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Abstract
We consider stationary, axially and equatorially symmetric systems consisting
of a central rotating and charged degenerate black hole and surrounding matter.
We show that a2 +Q2 = M2 always holds provided that a continuous sequence
of spacetimes can be identified, leading from the Kerr–Newman solution in
electrovacuum to the solution in question. The quantity a = J/M is the black
hole’s intrinsic angular momentum per unit mass, Q its electric charge and M
is the well-known black hole mass parameter introduced by Christodoulou and
Ruffini.

PACS numbers: 04.70.Bw, 04.40.−b, 04.20.Cv

1. Introduction

There are several equivalent formulae to express the mass M of a single Kerr–Newman black
hole in vacuum. Since in this spacetime no additional matter sources are present the mass can

(i) be read off from the far-field expansion of the metric (this gives the ADM mass)
(ii) be written in terms of a Komar-like integral over the black hole horizon [1]

(iii) be expressed in terms of the angular momentum J , the charge Q and the horizon area A

(Christodoulou and Ruffini [2]).

If one considers axisymmetric and stationary black holes surrounded by matter sources these
three descriptions are no longer equivalent. Obviously, the ADM mass characterizes the
total mass of the system and is therefore not a valid measure for a local mass of the black
hole. But also the mass expressions (ii) and (iii) can be very different since, e.g., in contrast
to the positive definite Christodoulou–Ruffini mass, the Komar-like integral can become
negative [3].
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A well-known relation for degenerate Kerr–Newman black holes is given by

a2 + Q2 = M2, (1)

where a = J/M is the black hole’s intrinsic angular momentum per unit mass and Q is its
electric charge. Here we define the degeneracy of a black hole by requiring that the surface
gravity κ be zero, i.e. we follow the second characterization in the recent paper by Booth and
Fairhurst [4].

Relation (1) is no longer true if we take for M the Komar mass parameter and allow for
matter surrounding the black hole. In fact, it has been demonstrated that the Komar mass
parameter can vanish for a rotating, uncharged and degenerate black hole with finite angular
momentum J [3, 5].

In this paper we show that, in contrast, relation (1) holds even when the degenerate black
hole is surrounded by additional matter if one takes the Christodoulou–Ruffini mass definition
instead, which is given through the angular momentum J , the electric charge Q and the horizon
area A by [2]

M =
√(

Mirr +
Q2

4Mirr

)2

+
J 2

4M2
irr

, (2)

where the irreducible mass Mirr mass reads as

Mirr =
√

A

16π
. (3)

Thus, for the Christodoulou–Ruffini mass definition we prove that the second degeneracy
characterization in [4] implies the first one in that paper. In fact, the validity of relation (1)
distinguishes the Christodoulou–Ruffini mass parameter among other known quasi-local mass
definitions, as e.g. the Hawking mass. A similar statement applies to the particular form
of the angular momentum, being composed of Komar and specific electromagnetic field
contributions, see section 4.

The Christodoulou–Ruffini mass conception plays a fundamental role in the isolated and
dynamical horizon formalism. (See [6] for an overview.) Moreover, this mass parameter
is being used widely in the field of dynamical calculations of spacetimes containing black
holes, e.g. for describing black holes in the centre of surrounding accretion discs. (See [7]
and references therein.) In particular, a black hole is assumed to be close to extreme (i.e.
degenerate) if (1) is nearly satisfied. However, for a dynamical spacetime or a stationary
spacetime with a considerable amount of additional matter the validity of this assumption has
not been demonstrated.

In this paper, we provide a justification for this assumption by showing the validity
of (1) in the case of a single rotating, charged and degenerate black hole surrounded by
additional matter in axisymmetry and stationarity. Note that, although the charge Q can be
neglected for astrophysically relevant situations, it is important to derive the relation (1) within
the full Einstein–Maxwell theory since the surrounding matter may well carry a significant
electromagnetic field.

The paper is organized as follows. In section 2, we present the line element and the
Einstein–Maxwell equations in axisymmetry and stationarity. Metric and electromagnetic
expressions which stay regular in the vicinity of the black hole horizon are introduced in
section 3. In section 4, we give integral formulae for the quantities needed in (1). The
horizon boundary values in the degenerate limit, being essential for proving (1), are derived in
section 5. We conclude with a theorem summarizing our results and a discussion of physical
inequalities for non-degenerate black holes closely related to (1).
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We use units in which the gravitational constant and the speed of light are unity. Note that
derivatives with respect to a radial coordinate, r or R, as well as with respect to the angular
coordinate θ are indicated by corresponding subscripts.

2. Stationary and axisymmetric vacuum Einstein–Maxwell equations

For a stationary and axisymmetric spacetime containing a black hole and surrounding matter,
we can write the metric tensor in the electrovacuum region in terms of spherical coordinates
(r, θ, ϕ, t) as follows3:

ds2 = e2µ(dr2 + r2 dθ2) + r2B2 e−2ν sin2 θ(dϕ − ω dt)2 − e2ν dt2.

We decompose the potential ν in terms of a function u:

ν = u + ln B. (4)

In this way we obtain a quadruple (µ,B, u, ω) of metric coefficients (depending on r and θ )
which remain finite in the vicinity of the black hole, also when a central non-degenerate black
hole is present4.

