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TOWARD GAUSS-BONNET-CHERN INEQUALITIES AND
ISOPERIMETRIC DEFICITS FOR CONFORMAL METRICS ON
R n>3f

CHEIKH BIRAHIM NDIAYE AND JIE XIAO

ABSTRACT. The aim of this paper is to establish the Gauss-Bonnet-Chern
integral inequalities and isoperimetric deficit formulas for complete conformal
metrics on R™, n > 3 with scalar curvature being nonnegative near infinity
and Q-curvature being absolutely convergent.

1. INTRODUCTION

To begin with, let us agree to some basic conventions. We employ the symbols
A and V to denote the Laplace operator > ,_, 0?/0z% and the gradient vector
(0/0x1, ...,0/0xy,) over the Euclidean space R™, n > 2. For notational convenience
we use X <Y as X < CY for a constant C' > 0. We always assume that u is
a smooth real-valued function on R”, written v € C°°(R™), and then it generates
a conformal metric g = e?“gy which is indeed a conformal deformation of the
standard Euclidean metric go = Y., _, dz7. The volume and surface area elements
of the metric g are given by

dvy = e™dH™ and ds, = e VugH !

where H* stands for the k-dimensional Hausdorff measure. So, the volume and
surface area of the open ball B,.(z) and its boundary 0B,.(x) with radius » > 0 and
center € R™ have the following values:

Vg (BT({E)) :/B ( )enu dH™ and Sg (8BT(IE)) = /83 ( )6(n71)u danl.

More importantly, this metric takes two kinds of nonlinear operators as the simplest
ways of describing the curvature of the Riemannian manifold (R™,g). One is the
scalar curvature (or Ricci scalar) function

Syn(@) = —2(n — 1)e~2u®) (Au(x) + nT_2|Vu(x)|2).

The other is the so-called Q-curvature (or Paneitz curvature) function which, ac-
cording to Fefferman-Graham [6] (see also Ndiaye [IT] and Xu [I4]), can be deter-
mined by

Qgn() = "D (=2)"u(2),
whose even and odd cases Qg .2, and Qg 2m—1 are regarded respectively as differ-
ential and pseudo-differential operators.

2000 Mathematics Subject Classification. Primary 53A30, 35J35; Secondary 53A05, 53A55,
25J6, 31A05.

T Supported in part by Natural Science and Engineering Research Council of Canada (Discovery
Grant — Individual — Jie Xiao 261100-2007).

1


http://lanl.arXiv.org/abs/0712.1754v1

2 CHEIKH BIRAHIM NDIAYE AND JIE XIAO

Note that both the scalar curvature 2715, 5 and the Q-curvature Q, 2 are equal
to the classical Gaussian curvature K which completely characterizes the curvature
of the two-dimensional Riemannian manifold (R?,g). So it is quite natural to
recall a fundamental inequality of Gauss-Bonnet integral in the theory of complete
surfaces of totally finite Gaussian curvature. According to Cohn-Vossen [4] and
Finn [7] respectively, we see that

/ IK|dv, :/ (—Aw)|dH? < oo
R2 R2

yields the following Gauss-Bonnet integral inequality
(1.1) K dv, = / (—Au)dH? < 27
R? R2

and Finn’s isoperimetric deficit formula
2
1 1 9B,.(0
(1.2) 1- —/ Kdvg=1—— [ (~Au)dH?® = lim (54(05:(0))"
2T R2 2T R2 r—00 47‘(1}9 (BT(O))

In their 2000 paper [2] (see also its follow-up [3]), Chang, Qing and Yang extends
the above results (L)) and (2] to R* in terms of the scalar and Q curvatures. More
precisely, if g = e?“gq is complete and its scalar curvature Sy 4 is nonnegative near
infinity, then

/ 1Qy 4l dv, :/ (—A)2u] dH* < oo
R4 R4

implies the following Chang-Qing-Yang’s integral inequality of Gauss-Bonnet-Chern
type

(1.3) / Qg.advy :/ (=A)*udH* < 47?
R4 R4

and Chang-Qing-Yang’s isoperimetric deficit formula
4/3

1 - 1 2 4_p (89 (aBT (O)))
(1L4) 1= /R Qoadvg =1-1— /RAL(—A) Wt = I ) o, (B,(0))

In his 2005 paper [5], Fang generalizes ([.3)) but not (I.4]) to the even-dimensional
space R™. Explicitly speaking, suppose n > 4 is even, if g = 2%y is complete and
its scalar curvature Sy ,, is nonnegative near infinity, then

/ 1Qg.n| dvy :/ [(—A)2u| dH™ < oo
R R

yields the following Fang’s integral inequality of Gauss-Bonnet-Chern type

(1.5) Qg dvy = / (=A)"2udH™ < 2" Y(n/2 — 1)!a"™/2,
R’Vl n

In our current paper, we establish the odd-dimensional version of (IH]) (covering

([C3)) and the any-dimensional extension of ([4)). Actually, our main assertion is

stated in such a way that can cover all Riemannian manifolds (R™, g) with n > 3.

Theorem 1.1. Given an integer n > 3 and a function u € C°(R"), let g = e*“ g
be complete with

liminf Sy n(z) >0 and / |Qg.n| dvg < 0.

|| — o0
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Then
(1.6) / Qg dvg = / (=A)" 2y dH™ < 2" (n/2)n"/?
]Rn n

and

(1.7)
Jon Qondvy 1 fRn(—A)"/Qu dH™ i (54 (3BT(O)))"/(”71)
Con—1D(n/2)gn/2 = lim
2017 (n/2)7n/2 2710 (n/2)7"/2  r—oo (nwi/")”/W—l)vg(Br(o))

3

where wy, = 73“72—:1//22) is the Lebesgue measure of the unit ball B1(0).

