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Abstract
We show that sets of conformal data on closed manifolds with the metric in
the positive or zero Yamabe class, and with the gradient of the mean curvature
function sufficiently small, are mapped to solutions of the vacuum Einstein
constraint equations. This result extends previous work which required the
conformal metric to be in the negative Yamabe class, and required the mean
curvature function to be nonzero.

PACS number: 04.20.Ex

1. Introduction

The set of smooth, constant mean curvature (CMC) solutions of the vacuum Einstein constraint
equations is fairly well understood. For closed manifolds, there is a complete parametrization
of these solutions in terms of conformal data [I]. For the asymptotically Euclidean and
asymptotically hyperbolic cases, similar results hold [CBIY, AC].

Much less is known about non-constant mean curvature solutions. The mathematical
reason for this is that while the CMC condition effectively eliminates three of the four Einstein
constraint equations from the analysis, in the non-CMC case one must handle the full, coupled
system.

All of the non-CMC results to date [IM, CBIY, IP] require that the gradient of the mean
curvature τ be sufficiently small; we call such solutions ‘near-CMC’. In the case of closed
manifolds, these results also require that the metric be in the negative Yamabe class, and that
the mean curvature function have no zeros. While we have not yet managed to relax the small
|∇τ | condition, in this paper we show that we can construct non-CMC solutions on closed
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manifolds with the metric in the positive or zero Yamabe class, and with the mean curvature
function allowed to have zeros in the positive Yamabe case.

The procedure we use for proving our results here is the semi-decoupled sequence
(constructive) method, which we have introduced in [IM]. The chief difference between
our work here and [IM] is that while we can use a sequence of constant sub and super solutions
for sets of conformal data with negative Yamabe class metrics and τ nowhere zero, for solutions
with positive or zero Yamabe class metrics we require non-constant sub solutions. The focus in
this paper is on how to obtain such sub solutions and how to control them. We discuss this issue
in section 3, after a brief introduction to the conformal method in section 2. Also in section 3
we show that the Lichnerowicz equation with negative Yamabe class metric and τ allowed to
have zeros (but not allowed to identically vanish) always admits solutions. In section 4 we
describe the semi-decoupling method for constructing near-CMC solutions of the constraints,
and then state and prove our main theorems. We make some concluding remarks in section 5.
Note that, in this paper, we are not concerned with optimizing the regularity conditions either
on the choice of conformal data or on the solutions of the constraints which we obtain.
Presumably, one could produce solutions with the same degree of roughness discussed in [M]
and [CB].

2. The conformal method and the Lichnerowicz equation

The Einstein vacuum constraint equations require that a set of initial data (�; γ,K) consisting
of a Riemannian metric γ and a symmetric tensor K specified on a three-dimensional manifold
�, satisfy the equations

R − KabKab +
(
Ka

a

)2 = 0 (2.1)

and

∇aK
a
b − ∇b

(
Ka

a

) = 0, (2.2)

where the covariant derivative ∇, the scalar curvature R, and all contractions and traces are
calculated with respect to the metric γ .

The idea of the conformal method is that one may construct and parametrize solutions of
the constraints (2.1)–(2.2) by splitting γ and K into a set of freely specified data and a set of
determined data. The freely specified ‘conformal data’ consist of a Riemannian metric λ, a
symmetric tensor σ which is trace-free and divergence-free with respect to λ, and a function τ ,
all specified on a manifold �. The determined data consist of a vector field W and a positive-
definite scalar field φ. Using the conformal data to define the covariant derivative ∇

λ
together

with the corresponding Laplacian �
λ

, scalar curvature R
λ

and conformal Killing operator

(LW
λ

)ab := ∇a
λ

Wb + ∇b
λ

Wa − 2
3λab∇c

λ

Wc,

and to define contractions, we write out the constraint equations as follows:

�
λ
φ = 1

8R
λ
φ − 1

8 |σ + LW
λ

|2φ−7 + 1
12τ 2φ5 (2.3)

∇
λ

· LW
λ

= 2
3φ6∇

λ
τ. (2.4)

If, for a given set of conformal data (�; λ, σ, τ ), equations (2.3)–(2.4) can be solved for
(φ,W), then one readily verifies that the reconstituted data
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γab = φ4λab (2.5)

Kab = φ−10(σ + LW)ab + 2
3φ−4τλab (2.6)

satisfy the constraint equations.
Since Ka

a = τ and since Kab corresponds to the second fundamental form for the
embedded Cauchy hypersurface � in a spacetime development evolved from the initial data
(�; γ,K), the function τ represents the mean curvature of the Cauchy surface. Specifying
τ = constant results in constant mean curvature (CMC) data. This condition is important,
since if we specify conformal data with constant mean curvature then equations (2.3)–(2.4)
decouple. Equation (2.4) becomes a homogeneous linear elliptic equation for W and we
have LW = 0 in all (compact) cases. The determination of whether a particular set of
CMC conformal data produces a solution of the constraints is thus determined entirely by the
solubility of the nonlinear elliptic ‘Lichnerowicz’ equation (2.3), with LW = 0.

