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Abstract

We show that time-reflection symmetric, asymptotically flat, static vacuum

data which admit a non-trivial conformal rescaling which leads again to such

data must be axi-symmetric and admit a conformal Killing field. Moreover,

it is shown that there exists a 3-parameter family of such data.

PACS: 04.20.Ex, 04.20.Ha, 04.20.Jb

1 Introduction

The metric of a static space-time assumes in suitable local coordinates t, x̃a, a = 1, 2, 3,
the form

g̃ = v2 d t2 + h̃, v = v(x̃c) > 0, h̃ = h̃ab(x̃
c) dx̃a dx̃b, (1.1)

where h̃ denotes a negative definite metric on the time slices S̃c = {t = c = const.}. The
hypersurface orthogonal, time-like Killing vector field is then given by ∂t. We refer to h̃ as
the static metric and to v as the potential. Einstein’s vacuum field equations reduce here
to the static vacuum field equations

Rab[h̃] =
1

v
D̃a D̃b v, ∆h̃ v = 0, (1.2)

where D̃ denotes the covariant derivative defined by h̃. It suffices to consider these equa-
tions on S̃ ≡ S̃0.
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In the following we study solutions which are asymptotically flat so that the coor-
dinates x̃a can be required, for suitable S̃, to map the set S̃ diffeomorphically onto the
complement of a closed ball BR(0) in R

3 so that the fields h̃, v satisfy with some ǫ > 0
and k ≥ 2 the asymptotic flatness condition1

h̃ac = −
(

1 +
2m

|x̃|

)

δac +Ok(|x̃|−(1+ǫ)), v = 1 − m

|x̃| +Ok(|x̃|−(1+ǫ)) as |x̃| → ∞,

(1.3)
where | . | denotes the standard Euclidean norm. We refer to (S̃, h̃, v) as static vacuum
data. The coefficient m represents its ADM mass. In this article we shall only be interested
in data with mass m 6= 0.

The pair (S̃, h̃) defines a particular type of time-reflection symmetric initial data for
Einstein’s vacuum field equations. Our interest in such initial data is motivated by obser-
vations which suggest that evolutions in time of time-reflection symmetric, asymptotically
flat vacuum data admit at null infinity conformal extensions of prescribed smoothness if
and only if the data behave in terms of a certain type of expansion at space-like infinity
up to a certain order like static data (cf. [4] for a detailed discussion).

The full analysis of this relation requires detailed information on the asymptotic be-
haviour of static data and their conformal structures at space-like infinity. In previous
work ([5]) we have given a complete characterization of static vacuum data in terms of a
minimal set of symmetric trace free tensors at space-like infinity, referred to as null data.
That article clarifies, in particular, the convergence problem. In the present article we take
a first step towards characterizing conformal structures of static data. Obviously, such a
characterization should be more easy if static data are related in a one to one fashion to
their conformal structures. It will be shown that the relation is in fact more complicated.

A precise description of our result requires technical details. To keep the discussion
short we refer the reader to [5] for further details. Beig and Simon ([2]) showed under
certain assumptions, weakened later by Kennefick and O’Murchadha ([7]), that static data
with m 6= 0 admit conformal rescalings

h̃ab → hab = Ω2 h̃ab, (1.4)

with positive conformal factors Ω so that the set S = S̃ ∪ {i}, obtained by adjoining to
S̃ a point i representing space-like infinity, acquires a real analytic differentiable structure
in which the conformal metric h extends to a real analytic metric on S and Ω extends to
a function in C2(S) ∩ Cω(S̃) so that

Ω > 0 on S̃, Ω = 0, dΩ = 0, HesshΩ = −2 h at i. (1.5)

A particular example of such a conformal factor, determined by the static data themselves,
is given by

Ω =

(

1 − v

m

)2

. (1.6)

1The terms Ok(|x̃|−(1+ǫ)) behave like O(|x̃|−(1+ǫ+j)) under differentiations of order
j ≤ k.
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Let (S̃, h̃, v) be a static vacuum data set with m 6= 0 and the fields h, Ω on S related
to it by (1.4), (1.6). We say that this set admits a non-trivial conformal rescaling if there
exists another static vacuum data set (S̃′, h̃′, v′) with associated fields h′, Ω′ on S′ so that
the following holds. Some neighbourhood U ′ of i′ in S′ can be identified diffeomorphically
with some neighbourhood U of i in S, identifying i′ with i, so that after identification
there exists a non-constant smooth function ϑ > 0 on U with

h′ = ϑ4 h. (1.7)

In other words, we require the existence of a conformal diffeomorphism which maps a
neighbourhood of space-like infinity with respect to h̃ onto such a neighbourhood with
respect to h̃′ so that it extends in our gauge smoothly to a conformal map which maps i
onto i′. The metrics h̃, h̃′ are then related by

h̃′ = θ4 h̃ with θ =

(

1 − v′

m′

)−1

ϑ
1 − v

m
. (1.8)

In this article we investigate the question whether there exist static vacuum data sets
which admit non-trivial conformal rescalings.

The following general transformations map static vacuum data sets onto such sets:
− Trival rescalings

h̃→ h̃′ = θ4 h̃, v → v′ = v with θ = const. > 0. (1.9)

Asymptotic flatness of h̃′ follows with the coordinate transformation x̃a → x̃a′

= θ2 x̃a

in (1.3), which shows that the mass transforms as m → m′ = θ2m. The corresponding

conformal factor ϑ in (1.7) is given by ϑ = 1−v
m′ θ

(

1−v
m

)−1
= θ−1

− The transitions
(S̃, h̃, v) → (S̃, h̃′ = v4 h̃, v−1). (1.10)

under which the sign of the mass changes, m → m′ = −m, and (1.7) holds with ϑ = 1.
These transitions are suggested by the conformal static field equations studied below (cf.
the remark following (2.8)). Without loss of generality it is therefore sufficient to consider
the case

m, m′ > 0. (1.11)