Note that at the rotation axis (sin θ = 0) the following regularity condition holds:

µ + u = 0. (5)

As investigated by Carter (see [9], p 150) and Bardeen (see [8], p 251), the space in the
immediate exterior vicinity of the black hole horizon must be electrovacuum, since any
stationary matter configuration would have to resist an infinite gravitational acceleration on
the horizon. Therefore, in the vicinity of the black hole the energy–momentum tensor is
determined solely by the axisymmetric and stationary electromagnetic field:

4πT (EM)
mn = FamF a

n − 1
4gmnFabF

ab,

where the electromagnetic field tensor can, in Lorenz gauge5, be written in terms of a covector
(An) = (0, 0, Aϕ,At ):

Fmn = Am,n − An,m.

The Einstein equations in electrovacuum are then given by:

∇ · (B∇ν) = 1

2
e−4ν r2B3(∇ω)2 sin2 θ +

e2ν

Br2 sin2 θ
(∇Aϕ)2 + B e−2ν(∇At + ω∇Aϕ)2 (6)

∇ · (r2B3 e−4ν sin2 θ∇ω) = 4B e−2ν ∇Aϕ · (∇At + ω∇Aϕ) (7)

∇ · (r sin θ∇B) = 0 (8)

µrr +
1

r
µr +

1

r2
µθθ = 1

4
e−4ν r2B2 sin2 θ(∇ω)2 + ∇ν · ∇[ln(r sin θ) − u]. (9)

The vacuum Maxwell equations can be written as6:

∇ · [B e−2ν(∇At + ω∇Aϕ)] = 0 (10)

3 This formulation is an adaptation of the line element used in [8], with spherical coordinates introduced through
ρ = r sin θ, z = r cos θ .
4 In section 3, we shall introduce appropriate coordinates and functions of these metric coefficients which stay regular
even in the degenerate limit.
5 Although this gauge is in most textbooks erroneously attributed to the Dutch physicist H A Lorentz, it was actually
published by the Danish physicist L Lorenz [10].
6 Note that there are typos in the corresponding formulae in [9, 11].
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∇ ·
(

e2ν

Br2 sin2 θ
∇Aϕ

)
= B e−2ν ∇ω · (∇At + ω∇Aϕ). (11)

Here we have made use of the following identities:

∇φ · ∇ψ = φrψr +
1

r2
φθψθ

∇ · (φ∇ψ) = φ

[
ψrr +

2

r
ψr +

1

r2
(ψθθ + ψθ cot θ)

]
+ ∇φ · ∇ψ.

The ∇-operator has its usual meaning in a three-dimensional flat space, and the functions φ

and ψ depend on r and θ only.

3. Regular metric coefficients in the vicinity of the horizon

We follow the treatment of the general properties of stationary and axisymmetric event horizons
discussed in [9, 12] and in particular [8]. Let, in our coordinates, the central black hole’s
horizon be described by a constant radius r = rh and introduce a new radial coordinate R
through

R = 1

2

(
r +

r2
h

r

)
. (12)

Then, as stated by Bardeen [8, pp 251–2], the following functions of the above potentials are
positive and regular with respect to R and cos θ in the vicinity of the black hole even when the
degenerate limit is encountered7:

µ̂ = r2 e2µ (13)

û = r2 e−2u (14)

B̂ = r√
R2 − r2

h

B. (15)

Note that, for a single Kerr–Newman black hole in electrovacuum, the coordinate R is closely
related to the radial Boyer–Lindquist coordinate, rBL = 2R + M .

As for the Boyer–Lindquist form of the Kerr–Newman metric, also in the general case
with surrounding matter the coordinate R penetrates the horizon, that is, spatial points with
coordinate values R < rh are inside the horizon. Note that, in contrast, for any value r > 0
we obtain R � rh, i.e. the coordinate r is not horizon penetrating8.

The remaining metric function ω as well as the electromagnetic potentials Aϕ and At

are regular in the vicinity of the horizon in terms of R and cos θ . In particular, the following
boundary conditions hold at R = rh:

ω = constant = ωh, angular velocity of the horizon (16)

At + ωhAϕ = constant = 
h (17)

rhB̂(µ̂û)−1/2 = constant = κ. (18)

7 The quantities introduced here are closely related to Bardeen’s expressions: h = 2rh, λ = 2R, BR = B̂/2
8 In terms of the coordinates (r, θ, ϕ, t), the metric possesses an inversion symmetry with respect to the horizon, that
is, the coordinate locations (r, θ, ϕ, t) and (r2

h /r, θ, ϕ, t) are physically completely equivalent.
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It is worthwhile stressing the constant horizon values of the functions ω and 
, where the
comoving electric potential 
 is given through


 = At + ωAϕ. (19)

The constant κ is called the surface gravity of the horizon. We characterize a degenerate
non-vanishing black hole through κ = 0 with a finite horizon area A.

For later use we introduce additional regular horizon potentials:

ω̂ = ω − ωh

R − rh
(20)


̂ = 
 − 
h

R − rh
. (21)

In appendix A, the collection of regular potentials corresponding to the Kerr–Newman solution
is given.

