possible intriguing duality has been revealed in
N = 4 SYM theory at the planar limit. The planar MHV gluon
scattering amplitudes A in the theory seem to have a dual de-
scription in terms of the expectation value of a Wilson loop,
whose contour C consists of light-like segments, which are pro-
portional to the light-like momenta ki of the external gluons

(1.1)A= 1

N

〈
trP exp

(
i

∮
C

Aμ(x)dxμ

)〉
+ O

(
1/N2).

A prescription, along these lines, for the computation of the
planar gluon scattering amplitudes in N = 4 SYM at strong
coupling has been proposed in [1]. The kinematic factor of the
color ordered planar scattering amplitude A was mapped to the
computation of the Wilson loop, which using the gauge/gravity
correspondence [2,3], translates to the construction of a mini-
mal area string worldsheet ending on the loop. The exponential
of this (regularized) area represents the gluon scattering ampli-
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(1.2)A∼ exp

(
−

√
λ

2π
Area

)
,

where λ = g2N . The four-gluon scattering amplitude at strong
coupling λ � 1 was computed in this way in [1], and was shown
to be in agreement with the general structure conjectured by
Bern et al. in [4]. Evidence for the duality at weak coupling has
been given recently, at one-loop in [5,6], at two-loop in [7,8],
and for its possible breakdown for six gluons in [9]. A study of
quark scattering amplitudes has been done in [10,11].

A natural question to ask is whether there are other theo-
ries with less supersymmetry where this duality can hold. In
this Letter we will consider gluon and gluino scattering ampli-
tudes and the corresponding light-like Wilson loops in large N

β-deformed N = 4 SYM with real β (for a discussion of Wil-
son loops in the β-deformed theory see [12]). This deformation
breaks the N = 4 supersymmetry to N = 1. We will further
analyse a γ -deformation of N = 4 SYM that breaks supersym-
metry completely.

The Letter is organized as follows. In Section 2 we will ana-
lyze the planar gluon scattering amplitudes and Wilson loop in
the weak coupling regime of the theory. We will argue, based
on the observation that the β-deformed theory can be written
as a non-commutative deformation of the N = 4 theory, that
to all orders in perturbation theory they have exactly the same
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values as in N = 4 SYM. In Section 3 we will analyze the
strong coupling regime and use the σ -model description of the
β-deformed theory and show that the same holds to all orders
in the σ -model loop expansion. In Section 4 we will consider
planar gluon scattering amplitudes and the corresponding Wil-
son loop expectation value in a three-parameter deformation of
N = 4 SYM that breaks all the supersymmetry. We will see that
the same analysis done for the β-deformed theory applies also
here.

In this Letter we assume that the deformation parameter β

is real. One may also consider the case where β is complex.
The resulting deformed theory was argued to be conformal [13]
(for a recent discussion see [14]). On the perturbative field the-
ory side, inspection of the planar diagrams shows that unlike
the case with real β , here there is a dependence of the scat-
tering amplitudes on the deformation parameter. However, it
is straightforward to check that the dependence on β does not
appear up to the two-loop order both in the gluon scattering am-
plitudes and in the Wilson loop. In the strong coupling regime,
the dual supergravity background is of a warped type. It was ob-
tained by employing an S-duality transformation [15], and we
lack a simple σ -model description.

2. Weak coupling analysis

We will consider the β-deformation of N = 4 SYM with
SU(N) gauge group at large N . In the following we will take
the parameter β to be real. The deformed theory has N = 1 su-
persymmetry and is conformally invariant [13,16,17]. The field
content of the β-deformed theory is identical to that of N = 4
SYM, i.e., it consists, in N = 1 language, of a vector super-
field V ∼ (Aμ,λα) and three chiral superfields ΦI ∼ (φI ,ψI

α),
I = 1,2,3, all transforming in the adjoint representation of the
gauge group. The SU(4) R-symmetry of N = 4 SYM is bro-
ken by the deformation to U(1)R × (U(1) × U(1))flavor. The
vector multiplet fields are neutral under the flavor symmetry,
while the fields in the three chiral multiplets carry the charges
(Q1,Q2) = (0,−1), (1,1) and (−1,0), respectively.

Written in terms of N = 1 superfields, the action of the
β-deformed theory is that of three adjoint chiral multiplets cou-
pled to a vector multiplet and a superpotential

(2.1)W = g tr
(
qΦ1Φ2Φ3 − q̄Φ1Φ3Φ2) = gabcΦ

a
1 Φb

2 Φc
3,

where g is the gauge coupling, q = eiπβ (|q| = 1 for real β) and

(2.2)gabc = g
(
qcabc − q−1cacb

)
, cabc = tr

(
T aT bT c

)
.