If the metric h̃ is conformally flat with non-vanishing mass it is necessarily induced
by a Schwarzschild solution ([4]). In isotropic coordinates x̃a the data are

h̃ = −
(

1 +
m

2 |x̃|

)4

δab dx̃
a dx̃b, v =

1 − m
2 |x̃|

1 + m
2 |x̃|

,

and (1.6) gives in the coordinates xa = |x̃|−2 x̃a, which are h-normal coordinates centered
at i,

h = −δab dx
a dxb, Ω =

( |x|
1 + m

2 |x|

)2

.
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The transition h̃ → θ4 h̃, v → v′ with θ =
1+ m

′

2 |x̃|

1+ m

2 |x̃|
, v′ =

1− m
′

2 |x̃|

1+ m′

2 |x̃|

, which maps a

Schwarzschild metric h̃ with mass m onto such a metric with mass m′, corresponds to
a trivial rescaling combined with a coordinate transformation. In terms of h this rescaling
is given by (1.8) with ϑ = 1 and the information on the difference between the solutions
is encoded in the conformal factors Ω and Ω′. The conformally flat case is special in
admitting the 3-parameter group of special conformal transformations

xa → xa + da xc x
c

1 + 2 dc xc + dc dc xe xe
, da = const. ∈ R

3,

as local, non-trival, conformal maps of h which leave i fixed. In terms of the coordinates
x̃a the map above is given by the simple translation x̃a → x̃a + da. Conversely, the trans-
lations xa → xa + da is represented in terms of the coordinates x̃a by a special conformal
transformation which maps a neighbourhood of infinity onto a punctured neighbourhood
of the point |d|−2 da. In the following we shall be interested in static data which are not
conformally flat.

The question posed above has been considered by Beig ([1]). He defines a certain
quantity Q, quadratic in the Cotton tensor and its covariant derivatives up to second
order, and shows that h cannot admit non-trivial rescalings if Q 6= 0 at i. As also pointed
out in [1], this condition excludes axi-symmetric static data. Unfortunately it is not clear
what else is excluded. We wish to control the situation without imposing conditions and
want to decide whether there do exist static, conformally non-flat vacuum data that admit
non-trivial conformal rescalings. The lemmas proven in this article imply the following.

Theorem 1.1 Suppose (S̃, h̃, v) are static vacuum data with ADM mass m 6= 0. If they
admit a non-trival conformal rescaling, then h̃ admits a conformal Killing field Y which
is neither homothetic nor a Killing field for h̃ and, in addition, a Killing field X which
defines an infinitesimal axi-symmetry. The fields Y and X commute, are orthogonal to
each other, and Y is tangent to the axis defined by X which passes through the point
representing space-like infinity. Furthermore, if h̃ is not conformally flat it has a non-
vanishing quadrupole moment.

There exists a 3-parameter family of static vacuum data with m 6= 0 which are not
conformally flat and which do admit non-trival conformal rescalings. The associated space-
time metrics are of Petrov type D along the axis and of Petrov type I on an open neigh-
bourhood surrounding the axis.

This result would provide complete information about the non-conformally flat static
data with non-vanishing mass which admit non-trivial rescalings, were it not for an unan-
swered question. As discussed below, it is left open whether there exist data with non-
vanishing quadrupole moment which admit non-trivial rescalings with dϑ = 0 at i.

Apart from this omission the result above represents a 3-dimensional analogue of
Brinkmann’s theorem. Brinkmann studied the solutions of Einstein’s vacuum field equa-
tions in 4 space-time dimensions which admit non-trivial conformal rescalings that yield
new vacuum fields (asymptotic behaviour, however, played no role in these studies). He
found them to be given by the solutions which have later been named vacuum pp-waves
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([3], [8]). These solutions are of Petrov type N . We note that the rescalings of the static
data considered in this article do not extend to conformal rescalings of the correponding
static vacuum space-times.

Details of the static data whose existence has been shown here will be discussed
elsewhere.

2 Conformal static vacuum field equations

The derivation of the following equations has been discussed (in terms of h and ζ = ρ/µ)
in detail in [5]. Using the conformal metric h defined by (1.4), (1.6) and the function

ρ =

(

1 − v

1 + v

)2

, (2.1)

one obtains the static vacuum equations (1.2) in the form

0 = Σab[h, µ] ≡ DaDbρ− s hab + ρ (1 − ρ) sab with s =
1

3
∆hρ, (2.2)

(∆h − 1

8
R[h]) [

1√
ρ
] =

4 π√
µ
δi. (2.3)

Here D denotes the covariant derivative defined by h, and the tensor

sab = Rab[h],

is the Ricci tensor of h. It is trace free because the Ricci scalar of h satisfies in the
conformal gauge defined by (1.6)

R[h] = 0. (2.4)

We note that the tensor m
2 sab(i) at space-like infinity represents the quadrupole moment

of the static metric h̃. We set

µ =
m2

4
, (2.5)

and denote by δi the Dirac measure with weight one and support {i}, given by the standard
Dirac measure δ0 in h-normal coordinates xa centered at i. In such coordinates the fields
h and ρ are real analytic and satisfy

ρ = 0, Daρ = 0, DaDbρ = −2µhab at i. (2.6)

The function ρ can be characterized as the unique real analytic solution of (2.3), (2.6)
or as the unique real analytic function satisfying (2.6) and

2 ρ s = DaρD
aρ, (2.7)

which is a rewrite of (2.3). This equation can be shown ([4]) to be in fact a consequence
of (2.2) and (2.6) so that the essential information on the static field equations is encoded
in (2.2), (2.6).
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In going from h, ρ back to h̃ and v, one has to choose the sign of the square root. In
the case of positive mass the correct formulas are

Ω =
ρ

µ (1 +
√
ρ)2

, v =
1 −√

ρ

1 +
√
ρ
. (2.8)

Replacing here the square root by its negative amounts to the transition (1.10).

The system (2.2) implies the integrability conditions

0 =
1

2
De Σea = Da s+ (1 − ρ) sab D

b ρ, (2.9)

and

0 =
1

ρ
(D[c Σa]b +

1

2
De Σe[c ha]b) = (1 − ρ)D[csa]b − 2D[cρ sa]b −Dd ρ sd[c ha]b, (2.10)

which extends by analyticity also to i.