4. Angular momentum, charge and horizon area of the black hole

In [9], equation (9.22) (see also equations (9.8), (9.20) and (9.21) of that paper), the total
angular momentum of the stationary axisymmetric system is given in terms of matter,
electromagnetic field and black hole contributions,

Jtotal = JM + JF + JH (22)

where

JM =
∫

T a
Mbm

b d�a (23)

JF =
∫

mcAcj
a d�a +

1

4π

∮
H

mcAcF
ab dSab (24)

JH = 1

8π

∮
H

ma;b dSab. (25)

Here, the vector ma denotes the Killing vector with respect to axisymmetry, T a
Mb the matter

contribution in the energy–momentum tensor and ja the electromagnetic current.
The volume integrals appearing in (23) and (24) are to be taken over a spacelike

hypersurface � expanding from the horizon H out to infinity.
Clearly, with definition (22) we cannot measure the local angular momentum of the central

black hole since (22) also contains the contribution of the surrounding matter. However, the
value of JH alone can also not be used for deriving the relation (1) in question. For the
Kerr–Newman solution this term is not equivalent to the total angular momentum, and thus
(1) does not hold if one takes JH .

The correct measure J of the local angular momentum, for which (1) turns out to be
true even in the presence of matter, is given through combination (22), neglecting the volume
integrals appearing in (23) and (24). Due to the Einstein–Maxwell vacuum equations, this is
equivalent to saying that, for the local angular momentum, the surface integrals in (24) and
(25) are to be taken over some spacelike simply connected hypersurface encompassing the
horizon and containing no matter sources.
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In our formulation, this measure J of the local angular momentum leads to the horizon
surface integral:

J = − 1

16π

∮
H
(e−4ν r2B3 sin2 θ)∇ω · d �f +

1

4π

∮
H

[Be−2ν Aϕ(∇At + ω∇Aϕ)] · d �f

=
∫ π

0

û

2B̂

[
−1

4
ω̂û sin2 θ + Aϕ(
̂ − Aϕω̂)

]
sin θ dθ

∣∣∣∣
R=rh

. (26)

Note that in the presence of an electromagnetic field this local angular momentum parameter
differs from formula (15) in [4] which only involves metric but no electromagnetic quantities9.

The local charge Q of the black hole can be defined unambigiously by the surface integral
(9.25) of [9], which reads in our formulation as follows:

Q = − 1

4π

∮
H

Fab dSab = − 1

4π

∮
H

B e−2ν(∇At + ω∇Aϕ) · d �f

= −
∫ π

0

û

2B̂
(
̂ − Aϕω̂) sin θ dθ

∣∣∣∣
R=rh

. (27)

Finally, the horizon area is given through the expression:

A = 2 π

∫ π

0

√
µ̂û sin θ dθ

∣∣∣∣
R=rh

. (28)

5. The degenerate limit

As mentioned above, we describe a degenerate black hole through the vanishing of the surface
gravity κ which implies, by virtue of (18), that rh = 0 in this limit. Remarkably, it is then
possible to work out explicitly the horizon boundary values of all functions û, µ̂, B̂, ω̂, 
̂ and
Aϕ because, in the Einstein–Maxwell equations evaluated at the horizon R = rh = 0, all terms
containing R-derivatives disappear.

We will use this information to determine the integrals presented in the previous section
and ultimately to verify the validity of (1).

If we express the Einstein–Maxwell equations (6)–(11) in terms of the coordinates R, θ

and the potentials û, µ̂, B̂, ω̂, 
̂ and Aϕ , we find:

(i) equation (6)
(For simplicity, we write the equation for ũ = 1

2 ln û rather than for û.)(
R2 − r2

h

)
[ũRR + ũR(ln B̂)R] + 2RũR + ũθθ + ũθ [cot θ + (ln B̂)θ ] + (ln B̂)θ cot θ

= 1 − e4ũ

2B̂2
sin2 θ

[
ω2

R +
R − rh

R + rh
ω̂2

θ

]
− e−2ũ

sin2 θ

[(
R2 − r2

h

)
A2

ϕ,R + A2
ϕ,θ

]
− e2ũ

B̂2

[
(
R − AϕωR)2 +

R − rh

R + rh
(
̂θ − Aϕω̂θ )

2

]
(29)

(ii) equation (7)

(R + rh)(ωRR + ωR[4ũR − (ln B̂)R]) + ω̂θθ + ω̂θ (3 cot θ + 4ũθ − (ln B̂)θ )

= 4e−2ũ

sin2 θ
[(R + rh)Aϕ,R(
R − AϕωR) + Aϕ,θ (
̂θ − Aϕω̂θ )] (30)

9 For the spacetimes considered here, formula (15) in [4] is equivalent to (25).
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(iii) equation (8) (
R2 − r2

h

)
B̂RR + 3RB̂R + B̂θθ + 2B̂θ cot θ = 0 (31)

(iv) equation (9)
(For simplicity, we write the equation for µ̃ = 1

2 ln µ̂ rather than for µ̂.)

