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Abstract
It is believed that in the presence of some strong electromagnetic fields, called
overcritical, the (Dirac) vacuum becomes unstable and decays, leading to
a spontaneous production of an electron–positron pair. However, most of
the arguments are based on the analysis of static fields and are insufficient
to explain this phenomenon completely. Therefore, we consider time-
dependent overcritical fields and show, within the external field formulation,
how spontaneous particle creation can be defined and measured in physical
processes. We prove that the effect exists always when a overcritical field is
switched on, but it becomes unstable and hence generically only approximate
and non-unique when the field is switched on and off. In the latter case, it
becomes unique and stable only in the adiabatic limit.

PACS numbers: 03.70.+k, 03.50.De, 12.20.−m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a long debate [1–8] on whether and how spontaneous particle creation (of e+e− pairs)
can be uniquely defined as an effect of the vacuum decay in the presence of overcritical
(electromagnetic) fields either static or adiabatic fields have been considered, what does not
really answer the question in a realistic physical situation. The main problem in time-dependent
overcritical fields is to distinguish between two sources of particle creation: dynamical, due
to the time-dependence, and spontaneous, due to the overcriticality of the external field. In
[9], we have studied analytically and numerically various time-dependent overcritical fields
and have shown when the effect can be uniquely defined and when it behaves in a stable way.
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Figure 1. Spectrum of Hλ = H0 + λV as a function of λ.

1.1. Classical Dirac equation

Electrons in an external time-dependent electromagnetic field Aµ(x) are described by the
Dirac equation which can be written in the evolution form

i
∂

∂t
�(t, �x) = H(t)�(t, �x) with H(t) ≡ H0 + V (t), (1)

where V (t) = eA0+eαiAi is the time-dependent external potential and H0 = −ih̄cαi∂i +mc2β

is the free Hamiltonian1. Consider every H(t) separately treating t as a parameter. For
atomic-like (localized) potentials the spectrum σ(H) has two continuous parts (−∞,−mc2)∪
(mc2,∞) and a possible discrete part {En ∈ (−mc2,mc2)}. The corresponding wavefunctions
ψE(�x), satisfying HψE = EψE , describe: electron scattering states for E > mc2, bound states
for |E| < mc2 and positron scattering states for E < −mc2.

1.2. Overcriticality on the classical level

Consider a one-parameter family of Hamiltonians Hλ ≡ H0 + λV (�x) having bound states
E0(λ) < E1(λ) < E2(λ) < · · ·. For a large class of negative potentials V (�x) (attractive for
electrons) En(λ) decrease continuously towards −mc2 as λ increases and the lowest bound-
state energy reaches E0(λcr) = −mc2 (with a finite slope dE0/dλ < 0 [10]) for a finite λ = λcr,
called critical (figure 1). For λ > λcr the bound-state E0 disappears from the spectrum. Such
potentials Vλ are called overcritical. Further, next bound states E1, E2, . . . , disappear as λ

grows.

1.3. Resonances

Bound states crossing the value E = −mc2 are forbidden to get embedded in the negative
continuum, so they disappear from the spectrum and turn into resonances, which can be traced
as poles on the analytic continuation of the resolvent Rλ ≡ (Hλ − E)−1 (figure 2).

As the Hamiltonian changes so that a bound state turns into a resonance, the dominant part
of the bound-state wavefunction forms a wave packet localized spectrally in the continuum
around the resonance energy ER ≡ Re E. The half-width of the packet is equal to � ≡ �E.

1 For a large class of potentials the Hamiltonians H(t) are essentially self-adjoint on C∞
0 (R3) and can be uniquely

extended to self-adjoint operators Ĥ (t) on L2(Rn). For brevity we identify H with Ĥ .
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Figure 2. Position of the real or complex pole of the resolvent Rλ meaning a bound state or a
resonance, respectively.
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Figure 3. Pair production in an overcritical process.

During evolution generated by a static overcritical Hamiltonian the wave packet decays
spatially (but stays localized spectrally).

1.4. What is expected by overcriticality?

Consider time-dependent Hamiltonians H(t) = H0 + λ(t)V with an overcritical period
λ(t) > λcr for |t | < T . When λ(t) changes adiabatically the bound states (defined at every
instant t) change slowly and according to the adiabatic theorem the wavefunction ‘follows’
them. However, there is no adiabatic theorem for resonances, thus during the overcritical
period the wave packet may decay and stay trapped in the continuum forever.

To explain these processes in terms of particle creation and annihilation one needs a
many-particle description, i.e. the second quantized Dirac theory. Formulated in a non-
rigorous language it provides the following scenario [9] (see figure 3): (A) An empty particle
bound state crosses the boundary between particle and antiparticle subspaces and turns into
an occupied antiparticle bound state, what we call weak overcriticality. (B) The bound state
turns into a resonance and the wavefunction forms a wave packet in the negative continuum,
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Figure 4. Spectrum of produced particles and antiparticles in result of a time-dependent overcritical
field.

what we call strong overcriticality. (C) The wave packet decays. (D) An empty antiparticle
bound state reappears while the whole wavefunction stays trapped in the negative continuum.
(E) The empty antiparticle bound state turns into an occupied particle bound state. Finally,
we obtain a pair: a bound particle and a scattered antiparticle.