While the static vacuum data are subject to a rescaling (1.7), the transformation of
the potential was left unspecified. As pointed out above, the potential, represented by the
function ρ, is determined in the asymptotically flat case uniquely by µ and h. The new
potential should thus be given in terms of ρ, the conformal factor ϑ, and the new mass
term µ′.

Lemma 2.1 Assume that (S, h, ρ) is derived from a static vacuum data set with mass
m > 0 as discussed above and ϑ > 0 is a C2 function so that h′ = ϑ4 h is the conformal
metric associated with static vacuum data h̃′, v′ on S \ {i} with mass m′ > 0. Set

ν =
m2

m′2 ϑ(i)4
. (2.11)

Then the function

ρ′ =
1

ν

(

ϑ

ϑ(i)

)2

ρ, (2.12)

satisfies

(∆h′ − 1

8
R[h′])[

1√
ρ′

] =
4 π√
µ′ δi, (2.13)

and relations (2.6) with ρ, µ, D replaced by ρ′, µ′ and the covariant derivative operator
D′ defined by h′. The function ρ′ agrees with the one given by (2.1) with v replaced by v′.

Proof. Let xa resp. xa′

denote h- resp. h′-normal coordinates centered at i. A
calculation then shows that the system xa′

satisfies, possibly after a rotation around the
origin, the relation

xa′

= δa′

a

{

ϑ(i)2 xa − ϑ(i) (δbc δ
ad − 2 δa

b δ
d

c)ϑ,d(i)x
a xc

}

+O(|xa|3). (2.14)
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Writing the transformation xa = xa(xc′) shortly x = f(x′), the transformation behaviour
of Dirac distributions under coordinate transformations implies with the relation above
f∗ δ0 = | det ∂f

∂x′ (i)|−1 δ0′ = ϑ(i)6 δ0′ ([6]). With the conformal covariance of the conformal
Laplacian and (2.3) it thus follows

f∗
(

(∆h′ − 1

8
Rh′)[

1√
ρ′

]

)

=

√

µ

µ′ ϑ(i)−1 f∗
(

(∆h′ − 1

8
Rh′)[

1

ϑ
√
ρ
]

)

=

√

µ

µ′ ϑ(i)−1 f∗
(

ϑ−5 (∆h − 1

8
Rh)[

1√
ρ
]

)

=
4 π√
µ′ δ0′ .

The relations (2.6) are verified by a direct calculation and the last statement follows by
the uniqueness property pointed out above.

The quantity ν is left unchanged under trivial conformal rescalings. It has the following
meaning. The conformal factor θ has in the coordinates of (1.3) in general an expansion

θ =
1

ϑ(i)

(

1 +
a

|x̃| +O

(

1

|x̃|2
))

,

with some coefficients ϑ(i) > 0 and a. Rescaling the metric (1.3) with θ one finds that
the rescaled metric θ4h̃ acquires the mass m′ = ϑ(i)−2(2 a + m). Using (2.8), (2.12) in
the expression (1.8) for θ, expanding ρ using (1.5), and comparing with the expression
for θ above, we find 2 a = m

(

ν−1/2 − 1
)

and thus again (2.11). A change of mass is
thus generated purely by a trivial rescaling if ν = 1 but is partly due to an independent
contribution if ν 6= 1. We finally note the expressions

θ =

√
ν ϑ(i) +

√
ρϑ

(1 +
√
ρ)

√
ν ϑ(i)2

, v′ =

√
ν ϑ(i) − ϑ+ (

√
ν ϑ(i) + ϑ) v√

ν ϑ(i) + ϑ+ (
√
ν ϑ(i) − ϑ) v

, (2.15)

for the conformal factor and the transformed potential. It follows that θ = 1 if and only
if ν = 1 and ϑ = 1, while v′ = v is equivalent to (

√
ν ϑ(i) − ϑ) v2 = (

√
ν ϑ(i) − ϑ). This

can hold only if v = 1, which implies that h̃ab is flat, or if ϑ =
√
ν ϑ(i), which implies that

ν = 1, ϑ = ϑ(i), and θ = ϑ(i)−1.

3 The equations for the rescaling factor

It will be convenient to replace ϑ by γ ϑ and assume

ϑ(i) = 1, γ = const. > 0, ν =
µ

µ′ γ4
, (3.1)

h′ = γ4 ϑ4 h, ρ′ =
1

ν
ϑ2 ρ. (3.2)

To derive conditions on the scaling factors we express

Σab[h
′, µ′] ≡ D′

aD
′
bρ

′ − s′ h′ab + ρ′(1 − ρ′) s′ab,
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in terms of h and ρ. With the general rescaling laws in 3 dimensions

Rab[ϑ
4 h] = Rab[h]− 2ϑ−1DaDbϑ+6ϑ−2DaϑDbϑ− 2 hab

{

ϑ−1DcD
cϑ+ ϑ−2DcϑD

cϑ
}

,
(3.3)

1

8
R[ϑ4 h]ϑ5 = −∆hϑ+

1

8
R[h]ϑ, (3.4)

where the right hand sides are expressed in terms of quantities derived from h, a direct
calculation gives

Σab[h
′, µ′] = γ4 ϑ2 µ

′

µ
Σab[h, µ] +

8

3
γ4 µ

′

µ

(

1

ν
ϑ3ρ2 − ϑ ρ

)

∆hϑhab

−γ4 µ′

µ ν2
ϑ6 ρ2

(

DaDbu− 1

3
∆hu hab + u (1 − u) sab

)

,

where we set
u = ν ϑ−2, (3.5)

and used the resulting relation

2 u∆hu− 3DcuD
cu = −4 ν2 ϑ−5 ∆hϑ. (3.6)

Equation (3.4) implies with R[h] = 0 and R[h′] = 0

∆hϑ = 0. (3.7)

From these relations we read off the following basic condition.