(
R2 − r2

h

)
µ̃RR + Rµ̃R + µ̃θθ = e4ũ

4B̂2
sin2 θ

[
ω2

R +
R − rh

R + rh
ω̂2

θ

]
− (

R2 − r2
h

)
ũR[ũR − (ln B̂)R] + RũR − [ũθ + cot θ ][ũθ − (ln B̂)θ ] (32)

(v) equation (10)

(R + rh)[(
RR − AϕωRR) + (
R − AϕωR)(2ũR − (ln B̂)R)− Aϕ,RωR] + (
̂θθ − Aϕω̂θθ )

+ (
̂θ − Aϕω̂θ )(2ũθ − (ln B̂)θ + cot θ) − Aϕ,θ ω̂θ = 0 (33)

(vi) equation (11)(
R2 − r2

h

)
[Aϕ,RR + Aϕ,R(−2ũR + (ln B̂)R)] + 2RAϕ,R

+ Aϕ,θθ + Aϕ,θ [−2ũθ + (ln B̂)θ − cot θ ]

= e4ũ

B̂2
sin2 θ

[
ωR(
R − AϕωR) +

R − rh

R + rh
ω̂θ (
̂θ − Aϕω̂θ )

]
. (34)

As already mentioned, it becomes apparent that at the horizon R = rh in the degenerate limit
rh = 0 all terms containing R-derivatives disappear10. This means that we can explicitly
calculate the regular horizon values of the metric potentials.

First, (31) tells us that

B̂θθ + 2B̂θ cot θ = 0

which leads to a constant horizon value of B̂, being the only regular solution of this equation.
Note that in the presence of surrounding matter this value B̂ is in general different from the
Kerr–Newman value (B̂Kerr–Newman = 2, see appendix A).

Using this result, we can write (33) for R = rh = 0:

(
̂θθ − Aϕω̂θθ − Aϕ,θ ω̂θ ) + (
̂θ − Aϕω̂θ )(2ũθ + cot θ) = 0.

The only regular solution of this equation reads:


̂θ = Aϕω̂θ .

If we insert this result in (30), together with the constant horizon value of B̂, we obtain

ω̂θθ + ω̂θ (3 cot θ + 4ũθ ) = 0.

It therefore follows that, apart from B̂, also ω̂ and 
̂ are constant at the horizon in the
degenerate limit. Let us call these constants B̂h, ω̂h and 
̂h respectively, with B̂h > 0 in
accordance with the regularity properties discussed in section 3. With this result consider
equations (29) and (34) for R = rh = 0:

ũθθ + ũθ cot θ = 1 − e4ũ ω̂2
h

2B̂2
h

sin2 θ − e−2ũ A2
ϕ,θ

sin2 θ
− e2ũ

B̂2
h

(
̂h − Aϕω̂h)
2 (35)

Aϕ,θθ − Aϕ,θ (2ũθ + cot θ) = e4ũ

B̂2
h

ω̂h(
̂h − Aϕω̂h) sin2 θ. (36)

10 In order to see this, in (29)–(34) all occurrences of the potentials ω and 
 need to be replaced by their counterparts
ω̂ and 
̂.

7



Class. Quantum Grav. 25 (2008) 035009 M Ansorg and H Pfister

Here we have used that according to (20), (21):

ωR(R = rh, θ) = ω̂(R = rh, θ) → ω̂h as rh → 0

R(R = rh, θ) = 
̂(R = rh, θ) → 
̂h as rh → 0.

In analogy to the solutions for the Kerr–Newman case (see appendix A) we expect that
(35), (36) have a special solution of the form:

ûh = c1

1 + α2 cos2 θ
(Aϕ)h = c2 sin2 θ

1 + α2 cos2 θ
.

Insertion into (35), (36) confirms this supposition, and fixes the constants c1, c2 and α such
that we have (for ω̂h �= 0)

ûh = 2B̂hα

ω̂h(1 + α2 cos2 θ)
(37)

(Aϕ)h = − 2
̂hα
2 sin2 θ

ω̂h(1 − α2)(1 + α2 cos2 θ)
(38)

with the parameter α determined by

B̂hω̂h(1 − α2)3 = 2α(1 + α2)2
̂2
h. (39)

Although (39) is nonlinear in α, it defines α ∈ [−1, 1] uniquely through B̂h, ω̂h and 
̂h

because

α(1 + α2)2

(1 − α2)3

is monotonically increasing with respect to α in the range (−1, 1). Note that α2 = 1 signifies
the uncharged case and α = 0 the non-rotating case. The signs of α and ω̂h always coincide
which ensures the positive definiteness of ûh, see section 3.

It seems rather involved to prove that (37), (38) is the unique regular solution of the
nonlinear, coupled system of Einstein–Maxwell equations (35), (36). In appendix B we
rewrite equations (35), (36) such that the physical constants B̂h, ω̂h and 
̂h are eliminated,
thus obtaining a particularly clear mathematical structure of this system. In the framework of
this modified system we present some steps towards its general solution, although a complete
study is beyond the scope of this paper. It is, however, possible to prove that (37), (38) is
an isolated solution, i.e. that there exist no neighbouring solutions to (35), (36) fulfilling the
geometrical and physical conditions of regularity, equatorial symmetry, and axis regularity.
(See appendix C for details.) As will be discussed in section 6, we may use this result to prove
relation (1) for any axially and equatorially symmetric stationary configuration, consisting
of a degenerate black hole and surrounding matter, which allows for a continuous parameter
transition to a degenerate Kerr–Newman black hole in vacuum.

Consider now (32) for R = rh = 0

µ̃θθ = e4ũ ω̂2
h

4B̂2
h

sin2 θ − ũθ (ũθ + cot θ).

From solution (37) we can determine µ̃ through integration with respect to θ . The
corresponding constants of integration can be determined from (i) the requirement of an
axially and equatorially symmetric solution (that is µ̃θ = 0 for θ = 0 and θ = π/2) and
(ii) from the axis regularity condition (5). It thus follows that

µ̂h = 2B̂hα(1 + α2 cos2 θ)

ω̂h(1 + α2)2
. (40)

8
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This expression is positive definite, which is again in accordance with the regularity properties
discussed in section 3.