3. Solving the Lichnerowicz equation

In this section we discuss the solubility of the Lichnerowicz equation, independent of possible
coupling to the other constraint equations. (We return to the system (2.3)–(2.4) in section 4.)
To emphasize this, in (2.3) we replace the term |σ + LW |2 which involves the product of
tensor fields, by the simple function µ2. Thus we work with the Lichnerowicz equation
in the form

�
λ
φ = 1

8R
λ
φ − 1

8µ2φ−7 + 1
12τ 2φ5. (3.1)

Here µ and τ are arbitrary smooth functions, which may or may not have zeros.
We may further simplify the analysis of the Lichnerowicz equation by making use of its

conformal covariance which tells us that there is a solution to (3.1) for a given set of data
(�; λ,µ, τ) if and only if there is a solution to (3.1) for the related set of data (�; θ4λ, θ−6µ, τ)

(see [BI]). Combining this property with the Yamabe theorem [S] (see also [LP]), we find
that to determine the solubility of the Lichnerowicz equation for general sets of conformal
data, it is sufficient to study (3.1) for metrics having constant scalar curvature of either +8, 0,
or −8.4

The key tool we employ for proving the existence of solutions is the sub and super solution
theorem. The most useful version for our work here makes use of the Sobolev spaces W 2,p

and Hölder spaces Ck,α; see [B] for definitions and properties of these function spaces. For a
proof of the theorem stated here, see [IM]; the same result is proven for rougher data in [M].

Theorem 3.1. Let (�; λ) be a closed Riemannian manifold with C2 metric and let
f ∈ C1(� × R+). Assume that there exists φ−, φ+ : � → R+ such that with p > 3 we
have5

(1) φ± ∈ W 2,p(�),
(2) 0 < φ−(x) � φ+(x) for all x ∈ �,
(3) �

λ
φ− � f (x, φ−), and

(4) �
λ
φ+ � f (x, φ+).

4 In fact, the full Yamabe theorem is not needed; it suffices that each conformal class contains a metric with scalar
curvature having definite sign; for a proof of this more elementary fact see [A].
5 We note that the inequalities stated in conditions (3) and (4) below involve Banach space elements, �

λ
φ− and �

λ
φ+,

and therefore are not strictly well-defined pointwise. These inequalities are presumed to hold on any subset of the
manifold � with non-zero measure.
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Then there exists φ : � → R+ such that

(1) φ ∈ C2,α(�) for α ∈ (
0, 1 − 3

p

)
,

(2) φ−(x) � φ(x) � φ+(x) for all x ∈ �, and
(3) �

λ
φ = f (x, φ).

The functions φ+, φ− are called super and sub solutions respectively. The bulk of the
work required to obtain the results presented here lies in the construction of sub and super
solutions for the Lichnerowicz equation (3.1) by means of a technique which can be applied
to the coupled system (2.3)–(2.4). We first focus on (3.1) for positive Yamabe metrics and
show the following.

Proposition 3.1. Let � be a closed manifold, let λ be a smooth, positive Yamabe class metric
on �, and let µ and τ be smooth functions on � with µ not identically zero. Then there exists
a unique smooth6 solution φ to the Lichnerowicz equation (3.1).

Proof. As noted above, it is sufficient to prove existence and uniqueness of solutions for which
R
λ

is constant; thus we work with the equation

�
λ
φ = φ − 1

8µ2φ−7 + 1
12τ 2φ5. (3.2)

Step 1 (sub solution for τ = 0 case). In [I] (see class (Y+, σ �= 0, τ = 0) in section 5) it is
shown that there exists a smooth function ζ− such that

�
λ
ζ− � ζ− − 1

8µ2ζ−7
− . (3.3)

For completeness, we summarize the argument presented there: let

A := max
{
1, 1

8 max
�

µ2
}

and consider the linear PDE

�
λ
ζ− − ζ− = − 1

8µ2A−7. (3.4)

If follows from the non-degeneracy of the operator (�
λ

− 1) on compact � and from the

smoothness of λ and µ that there exists a unique, smooth solution ζ− to (3.4). To show
that this function satisfies the inequality (3.3) as well, and therefore is a sub solution for
the Lichnerowicz equation with τ = 0, we first note that 1

8µ2A−7 is non-negative and is not
identically zero. Thus the maximum principle guarantees that ζ− > 0. Next, since the function
G(x, s) := 1

8µ2s−7 is monotonically non-increasing in s, and since by definition A � 1 and
A � 1

8µ2, we have G(x,A) � G(x, 1) and G(x,A) � A for all x ∈ �. The latter inequality,
together with the definition of ζ−, guarantees that ζ− satisfies the inequality

�
λ
ζ− − ζ− � −A, (3.5)

from which we infer (via the maximum principle)7 that ζ− � A. Using this last inequality
together with the monotonicity (in s) of G to infer that G(x,A) � G(x, ζ−), and writing (3.4)
as

�
λ
ζ− = ζ− − G(x,A), (3.6)

we verify that ζ− indeed satisfies the sub solution inequality (3.3).