Lemma 3.1 Suppose h and ρ satisfy (2.2) and (2.6) with some constant µ > 0. If
µ′, γ > 0 are constants and ϑ a positive function with ϑ(i) = 1, then h′ = γ4 ϑ4 h and
ρ′ = 1

ν ϑ
2 ρ with ν = µ

µ′ γ4 satisfy Σab[h
′, µ′] = 0 if and only if u = ν ϑ−2 satisfies the

overdetermined system

0 = Π[h, u] ≡ 2 u t−DcuD
cu with t =

1

3
∆hu, (3.8)

0 = Πab[h, u] ≡ DaDbu− t hab + u (1 − u) sab. (3.9)

Moreover, u must satisfy the initial condition

u(i) = ν. (3.10)

Using the Bianchi identity and the decomposition Rdbca = 2 (hd[c sa]b−hb[c sa]d), which
holds because R[h] = 0 and dim(S) = 3, one gets from (3.9) the integrability conditions

0 =
1

2
DcΠca = Da t+ (1 − u)Dcu sca, (3.11)

0 =
1

u

(

D[cΠa]b +
1

2
DdΠd[c ha]b

)

= (1 − u)D[c sa]b − 2D[cu sa]b −Ddu sd[c ha]b. (3.12)
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The identity
DaΠ = uDcΠca − 2DcuΠca, (3.13)

implies that (3.8) will be satisfied by a solution u of (3.9) if Π(i) = 0 i.e. if

u(i) = ν > 0, 2 ν t(i) = ca c
a with ca = Dau(i). (3.14)

Let x(τ) denote a geodesic through i with unit tangent vector ẋ(τ). Transvecting
equations (3.9), (3.11) suitably with ẋ, one obtains a system of ODE’s for u, Dau, t along
this curve, which shows that a solution u of (3.9), (3.11), if it exists, must be analytic and
uniquely determined by the data

u(i) = ν > 0, u̇(i) = ẋaca, t(i) =
1

2 ν
ca c

a.

The function u so obtained will in general not satisfy the complete system (3.9). It
will be shown that the existence of non-trivial solutions to equation (3.9) imposes strong
restrictions on the metric h. Because of the factor 1−u in equations (3.9), (3.11) it follows
immediately that

u ≡ 1 if ν = 1, ca = 0. (3.15)

The following result will be useful later.

Lemma 3.2 Let u be a solution to (3.9), (3.14) on a neighbourhood of i on which ρ < a
for some a > 0. If u = F (ρ) with some function F ∈ C2([0, a[), then u is the trivial
solution u = ν. Moreover, h is flat unless ν = 1.

Proof. Observing (2.7) one gets

2 u t−DcuD
cu =

1

3
DaρD

aρ

(

3

ρ
F F ′ + 2F F ′′ − 3 (F ′)2

)

,

so that (3.8) is equivalent to the ODE

3

ρ
F F ′ + 2F F ′′ − 3 (F ′)2 = 0.

If F ′ = 0 at a point where F > 0 it follows that u = F = const. = ν which implies with
(3.9) that sab = 0 unless ν = 1. Near a point where F > 0 and F ′ 6= 0 the equation above

implies 0 = 3
ρ +2 F ′′

F ′ − 3 F ′

F =
(

log ρ3 (F ′)2

F 3

)′
whence F = ρ

(b+d
√

ρ)2 with b, d = const. > 0,

b 6= 0. But then u(p) = F (ρ(p)) → 0 6= ν as p→ i, which contradicts our assumptions.

4 Implications for h

Let h̃, v be static data and h, ρ the associated conformal fields. We shall discuss now
properties of h̃ and h which are implied by the existence of a non-trivial solution u to
(3.8), (3.9), (3.10). Assume that

U is an i-centered, convex h-normal nbhd so that 0 < ρ < 1, Daρ 6= 0 on U \ {i}, (4.1)
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and set with a given function u

ρa = Daρ, ua = Dau, w =
1 − u

1 − ρ
, wa = Daw, U∗ = {p ∈ U | wa(p) 6= 0}, (4.2)

so that i ∈ U∗ if and only if ua(i) 6= 0. We recall that h is conformally non-flat if and only
if the set {p ∈ U | sab(p) 6= 0} is dense in U ([4]).

Lemma 4.1 Let h, ρ denote a solution to (2.2), (2.6) which is not conformally flat.
Suppose u is a non-constant, positive solution to (3.8), (3.9), (3.10) on a set U satisfying
(4.1) and define w as in (4.2). Then the set U∗ is dense in U and there exists a smooth
function β on U∗ so that

sab = β (wa wb −
1

3
habwc w

c). (4.3)

If V ⊂ U∗ is a connected, simply connected neighbourhood of a point p ∈ U∗, there exist
a constant β∗ 6= 0 and a function H = H(w) defined on V with H(w(p)) = 0 so that the
Ricci tensor has on V the representation

sab =
β∗

1 − ρ
eH (wa wb −

1

3
habwc w

c). (4.4)

If ua(i) 6= 0 we can choose p = i.

Proof. If wa vanished on an open subset of U , w would be constant on U because u
and ρ are analytic. It would follow that u = ν + ρ (1 − ν) whence u = const. by lemma
3.2, in conflict with our assumptions. It follows that U∗ is dense in U . Because

1

u (1 − ρ)

(

D[cΠa]b +
1

2
DdΠd[c ha]b

)

=

1

u (1 − ρ)

(

D[cΠa]b +
1

2
DdΠd[c ha]b

)

− 1 − u

ρ (1 − ρ)2
(D[c Σ∗

a]b +
1

2
De Σ∗

e[c ha]b)

= 2w[c sa]b + wd sd[c ha]b,

equation (3.12) holds on U∗ if and only if

2w[c sa]b + wd sd[c ha]b = 0. (4.5)

Contraction with 2wc gives

2wcw
c sab − 2wa scbw

c + wd sdcw
c hab − wd sda wb = 0.