Perhaps it is appropriate to make two remarks. The first one is that (L6) can be
used to confirm that [I, Theorem 1.3] has an odd-dimensional analogue — that is —
for each odd number n > 3 there is a dimensional constant L,, > 1 such that every
manifold (R™, g) is L,-biLipschitz equivalent to the background manifold (R™, go)
provided that v € C°°(R") satisfies:

u(z) = constant + (2" 'T'(n/2)x"/?) ™" /R (log [y|/|z — yl) (—A)"2u(y) dH" (y)
and

(271711—1(”/2)7‘,71/2)*1/ |(_A)n/2u| dH™ < n27(7+4n)674n(n71)372n <1.
The second one is that (7)) (which is unknown until now except n = 2, 4) has sug-
gested a geometric meaning of the so called Q-curvature of any 3 < n-dimensional
manifold (R", g) — see also [12] for Chang’s question on the geometric content of
Q-curvature as well as Yang’s study plan on Q-curvature in odd-dimensions. To
deeply understand this suggestion, a dedicated investigation of: (a) The version of
(™) over a complete 3 < n-manifold with only finitely many conformally flat sim-
ple ends (extending two/four-dimensional results in [7]/[3] and settling the equality
issue for the even-dimensional Gauss-Bonnet-Chern inequality in [5, Theorem 1.1]);
(b) The sharp isoperimetric inequality and the comparison principle on the Green’s
function for the n-Laplace operator —div(|Vu|"~2Vu) on the manifold (R™, g) (gen-
eralizing the corresponding two-dimensional results in Huber [8] and Xiao [13]), is
worth being carried out in the future.

The proof of Theorem [[1] is allocated to the forthcoming four sections. Our
argument techniques and methods (working for all dimensions bigger than or equal
to three) come mainly from harmonic analysis based on the radially symmetric
integral estimates and calculations — for example in Proposition 2] (i)-(ii)-(iii)
(for R™, n > 3) of this paper there is no need to solve some induced ordinary
differential equations such as ones treated in [2, pp.526-531] (for R*) and [5, p.478]
(for R?™) — this direct approach makes our work be initially like no theirs. Here we
want to acknowledge several interesting communications with M. Bonk, H. Fang,
R. Graham, J. Li and X. Xu.

2. PrROOF OF (L) — SPECIAL CASE

In this section we provide a proof of (L6l for the smooth radially symmetric
function.
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Proposition 2.1. Let u € C*°(R"™) be radially symmetric and satisfy the hypotheses
of Theorem [I1. If

v(x) = W/n (—A)"2u(y) dH" (y),

then:
(i) = P
1 / 2]* — |y -1
sup o Y dH"(2) < 0.
0<al,lyl<co H""1(3B}4(0)) Jap,, ) |z —yl?

(ii) v is also radially symmetric and enjoys

. d’l)(?”) o . d’U(’I”) o n/2 n

}E%T o =0 and Tlirrgor p v oY n/2 7_‘_71/2/ udH"™.

(ifi) Hmsup,|_ oo [#]|Vo(2)] < 00 and limsupy,|_ ., [z[*|Av(z)| <
(iv) In the sense of distribution,
(=) (= log |z —y) = 2"~ 'T(n/2)n"/*, (2),

where §y(-) is the Dirac measure at y.
(v) There is a constant ¢ such that u(z) = v(x) + ¢ for all z € R™.

(vi) (I4) holds.

Proof. (i) Given z,y € R™, for simplicity we not only assume
1 12> = 1yl*| , s
I(lzl, lyl) = —/ AR (2),
H’ﬂ 1(8‘8‘1 ( )) BB‘ ‘(0) |Z - y|2

but also split B);(0) into two disjoint parts Py and P, where

Py ={z€0B5(0): |z|* +[y]* < |2 —y[*}
and

P = {z € 0B}y (0) : lz)? + |y|? > |z — y|2}

Due to the structure of P, we further write P» as the union of countable disjoint
sets as follows:

—k— |z -yl —k
P=J{ze0Bu0): 27 s L <27k}
U VI 5P

Based on the spherical coordinate system on P, and the law of cosines for the
triangle formed by vectors z € Py, y and z — y, we define

- (l=[=[yD?
¢ = arccos (=27l + lyl*) k=0,1,2,.. 08 Tal o™
2|z|ly| ’ o log 3 1

After the above technical treatment, we now need to deal with two cases n = 3
and n > 3 respectively.
Case 1: n = 3. Under this case, we put

1
el W) = 3557 [ ==l ()
H?(0B)2/(0)) Jos. ()
and then prove

sup (|z] + [y[)H (||, ly|) < oo
z,y€R3
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through handling two subcases.
Subcase 1: |y| < |z|. When |y| < |z|/2, we obviously have that [z—y| > |z|—|y| >

|z|/2 as z € 0B|;(0) and so that
(lzl + lyDH (|2, [y]) < |11?|71/ |z —y[THdH?(2) £1
9B, (0)
Suppose now |x|/2 < |y| < |z|. Then we use 9B),|(0) = P U P, and ¢y, to estimate

(12l + Iy E(J2), ly)
<l (/ pml e+ [ el )

Si+ll Y [ 2=l k)
{2€0By,(0): 2~ k1< LUl __ ok}

k>0 VielZ+ 192
k
< 1+22’f/ sin ¢ do
k>0 Pkt
S14+> 27k
k>0

Subcase 2: |y| > |x|. When |y| > 2|z|, we similarly have that |z —y| > |y| — |z| >
ly|/2 as z € 0B);|(0), and so that

Y _
(o] + ) E (], o)) < |' |L oy a2 S 1
0B, (0)

If |z| < |y| < 2|z, then

([ + [y H (1, [y])

<y (/P R N )

<1ty 12/ |2 — 7 dH(2)
k>0 7 {z€0By4 (0): 27+~ 1<¢% <2-k}

<1+22’“/ ' sin ¢ do

k>0 Prt1
S1+) 27"
E>0

The previous consideration of two subcases, plus the inequality
[2* = 1912 /12 = 91> < (2] + ly])/ 1z = ],

leads to

sup  I([z],|y[) S sup (Jz] + [y[)H(|2[,[y]) < oo.
0<|z],]y|<oo z,yER3

Case 2: n > 3. Under this case, we set

xT ; ”— -2 n—lZ
T ) = @) o YT
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and are about to show

sup (|z[* + [y[*)J (], lyl) < o0
z,yER™

via handling two more subcases.
Subcase 1: |y| < |z|. When |y| < |z|/2, we have that z € 0B);(0) implies
|z —y| > |z] — |y| > |x|/2 and consequently,

dH" *(2) < 1.