The superpotential can be written in the form of a d-type and a
f -type coupling as in [13],

(2.3)W = 2g
(
cos[πβ]fabc + i sin[πβ]dabc

)
Φa

1 Φb
2 Φc

3,

where fabc = tr(T a[T b,T c]), dabc = tr(T a{T b,T c}). The lat-
ter term in W vanishes for β = 0 where one recovers the N = 4
theory. Note that the N = 4 SYM action and its β-deformation
have the same propagators and chiral-vector vertices and differ
only in the chiral vertex.
The Coulomb branch of the β-deformed theory is a solution
to the F -term equations

Φ1Φ2 = qΦ2Φ1, Φ2Φ3 = qΦ3Φ2,

(2.4)Φ3Φ1 = qΦ1Φ3.

A useful observation is that the β-deformed action can be
written using a noncommutative ∗-product between the matter
fields defined as [15]

(2.5)f ∗ g = e
iπβ(Q1

f Q2
g−Q2

f Q1
g)

fg,

where fg is the ordinary product and (Q1,Q2) are the (U(1)×
U(1))flavor charges of the matter fields (the vector multiplet is
neutral under the flavor group). This has been employed in [17]
with N = 4 light-cone superspace to prove the finiteness of the
β-deformed theory at large N .

By a direct inspection of Feynman diagrams as in [18–20],
it is straightforward to see that the only modification of planar
diagrams compared to N = 4 SYM, is the multiplication by
an overall phase, which depends only on the flavor charges of
the fields on the external lines. In particular if all the fields on
the external lines are gluons and gluinos, the phase is 1 and
the scattering amplitudes are same as in the undeformed N = 4
SYM theory. This holds to all orders in perturbation theory for
any n-point function. The same argument can be employed in
the computation of the expectation value of the Wilson loop
in the planar limit of the β-deformed theory and shows that it
agrees with the N = 4 SYM result to all orders in perturbation
theory.

3. Strong coupling analysis

We have argued in the previous section that at weak cou-
pling the β deformation is invisible in the planar gluon and
gluino scattering amplitudes to all orders in perturbation theory.
In this section we will consider the β-independence of the scat-
tering amplitudes at strong coupling. We will use the σ -model
description of the dual supergravity background and show that
it holds at strong coupling to all orders in the σ -model loop ex-
pansion.

As we discussed above, the prescription for the computa-
tion of the planar gluon scattering amplitudes in N = 4 SYM at
strong coupling was mapped using the gauge/gravity correspon-
dence to the construction of a minimal area string worldsheet
ending on the loop [1].

There are two ingredients in the computation that we will
need to pay special attention to. The first one is that in or-
der to map the scattering amplitude computation to the Wilson
loop one at strong coupling, a T-duality on all four directions
along the boundary of AdS5 has been employed. The loop is
the boundary of the T-dualized open string world sheet in AdS
space, corresponding to the IR region in field theory. The sec-
ond one is that the area of the minimal surface is infinite and
needs regularization. The infinity corresponds to the infrared
divergences in the field theory. One type of regularization intro-
duced in [1], was in the form of a D3-brane placed at a large
value of the AdS5 radial coordinate ZIR , and at an arbitrary
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point in the internal S5 space. In the field theory language it
translates to going along the Coulomb branch. The Coulomb
branch of the β-deformed theory (2.4) differs from that of
N = 4 SYM. Therefore, if we wish to employ a similar reg-
ularizaton procedure, we will have to place the D3-brane in
a particular locus in the internal part of the space.

3.1. The dual supergravity description

The dual gravity background of the β-deformed theory at
large N was constructed in [15]. The metric for real β is of
the type AdS5 × M5, where M5 is a deformation of S5. With
the S5 parameterized by three angular coordinates φi and three
radial coordinates μi satisfying μ2

1 + μ2
2 + μ2

3 = 1, the metric
on M5 takes the form

ds2
M5

=
3∑

i=1

(
dμ2

i + Gμ2
i dφ2

i

)

(3.1)+ βR2Gμ2
1μ

2
2μ

2
3

(
3∑

i=1

dφi

)2

,

where G−1 = 1 + βR2(μ2
1μ

2
2 + μ2

2μ
2
3 + μ2

1μ
2
3) and R is the S5

radius. In addition to this deformation of the S5-part of the met-
ric and the field strength F (5), the deformed background has all
bosonic Type IIb supergravity fields turned on. However, the
modification of all the background fields depends completely
on the compact part M5. This means, in particular, that the
T-duality transformation in the AdS5 part, that is used in or-
der to map the scattering amplitude computation to a Wilson
loop one is still valid in the β-deformed geometry.