The antisymmetric part of this equation reads wd sd[awb] = 0, which implies on U∗

wd sda = αwa, (4.6)

with some function α. Using this in the equation above, we obtain (4.3), which satisfies
(4.5) without restriction on β.
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With (2.2) and (3.9) one obtains

Dawb = J hab + (1 − u) (1 − w) sab +
1

1 − ρ
(waρb + wbρa) with J =

w s− t

1 − ρ
. (4.7)

It follows with (4.3)

Daw
a = 3 J +

2

1 − ρ
ρa w

a,

wa Dbwa = J wb +
2

3
(1 − u) (1 − w)β wc w

c wb +
1

1 − ρ
(waw

aρb + wb ρaw
a),

wb wa Dbwa =

{

J +
2

3
(1 − u) (1 − w)β wc w

c +
2

1 − ρ
ρa w

a

}

wc w
c.

On U∗ the Bianchi identity and the gauge condition R[h] = 0 imply with (4.3)

0 = Dasab = waDaβ wb −
1

3
Dbβ wcw

c + β (Daw
a wb +

1

3
wcDbwc).

After contraction with wb this can be solved for waDaβ. Inserting the resulting expression
again into the equation, gives

wcw
c Daβ = β

{

−3

2

(

Dcw
c +

wbwcDbwc

wcwc

)

wa + wcDawc

}

(4.8)

= β

{

−5 J wa − 5

1 − ρ
ρcw

c wa − 1

3
(1 − u) (1 − w)β wc w

c wa +
1

1 − ρ
wc w

c ρa

}

.

and thus finally

Daβ = β

{

1

1 − ρ
ρa +K wa

}

, (4.9)

with

wcw
c K = −5 J − 5

1 − ρ
ρc w

c − 1

3
(1 − u) (1 − w)wcw

c β.

The relation β(p) = 0 would imply with (4.9) that β = 0, whence sab = 0 on a
neighbourhood of p in U∗ and thus sab = 0 on U by analyticity, contradicting conformal
non-flatness. Thus β(p) 6= 0, whence β 6= 0 on V , and equation (4.9) can be written there
in the form Da log |(1 − ρ)β| = KDaw. This implies that D[aKDb]w = 0, K can be
written as a function of w on V , and there exists a function H = H(w) with H(w(p)) = 0
so that Da(log |(1 − ρ)β| −H) = 0, whence, with β∗ = (1 − ρ)β|p 6= 0,

β =
β∗

1 − ρ
eH on V. (4.10)

To state the following result, we note that lemma 3.2 implies under the assumptions
of lemma 4.1 that ǫabc ub ρc 6= 0 on a dense open subset of U .
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Lemma 4.2 Assume the notation and the assumptions of lemma 4.1. If V is chosen so
that ǫabc ub ρc 6= 0 on V , there exists a function l = l(w) on V so that

Xa = l ǫabc ub ρc, (4.11)

defines a non-trivial Killing field for h on V . It extends to an analytic, hypersurface
orthogonal Killing field X on U which satisfies the relations

Xaρa = 0, Xaua = 0, (4.12)

and is a Killing field for h̃ on U \ {i}. Independent of the choice of V it is determined
uniquely up to a constant real factor. It vanishes at i and defines an infinitesimal axi-
symmetry with closed integral curves near i. If ua(i) 6= 0 its axis is given by the h-geodesic
γ(τ) with tangent vector ua(i) at i.

Proof. With the expression (4.11) a direct calculation using (2.2), (3.9), (4.3), (4.10)
gives on V

DaXb = ǫab
c ηc + l−1

{

Dbl + l β∗ e
H (w − w2)wb

}

Xa,

where

ηc =
1

3
l
{(

∆hρ+ ρ (1 − ρ)β wd w
d
)

uc −
(

∆hu+ u (1 − u)β wd w
d
)

ρc

}

. (4.13)

With the choice

l = l∗ e
L(w) where L satisfies L′(w) = −β∗ eH (w−w2) and l∗ = const. > 0, (4.14)

this implies
DaXb = ǫab

c ηc. (4.15)

It follows
D(aXb) = 0, ǫabcXaDbXc = 0. (4.16)

Equations (4.12) are an immediate consequence of the definition ofX . Since thenXaDaΩ =
0 by (2.8), X is also a Killing field for the metric h̃.

To construct the extension of X to U we use the integrability condition for the Killing
equation,

DaDbXc = XdR
d

abc, (4.17)

which is satisfied by X on V and to be satisfied on U . Fix p ∈ V . The geodesics γ(τ)
with γ(0) = p cover the convex normal neighbourhood U . The ODE’s

D2
γ̇Xc = XdR

d
abc γ̇

a γ̇b, (4.18)

along these geodesics determine a unique analytic extension of X to U . The Killing and
the hypersurface orthogonality conditions (4.16) as well as the relations (4.12) extend to
U by analyticity. As above it follows that the extended field is also a Killing field for h̃.

The relation X [a ǫb]cd uc ρd = 0, which holds on V , extends to U by analyticity so that

Xa ∼ ǫacduc ρd on U. (4.19)
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The factor l which relates these fields on V needs a priori not be bounded on U but up to
a constant factor the Killing field Xa is determined uniquely.

The relation LXρ = 0 on U implies

0 = Da LXρ = LXDaρ = XbDbDaρ+DaX
bDbρ, (4.20)

which reduces at i to
0 = −2µXa(i).

It follows that DaXb 6= 0 at i, otherwise X would vanish identically. Any geodesic through
i is mapped by the flow of X onto such geodesic because i is a fixed point of the flow.
Because dim(S) = 3 and DaXb is anti-symmetric there exists a tangent vector ta 6= 0
at i with taDaXb = 0. This vector is invariant under the flow of X . The geodesic
γ(τ) satisfying γ(0) = i and γ̇(0) = t is thus pointwise invariant under the flow so that
X |γ(τ) = 0 and the points of γ(τ) represent the axis of X . Because the flow of X preserves
orthogonality and maps geodesics onto such, it maps any geodesic orthogonal to γ onto
another such geodesic. Since it preserves affine parameters it follows that the flow lines of
X are closed near i.