With the explicit knowledge of the horizon values of the metric and electromagnetic
functions in the degenerate limit we can now express angular momentum J , charge Q and
horizon area A by virtue of the formulae (26), (27) and (28):

J = − 2α2

(1 + α2)2

B̂h

ω̂h
Q = − 2α

1 − α2


̂h

ω̂h
A = 8πα

1 + α2

B̂h

ω̂h
.

As a consequence we find

4πJ

A
= − α

1 + α2

4πQ2

A
= 1 − α2

1 + α2

4πM2

A
= 1

1 + α2

where for the latter formula we have written the Christodoulou–Ruffini mass M in accordance
with (2). These expressions imply (1) with a = J/M .

Note that (1) is equivalent to the relation

p2
J + p2

Q = 1, (41)

where the parameters pJ and pQ are given by

pJ = 8πJ

A
, (42)

pQ = 4πQ2

A
� 0. (43)

We shall discuss this further in the next section.
About the above results the following remarks are appropriate: in the degenerate case we

originally had four integration constants B̂h, ω̂h, 
̂h and α, which, according to (39), reduce
to three constants, e.g. B̂h, ω̂h/B̂h and α. However, B̂h appears in the decisive differential
equations (35) and (36) only in the combination ω̂h/B̂h. Since α is dimensionless, and ω̂h/B̂h

has dimension (length)−2, it is clear that J,Q2 and A have to be proportional to B̂h/ω̂h, and
that in the dimensionless quantities pJ and pQ this dependence cancels. The fact that these
quantities can be combined to give the universal relation (41) is, however, highly nontrivial.

6. Discussion

In this section, we study first physical consequences of the mathematical derivation presented
in the previous section. In particular, we are able to prove a theorem about the validity of
relation (1) for degenerate black holes with surrounding matter. In the second part, we discuss
closely related specific physical inequalities for non-degenerate black holes.

(i) Let us consider a configuration, consisting of a degenerate central black hole with
surrounding matter, which is sufficiently close to the Kerr–Newman solution. If we
assume a physically reasonable type of matter, i.e. possessing positive baryonic mass
density, we may characterize this configuration by saying that the positive parameter P,

P = MB

Mirr
, (44)

is sufficiently small; here MB denotes the total baryonic mass of the surrounding matter.
For such a system all metric and electromagnetic potentials differ only slightly from the
Kerr–Newman expressions. As a consequence, from (35), (36) again (37), (38) emerges

9
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since this solution is isolated. Therefore, we may conclude that the relations (1) and (41)
also hold for the considered configuration in the vicinity of the Kerr–Newman black hole.

Let us now consider such a system with prescribed P = P0 > 0 permitting the
identification of a continuous sequence of configurations parametrized by P, with the
values P = P0 and P = 0 denoting the start and the end points of the sequence. This is
to say that the baryonic mass of the original system can be decreased parametrically such
that eventually a degenerate Kerr–Newman solution is encountered. Along this transition
all black hole parameters are assumed to depend continuously on P. If for a system such
a continuous parameter transition can be found, then we may conclude the validity of the
relations (1) and (41). The reason for this is again the fact that (37), (38) is isolated. Let
us assume, in contrast, that the continuous function

S = p2
J + p2

Q, (45)

depending on P, is not identically 1. Then there is a point P1 > 0 and a positive real
number ε such that
(a) S(P ) = 1 for P ∈ (P1 − ε, P1) with the solutions (37) and (38) of (35) and (36),
(b) S(P ) �= 1 for P ∈ (P1, P1 + ε).
For P ∈ (P1, P1 + ε), the solution of (35) and (36) must depart continuously from (37)
and (38) in order to realize the required continuous parametrization through P. However,
(37) and (38) is isolated, and therefore any other solution cannot depart continuously
from it.

These considerations are also valid if the sequence in question is parametrized through
a different quantity P̃ . The only requirement needed is that the horizon values of the
metric and electromagnetic potentials, û, µ̂, B̂, ω̂, 
̂ and Aϕ , depend continuously on the
parameter being chosen.

Thus we have proved the following:

Theorem. Consider an axially and equatorially symmetric, stationary configuration
consisting of a degenerate central black hole with surrounding matter. Assume that a
parametric sequence of such configurations can be identified that describes a continuous
transition of the horizon values of the metric and electromagnetic potentials from the given
system to those of a single Kerr–Newman black hole in electrovacuum. Then relations (1)
and (41) hold along the entire sequence, including the original configuration.

The existence of this parametric sequence does not appear to be a stringent physical
restriction. For a matter configuration in a certain spatial distance from the black
hole horizon, it should be possible to perform parametrically a transition (e.g. through
the gradual decrease of the baryonic mass) such that the black hole quantities change
continuously and eventually assume the Kerr–Newman expressions. For an illustration see
figure 1, in which several sequences of this kind with exterior dust matter are considered.
Also the configurations presented in figure 2 have been obtained through a parametric
sequence, driving the parameter P from 0 (the Kerr–Newman value) to 1. Moreover, for
the pure Einstein field, numerical examples of such sequences have been studied in [13].