~

—n j/?
(l2* + [y1*) I (l2l, ly) < [T (2], [y]) <[] / EEE
9By, (0) 17 yl

When |z]|/2 < |y| < |z|, we continue using the spherical coordinate system to
produce

(ll* + 1y*) I (|1, [y 1)
< |2 (), [yl)

< |$|l—n / |$|2 dH"_l(Z)-i-/ |‘TC|2 dH"_l(Z)
~ P 12— yl? P, 12— yl?

|z

Si+lf [ ()
2

Stelfry [ 2~y 2 a1 (2)
k>0 {2€0B, (0): Q*k*1§ﬁ<2*k}
o
SL+l Y [ (a4 ) el s g s
k>0 Prt+1
Pk
51+22%/ sin” "2 ¢ dob
k>0 Pr+1
bk
<1+ Z 22k/ (1 — cos? ¢)" /2 d(— cos ¢)
k>0 Prt+1

=272+ (1012 4 1y|2)

R
<1 92k 1 — $2)(n=3)/2
~ +Z /(1—2*2k><\m\2+\y\2> ( ) d
k>0 2=lTy
_ 9—2k 2 2\ 2 (n—3)/2 —2k 2 2
1Yo (l_(a 2ol + 1yl ) (2P + 1y
= 2fa]ly] [ [ly]
14y 9k,
k=0

Subcase 2: |y| > |r|. When |y| > 2|z|, we clearly see that z € 9B,|(0) implies
|z —y| > ly| — |z| > |y|/2 and consequently,

dH" 1 (2) < 1.

~

n ly?
([ + [y1) I (=, [y ) < 1y T (| [y D) < ! / 5
9B, (0) |z =y

When |z] < |y| < 2|z|, we analogously derive
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(e + ly1*) T (], [y])

Syl I, y])
_ y|2 -1 |y|2 -1
<laftm (/ | dH" (z)+/ dH"1(2)
p 12— yl? Py |2 —yl?
1 |y|2 1
Stelf Y [ (s
k>0 {z€0B4(0): 27<k+1>g¢%<2%} |z =y
Z 22k|y|2 Ok )
<1+ / sin" "2 ¢ do
P+ P s,
S14 ) 27Hn=9),
k>0

Taking the foregoing inequalities for J(|z|, |y|) into account, we get the desired
finiteness:

sup  I(|z], |y]) < sup (I:v|2+|y|) (], [y]) < oo
0<]z|,|y|<oco z,y€

(i) The radial symmetry of v follows easily from the assumption that w is radially
symmetric. Using |z| = r > 0 we calculate

’:—%u—m2iwﬁ—uP—w—m2

d ) ’ Y
—_ 0 f—
dar 8l = 20— y? 2l — y]?

and then employ the radial symmetry of v to obtain

—2"D(n/2)7™/? (TdZ—iﬂ)
_ /n (|‘T|2 =y + |z~ y|2)(—A)n/2u(y) dH™(y)

|z —yl?

‘112‘ dH"~ 1
_ /n 1+ faB\r\(O) [z2—y| H ( ) (—A)"/2u(y) dH"(y)

Hr— 1(8B|I|(0))
Because both (i) and

/ (A 2y dH :/ 1Qy ldv, < 50

guarantee

|22 —|y|? n—1
HfaB‘z‘(m Ty AR (2)

5

A

L1 sw 1l o)) [-8)2uly)] dr )

R™ 0<|z|,|ly|<oco

A)"2u|dH™ < oo,

A
T
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we apply the dominated convergence theorem to derive

. dv(r)
rh—%r dr
1 A e e e 1
27T (n/2)n"/? /Rn s ( EE )( )" Fuly) dH" (y)
=0
and
lim Tdv(r)
T —00 r
1 , z* = [y* + |z —y?
= T Ao es 7o 1 —A n/2 dH™
27T (n/2)7"/2 /Rn \zﬁinoo( iz — yJ? )( )" 2uly) dH" (y)
1

_ _ n/2 n
N Yy /n< A2 dHn,

as required.

(iii) The first finiteness follows from (ii) right away since V can rewritten as
(d/dr,r=*V,) under the spherical coordinate system where V,, is the gradient op-
erator on the unit sphere 9B1(0). To verify the second finiteness, we observe (via
an easy computation)

8ola) = gt [ o~ Ul A Pl dr ()
T T (nj2)m 2 Jy Y v v
and then handle two cases.