In practice, except the adiabatic case, the wavefunction disperses during evolution over
the whole spectrum what results in an additional dynamical pair creation. Essential is the
question whether it is possible to separate the spontaneous particle creation occurring due to
the overcriticality of the potential from the dynamical one.

2. QED in external fields

To describe physical processes one needs full QED, but it appears too difficult to be solved
in our case, so we consider the external field approximation, i.e. treat the electromagnetic
field as classical and quantize only the Dirac field. This approximation is believed to be
accurate as long as the number of charged Dirac particles stays small and does not influence
the electromagnetic field.

In the presence of overcritical fields the vacuum and particles change their properties
qualitatively so that in order to treat them correctly the analysis must start from the first
principles.

2.1. Fock space and the field operator

The construction of the theory begins with the algebra of fields �̂(f ) anti-linear in f ∈ H –
the canonical anticommutation relations

{�̂(f ), �̂∗(g)}+ = (f, g)

{�̂(f ), �̂(g)}+ = {�̂∗(f ), �̂∗(g)}+ = 0,

∀f, g ∈ H with (f, g) a scalar product in H. We represent them as self-adjoint operators
acting in the Fock space. The representation is unique up to the choice of a pair of projectors
P± : H → H± which split the Hilbert space H ≡ H+

⊕
H− on the particle and antiparticle

subspaces. Then, the Fock space is constructed as

F =
∞⊕

m,n=0

F (n,m) =
∞⊕

m,n=0

antisymmetric︷ ︸︸ ︷
H+ ⊗ · · · ⊗ H+︸ ︷︷ ︸

n times

⊗H− ⊗ · · · ⊗ H−︸ ︷︷ ︸
m times

, (2)
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with F (0,0) one-dimensional space with a unit vector 	, a no-particle state called vacuum.
Using the projectors P± we split

�̂(f ) = b̂(P+f ) + d̂∗(P−f ) ∀f ∈ H (3)

so that b̂(P+f )	 = d̂ (P−f )	 = 0. Then b̂∗(f ) and d̂∗(g) create particles and antiparticles
in states f ∈ H+ and g ∈ H−, respectively, and b̂(f ) and d̂ (g) annihilate.

The choice of the projectors P± is equivalent to the choice of the vacuum vector 	 ∈ F .
Two representations based on P± and P ′

± are unitary equivalent if and only if the Hilbert–
Schmidt norm

‖P± − P ′
±‖H.S. < ∞. (4)

So unitarily non-equivalent representations, giving different physical predictions, are possible.
To exclude them one distinguishes P± as spectral projections on the positive and negative
energy subspaces of the Hamiltonian H. Then the induced vacuum vector 	 is a ground state
of the Hamiltonian Ĥ implemented in the Fock space F .

2.2. Particle scattering in Fock space

For time-dependent Hamiltonians H(t) the above construction must be repeated at every
instant of time with time-dependent projectors P±(t) and leads to a family of Fock spaces
F(t). To implement scattering processes it is sufficient to consider only the initial Fin and
final Fout. The classical (one-particle) unitary scattering operator S : H → H is implemented
in the Fock space by a unitary Ŝ : F → F such that

�̂out(f ) ≡ �̂in(Sf ) = Ŝ�̂in(f )Ŝ∗. (5)

Assume that P±(−∞) = P±(+∞) ≡ P±. Then Ŝ exists when S satisfies the Shale–Stinespring
criterion ‖S±∓‖H.S. := ‖P±SP∓‖H.S. < ∞, which guarantees that the initial vacuum state
	 ∈ F evolves to Ŝ	 ∈ F .

It is remarkable that the whole information about scattering in F is encoded in one-
particle S. It means that every observable can be expressed via S, e.g. the expectation value of
the ‘particle number’ operator in state Ŝ	 evolved from initial vacuum 	 reads

Nn = (Ŝ	, b̂∗
nb̂nŜ	) =

∑
k

|(S+−)nk|2 = ‖(S∗)−+φn‖2. (6)

3. Structure of Ŝ

For time-dependent processes with H(t) ≡ H0 + V (t) the scattering operator Ŝ has the form
Ŝ = C0 : Ŝ0S̃ : where C0 is a normalization constant

C0 ≡ [det(1 + A∗A)]−1/2, (7)

S̃ describes creation and annihilation of particle–antiparticle pairs and their scattering