The deformation of S5 to M5 is obtained by TsT trans-
formation: a combination of a T-duality along one of the cir-
cles, followed by a shift along the second circle and a second
T-duality along the first circle. The flat directions correspond-
ing to the field theory Coulomb branch are characterized by
the points in M5 where two of the μi ’s vanish. Indeed, it is
straightforward to see that a D3-brane that is moved in the radial
direction of AdS5 and is located at these points in the internal
space experiences zero force. Thus, the analog of the regular-
ization procedure of [1], requires a location of the D3-brane
at this locus of points. Obviously, this is expected since the
Coulomb branch of N = 4 SYM differs from that of its de-
formation. Note also that along this locus the dependence of
all the background fields on β disappears. We should stress,
however, that we are computing the gluon scattering amplitude
and the corresponding expectation value of the Wilson loop at
the origin of the Coulomb branch. Moving the D3-brane along
the Coulomb branch is only one type of regularization (dimen-
sional regularization can be another method) and the fact that it
can be located only at a certain locus in M5 is not a restriction
on the validity of the results, but only on the use of this type of
regularization.

The computation of the minimal surface in [1] was done at
fixed position in the internal space and the solution does not de-
pend on the coordinates of S5. This minimal surface solution
is also a solution in the β-deformed background and is inde-
pendent of the deformation parameter. Thus, the result of [1]
carries over to the β-deformed case, and one gets exactly the
same four-gluon scattering amplitude as that of N = 4 SYM
at strong coupling. Similarly, the n-gluon scattering amplitudes
are independent of β at strong coupling and are the same as
those of N = 4 SYM.

1√
λ

corrections to the result of [1] are due to fluctuations
around the classical minimal surface solution. To leading order
in N they are σ -model loops on the world sheet with the disc
topology. The σ -model corrections to [1] have been considered
in [21]. This analysis uses the explicit form of the Green–
Schwarz action in the AdS5 × S5 background [22] to compute
the fluctuation spectrum of the world-sheet fields.

As we discussed above, the β-deformed background is inde-
pendent of β at those points where two of the μi ’s vanish. Let us
fix the internal coordinate of the minimal surface solution to one
of those points and consider the fluctuation spectrum around
this solution. The procedure is the same as in [23] and uses a
covariant background field expansion and Riemann normal co-
ordinates. For the bosonic fluctuations along the tangent space
of AdS5 there are no changes compared to the undeformed case.
The fluctuations tangential to the internal space is, in general,
affected. However, due to the fact that the classical solution
satisfies φi = μi = const and furthermore, say, μ1 = μ2 = 0,
the fluctuation determinant will again be as in the undeformed
background geometry.1 The same holds for the fermions. Thus,
up to the quadratic order the action for the fermionic fluctua-
tions is the same as in the undeformed case. This shows that
the 1√

λ
corrections to the strong coupling result are unmodified

by the β-deformation, at least if we place the minimal surface
which ends on the light-like Wilson loop at a point where two
of the μi ’s vanish.

In the following we will show using the Green–Schwarz
σ -model on the β-deformed background that the requirement
of placing the solution at those special points corresponding to
the Coulomb branch is not needed. Moreover, we will argue
that the results are the same as in the undeformed N = 4 SYM
theory at strong coupling to all orders in the σ -model loop ex-
pansion.

3.2. The σ -model description

A Green–Schwarz σ -model describing a closed string prop-
agating on the β-deformed background was constructed in [24].
The authors of [24] have shown that the deformation of the
Green–Schwarz σ -model action can be replaced by a modifi-
cation of the periodicity properties of the world-sheet fields.
More specifically, they showed in general that the angular co-
ordinates φi in the compact space, which were involved in the
TsT-transformation are no longer periodic in σ → σ + 2π . The
difference φ(σ + 2π) − φ(σ) (mod 2π) is proportional to the
deformation parameter and to the U(1) Noether charges asso-

1 In general there are terms of the form
√

hhijRμνρσ ∂iX
μ
cl

∂j X
ρ
cl

ξνξσ where
hij is the world-sheet metric and ξμ the bosonic fluctuations. This term van-
ishes for Xcl = const.
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ciated to the two isometries φi → φi + const. In the following
we will use the notations of [24].

For a purely bosonic background the action reads (Fα and
Bα vanish)

(3.2)L = tr
[
γ αβ∂αGG−1∂βGG−1],

where G = ( ga 0
0 gs

)
, and ga ∈ SU(2,2) and gs ∈ SU(4) provide

a parametrization of AdS5 and S5. For us the relevant piece
is gs , which gives

(3.3)L ∼ γ αβ
3∑

i=1

(
μ2

i ∂αφi∂βφi + ∂αμi∂βμi

)
.