Note that we have not required an asymptotic flatness condition. Indeed, it seems
conceivable that a non-asymptotically flat configuration can in fact be deformed such that
in a continuous manner the horizon values of a Kerr–Newman black hole are assumed. In
this case again the theorem would be applicable. Particular examples of this kind will be
the subject of a future publication.

It is worthwhile stressing that we also assume the axisymmetric and stationary
configurations being considered to be reflectionally symmetric with respect to the

10
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π
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A

−
2
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J

2
+

Q
4
)

P = MB/Mirr

κMirr = 0

κMirr = 10−3

κMirr = 10−2

κMirr = 2 · 10−2

κMirr = 5 · 10−2

κMirr = 8 · 10−2

0.80.60.40.20
0.25

0.5

0.75

1

1

Figure 1. Sequences of configurations consisting of a charged central black hole and a surrounding
infinitely flattened, uniformly rotating ring of electrically neutral dust matter. All sequences
describe a transition to the Kerr–Newman black hole (P = 0; MB is the ring’s baryonic mass). For
rigid rotation of the ring this transition can only be achieved if in the Kerr–Newman limit the ratio
of inner to outer circumferential radius of the ring (�circ = r e−u) tends to 1, since the particles
of a ‘test-’ring of finite width would have to follow the circular geodesics in the Kerr-Nemann
geometry and hence cannot possess a unifom angular velocity. Here we have chosen

�circ,inner
�circ,outer

= 1 − 3
10

√
P .

For all sequences we have prescribed the value for pQ = 1
2 (see (43)) and a constant value for

κMirr. Note that we have chosen the black hole and the ring to be in co-rotation. The figure reveals
that the value for S (see (45)) tends to 1 in the degenerate case κMirr = 0, independently of the
value for P, i.e. the amount of surrounding matter. The numerical calculations have been carried
out for κMirr ∈ {10−3, 10−2, 2 × 10−2, 5 × 10−2, 8 × 10−2}.

equatorial plane. While this can be shown to hold in Newtonian gravity it is still
a conjecture in Einstein’s theory. Nevertheless, the numerous solutions constructed
analytically and numerically do all possess this property.

(ii) From the very definition of the Christodoulou–Ruffini mass (2) it follows directly that

a2 + Q2 � M2 (46)

holds for all (degenerate and non-degenerate) black holes with or without surrounding
matter. This can most easily be seen from the identity

a2 + Q2

M2
= 1 −

(
1 − S

1 + 2pQ + S

)2

. (47)

It is, in contrast, not known to what extent the inequality

S = p2
J + p2

Q � 1 (48)

is satisfied which is valid for the Kerr–Newman solution.
By means of a highly accurate numerical code based on pseudo-spectral methods we

are able to investigate the validity of (48) for systems of black holes with surrounding
matter. The details of the numerical method can be found in [13]. In particular, we have
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1
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Figure 2. Sequences of configurations consisting of a charged central black hole and a surrounding
infinitely flattened, uniformly rotating ring of electrically neutral dust matter. For each of the
sequences we prescribe the value for pQ. Moreover, the parameter defined in (44) is fixed at
P = 1, and the ratio of the inner to the outer circumferential radius of the ring (�circ = r e−u) is
taken to be 0.7 for all models. The sequences are considered for increasing parameter 8πJ/A,
starting at zero, i.e. at the minimal value for the parameter S (see (45)). Note that we have chosen
the black hole and the ring to be in co-rotation. The solid lines reveal that along these sequences
the surface gravity decreases monotonically and reaches zero exactly when S is equal to 1. Also
shown (dashed lines) are the curves for the Kerr–Newman black hole (P = 0). They obey the
relation

S = 1 + 8κ2M2
irr − 4

√
2κMirr

√
1 + pQ + 2κ2M2

irr.

The points A and B marked with crosses are referred to at the end of the discussion.

considered uniformly rotating homogeneous tori around uncharged black holes. A new
version of the code treats more general fluid matter (as e.g. polytropes) and differential
rotation. Apart from that, we have created a modified version that handles charged black
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holes surrounded by dust rings. In this manner, we have investigated a large number
of solutions and found that they all satisfy the relation (48). Hence, we are led to the
following:

Conjecture. Consider an axially and equatorially symmetric, stationary configuration
consisting of a central black hole with surrounding matter. Then the inequality (48) holds,
and the equal sign is assumed if and only if the central black hole is degenerate.

Note that at the current status it is uncertain what physical conditions on the type of matter
have to be required, in order for the conjecture to be applicable.

The conjecture gives a partial answer to the question raised by Booth and Fairhurst
at the end of section III.A of [4]. As an illustration we include figure 2 which reveals
that the parameter point (pJ , pQ) is indeed confined to the interior of the unit circle,
reaching the circle’s boundary as the degenerate limit κ = 0 is encountered. We conclude
that for the fixed value pQ expression (47) is monotonically increasing with respect to
the parameter S. This means that a black hole with a given horizon area A and charge
Q acquires more and more (Christodoulou–Ruffini) mass as the angular momentum is
increased and assumes a final maximal mass in the degenerate limit when the equal sign
in (48) is reached.