6 The proof in [I] produces a function ζ− ∈ W 4,p(�) for p > 3; one readily bootstraps the argument to show that
for smooth data, we obtain a smooth solution as well.
7 The version we use here appears as #3 in [I].
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Step 2 (general sub solution). The inequality (3.3) is not strict; in order to obtain a sub solution
for the Lichnerowicz equation (3.2) with positive Yamabe metric and τ 2 not identically zero,
it is useful to first replace ζ− by a function ξ− for which (3.3) is a strict inequality. This is
easily done by setting

ξ− := ζ− − 1
2 min

�
ζ−. (3.7)

Here we use the continuity of ζ− and the fact that ζ− > 0 to verify that min� ζ− exists and is
positive. Consequently we have that

ζ−(x) > ξ−(x) � 1
2 (min

�
ζ−) > 0, x ∈ �. (3.8)

Using the monotonicity of G(x, ·) we have G(x, ξ−) � G(x, ζ−) for all x ∈ �, from which
it follows that

�
λ
ξ− − ξ− + 1

8µ2ξ−7
− � �

λ
ζ− + 1

2 (min
�

ζ−) − ζ− + 1
8µ2ζ−7

−

� 1
2 (min

�
ζ−)

> 0. (3.9)

Let us now multiply ξ− by a positive number β ∈ (0, 1) (to be determined later); we obtain

�
λ
(βξ−) − (βξ−) +

β8

8
µ2(βξ−)−7 � 1

2
β(min

�
ζ−). (3.10)

Since β ∈ (0, 1), one has 1
8µ2 � 1

8β8µ2; hence

�
λ
(βξ−) − (βξ−) + 1

8µ2(βξ−)−7 � 1
2β(min

�
ζ−). (3.11)

We wish to make a choice of the constant β so that if we set φ− = βξ−, then φ− is a sub
solution for (3.2). This is accomplished by choosing β ∈ (0, 1) so that

1
2β(min

�
ζ−) � 1

12τ 2(βξ−)5. (3.12)

One readily verifies that this last estimate is satisfied provided

β �
[

6(min� ζ−)

(max� τ 2)(max� ξ−)5

]1/4

. (3.13)

Making such a choice for β we have that φ− = βξ− is a sub solution for (3.2); i.e.,

�
λ
φ− � φ− − 1

8µ2φ−7
− + 1

12τ 2φ5
−. (3.14)

For later purposes, we note here that while the sub solution construction just described
has been carried out for conformal data with the metric in the positive Yamabe class, the same
construction produces a sub solution for the other Yamabe classes as well. Note that for the
construction to work in the other Yamabe classes, one still uses equation (3.4) to construct
ζ−, rather than an alternative form with −ζ− replaced on the left-hand side by +ζ− or by zero.
One obtains, for any Riemannian metric λ, a function φ− satisfying (3.14); that φ− is a sub
solution for the same equation with an appropriate change of sign (according to the Yamabe
class of λ) for the linear φ− term immediately follows.

Step 3 (super solution). A constant φ+ is a super solution if it satisfies the inequality

φ+ − 1
8µ2φ−7

+ + 1
12τ 2φ5

+ � 0. (3.15)

Clearly if one chooses φ+ to be
(

1
8 max� µ2

)1/8
, then the above inequality is satisfied. However,

this choice does not guarantee that we have φ+ � φ−. To ensure this latter condition, we
choose

φ+ = max
{
1, 1

8 max
�

µ2}. (3.16)

5
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Recalling (as determined in the previous step) that φ− � ξ− < ζ− � A, we verify that
φ− � φ+. One also readily verifies that this choice satisfies (3.15) for any µ and τ .

Step 4 (existence of solution). Since φ− and φ+ together constitute a set of smooth sub and
super solutions which satisfy the hypotheses of theorem 3.1, it follows that (3.2) has a smooth
solution which is pointwise bounded by φ±.

Step 5 (uniqueness of solution). The sub and super solution theorem can be used to guarantee
that a solution exists, but tells us nothing about the uniqueness of that solution. To show that
solutions of the Lichnerowicz equation are unique, we rely on the following lemma, proved
in [I].

Lemma 3.1. Let f : � × R → R be C1 and satisfy

∂f

∂s
(x, s) � 0 (3.17)

for all x ∈ � and all s ∈ I , where I is some interval (possibly infinite) in R+. If �i, i = 1, 2,
are both solutions of

�� = f (x,�(x)) (3.18)

and if �i take values in I for all x ∈ �, then �1(x) = �2(x) for all x ∈ �.

For (3.2) we have

f (x, s) = s − 1
8µ2s−7 + 1

12τ 2s5, (3.19)

and therefore

∂f

∂s
(x, s) = 1 +

7

8
µ2s−8 +

5

12
τ 2s4

> 0. (3.20)

Uniqueness of solutions to (3.2) follows immediately.

A result for metrics in the zero Yamabe class follows from the work done to prove
proposition 3.1. In particular, we obtain the following.

Proposition 3.2. Let � be a closed 3-manifold; let λ be a smooth, zero Yamabe class metric
on �; and let µ and τ be smooth functions on � with τ nowhere zero and µ not identically
zero. Then there exists a unique smooth solution φ to the Lichnerowicz equation (3.1).