This implies that the Noether currents, whose charge are re-
sponsible for the non-periodicity of the fields depend only
on ∂αφ and not on φi (U0

β,i = V 0
β,i = 0)

(3.4)Jα
i ∼ ∂αφi.

For constant φi , as is the case in the internal part of the min-
imal area solution, this vanishes. According to [24] this also
means that the fermionic fields are still periodic. Combining
these arguments we conclude that the analysis of the spectrum
of fluctuations is unmodified by the deformation.

In fact, the calculation of the loop corrections to the light-
like Wilson loop in the σ -models of AdS5 × S5 and its TsT
deformation will give the same result to all orders. The rea-
son being, that the classical solution dictates the periodicity of
the fields and those are β-independent for the case at hand.
Therefor, the corrections to any loop order in both σ -models
are identical.

4. Nonsupersymmetric deformation

In this section we will consider planar gluon scattering am-
plitudes and the corresponding Wilson loop expectation value
in a three-parameter deformation of N = 4 SYM that breaks
all the supersymmetry. The resulting nonsupersymmetric de-
formed theory is scale invariant in the planar limit [25]. We
denote the three real deformation parameters by γi , i = 1,2,3
and refer to the deformed theory as γ -deformed. When all the
deformation parameters are equal γi = β , i = 1,2,3, we ob-
tain the β-deformed theory that we discussed previously. The
γ -deformed theory has the same field content as N = 4 SYM,
with a modification of the N = 4 SYM Yukawa and scalar quar-
tic couplings by phase factors. These phases break the SU(4)

R-symmetry to its Cartan subgroup, now being a flavor sym-
metry U(1)3

flavor of the deformed theory. The six scalars and
all the Weyl fermions including the gaugino are charged under
U(1)3

flavor. The gauge field is not charged under the U(1)3
flavor.

Since unlike the β-deformed theory, the gauge field is neutral
while the gaugino is charged under the flavor symmetry, super-
symmetry is completely broken.

As in the β-deformed case, also the γ -deformed action
can be written using a noncommutative ∗-product between the
fields defined as

(4.1)f ∗ g = e
iπγiε

ijkQ
f
j Q

g
k fg,
where fg is the ordinary product and Qi , i = 1,2,3 are the
U(1)3

flavor charges of the fields. Again, by a direct inspection
of Feynman diagrams it is straightforward to see that the only
modification of planar diagrams compared to N = 4 SYM, is
the multiplication by an overall phase, which depends only on
the flavor charges of the fields on the external lines. In partic-
ular if all the fields on the external lines are gluons, the phase
is 1 and the scattering amplitudes are same as in the undeformed
N = 4 SYM theory. This holds to all orders in perturbation the-
ory for any n-point function. Note, that unlike the β-deformed
theory, here the gluino scattering amplitudes differ from those
of the N = 4 SYM since they are charged under the flavor sym-
metry group. Also, the same argument can be employed in the
computation of the expectation value of the Wilson loop in the
planar limit of the γ -deformed theory and shows that it agrees
with the N = 4 SYM result to all orders in perturbation theory.

The dual gravity background of the γ -deformed theory at
large N was constructed in [26], using three TsT transforma-
tions. The metric is of the type AdS5 × M5, where M5 is a
deformation of S5

ds2
M5

=
3∑

i=1

(
dμ2

i + Gμ2
i dφ2

i

)

(4.2)+ R2Gμ2
1μ

2
2μ

2
3

(
3∑

i=1

γi dφi

)2

,

where G−1 = 1 + R2(γ3μ
2
1μ

2
2 + γ1μ

2
2μ

2
3 + γ2μ

2
1μ

2
3) and R

is the S5 radius. Again, in addition to this deformation of the
S5-part of the metric and the field strength F (5), the deformed
nonsupersymmetric background has all bosonic Type IIb super-
gravity fields turned on and affects only the compact part M5.
Thus, the T-duality transformation in the AdS5 part, that is used
in order to map the scattering amplitude computation to a Wil-
son loop one is valid also in the γ -deformed geometry.

A Green–Schwarz σ -model describing a closed string prop-
agating on the γ -deformed background was constructed in [24].
Again, the deformation of the Green–Schwarz σ -model action
can be replaced by a modification of the periodicity properties
of the world-sheet fields. The same arguments that we em-
ployed in the β-deformed case can be used here: the Noether
currents, whose charge are responsible for the non-periodicity
of the fields depend only on ∂αφi and vanish for constant φi , as
is the case in the internal part of the minimal area solution. The
fermionic fields are still periodic and the analysis of the spec-
trum of fluctuations is unmodified by the deformation. There-
fore, the corrections to any loop order in the AdS5 × S5 and the
γ -deformed σ -models are identical.
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