Case 1: n = 3. From the hypotheses and the spherical coordinate system it
follows that

|2 Av(z)|

2
= ( / + ) 1Ay 2u) ar )
{yeRr3: |y—z|>|e|/2}  J{yeR% |y—z|<|z|/2}) T Y

T 2
< [ leapeaae + I8 2uly) )
RS {yeRr3: y|>|e|/2} 1T T Y

T

2
S O 1A 2uty)l ar ).
R3 {yeR3: 2|z|>|y|>|z|/2} ' ¥ Y

Furthermore, via the spherical coordinate system we deduce
of | o= o121 (= ) 2uly)| a7 )
{yeR®: |z|>y|>|x|/2}
< |2 . A)3/2 2 "/ sin ¢
— t)|t do | dt
S I O R Ty s

|| 1 ds
<l [ 1-apare (| ) i
|z|/2 o |z[* —2[xlts + 2

|$|2 + t2

|z
_ AP 2uldH? AV 20012 (1o _
S Learare [ -y (o s ) i
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Suppose now U (t) = fot |(—=A)3/?u(s)|s%ds for t > 0. Integration by part and change
of variables give

/|z [(=A)3/2u(t) [ <1og il )dt

©|/2 2| —t

1/2
_ / (log s) d(U (|]) = U(|z] — |x[s))

1/2
= (log2)(U(Jz]) — U(|z]/2)) +/0 (U(lz]) = U(Jz| — |z[s)) s~ ds.

Note that
U(oo) = lim U(t) 5/ [(=A)3 2| dH? < 0o
]R3

t—oo

implies lim ;o0 (U(]z]) — U(|z]/2)) = 0. So Fatou’s lemma yields

1/2
0< limsup/ (U(|z]) = U(|z| — |[s))s'ds
0

|z|— o0

1/2
< / limsup (U(|z|) — U(|z| — |z|s))s™'ds = 0.
0

|| —o0
As a result, we get
lim sup |3:|2/ |z — yI*QI(—A)3/2U(y)| dH?(y) = 0.
|| —o0 [e|=]yl>]x]/2

In a similar manner, we can also obtain

& = yI 72 1(=2)* 2u(y)| dH*(y) = 0,

lim sup |z|?

|z]—o0 /{yeRS: lz|<[y|<2l|x|}

thereby reaching
lim sup |z|2|Av(z)] 5/ [(=A)32u| dH? < co.

|z|—o00 R3

Case 2: n > 3. Since (—A)"/?u is radially symmetric, it follows from the
estimates on J(|zl,|y|) that

]| Av ()|

K 1 dHnil(Z) _ n/2u n
Sl [ <—Hn1(aB|m|<o>) Lo >|( A u(y)ldH" o)
S [ 1al el DI(-2) ulw)lart )

Rn

< / [(—A)2u] ",

and so that
lim sup |z|?| Av(z)] 5/ |(—=A)Y2u] dH"™ < co.
|z|— 00 R™
(iv) In the even case this result may be found in [I]. A proof of this case and
odd one is provided below. Of course, it suffices to verify the formula for y = 0.
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Rewriting A in terms of the spherical coordinate: z = ro; r > 0, o € 9B1(0), we
have
d? n—1\yd A
d=get (5 )a
dr? * dr =~ 12
where A, is the Laplacian on 9B1(0). Since log |z] is radially symmetric, if n = 2m
is an even number, then a simple calculation with the basic equation (see also [10,

p. 156, (1))

r

2(n — 2)x"/?

do(z)
gives

(—A)"?(~log|a)
=2-4---2(m—=2)(2—=n)(4—n)---(2m — 2 —n)(=A)|z|>"
= 2" (n/2)7"™ 260 ().
In the case that n = 2m — 1 is an odd number, a similar computation yields
(=A™ H—loglz)) =2-4---2(m —2)(2—n)(4d —n)--- (2m — 2 — n)|z| 720",
According to [9 p. 128, (2.10.1) & (2.10.8)] and [10, p. 132, (3)], we find

(—A)71/2|I|72(m71)

F(n/2 — 1/2) 1-n,,12—2m n
Zw/wm—m ly[= =" dH" ()

_ (ﬁF(H/Q — 1) ) |$|27n
2T(n/2 — 1/2) ’

whence obtaining (via the above-mentioned basic equation)
(—A)"2(~ log |x])
= (=A)(=2) "2 (=2)" " (- log z])

Jal(n/2 - 1)

=24 (=== n) - (D (S )

) (=)l
= 2" 71D (n/2)x"/ 25y ().

(v) From (iv) we see immediately that (—A)"/?v = (—=A)™/?u. To further get a
constant ¢ such that u = v + ¢, we consider two situations.

Situation 1: n = 2m — 1 is an odd integer. Then (—A)"/? = (=A)Y/2(—=A)m—1
and hence (—A)™ (v —u) = 0. Since u — v is radially symmetric, we are required
to seek the radially symmetric solutions to (—A)™ 'w = 0. Under the spherical
coordinate system the last equation becomes a linear ordinary differential equation
(in the radius r = |z|) of order 2(m—1). It is plain to check that 2(m —1) functions
1,logr, r¥2, ... r=(m=2) gatisfy the equation but also are linearly independent. Thus
there are 2(m — 1) constants cg, 1, C+2, ..., C+(m—2) such that

m—2
2k —2k
v—1u=cy+cilogr+ g (corm™" + c_opr™").
k=1

Thanks to the smoothness of u and the first limit established in (ii), we find
lim, ord(v — u)(r)/dr = 0 and consequently ¢; = 0 as well as c_g, = 0 for
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k =1,...,m — 2. On the other hand, suppose N is the largest integer amongst
{1,...,m — 2} such that con is nonzero. Then

N
UV—UuU=cCy+ Zczkr%,
k=1
and hence according to (iii) we have
lim sup (|x|2Au(:1:) + (n/2 - 1)(|x||Vu(x)|)2) = (n/2 — 1)y limsup r*Y = oo,
|m|—>oo 77— 00
But, nevertheless the hypothesis
0< l‘irflinf Syn(x) = —2(n — 1) limsup e~ ** (Au +(n/2 - 1)|Vu|2)

amounts to

lim sup e 2 (Au +(n/2- 1)|Vu|2) <0.

|| — o0
With the above analysis, we reach a contradiction:
oo = lim sup |x|2(Au + (n/2 - 1)|Vu|2) <0.
|| =00

Therefore cop, = 0 for all k =1, ...,m — 2. Consequently, u = v — ¢g.
Situation 2: n = 2m is an even integer. Then

(—A)"2(0 —u) = (=A)" (v —u) = 0,

and hence the previous argument for n = 2m — 1 can be employed to deduce the
result; see also [5].
(vi) Using (v) and the second limit in (ii) we obtain

. du(r) . do(r) 1 /
1 — =1 = — —A n/2 dH™
roe! dr oo dr 2n=17(n/2)7n/2 n( )" ud,
whence having
exp (U(T)) =r 2"*1F(vi/2)w"/2 Jan (=) Pu i +o(1) as 7 — 00.