If ua(i) 6= 0 the function β given by (4.10) and thus the function l can be given on a
neighbourhood of i so that l = l∗ and eH = 1 at i and the expressions (4.11) and (4.15)
with (4.13) can be assumed to hold on this neighbourhood. While then Xa = 0 at i, we
have ηc(i) = −2 l∗ uc, so that DaXb|i = −2 l∗ ǫab

c uc(i) 6= 0 and uaDaXb|i = 0. It follows
that the axis is given by the geodesic with tangent vector ua at i.

If ua(i) 6= 0 we normalize X by setting

l∗ =
1

2 c
with c =

√−ucuc|i > 0 so that ηaη
a|i = −1. (4.21)

It follows with (4.17) that ηaη
a = DaXbD

aXb/2 = const. = −1 along the the axis, where
X vanishes. The flow of X induces then rotations of the tangent space TiS with period
2 π and not smaller. If φ denotes the natural parameter on the integral curves of X which
vanishes on a hypersurface orthogonal to X which approaches the axis from one side, it
defines a coordinate with hypersurfaces {φ = const.} ⊥ X and the integral curves of X
close exactly if φ ∈ [0, 2 π[.

Lemma 4.3 Assume the notation and the assumptions of lemmas 4.1, 4.2. The field

Y a = f wa with f =
l

l∗
(1 − ρ)2, (4.22)

satisfies on V

DaYb = ω hab +
1

l∗
ǫab

cXc with ω = f (J − 1

3
(w − w2)wcw

c β∗ e
H). (4.23)

It extends to an analytic, hypersurface orthogonal field Y on U satisfying the conformal
Killing equation

DaYb +DbYa = 2ω hab, (4.24)
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and the relations
XaY

a = 0, [X,Y ] = 0. (4.25)

It is tangential to the axis through i defined by X, where it does not vanish. It is a
conformal Killing field but neither homothetic nor a Killing field for h̃. Independent of the
choice of V the extended field is unique up to a non-vanishing constant real factor.

Proof. With (4.7) we get on V

DaYb = eL ((1 − ρ)2 L′ wa − 2 (1 − ρ) ρa)wb

+f

(

J hab + (1 − u) (1 − w)β(wawb −
1

3
habwc w

c) +
1

1 − ρ
(waρb + wbρa)

)

= f

(

J − 1

3
(w − w2)wcw

c β∗ e
H

)

hab + (1 − ρ) eL (waρb − wbρa),

= ω hab − eL (uaρb − ubρa) = ω hab +
1

l∗
ǫab

cXc,

which implies (4.23), (4.24) on V . Hypersurface orthogonality and orthogonality to X
follow immediately from the definitions of X and Y . The second of relations (4.25) follows
by a direct calculation from

[X,Y ]a = XcDcYa − Y cDcXa = ωXa − f wc ǫcad η
d

= ωXa − f
1

3

[

(

∆hρ+ ρwd w
d β∗ e

H
) 1 − u

(1 − ρ)2
−

(

∆hu+ uwwd w
d β∗ e

H
) 1

1 − ρ

]

Xa

= ωXa − f

[

J − 1

3

u− ρ

1 − ρ
w wd w

d β∗ e
H

]

Xa = 0.

To extend Y to U we consider the integrability conditions for the conformal Killing
equations ([9]),

DaDbYc = Yd R
d

abc + ωa hbc + ωb hac − ωc hab, (4.26)

with
Daω = ωa, (4.27)

and
Da ωb = −LY sab = −(Y cDc sab +DaY

c scb +DbY
c sac), (4.28)

satisfied in our conformal gauge by Y on V and to be satisfied on U . Fix p ∈ V and
consider the geodesics through p. The equations above imply a linear system of ODE’s
for Ya, DaYb, ω, ωa along the geodesics which determine a unique analytic extension of
Y to U . Equations (4.24) and (4.25) extend to U by analyticity.

Because

Xa = − l∗
1 − ρ

ǫabc Yb ρc,

the relation DaXb(i) 6= 0 implies that Y a 6= 0 at i and thus also on the axis near i. The
restriction of

0 = [X,Y ]a = XcDcYa − Y cDcXa,

14



to the axis implies that Y is tangent to the axis, the conformal Killing equation implies
that Y 6= 0 there.

It holds LY h̃ = LY (Ω−2h) = 2 ω̃ h̃ with ω̃ = ω−Ω−1 Y aDa Ω. Because Da(Y c ρc)|i =
−2µYa(i) 6= 0, it follows with (2.8) that Ω−1 Y aDa Ω diverges at i. Thus ω̃ can neither
be constant nor vanish.

On V , which can be chosen to contain i if ua(i) 6= 0, the dualized version of the Cotton
tensor Bbca = D[cRa]b acquires by (2.10), (4.4), (4.11), and (4.22) the concise form

Bab =
1

2
Bacd ǫb

cd =
1

1 − ρ
sd(a ǫb)

cdρc =
β∗ eH−2L

l∗ (1 − ρ)5
X(a Yb). (4.29)

The conformal factor (2.8) and the transformation laws under conformal rescalings
give

Rab[h̃] =
√
ρ β (wa wb −

1

3
habwc w

c) − 3

2
√
ρ3 (1 +

√
ρ)2

(ρa ρb −
1

3
ρc ρ

c hab).

At i holds wa ρ
a = 0 and Dc(wa ρ

a) = 2µuc(i) 6= 0 if uc(i) 6= 0. Thus, if uc(i) 6= 0,
there exists a smooth hypersurface H through i on which wa ρ

a = 0. With Xa ρ
a = 0,

Xa w
a = 0 it follows that the vector fields wa, ρa, Xa define on H \ {i} an orthogonal

set of eigenvectors of Rab[h̃]. The direct calculation shows that the three eigenvalues
are different from each other. It follows that g̃ is of Petrov type I near H \ {i}. The
fields ρa and wa are proportional to ua on the axis because X = 0 there. It follows that
Rab[h̃] ∼ ρa ρb − 1

3 ρc ρ
c hab so that g̃ is of Petrov type D along the axis (cf. [8]).