In this manner, we encounter the familiar picture of a single Kerr–Newman black hole
in vacuum. It is therefore tempting to characterize the Christodoulou–Ruffini mass as the
measure of the quasi-local bare mass of the black hole, an interpretation also supported
by the isolated horizon framework [6]. Note that the Komar mass could not be taken as a
bare mass measure because this parameter incorporates the specific relativistic spacetime
geometry in the black hole’s vicinity, see [5].

These considerations provide a justification for saying that a black hole is characterized
through its intrinsic physical parameters angular momentum J , charge Q and area A

and hence Christodoulou–Ruffini mass M. It therefore appears conceivable to compare
different black hole matter configurations with the ‘same’ central black hole described by
mutual values for J,Q and A. For example, consider the two configurations A and B in
figure 2 possessing the same value S = 0.75. If one adds a ring of matter exterior to the
Kerr–Newman black hole A we may expect that the radial force to be exerted on a zero
angular momentum observer (ZAMO, see [8]) decreases in the vicinity of the black hole.
This is due to the gravitational attraction towards the ring. As a consequence, the surface
gravity κ becomes smaller because this quantity just measures a rescaled acceleration of
the ZAMO’s on the black hole horizon. It thus becomes plausible that in figure 2 the
transition from A to B is described by decreasing values of the parameter κMirr. Note
that this effect becomes smaller and smaller if one approaches the degenerate black hole.

In the future we shall further examine relation (48). In particular, we plan a detailed study of
charged black hole configurations with surrounding dust and fluid matter.
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Appendix A. Kerr–Newman expressions

The regular potentials discussed in section 3 read for the Kerr–Newman solution as follows:

µ̂ = (M + 2R)2 + a2 cos2 θ

û = µ̂−1
(
[a2 + (M + 2R)2]2 − 4a2

(
R2 − r2

h

)
sin2 θ

)
B̂ = 2

ω = a[2M(M + 2R) − Q2](µ̂û)−1


 = Q(M + 2R)µ̂−1(1 − aω sin2 θ)

Aϕ = −Qa(M + 2R)µ̂−1 sin2 θ.

Here,

Q2 = M2 − a2 − 4r2
h .

Moreover, angular momentum J , horizon area A and surface gravity κ read as (with the
abbreviation b = M + 2rh),

J = Ma A = 4π(2Mb − Q2) κ = 2rh

2Mb − Q2
.

The horizon values turn out to be

ωh = a

a2 + b2

h = Q

b

a2 + b2
.

The additional regular functions introduced at the end of section 3 are given by

ω̂ = 4a3(R + rh) sin2 θ − ∑3
i=0 ai(R − rh)

i

µ̂û(a2 + b2)


̂ = Q

[
−M + 2R

µ̂

(
4(M + R + rh)

a2 + b2
+ aω̂ sin2 θ

)
+

2

a2 + b2

]
with,

a0 = 4a(b + 2rh)(a
2 + b2) a1 = 8a(a2 + 3b2)

a2 = 32ab a3 = 16a.

The corresponding horizon values read,

ω̂h = −a0 − 8a3rh sin2 θ

(a2 + b2)3

̂h = 2Q

a4 − b4 + 4a2brh sin2 θ

(a2 + b2)3
.

We thus obtain in the limit rh = 0:

µ̂h = M2 + a2 cos2 θ ûh = (a2 + M2)2

M2 + a2 cos2 θ

ωh = a

a2 + M2

h = QM

a2 + M2

(Aϕ)h = − QaM sin2 θ

M2 + a2 cos2 θ
ω̂h = − 4aM

(a2 + M2)2


̂h = − 2Q3

(a2 + M2)2
.

Note that for the entire Kerr–Newman family the inequality (48) holds, with pJ and pQ defined
in (42) and ( 43). The equal sign is assumed if and only if the black hole is degenerate, κ = 0.
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Appendix B. Nonlinear study of the system (35), (36)

Defining the dimensionless functions

f = ω̂h

B̂h
û, g = 1 − α2

1 + α2

̂−1

h [ω̂hAϕ − 
̂h], (B.1)

we can eliminate the constants B̂h, ω̂h and 
̂h in (35), (36). Furthermore, we restrict ourselves
to equatorially symmetric solutions of the system (35), (36). It is therefore appropriate to
transform to the variable x = cos2 θ which leads to the following differential equations:

2x(1 − x)f ′′ + (1 − 3x)f ′ − f +
1

2
(1 − x)f 3 − 2x(1 − x)

f ′2

f
= −1 − α2

2α
(4xg′2 + f 2g2)

(B.2)

2xg′′ + g′ = 2x
g′f ′

f
− 1

2
gf 2 (B.3)

where the prime (′) denotes the derivative with respect to x. Since f (x) and g(x) have to be
regular near x = 0, there have to exist convergent power series expansions:

f (x) =
∞∑

n=0

cnx
n g(x) =

∞∑
n=0

dnx
n. (B.4)

Insertion of (B.4) into (B.2), (B.3) allows us to calculate the coefficients cn and dn for n � 1
explicitly as functions of c0 and d0, which serve as the two integration constants remaining due
to the equatorial symmetry being imposed. In more detail, with the parameters c := c2

0

/
4 � 0

and d := c0d
2
0 , the quotients c̃n = cn/c0 and d̃n = dn/d0 for n � 1 allow the expansions:

c̃n =
n∑

k=0

dk

n−k∑
l=0

p
(n)
k,l c

l (B.5)

d̃n =
n−1∑
k=0

dk

n−k∑
l=1

q
(n)
k,l c

l (B.6)

with numerical coefficients p
(n)
k,l , q

(n)
k,l . An algebraic computer program may allow one to

produce explicit expressions for p
(n)
k,l and q

(n)
k,l for all n. The conjecture that the system (B.2),

(B.3) permits only the regular solutions (37) and (38) is then equivalent to the condition that
at least one of the series (B.4) diverges at x = 1 (sin θ = 0) for all parameter values c and d,
except for the combination

c +
1 − α2

2α
d − 1 = 0.