This last assertion, plus the hypothesis that ¢ = e*“go is complete, ensures

1
- - — A2 ns _1q
ST (n/2)m 2 /n( YV 2udH® > —1,

thereby implying ().

3. PrOOF OF (@) — GENERAL CASE

In this section we prove (@) through the radial symmetrization and Proposition
211 Although our argument ideas are similar to ones explored in [2] and [5], for the
paper’s completeness and the reader’s convenience we feel that it is worth detailing
the key steps of the proof.

Proposition 3.1. Let u € C*°(R™) satisfy the hypotheses of Theorem [ 1] If

_ 1 / 1
ur) = ————— wdH" ™,
) = @B Jos, 0

then:
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(i) There is a constant ¢ such that

e) = o+ g o8| A ) dr o)

(ii) For any p > 0 one has

_ 1
lim e~ Pa(@) —/ P dHM | = 1.
|z|— 00 (Hn—l(aBz(O)) 0B, (0)

(iii) g = e?%gq is not only complete but also satisfies

liminf S; ,(x) >0 and / |Qg,n|dvg < o0.

|z|—o0

(iv) (I4) holds.

Proof. (i) Continuing the use of v defined in Proposition 2] we get from Proposi-
tion 11 (iv) that (—A)™2(u — v) = 0. To reach the desired result, we fix a point
xp € R™ and consider the radially symmetric versions of u, v and v — v about zg
as follows:

n—1
(e — faB\m—moﬁzo)UdH
w(z;x0) = - ;
H" = (aB\zsz\(IO))l
o o8, . o) VI
v(x; ) =

Hn—1 (88‘2720‘ (10)) ’

n—1
faB\xfxo\(mo)(u_v) an

Hr 1 (0B, 4y (20))

u—v(x;mo) =

Owing to

1 y—x n/2 n
o) = grprae [ 08| S A ut) )

1 Y n/2 n
g L o A e,

we see from the proof of the forthcoming (iii) that the conformal metric g,, =
e2(570) g ensures

liminf Sy, n(z) >0 and / 1Qg,,.nldvg,, < oo.
R'Vl

|z|—o0

So, by Proposition[Z1] (iv) and (v) we find that u — v(x; 2o) equals a constant — this
especially derives A(u—v)(zg) = A(u—v)(zo;x0) = 0. Since xg is arbitrarily chosen,
one has A(u —v) = 0, i.e., u — v is a harmonic function on R"™ and consequently,
O(u — v)/0xy, (for each k = 1,...,n) is harmonic. A combined application of the
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mean-value-theorem, Cauchy-Schwarz’s inequality and the representation of v yields

2= )

1 / O(u—v) 1
- - 2 T aH
‘H"l (8BT(I0)) OB, (z0) 8$k

1 n—1
H=1(dB,(20)) /BB (z0) [V(u = o)l dH

1 / 2 2 —1
<-— Vul? + |Vo[?) dH 1.
H 0B w0)) o )(I * + [Vo]?)

Now, the representation of v, the Cauchy-Schwarz inequality, Fubini’s theorem
and the proof of Proposition 2] (iii) produce

1
lim sup T2 T / Vo 2 dHn71
r—00 <Hnl(aBr(xO)) OB, (zo) | |

n/2u " e
N Jo oy (S SR a3t (y)) e (2)

’ 2

2

2

IN

< lz—y[?

< limsupr T
r—00 Hn—1 (83 ) (f]Rn n/2u| dHn)

< o0.

In the meantime, the formula of Sy ,,, liminf|,|_ . Sy~ (2) > 0 and Au = Av ensure

that if » — oo then

1 / 2 —1
_— Yul* dH™
H=1(0By(20)) JoB, (z0) [V

2 1 e?S, .
- (2 - n)H"—l(aBT(:vo)) /BBT(%) (Au—|— 2(7—1)) an"
2 1 -
= (2 —n)anl(aBr(xo)) /BBT(W AvdH™™

(2" (ny/2)m" ) EA)"2uly) im ne1,
Hr (0B, (w0) /83 (o) (/n |z —yl? dH (y)) dH""(2),

and hence by Fubini’s theorem and the proof of Proposition 2.1] (iii),

1
limsupr? | —————— / Vul2dH" ! | < oc.
oo (H"—l (0B.(0)) JoB, (o) v

2 a(gT;”)(xo)’ < oo. This forces that w — v is a constant.