5 Existence and non-existence results

In spite of the simple conclusion (3.15) the case were ua(i) = 0 is not easily discussed in
general. The function β = 3

2
sab wawa

(wcwc)2 in (4.3) may become, along with the quantities H

and L, singular at i if wa(i) = 0. In fact, if sab does not vanish at i, it is there due to
axi-symmetry of the form

sab(i) = ξ (nanb +
1

3
hab), ξ 6= 0, (5.1)

with a unit vector na pointing in the direction of the axis. With this one finds that
β = −sign(ξ)

√

3/2 sedsed (wcw
c)−1 is unbounded near i. If Dd is applied to equations

(2.10) and (3.12), the resulting equations are subtracted from each other, and the difference
is restricted to i, one obtains with ua(i) = 0 and (2.2), (2.6), (3.8), (3.9) at i the relation

ν
{

2 sd[csa]b + sd
fsf [cha]b

}

= 2µ
{

2 hd[csa]b + sd[cha]b

}

.

It restricts the parameter in (5.1) by ξ = 6 µ
ν but it does not exclude (5.1). We shall leave

the case Dau(i) = 0, sab(i) 6= 0 open in this article. If the second of these conditions is
dropped we get with (3.15) a complete, though negative answer.
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Lemma 5.1 Suppose h, ρ is a solution to the conformal static vacuum equations (2.2),
(2.6) such that sab(i) = 0. Then a positive solution u to equations (3.8), (3.9), (3.10)
near i which satisfies u(i) = ν 6= 1 and Dau(i) = 0 is the constant solution u = ν and h
is flat.

Proof. We assume that u is not a constant and show that this leads to a contradiction.
In the following results of [5] will be used. For the notions set below in quotation marks
and statements relating to them we refer the reader to that article.

Let xa denote h-normal coordinates centered at i, so that h∗ab ≡ hab(i) = −δab.
Equation (2.10) implies with (2.6) that Dasbc(i) is totally symmetric. More generally, if

sab = O(|x|k) for some k ≥ 1,

the ‘exact set of equations argument’ implies with (2.10) that the tensor

ψa1 ... ak a b ≡ Da1
. . . Dak

sab(i),

is given in space spinor notation by a completely symmetric spinor ψA1B1 ... Ak+2Bk+2
be-

cause it either vanishes or defines the non-vanishing ‘null datum’ of lowest order for the
solution h. We shall show that it vanishes so that in fact sab = O(|x|k+1).

Equations (3.8), (3.9), (3.11) imply with the assumption above

u = ν +O(|x|k+2), Da1
. . . Dak+2

u(i) = −ν (1 − ν)ψa1 ... ak+2
,

so that one obtains at i ‘normal expansions’

sab =
1

k!
ψa1 ... ak a b x

a1 . . . xak +O(|x|k+1),

u = ν − ν (1 − ν)
1

(k + 2)!
ψa1 ... ak+2

xa1 . . . xak+2 +O(|x|k+3),

Dau = −ν (1 − ν)
1

(k + 1)!
ψa1 ... ak+1 a x

a1 . . . xak+1 +O(|x|k+2),

ρ = −µh∗ab x
a xb +O(|x|k+4), Daρ = −2µh∗ab x

b +O(|x|k+3),

whence

wa =
−2µ (1 − ν)h∗ab x

b

(1 + µh∗ab x
a xb)2

+O(|x|k+1), waw
a =

(2µ (1 − ν))2 h∗ab x
a xb

(1 + µh∗ab x
a xb)4

+O(|x|k+2).

It follows that wa 6= 0 on a punctured neighbourhood of i. Consider near i the real analytic
field

fab = 2 (wcw
c)2sab − 3wcwd scd (wa wb −

1

3
habwew

e).

Lemma 4.1 implies with the assumption that u is not constant that the field fab vanishes on
the open set where wa 6= 0 and thus, by analyticity, everywhere. In the normal coordinates
xa we extend near i now all real analytic fields holomorphically into the complex domain
and consider a complex null geodesic xa(τ) = τ la with la = const. 6= 0, lal

a = 0.
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Expanding fab(x(τ)) at τ = 0 and observing the expansions above gives

0 = fab = −3
(2µ (1 − ν))4

k!
ψa1 ... ak+2

la1 . . . lak+2 la lb τ
k+4 +O(|τ |k+5).

This shows that

0 = ψa1 ... ak+2
la1 . . . lak+2 = ψA1B1 ... Ak+2Bk+2

ιA1 . . . ιBk+2 ,

where la is represented on the right hand side by the spinor ιA ιB . Because la and thus
the spinor ιA is arbitrary here, the symmetric spinor ψA1B1 ... Ak+2Bk+2

must vanish, which
implies sab = O(|x|k+1) and u = ν + O(|x|k+3). In contradiction to our assumption it
follows inductively that u− ν and sab vanish at i at all orders.

The existence result anounced in the introduction will now be proven. In stating it
we ignore trivial rescalings.

Lemma 5.2 For given data µ, ν, β∗ ∈ R and ca ∈ R
3 satisfying

µ > 0, ν > 0, β∗ 6= 0, ca 6= 0,

there exists a solution h to the conformal static field equations which admits a non-trivial
conformal rescaling with conformal factor ϑ =

√

ν/u. The fields h and u are uniqely
determined by the requirements that m = 2

√
µ is the ADM mass of the asymptotically

flat static metric associated with h, the Ricci tensor of h assumes in i-centered h-normal
coordinates the value

sab = β∗(ca cb −
1

3
hab cd c

d) 6= 0 at i,

and the positive function u satisfies

u = ν, Dau = ca at i.