Proof. It is sufficient to prove existence and uniqueness of solutions when R
λ

= 0; thus we

work with the equation

�
λ
φ = − 1

8µ2φ−7 + 1
12τ 2φ5. (3.21)

Step 1 (sub solution). For the given choice of data {�; λ,µ, τ } with zero Yamabe class metric
λ, we seek a function ψ− which satisfies the inequality

�
λ
ψ− � − 1

8µ2ψ−7
− + 1

12τ 2ψ5
−. (3.22)

We have shown in the proof of proposition 3.1 that there is a function φ− > 0 which satisfies

�
λ
φ− � φ− − 1

8µ2φ−7
− + 1

12τ 2φ5
−. (3.23)

6
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Since, as noted above, the argument for the existence of φ− does not depend on the Yamabe
class of the metric, and since such a function also satisfies (3.22), we may take ψ− = φ−.

Step 2 (super solution). Any constant ψ+ which satisfies the condition

τ 2ψ5
+ � 3

2µ2ψ−7
+ (3.24)

serves as a super solution for (3.21). A short computation shows that any constant ψ+ satisfying

(min
�

τ 2)1/12ψ+ � max{1, max
�

µ2} (3.25)

will be a super solution for (3.21). To ensure as well that ψ+ � ψ−, we choose

ψ+ = (max{2, (min
�

τ 2)−1/12})(max{1, max
�

µ2}). (3.26)

Note that we now require τ to be nowhere vanishing, unlike for metrics in the positive and
negative Yamabe classes.

Step 3 (existence of solutions). Since ψ± constitute smooth sub and super solutions for (3.21),
it follows that (3.21) has a smooth solution which is pointwise bounded by ψ− and ψ+.

Step 4 (uniqueness). We apply lemma 3 to the function

f (x, s) = − 1
8µ(x)2s−7 + 1

12τ(x)2s5. (3.27)

Since τ 2 > 0 we immediately see that ∂f/∂s > 0; hence the solution to (3.21) obtained is
indeed unique. �

We use propositions 3.1 and 3.2 as key results for proving that the conformal method
maps certain sets of near-CMC conformal data to solutions of the constraint equations, as we
show in the next section (see theorems 4.1 and 4.3).

4. Near-CMC solutions of the constraint equations

The semi-decoupled sequence method for obtaining near-CMC solutions of the coupled system
(2.3)–(2.4), introduced in [IM], focuses on the sequence of equations

�φ
n

= 1
8Rφ

n

− 1
8 (σ ab + LW

n

ab)(σab + LW
n ab

)φ−7

n

+ 1
12τ 2φ5

n

(4.1)

∇a(LW
n

)ab = 2
3 φ6

n−1
∇bτ. (4.2)

Let us presume that we have made a specific choice of conformal data {�; λ, σ, τ } satisfying
appropriate hypotheses; for convenience we have in these equations suppressed explicit
reference to the conformal metric λ. The idea is to iteratively define a sequence {(φ

n

,W
n

)}
satisfying (4.1)–(4.2) by first choosing φ

0
arbitrarily8, then solving (4.2) with n = 1 to obtain

W
1

, then substituting W
1

into (4.1) with n = 1 and solving (4.1) for φ
1

, and thus proceeding to

solve (4.2) and (4.1) alternately and iteratively so as to obtain the entire sequence {(φ
n

,W
n

)}.
Once the sequence is obtained, one proceeds to prove that it converges to a smooth limit
(φ
∞

,W
∞

) which satisfies (2.3)–(2.4). One finally shows that, for a given choice of conformal

data (and for any choice of φ
0

), the solutions obtained are unique.

8 We do require that this choice of φ
0

satisfy the inequality φ−
∞

� φ
0

� φ+∞
as discussed below.
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Our method for showing that this sequence exists involves obtaining a sequence of sub
solutions φ−

n

and super solutions φ+
n

, as discussed in the last section. Both to show that these

sub and super solutions exist and are controlled, and also to prove convergence of the sequence,
we seek uniform upper and lower bounds for the set of all sub and super solutions, which
consequently uniformly bound the sequence φ

n

itself; these in turn imply uniform estimates for

each W
n

. Once we find these uniform bounds φ−
∞

and φ+
∞

, we have at our disposal the estimates

0 < φ−
∞

� φ−
n

� φ
n

� φ+
n

� φ+
∞

< ∞ (4.3)

which hold for all n = 1, 2, 3, . . .. In fact, in our construction, we may use φ+
n

= φ+
∞

( i.e., φ+
∞

is a super solution for (4.1) for all n), while we inductively show the existence of sub solutions
{φ−
n

}, which are uniformly bounded below by a positive constant φ−
∞

.

Unlike the Lichnerowicz equation (3.1), the coupled system (2.3)–(2.4) is not conformally
covariant (see [IM]). Consequently, the clearest statement of our results here regarding the
solvability of (2.3)–(2.4) for a given set of conformal data involves two steps: first we state
and prove solvability for conformal data with constant positive curvature (theorem 4.1) and
then use that result to prove a corollary for data with any positive Yamabe class metric
(corollary 4.2). Similarly, we prove a solvability theorem for data including zero curvature
metrics (theorem 4.3) and then extend the results to data with any zero Yamabe class metric.