Therefore, limsup,_, ., 7
(ii) The argument comes from a non-essential adaption of the proof of [2] Lemma
3.2]. According to the just-established (i), we write u = uy + uz where

(=) 2uly) a1 ()

1
Ul(iﬁ)zc"‘,—/ 103‘
2710 (n/2)7"/2 Jp ., (0 r—y

and

1 / Y 2
ug(r) = —————— log‘—‘—A"/uy dH" (y).
2(#) 2D (n/2)7 2 Jemip, a0y 1T — Y (=8)" uly) dH"(y)



14 CHEIKH BIRAHIM NDIAYE AND JIE XIAO

If uy is further split into two pieces

1

) = T2

[, et artuw o)
Biey/2(0

and

(—A)"Pu(y) dH™ (y),

1
I 1
urz(z) = 2n—1T(n/2) /2 /B 21720 E

then uy = w11 + w12, u11(z) = w11 (|z|), and lim|g| o u12(z) = 0 — this is because

upz(x) <log(l — e)_l +/ ‘(—A)"/2u‘ dH" — 0
B2 /2(0)\Be|2| (0)

when e — 0 is taken so that €|z] — oo as |z| — co. As a result, we find

I U= uy) dH™ !
H"=1(0B|(0)) /BBm(O)( ) dH
o ; ex U — Us n—l o
¢ (H"_l(aB\z\(O)) /BBI(O) P (o ))drt ) +oll)

On the one hand, we can make the following estimates for any r € (0,00) and
suitably small 8 € (0,1/2):

=1

1
- dH™ 1
Hr— 1(63 ),/BBT 2

]R"\B /2(0) ( ~/BBT
Rn\Br/Q(O) < /BBT
S/ L -

R™\B,2(0) B (0\{z€R": [z—y|<blyl} JOB,(0O)n{zern: lz—y|<bly|}

g | || a2 (=) ()| )

- (:v)> (—A)"2u(y) dH" (y)

| dH"—%x)) [(8)2uty)| a1 (y)

< / ‘(—A)"/Qu‘ dH"™ -0 as r — oo.
Rn\Br/2(0)

On the other hand, we have that if |ro —y| < |y|/3, |y| > r/2 and o € 9B1(0) then

o

and consequently, if Ey = {o € 0B1(0) : |uz(ro)| > t} for ¢ > 0 then

3
| <toe + s 211

o—Yy
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tH (B

< lug| dH™
o

Rn\BT/Q(O) E:
S /R B /E oc€dB o— /E N{cedB o—
A\ T/Q(O) +\{c€0B1(0): |ro—y|<|y|/3} +N{oc€0B1(0): |ro—y|<|y|/3}

1og’my_ y” dH’”) |(=A)"2u(y)| dH™ (y)

Yy n—1|/_ n/2 n
g 2| (-8 2t e )
SH'U(E) </ [ESREM dH") (1108 ("1 (EV)).
Rn\BT/Q(O)
and hence
H" () < exp ( - L) as 1 — oo.
~ o(1)
Now, the layer-cake representation theorem yields
1 / 1
_— exp (pue(x)) — 1) dH"
T o (77 072 =)
_ b - n—1 _
= m A H (Et) exp(pt)dt = 0(1) as T — OQ.

The previously-established equalities and inequalities indicate that
p / n—1
—_ udH
H"=1(9B,(0)) Jos, ()

S u—u n-l 0
- anl(aBT(O)) <~/(?BT(O)( 2) dH ) + (1)

- Ao exp(pu)( exp(—pu n—1 o
=1 g(Hnl(an(O)) ‘/‘93m(0) p(p )( p(—p 2))) dH >_|_ (1)

=1lo ; exp(pu n-l o
= log (Hn—l (aBm(O)) ~/BBI(O) p(p )dH ) + (1)

holds whenever r — oo, as desired.
(iii) It is clear that Sy, > 0 is equivalent to Au+ (n/2 — 1)|Vu|* < 0. Since

1
At = —/ AudH™ !
H"=1(0B1(0)) Jos, (0)

and (thanks to Cauchy-Schwarz’s inequality)

2
1 du
Val? = —/ B gyt
v (Hn-waBl(o» o 0) )
1 / 2 —1
< Vul? dH
H =1 (9B)4/(0)) Jas,, o)
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one gets that S, , > 0 implies Au+(n/2—1)|Val? < 0 which in turn gives S, > 0.
Next, the fact that Qg,, is absolutely integrable with respect to dvg follows from
the following estimate (via Fubini’s theorem):

[ 1Qunldv, = [ (=82l drer
R™ R™

1
_ —_A n/2 —/ ’U,dHn_l dr"
/n (=4) (Hnl(an(O)) 9B, (0)
:/ _1;/ (=AY 2 dH | dH"
e | H" "1 (0B(0) Jas,, (0)

n/2 dH™ | dH™ !
_HnlaBl (/8310)/n u H) "

:/ |(—A)”/2u|d7'(n:/ |Qg.n|dvg < c0.
n ]Rn

Note that (i) and (ii) in Proposition Bl together with the completeness of
g = e*qp, yield that f e“r?) dr diverges for any given o € 0B1(0) and so that

o0 B 1 o
edr = —/ (/ e“(m)dr> dH" (o
/0 H=1(0B1(0)) Jor,(0) \Jo ()

diverges. Therefore § = e?%gq is complete.
(iv) Making a simple calculation with the spherical coordinate system and ap-
plying Proposition 2] (vi) to the conformal metric g, we immediately obtain

Qg dv, = / (=AY 2udH™ = / (=AY 25 dH™
]Rn n

n

Quon dvg — / (=AY 2 dH" < 27T (n/2)x"?,
Rn n

whence completing the argument.

4. ProoF oF (7)) — SPECIAL CASE

In this section we verify that (L) is true under the radial symmetry.

Proposition 4.1. Let u € C*(R"™) be radially symmetric and satisfy the hypotheses
of Theorem L1l If w(s) = s+ u(e®) and

1) = [p,,0) € dH" = nwn [L e ds,
Vn—l(t) = %faB +(0) e(" Du dH™ 1= wne(" l)w(t),
Vaslt) = 5y Jop, o) Hre™ ™" M7 = () ot
n=1)u JHn— 2wy, Hy(et
Vn—S(t) = n(nflz)(an) faBet (0) ng( 2 dH 1= ((n 1) (n— 2)) e(l—zé)w)(t) )
where Hy, stands for the k-th symmetric form of the principle curvature of the
boundary of a convex domain in R™, then:
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() )

(Vn_g(t)) n-l 1

I . —
< e 9n=1T(n/2)7"/2

t—o0 w’r,,;, (Vn,Q(t)) )
(ii) (L7 holds.
Proof. (i) From (ii) and (v) of Proposition 2] we read off

/ (=A™ 2udH"™.