S̃∗ =: exp

(∑
k,l

Akl b̂
∗
k d̂

∗
l

)
exp

(∑
k,l

(Bkl − δkl)b̂
∗
k b̂l

)

× exp

(∑
k,l

(Ckl − δkl)d̂
∗
k d̂l

)
exp

(∑
k,l

Dklb̂kd̂l

)
: (8)

k = n+ + 1, 2, . . . ,∞; l = n− + 1, . . . ,∞
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and the exceptional part Ŝ0 describes creation and annihilation of single particles

Ŝ∗
0 ≡:

(
b̂∗

1 ∓
n+∑

k=1

(S−+)k1d̂k

)
· · ·

(
b̂∗

n+
∓

n+∑
k=1

(S−+)kn+ d̂k

)

×
(

d̂∗
1 ∓

n−∑
k=1

(S+−)k1b̂k

)
· · ·

(
d̂∗

n− ∓
n−∑
k=1

(S+−)kn− b̂k

)
, (9)

where

n+ = dim ker S++, n− = dim ker S−−

A ≡ −S−1
++ S+−, B ≡ ±S−1

++ , C ≡ ±(S−1
−−), D ≡ ±(

S−+S
−1
++

)T
.

(10)

Acting on vacuum

Ŝ	 = C0d̂
∗
n− · · · d̂∗

1 b̂∗
n+

· · · b̂∗
1 exp

(∑
k,l

Akl b̂
∗
k d̂

∗
l

)
	 (11)

Ŝ0 creates single particles and antiparticles b̂∗
i and d̂∗

i which correspond to the special states
φ±

i , which are mapped by S from H± to H∓. It has been conjectured that the spontaneous
particle creation is associated with the presence of the exceptional part Ŝ0 [1].

3.1. Potential switched on and off: H(−∞) = H(+∞) = H0

Time-dependent processes Hλ(t) ≡ H0 + λV (t) give Ŝ(λ). Since P±S(λ)P∓ are analytic in
λ, the special states exist only for discrete values of λ [9][theorem 16] and hence are unstable
w.r.t. perturbations of λ!

We discuss two ways to handle this problem: either to defend the role of special states in
the definition of spontaneous particle creation and consider the adiabatic limit which is free
from the above instability, or to relax the condition of special states and define the spontaneous
pair creation in a weaker sense.

4. Definition by the adiabatic limit

In the adiabatic limit the dynamical pair production tends to 0, while the spontaneous pair
production survives the limit. Let us consider processes where the potential Vλ,ε(t, �x) ≡
λ e−ε2t2

Ṽ (�x) varies arbitrarily slow in time (ε → 0) and vanishes as t → ±∞. We
can calculate the scattering operators Ŝλ,ε . In the adiabatic limit it is possible that
limε→0 Ŝλ,ε �= Ŝλ,0 and the probability of particle creation: rλ = 1− limε→0 |(	, Ŝλ,ε	)|2 has
a jump at λ = λcr, because

• for 0 < λ < λcr (Vλ subcritical): rλ � ‖P−Sλ,εP+‖H.S.
ε→0−→ 0,

• for λ > λcr (Vλ overcritical): rλ � ‖P−Sλ,εP+‖ ε→0−→ 1 .

This conjecture was posed and proved in the subcritical case by Nenciu [2]. The
overcritical case has been recently proved by Pickl [3]. For the considered class of short-
range potentials the resonance decays already at the edge of the negative continuum and leads
to creation of an antiparticle with vanishing momentum.
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4.1. Results: switch on and off processes

• In subcritical processes, when E0(t) > −mc2 exists for all t, no particles are created:
Ŝ	 = 	 [2].

• When, for some interval of time t1 < t < t2, the bound state turns into a resonance in
the negative continuum Re E0(t) < −mc2, which we call (strongly) overcritical, there is
exactly one pair2 created spontaneously: Ŝ	 = b̂∗(χ)d̂∗(ψ)	 [3].

We conclude that only the strong overcriticality leads to physically observable effects, as
was conjectured by Greiner et al [11], but in contrast to Klaus and Scharf who argued for the
weak overcriticality (Re E0(t) < 0) [1].

5. Spontaneous pair creation in a ‘weaker sense’

Instability of the special states of Ŝ(λ) means that

Ŝ(λ)	 = C0d̂
∗(ψ)b̂∗(χ) exp

(∑
k,l

Akl b̂
∗
k d̂

∗
l

)
	, (12)

after perturbation λ → λ + δλ goes over into [12]

ˆ̃S(λ)	 = C0 exp

(∑
k,l

Ãkl b̂
∗
k d̂

∗
l + Bd̂∗(ψ̃)b̂∗(χ̃)

)
	, (13)

with |B| < 1, but by continuity |B| ≈ 1. One can try to relax the condition of creation of a
pair in the special states (with probability 1) to creation of a pair with probability ≈1 in the
corresponding states. However, it is difficult to make this definition rigorous and unique.
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