Theorem 4.1. Let � be a closed three-dimensional manifold, let λ be a smooth Riemannian
metric on � which admits no conformal Killing fields and has constant positive scalar
curvature R

λ
= +8, and let σ be a smooth symmetric 2-tensor on � which is trace-free

and divergence-free (with respect to λ) and not identically zero. For every smooth function
τ : � → R+ which satisfies the gradient conditions given by (4.13) and (4.18) and which also
satisfies the gradient condition that the coefficient of |φ

n

− φ
n−1

| in equation (4.36) is sufficiently

small, equations (2.3)–(2.4) with data {�; λ, σ, τ } admit a unique smooth solution (φ,W).
Consequently for every such set of data {�; λ, σ, τ }, there exists a unique solution (�; γ,K)

of the constraint equations (2.1)–(2.2), taking the form (2.5)–(2.6).

Proof. For conformal data of the sort hypothesized here, the semi-decoupled system
(4.1)–(4.2) takes the form

�φ
n

= φ
n

− 1
8 |σ + LW

n
|2φ−7

n

+ 1
12τ 2φ5

n

(4.4)

∇·LW
n

= 2
3 φ6

n−1
∇τ. (4.5)

Step 1 (construction of the sequence). We begin by choosing φ
0

such that φ−
0

� φ
0

� φ+
0

,

for some constants φ±
0

to be chosen later (see the paragraph just before step 2) and which

depend only on the choice of conformal data. As is evident below, the value of φ
0

is irrelevant,

provided it does satisfy the above inequality. The operator ∇ ·L is elliptic and self-adjoint with
respect to appropriate Sobelev spaces; under our assumption that (�; λ) admits no conformal
Killing vector fields, it is also invertible. Thus by standard elliptic theory (see, for example,
the appendix of Besse [B]), equation (4.5) with n = 1 admits a unique solution W

1
, which as

a consequence of the smoothness of τ satisfies

‖W
1

‖Ck+2,α � c‖φ6

0
∇τ‖Ck,α , k � 0, α ∈ (0, 1), (4.6)

8
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where Cl,α denotes the (l, α) Hölder norm of vector fields on � given by λ. Furthermore, as
argued in [IM], it follows from (4.6) along with geometric considerations that there exists CS ,
depending only on the Riemannian manifold (�, λ), such that we have the pointwise estimate

|LW
1

| � CS(max
�

φ+
0

)6(max
�

|∇τ |); (4.7)

similarly we find

|LW
n+1

| � CS(max
�

φ+
n

)6(max
�

|∇τ |). (4.8)

We now describe how to choose uniformly bounded sub and super solutions φ−
n

, φ+
n

for (4.1).

This allows us to inductively construct a bounded sequence {(φ
n

,W
n

)} satisfying (4.4)–(4.5).

To this end we assume the existence of φ
n−1

such that 0 < φ
n−1

� φ+
∞

, for some constant φ+
∞

. By our

inductive assumption, it follows that

|LW
n

| � CS(max
�

φ+
∞

)6(max
�

|∇τ |). (4.9)

We desire to choose φ+
∞

so that it is a constant super solution for (4.4) for all n ∈ N; it

suffices that the estimate

0 � φ+
∞

− 1
8 |σ + LW

n
|2φ−7

+∞
+ 1

12τ 2φ5
+∞

(4.10)

holds on �. For this to hold it suffices that

φ8
+∞

+ 1
12τ 2φ12

+∞
� 1

4 (|σ |2 + |LW
n

|2), (4.11)

which in turn holds provided

φ8
+∞

� 1
4 |σ |2 and 1

12τ 2φ12
+∞

� 1
4C2

Sφ
12
+∞

max
�

|∇τ |2. (4.12)

We now see that so long as we restrict τ so that

3C2
S

(
max�|∇τ |

min� τ

)2

< 1, (4.13)

it suffices to choose φ+
∞

such that

φ8
+∞

� 1
4 max

�
|σ |2. (4.14)

We turn to the task of finding a sequence of sub solutions φ−
n

, which are defined to be a

sequence of functions such that

�φ−
n

� φ−
n

− 1
8 |σ + LW

n
|2φ−7

−
n

+ 1
12τ 2φ5

−
n

, (4.15)

where W
n

satisfies (4.5). Here, we seek a positive constant φ−
∞

, independent of n, such that

φ+
∞

� φ−
n

� φ−
∞

> 0.

Following the method used in the proof of proposition 3.1, we first study the solution ψ
n

to

�ψ
n

− ψ
n

= − 1
8 |σ + LW

n
|2A−7

n
, (4.16)

where A
n

= max
{
1, 1

8 max� |σ + LW
n

|2}. We estimate ψ
n

using ξ , the (smooth) solution to

�ξ − ξ = − 1
8 |σ |2A−7, (4.17)

9
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where A = max{1, max�|σ |2}. By the maximum principle9 and the compactness of �, there
exists a constant δ > 0, depending on (�, λ, σ ), such that ξ � δ.