. do(r) 1 o du(r)
1 — _ —_A n/2 dH" = 1
R N CTPILE / (A Tudn” = Tim r= =,

where v is given as in Proposition 211
We now consider cylindrical coordinates |z| = r = e’ and then use w(t) = u(e?)+t
to get
dw du . dw . du
%—T’%—Fl and tli}I{.lo%—Tli)I{.loT%"—l,
whence obtaining

d 1
lim v

e _ n/2 n
S dt 2010 (n/2)nn/? /n( Ay udn”.

On the other hand, from the rule of transformation of H; under conformal changes
and the formula nw, = H"~*(0B1(0)) we see
—umy (1 du
Hi(r) = (n—1)e )(; + %)
This equality, plus change of variables and the relation 2Ha(r) = H?(r) — trL?(r),
easily implies

—Nw dw 3w d,w 2
Vi_a(t) = wpe"™2 (t)% and  V,_3(t) = wpe™™® (t)(E) -
Consequently, we find
(Vn—?»(t)) = _dw
1 n-3 35
Wi T (Vao(t)) 1
thereby establishing the required formula:
n—2
Vies(t)) ™ F 1
lim L 3(0) pell m—n/z/ (=AY 2y dH".
t—oo wﬁz—l (Vn—Q(t)) n—1 2 F(n/2)7r n

(ii) Using the definitions of V;, and V,,_1, we conclude
(Vn—l(t)) T B nflenw(t)
Wﬁ Vn (t) fioo en’w(s)ds '

On the other hand, from Proposition 2] (v) with connection to lim; o dw/dt we
infer lim;—, o, dw/dt > 0. Next we handle two cases:
Case 1: limy_, o, dw/dt > 0. Under this condition, we clearly have

t

lim ”*® = lim ") ds = o,
t—o0 t—o0 oo
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and thus use L’Hopital’s rule to get
(Va (£)) 7 dw
AN YA

lim —— = lim o
t— o0 w;{,lv (t) t—oo dt

Case 2: lim_.oo dw/dt = 0. When lim;_,o V,(t) = oo, we may have either
limy o0 Viu—1(t) = 00 or sup,cgn Vp—1(t) < co. For the former we can once again
use L’Hopital’s rule to deduce

Vi 1 (t T d
lim L#))z lim == = 0.
t—o00 w;{,l Vn(t) t—oo dt
For the latter, we trivially get
Vi 1 (t = d
lim %:0: lim 22
t—o00 V ( ) t—oo dt

On the other hand, when sup,cg V;,(t) < 0o, we have lim;_, e”® = 0 which in
turn yields

an t n—1 d
lim ( 11( >) —0=lim ¥
t—o00 77{,1 Vn(t) t—oo dt
All in all, we arrive at
Vi1 (£) ™7 d 1
as desired. O

5. PROOF OF (L7) — GENERAL CASE

In this section we handle the validity of (7)) without the radially symmetric
hypothesis.

Proposition 5.1. Let u € C*®(R") satisfy the hypotheses of Theorem [I1l. If
Vo fB o € dH,
Voo 1 faB 0) (n—1)u dHn_l,
n—1 ou n—1
Vi 2()—nn1)f83 o)Hli?nm:lfaB 0)( + ngg‘—n)u,
dr" ' _ 1 ou\? dr" !
V"_3( ) n(n— 1)(n 2) faB (0) H2€(1 n)u T faB (0) ( + Br) e(B—nju>

where Hy still means the k-th symmetric form of the principle curvature of the
boundary of a conver domain in R™, and if Vn, V,,_ 1, V,—2 and V,_s denote
the analogously-defined mized volumes with respect to the conformal metric €*%go,

where
1

) = 40r) = o) /8 R

then:

(i)

1 / <8u>k‘mn1 0<1> for k=1,2,3,4
Hn=1(0B,.(0)) I = — or =
H"=1(9B,(0)) Jop, () \Or e ,2,3,4,
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and
as r — oo.

50 o (50) 7= (5) o ()
(i)

dVy,(r) dV,(r)
dr ~  dr

Moreover,

Vi—2(r) =Vyu_o(r)(1+0(1)) and Vy—3(r) =Va_3(r)(1+0(1)) as r— oo,

(1+0(1)) and Vp_1(r) =Vu_1(r)(1+o0(1)) as r— oc.

provided
. ou
lim (1 + r—) > 0.
r—00 87”
(iil)
Vv =2
n— " 1
lim L +(r) = = 1= oo / (=) PudH"
r—00 w/{fl (Vn_Q(T)) =1 2 F(H/Q)ﬂ' n
whenever

1

1= —— -
9n=1T(n/2)1"/2

/ (=A)"2u dH™ > 0.

(iv) ({I7A) holds.

Proof. (i) The argument can be achieved via a slight modification of the proof of
[2, Lemma 3.4] — the details are left for the interested readers.

(ii) The first two relations follow directly from Proposition 3] (ii). To prove the
second two relations, we will bring the ideas used in proving [2, Lemma 3.5] into
play.