This conjecture is supported by the fact that, due to the explicit form of (37), (38), the
coefficients have the structure

c̃n =
(

c +
1 − α2

2α
d − 1

)
ĉn + (−1)ncn

d̃n = 2c

[(
c +

1 − α2

2α
d − 1

)
d̂n + (−1)ncn−1

]
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with new coefficients ĉn and d̂n. With c0 = 2α and d0 = −1, the latter terms of c̃n and d̃n

sum up to the solutions (37), (38):

f0(x) = 2α

1 + α2x
g0(x) = −1 − α2x

1 + α2x
.

It remains to prove that
∑∞

n=1 ĉnx
n and/or

∑∞
n=1 d̂nx

n diverge for x = 1.
It may well be possible that a complete analysis of the system (35), (36) can be carried

out within the framework of the ‘inverse scattering theory’ which allows one to associate
the nonlinear Einstein–Maxwell equations with an appropriate linear matrix problem [14].
However, such a study is beyond the scope of this paper.

Appendix C. Linear study of the system (35), (36)

We prove that the solution (37), (38) of the nonlinear, coupled system of Einstein–Maxwell
equations (35), (36) is an isolated solution, i.e. that there exist no neighbouring solutions
to (37), (38) fulfilling the geometrical and physical conditions of regularity, equatorial
symmetry, and axis regularity. In order to simplify the analysis, we introduce here the
variable z = 1 + α2 cos2 θ . For the neighbouring solutions we make the following ansätze for
f and g (see appendix B, equation (B.1)):

f (z) = 2α

z
+ εk(z) (C.1)

g(z) = −2 − z

z
+

ε

α(1 − α2)
h(z). (C.2)

We consider the corresponding differential equations for k(z) and h(z) to first order in ε. They
read (with the prime now denoting the z-derivative):

2z2(z − 1)(z − 1 − α2)k′′ + z[7z2 − (11 + 5α2)z + 4(1 + α2)]k′

+

[
3z2 + 2(1 − α2)z − 4(1 + α2) − 2

z
(1 − α2)(z − 2)2

]
k

= 4

[
2(z − 1)h′ +

(
1 − 2

z

)
h

]
(C.3)

4

[
2(z − 1)h′′ +

3z − 2

z
h′ +

2

z2
h

]
= 8(1 − α2)

[(
1 − 1

z

)
k′ +

1

z2
k

]
. (C.4)

Surprisingly, it turns out that, due to the very special structure of the Einstein–Maxwell
equations, the z-derivative of the right-hand side of (C.3) equals the left-hand side of (C.4).
Therefore, the z-derivative of (C.3) results in a separate, homogeneous differential equation
of third order for the function k(z), in which, furthermore, the terms with factors z−1 and z−2

cancel:

2z(z − 1)(z − 1 − α2)k′′′ + [15z2 − (23 + 11α2)z + 8(1 + α2)]k′′

+ [24z − (22 + 10α2)]k′ + 6k = 0.

And even more remarkably, this equation can be explicitly integrated twice:

2z(z − 1)k′ + (3z − 4)k = c1 +
c2

1 + α2 − z
(C.5)

with arbitrary constants c1, c2.
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Equation (C.5) can now be explicitly integrated by standard methods (solution of the
homogeneous equation and variation of the integration constant). If we transform back from
z to the angular variable θ , we get (with an additional constant c3)

k(θ) = c3
cos θ

(1 + α2 cos2 θ)2
− c1

1 − α2 cos2 θ

(1 + α2 cos2 θ)2

− c2

α2(1 + α2 cos2 θ)2

[
1 +

1 + α2

2
cos θ

(
ln

1 − cos θ

1 + cos θ

)]
.

Since the first term is not equatorially symmetric, and the last term is singular at θ = 0
and θ = π , the constants c2 and c3 have to be zero. Insertion of the remaining term into (C.3)
leads to the differential equation

2z(z − 1)h′ + (z − 2)h = −c1

[
3 − 5α2

4
z − 2(1 − α2)

z2
(2z2 − 3z + 2)

]
with the general solution (in the variable θ )

h(θ) = c4
cos θ

1 + α2 cos2 θ
− c1

[
3 − 5α2

4
+

5 − 3α2

2(1 + α2 cos2 θ)
− 2(1 − α2)

(1 + α2 cos2 θ)2

]
(C.6)

where c4 is an arbitrary integration constant.
Now the condition of equatorial symmetry of the solution h(θ) enforces the constant c4

to be zero. The second term of (C.6) fulfils the axis condition h(θ = 0) = 0 only in the
uncharged case α2 = 1. However, in this case h(θ) has to be identically zero in order to
realize the regularity of Aϕ , see (C.2) and (B.1). Therefore, we have for all cases c1 = 0
which completes the proof that there are no physically admissible, neighbouring solutions to
the solutions (35), (36).
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