We claim that one may choose, depending only on φ+
∞

(and hence on max�|σ |2), a constant

Cτ such that the condition

|∇τ | � Cτ (4.18)

implies that |ψ
n

−ξ | is small enough to ensure that ψ
n

� 1
2δ. The claim follows from examining

the equation

(� − 1)(ψ
n

− ξ) = − 1
8 |σ + LW

n
|2A−7

n
+ 1

8 |σ |2A−7. (4.19)

We first assume that A = 1 and A
n

= 1. In this case, we may write the right side of

(4.19) as F(LW
n

) − F(0), where F(ρ) = − 1
8 |σ + ρ|2. Applying the mean value theorem, and

making use of (4.9), we see that the right side of (4.19) is controlled by

1
4 |∇τ |(C2

Sφ
12
+∞

max
�

|∇τ | + CSφ
6
+∞

max
�

|σ |)(max
�

|σ |). (4.20)

Thus by the maximum principle10, we have |ψ
n

− ξ | is small whenever |∇τ | is small.

In the case that A > 1, we can choose Cτ small so that (4.18) implies A
n

> 1 for all n.

Then the right side of (4.19) is equal to

−1

8

|σ + LW
n

|2 − |σ |2

(max�|σ + LW
n

|2)7
− 1

8
|σ |2[(max

�
|σ + LW

n
|2)−7 − (max

�
|σ |2)−7]. (4.21)

Making use of (4.9) once again, we see that this quantity can be made small by controlling
|∇τ |. Thus an application of the maximum principle yields the claim in this case.

With the claim in hand, one easily verifies that −�ψ
n

+ψ
n

� A
n

and hence by the maximum

principle we have ψ
n

� A
n

. From this it follows that

�ψ
n

� ψ
n

− 1
8 |σ + LW

n
|2ψ−7

n

. (4.22)

Replacing ψ
n

by ψ
n

− 1
4δ, we see that the previous estimate holds with a strict inequality.

We now choose a constant β ∈ (0, 1), independent of n, so that φ−
n

:= βψ
n

is a sub solution

for (4.1). One verifies, using an argument similar to that in the proof of proposition 3.1,
that for any choice of β ∈ (0, 1) satisfying

β5 � 3δ

(max� τ 2)φ5
+∞

, (4.23)

we have

�(βψ
n

) � (βψ
n

) − 1
8 |σ + LW

n
|2(βψ

n

)−7 + 1
12τ 2(βψ

n

)5. (4.24)

Note that any such sub solution βψ
n

is bounded below by φ−
∞

:= 1
5βδ > 0, independently of n.

9 See, for example, version 2 in [I].
10 Version 3 in [IM].

10
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Finally, if necessary, we choose a larger φ+
∞

to ensure φ−
∞

< φ+
∞

. This allows construction

of the sequence {(φ
n

,W
n

)} such that

0 < φ−
∞

� φ
n

� φ+
∞

(4.25)

and

|LW
n

| � CSφ
6
+∞

max
�

|∇τ |. (4.26)

We subsequently set φ−
0

= φ−
∞

and φ+
0

= φ+
∞

.

Step 2 (convergence of the sequence). We now show that the sequence {(φ
n

,W
n

)} converges to

a smooth limit (φ
∞

,W
∞

). Standard elliptic estimates applied to

(∇·L)(W
n

− W
m

) = 2
3 [φ6

n

− φ6

m

]∇τ (4.27)

imply that {W
n

} is Cauchy in W 2,p(�), with p > 3, provided {φ
n

} is Cauchy in C0(�). In light

of the Sobolev embedding W 2,p(�) ⊂ C0(�) (see, for example, the appendix of Besse [B]),
the sequence {(φ

n

,W
n

)} converges to (φ
∞

,W
∞

) ∈ C0(�)×C0(�) provided {φ
n

} converges. Thus

we turn our attention to this sequence.
We study this sequence by considering the quantity

I(x, φ
n−1

, φ
n

, φ
n+1

) :=
∫ 1

0

d

dt
[�ψ

n+1
(t, x) − F(x,ψ

n

(t, x), ψ
n+1

(t, x))] dt, (4.28)

where ψ
n

(t, x) = tφ
n

(x) + (1 − t) φ
n−1

(x) and where

F(x,ψ
n

(t), ψ
n+1

(t)) := 1
8 ψ
n+1

− 1
8 |σ + LV

n
|2 ψ−7

n+1
+ 1

12τ 2 ψ5

n+1
. (4.29)

Here the vector field V
n

satisfies

∇·LV
n

= 2
3ψ6

n

∇τ (4.30)

and we have suppressed dependence on the point x ∈ �. Computing the quantity I via the
fundamental theorem of calculus and also by direct computation, we obtain

�( φ
n+1

− φ
n

) − G[ φ
n+1

− φ
n

] = F[φ
n

− φ
n−1

], (4.31)

where

F[φ
n

− φ
n−1

] =
∫ 1

0
D2F(·, ψ

n

(t), ψ
n+1

(t)) dt[φ
n

− φ
n−1

]