For simplicity, in what follows, let us put a = % and b = e¢%. Then from the
definition of V,,_o and the easily-checked equation f@BT(O) (‘g—ﬁ — a) dH" ! =0 we
get

\7"72(7”) _ l/ (l + @) e(n—2)u dH 1 = lanl(aBT(O)) (1 + a> bn72,
aB.(0) \T  Or n r

n

and consequently,

Vn_Q(T‘) — Vn_g(T)

_ l l + a) / (e(n—2)u _ bn—2) dHn—l
nA\r dB,.(0)

/ (% _ a) e(n—2)u dHn—l
dB,.(0) or
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Now, using Proposition 3] (i) and the above-established formula for V,,_» we get

(1) o
% (— )H" H(0B,(0)) ("W = 1) b2 apn?
n—2(r)o(1).

S|

< |

At the same time, a combined application of Cauchy-Schwarz’s inequality, the bi-
nomial identity, the last-established (i) and Proposition B (ii) yields

/ (% _ a) (e(n—2)u _ bn—2) dHn—l
8B,.(0) or
2 3 )
< / (@ _ a) dH" ! / (e<"*2>“ - b”*) dH" !
9B,.(0) \ O 9B.,.(0)
2 3
/ ) — 2a@ +a? | dH™!
dB,.(0) or
) }
/ (n 2)u _ bn72) danl
8B,(0)
3 2
) / (e(n—2)u _ bn—Q) dHn—l
9B, (0)

o (5)
H" 1 (0B, ( (i» (H"=1(9B,(0))b*"*o(1))

1
2

X

N|=

(VB

= (Vama(r) + 1 1 (0, (0))6" ) o(1)
=V, _a(r) (1 a?f:bi- 1)0(1)

thanks to the assumption lim,_,o(1 + ar) > 0. This proves the third relation.
To prove the fourth one, we argue in a similar way. First of all, using the
definition of V,,_3, we get

2 n—1 2
_ H 0B,(0
Vo_s(r) = l/ (l + %) e(n=3)u gyyn—1 _ %()) (1 + a) 7
n Jop, ) \r  Or nb3—n r
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and then

Vn_g(T) — Vn_g(T‘)

1 1 ’ (n—3)u n—3 n—1
=— - +a (e - ) dH

n JoB,(0) \T
_|_3 (% _ a) e(n—?;)u dHn—l

™ Jas, ) \Or

2
(@) e
n 8B, (0) or

In the sequel, we control the three terms in the last formula. As in the proof of the
third relation, using Proposition[B1] (ii), we estimate the first term as follows:

1 1 2
- - (n—3)u _ pn—3 n—1 -V
n /BBT (7” " a> (e ’ ) " nos(rlo(l):

Next, still following the same argument based on Cauchy-Schwarz’s inequality,
Proposition 3] (ii) and Proposition B (i), we get the estimate for the second
term:

2 ou
— — —a ) e = 2 H T (9B,(0))b" Po(1
ale r - o(l).

Now, in order to estimate the third term, we firstly employ Young’s inequality to

get
/ (@ _ a) %e(n—?;)u dHn—l
8B,.(0) or or
2 3
< / gu _ al dH™!
~ \Jas,0) \Or
4 i

(0 (3) e

9B,(0) \ O
% / e4(n—3)u dHn—l

0B:(0)

Secondly, we rewrite the third term and use Cauchy-Schwarz’s inequality, Propo-
sition B.1] (ii) and Proposition 511 (i) and the finite limit lim, .o (1 4+ ra) > 0 to

derive
/ ((@)2 _ a2> e(n—3)u dHn—l
dB,.(0) or
Ou (n—3)u n—1
=a ——ale dH
9B,.(0) \ O

ou Ju

e TN o (n—3)u dH™ 1!
+/(?BT(O) <8’f‘ a) (87‘)6 H

<7 ?H"1(0B,(0))b"o(1).
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With the help of the above estimates and the limit lim, (1 4+ ar) > 0 we get
Vi—3(r) = Vs (r) = Va_s(r)o(1) + r>*H" " (8B,(0))o(1) = Vu_3(r)o(1),

completing the proof of the fourth relation.
(iii) Under the given assumption, the proofs of Propositions[Z1] (iv) and B1] (iv)
yield

@) —1_ fRn(—A)"/% dr"™ _ fRn(—A)"/2udH"

lin (1 o 91T (n/2)x/2 27-10(n/2)n"/2

T—00

This fact, along with Proposition 1] (i) and Proposition[51] (ii), implies

_ n/2 n \/ =1 =
1— f]RZEl A) u Ci?/—g — lim Q/njB(T)) = lim ﬁ/n—S(T)) S—
2L (n/2)m 2 e L (G, () T Wl (Vs () T
as desired.

(iv) The formula (7)) is demonstrated through the equalities
v (Br(0)) = Va(r);  s¢(Br(0)) =nVn_1(r)

and the forthcoming analysis. By Proposition 1] (ii), we have

n

(Var(r) ™

T W TV, () T W TV, ()

w(=A 71/2udHn
Jan (

Case 1: 1 — 2 IT(n/2)nn /.

> 0. This condition implies

lim V,,_1(r) = lim V,(r) = cc.

T—00 T—00

Consequently, a combined application of L’Hopital’s rule and (ii)’s of Propositions

BT and BT yields

V,_ ey da \_/nf o N —A n/2 dH™
lim ( ;(T)) = lim & (L 1(7:)) =1- fRngl S nj2
r—00 w/{fl Vn(’f') 7—00 w£71 di,‘\/n(r) 2 F(H/Q)ﬂ'
—A)/ 2y dH™ . . . . .
Case 2: 1— Jgn CA) Cudie 0. With this hypothesis, we argue as in the radial

2n—1T(n/2)7n/2
case, and thus we have to consider the situation where V,, is bounded — under this
boundedness we employ Proposition 5] (ii) to derive
AV, (1) dV,(r)

lim ——~ =0= lim ———=

r—oo dr rooco dr

and lim,_. ., r"e"® = 0. Hence we obtain

Voo T N —A n/2 dH"
fim Yoty S GO wdr,
T W TV, () 21T (n/2)7"
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