G[ φ
n+1

− φ
n

] =
∫ 1

0
D3F(·, ψ

n

(t), ψ
n+1

(t)) dt[ φ
n+1

− φ
n

];
(4.32)

here Di is differentiation with respect to the ith variable. One easily sees that G satisfies

G[ φ
n+1

− φ
n

] � 1
8 ( φ

n+1
− φ

n

). (4.33)

An estimate for F can be obtained by observing that

F[φ
n

− φ
n−1

] = 1
4

∫ 1

0
(σ ab + LV [ψ

n

(t)]ab)(Lω(t)[φ
n

− φ
n−1

]ab)ψ
−7

n+1
(t) dt, (4.34)

11
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where the vector field ω[φ
n

− φ
n−1

] is defined to be the solution to

∇·Lω[φ
n

− φ
n−1

] = 4ψ5

n

∇τ(φ
n

− φ
n−1

). (4.35)

Thus by standard elliptic estimates used above, we see that

|F[φ
n

− φ
n−1

]| � 1
4

(
max

�
|σ | + Ĉ 4

3φ6
+∞

max
�

|∇τ |)(8Ĉφ5
+∞

max
�

|∇τ |)(φ−7
+∞

) · |φ
n

− φ
n−1

|. (4.36)

Hence, provided max�|∇τ | is small, we obtain via the maximum principle that

| φ
n+1

− φ
n

| � �|φ
n

− φ
n−1

| (4.37)

for some positive constant � < 1. It follows that {φ
n

} is a Cauchy sequence in C0(�), and

converges to φ
∞

∈ C0(�). Further, as a consequence of the argument described above, there

is a C0 limit W
∞

for the sequence {W
n

}. We may then adapt an argument from [IM], together

with the smoothness of the data, to verify that in fact φ
∞

and W
∞

are smooth.

Step 3 (showing that the limit is the unique solution). To see that (φ
∞

,W
∞

) constitutes a solution

to (2.3)–(2.4), it suffices to observe that for p > 3 as above, we have the estimate

‖�φ
n

− F(·, φ
n

, φ
n

)‖W 0,p � CSobolev‖F(·, φ
n−1

, φ
n

) − F(·, φ
n

, φ
n

)‖C0 . (4.38)

The continuity of F implies that the right side tends to zero as n → ∞; thus we see that φ
∞

is a weak solution to (2.3). The smoothness of φ
∞

implies that this weak solution is in fact

a classical solution; from a similar argument we obtain that (2.4) is weakly (and therefore
classically) satisfied.

To verify uniqueness, let (φ,W) and (̂φ, Ŵ ) be a pair solutions. Define �(t) =
tφ + (1 − t )̂φ and consider the quantity

K(x, φ, φ̂) =
∫ 1

0

d

dt
[�� − F(x,�,�)] dt. (4.39)

The analysis used to show convergence of (φ
n

,W
n

) yields the estimate

‖φ − φ̂‖C0 � �‖φ − φ̂‖C0 , (4.40)

where, as before, � < 1. Thus φ = φ̂, from which it follows immediately that W = Ŵ . �

It is possible to use this theorem, in conjunction with the Yamabe theorem, to find a
solution to the constraint equations in the conformal class of any Yamabe positive metric λ on
�. Given a Yamabe positive Riemannian manifold (�, λ), by the Yamabe theorem we can
find a smooth, positive function θ such that (�, θ4λ) has scalar curvature R = 8. Then by
applying theorem 4.1 to the system

�
θ4λ

φ = 1
8 R

θ4λ
φ − 1

8 (σ + LW
θ4λ

)2φ−7 + 1
12τ 2φ5 (4.41)

∇
θ4λ

· LW
θ4λ

= φ6 ∇
θ4λ

τ, (4.42)

we arrive at the following corollary.

12
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Corollary 4.2. Suppose that � is a three-dimensional Riemannian manifold with smooth
metric λ in the Yamabe positive class and having no conformal Killing vector fields. For each
smooth symmetric 2-tensor σ which is trace-free and divergence-free with respect to λ, and
for each smooth function τ : � → R which is nonzero and which satisfies the hypotheses of
theorem 4.1, there exist smooth positive functions φ and θ and a smooth vector field W such
that the data

γab = (φθ)4λab

Kab = φ−10(θ−10σ + LW
θ4λ

)ab + 1
3 (φθ)−4λabτ,

(4.43)

comprise a solution to the Einstein constraint equations.

We now turn our attention to the case of conformal data which includes metrics which lie
in the zero Yamabe class (i.e., metrics which can be conformally transformed to a metric with
zero scalar curvature). We start by proving a result for metrics with R = 0:

Theorem 4.3. Let � be a closed three-dimensional manifold, let λ be a smooth Riemannian
metric on � which admits no conformal Killing fields and which has identically vanishing
scalar curvature, and let σ be a smooth symmetric 2-tensor on � which is trace-free and
divergence-free (with respect to λ) and not identically zero. For every smooth function
τ : � → R+ which is nowhere zero and which satisfies the gradient conditions (4.49)
and (4.18) and which also satisfies the gradient condition that the coefficient of |φ

n

− φ
n−1

|
in equation (4.36) is sufficiently small, equations (2.3)–(2.4) with data {�; λ, σ, τ } admit
a unique smooth solution (φ,W). Consequently for every such set of data {�; λ, σ, τ },
there exists a unique solution (�; γ,K) of the constraint equations (2.1)–(2.2), taking the
form (2.5)–(2.6).

Proof. The proof of theorem 4.3 (Yamabe zero metrics) is very much like that of theorem 4.1
(positive Yamabe class metrics). We sketch the steps here, emphasizing the differences from
the proof of theorem 4.1.

Step 1 (construction of the sequence). We make use of proposition 3.2 to construct a sequence
{(φ

n

,W
n

)} satisfying

�φ
n

= − 1
8 |σ + LW

n
|2φ−7

n

+ 1
12τ 2φ5

n

(4.44)

∇·LW
n

= 2
3 φ6

n−1
∇τ , (4.45)

and in doing so we obtain uniform upper and lower bounds for the corresponding sequence
of sub and super solutions. As in the positive curvature case, we may choose a constant φ+

∞
which is a super solution for (4.44) for all n. It suffices that the constant φ+

∞
satisfy

max�|σ |2
3 min� τ 2

� φ12
+∞

, (4.46)

provided the estimate

|LW
n

|2 � 1
3τ 2φ12

+∞
(4.47)

also holds. In light of the elliptic estimate

|LW
n

| � CS max
�

φ6

n−1
max

�
|∇τ |, (4.48)

13
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a constant φ+
∞

satisfying (4.46) is a super solution so long as we require that the conformal data

satisfy the condition

max�|∇τ |2
min� τ 2

� 1

3C2
S

. (4.49)

We now show that the sequence of sub solutions {φ−
n

} provided by the proof of

proposition 3.2 is bounded below by a positive function φ−
∞

. Recall from the proof that

the sub solutions for equation (3.21) were in fact chosen to satisfy (3.23). Thus the sub
solutions for (4.44) in fact satisfy (4.15) and hence, by the proof of theorem 4.1, are indeed
uniformly bounded below by a positive constant φ−

∞
. With φ−

∞
in hand, we may increase φ+

∞
if

necessary to ensure that, for all n, the following holds:

0 < φ−
∞

� φ−
n

� φ
n

� φ+
n

� φ+
∞

< ∞. (4.50)

Recall that the argument constructing φ−
∞

places conditions on the size of ∇τ .

Step 2 (convergence of the sequence). The argument for convergence of the sequence here
(with R = 0 conformal data) is very similar to that given for convergence of the sequence in
the proof of theorem 4.1 (R > 0 conformal data). We define J much as in (4.28) (with the
1
8 ψ
n+1

term subtracted from the quantity F in (4.29)). Then to obtain a contraction map of the

form (4.37) (with � < 1 ), we need to carry out the estimates for the operators F and G as in
(4.32).

The estimate for F is precisely the same as above; we obtain (4.36). For G we easily
calculate that

G[ φ
n+1

− φ
n

] � 5
12 min

�
τ 2φ−

∞
( φ
n+1

− φ
n

). (4.51)

Combining these estimates, we readily determine that for sufficiently small max |∇τ |, we
have (4.37) with � < 1. The convergence of the sequence {(φ

n

,W
n

)} then follows, as in the

proof of theorem 4.1.

Step 3 (showing that the limit is the unique solution). The argument that the limit of the
sequence {(φ

n

,W
n

)} is a smooth solution, and that it is unique for the given set of conformal

data, proceeds exactly as in the proof of theorem 4.1. �

Combining this result with the Yamabe theorem for metrics of the zero Yamabe class, we
produce (analogous to corollary 4.2) the following:

Corollary 4.4. Suppose � is a three-dimensional Riemannian manifold with smooth metric
λ in the Yamabe zero class having no conformal Killing vector fields. For each smooth
symmetric 2-tensor σ which is trace-free and divergence-free with respect to λ, and for each
smooth function τ : � → R which is nowhere zero and which satisfies the hypotheses of
theorem 4.3, there exist smooth positive functions φ and θ and a smooth vector field W such
that the data

γab = (φθ)4λab

Kab = φ−10(θ−10σ + LW
θ4λ

)ab + 1
3 (φθ)−4λabτ

(4.52)

are a solution to the Einstein constraint equations.
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5. Conclusions

The results we present here, together with those of the earlier papers [IM, IO], provide a fairly
complete picture of which sets of near-CMC conformal data on compact manifolds lead to
solutions of the Einstein constraint equations and which do not. Similarly, the picture for near-
CMC asymptotically Euclidean data [CBIY] and for near-CMC asymptotically hyperbolic
data [IP] is fairly clear as well. Even for the case of near-CMC data on manifolds with
boundary, the recent results of [HKN] point toward increasing clarity.

On the other hand, almost nothing is understood about conformal data which is neither
CMC nor near-CMC. This is the direction which future research into the use of the conformal
method for obtaining solutions of the Einstein constraint equations is bound to explore11.
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