Proof. The result will be obtained by solving simultaneously the conformal field
equations for h and the equations satisfied by u. Let ea, a = 1, 2, 3, denote an h-orthonomal
frame and denote the 1-forms dual to it by σa. The metric is then given by h = hab σ

a σb

with metric coefficients hab = h(ea, eb) = −δab. The connection coefficients, defined by
Dea

eb = Γa
c

b ec, satisfy Γacb = Γa[cb] with Γacb = hcd Γa
d

b. The connection form is then
given by ωa

b = Γc
a

b σ
c so that ωab = ω[ab]. This expansion in terms of the σa will be

used only later, when we describe the solution procedure in detail.
The equations will be written as differential system for the unknown

U = (ρ, ρa, s, u, ua, t, β, σ
a, ωa

b),

where the first seven components denote (vector-valued) 0-forms and the last two compo-
nents are 1-forms. Until we introduce coordinates below all indices should be understood
as frame indices. Consider the differential forms

Λ = dρ− ρaσ
a, Γ = du− uaσ

a,
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Σa = dρa − ρc ω
c

a − s hab σ
b + ρ (1 − ρ) sab σ

b,

Πa = dua − uc ω
c

a − t hab σ
b + u (1 − u) sab σ

b,

S = ds+ (1 − ρ) ρa sab σ
b, T = dt+ (1 − u)ua sab σ

b,

B = dβ + βMa σ
a,

Θa = dσa + ωa
b ∧ σb, ∆a

b = dωa
b + ωa

c ∧ ωc
b − Ωa

b,

denoted collectively by

Ψ = (Λ, Γ, Σa, Πa, S, T, B, Θa, ∆a
b),

or by Ψ
A if we need to bring out relations involving different components. In the differen-

tial forms above and in the forms derived below we consider functions of the components
of U which are given by

w =
1 − u

1 − ρ
, wa =

1 − u

(1 − ρ)2
ρa − 1

1 − ρ
ua, sab = β (wa wb −

1

3
habwcw

c),

Ma = Qwa +
1

3
(1 − u) (1 − w)β wa − 1

1 − ρ
ρa, Q =

5 (w s− t+ ρc w
c)

wewe (1 − ρ)
,

Ωa
b =

1

2
Ra

bcd σ
c ∧ σd = (ha

c sbd − hbc sd
a)σc ∧ σd.

The equations we need to solve read now

Ψ = 0.

The first two of these equations ensure that ρa and ua represent the differentials of ρ and
u, the following five equations represent (2.2), (3.9), (2.9), (3.11), (4.9) and the remaining
equations are the first and the second structural equation.

A lengthy but straight forward calculation shows that the differential forms comprised
by Ψ satisfy the differential system

dΛ = −Σa ∧ σa − ρa Θa,

dΓ = −Πa ∧ σa − ua Θa,

dΣa = −Σb∧ωb
a−ρb ∆b

a−S∧σa−sΘa+(1−2 ρ) Λ∧sab σ
b+ρ (1−ρ) sab Θb+ρ (1−ρ)Aa,

dΠa = −Πb∧ωb
a−ub ∆b

a−T∧σa−tΘa+(1−2 u) Γ∧sab σ
b+u (1−u) sab Θb+u (1−u)Aa,

dT = −Λ ∧ ρa sab σ
b + (1 − ρ)Σa ∧ sa

b σ
b + (1 − ρ) ρa sab Θb + (1 − ρ) ρa Aa,

dS = −Γ ∧ ua sab σ
b + (1 − u)Πa ∧ sa

b σ
b + (1 − u)ua sab Θb + (1 − u)ua Aa,
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dB = B ∧ (Ma σ
a + β F wa σ

a)

+ β

{

Q

1 − ρ
Λ +

(

5 ρc

(1 − ρ)3 wbwb
− 2Qwc

(1 − ρ)2 wbwb

)

(−ρc Γ + w ρc Λ + (1 − ρ) (wc Λ + wΣc − Πc))

+
5

(1 − ρ)2 wbwb
(swΛ − sΓ + (1 − ρ) (w S − T + wc Σc))

}

∧ waσ
a

+ β

{

Q+ β F

(1 − ρ)2
(w ρa Λ − ρa Γ + (1 − ρ) (wa Λ + wΣa − Πa)) − 1

3
β ((1 − 2w)Γ + w2 Λ)wa

− ρa

(1 − ρ)2
Λ − 1

1 − ρ
Σa

}

∧ σa + βMa Θa,

dΘa = ∆a
b ∧ σb − ωa

b ∧ Θb,

d∆a
b = ∆a

c∧ωc
b−ωa

c∧∆c
b−(ha

c sbd−hbc sd
a) (Θc∧σd−σc∧Θd)+σa∧Ab−Aa∧σb,

where

Aa = waB ∧ wb σ
b − 1

3
wbw

b B ∧ σa + β (Ba ∧ wb σ
b + wa Bb ∧ σb − 2

3
wb Bb ∧ σa),

with

Ba = − ρa

(1 − ρ)2
Γ +

(

wa

1 − ρ
+

w ρa

(1 − ρ)2

)

Λ +
w

1 − ρ
Σa − 1

1 − ρ
Πa.

In deriving the last equation there arises the expression

N ab = −wd w
d σa∧ρc σ

c∧σb+ρcw
c σa∧wd σ

d∧σb+σa∧ρc σ
c∧wd σ

d wb−wa ρc σ
c∧wd σ

d∧σb.

By writing σa ∧ σb ∧ σc = ǫabc µh with the volume form defined by h on the right hand
side and calculating N ab ǫabc, the field N ab can be shown to vanish identically.

In short notation (the summation convention applying to all indices) the relations
above take the form

dΨ
A = fA

B c σ
c ∧ Ψ

B + fA a
B b ω

b
a ∧ Ψ

B + fA
B Ψ

B, (5.2)

with functions fA
B c, f

A a
B b, f

A
B of the 0-forms given by U.

Because we assume that Dau(i) = ca 6= 0, all fields given by U, in particular β (with
the meaning given to it earlier), can be assumed to be smooth near i. The solutions to
the equations Ψ = 0 are obtained near i as follows. Assume that xa denote i-centered,
h-normal coordinates and ea an h-orthonormal normal frame centered at i so that ea

b =
< dxa, eb >= δa

b at i. Then Ŷ = xa ∂a is smooth near i and so that Y = 1
|x| Ŷ is

for xa 6= 0 the geodesic unit vector field tangent to the geodesics through i, which has
direction dependent limits as |x| → 0. Writing σa = σa

b dx
b, we find the inner products

iŶ σ
a = σa

b(x)x
b = xa, iŶ ω

a
b = xc Γc

a
b(x) = 0 near xa = 0. (5.3)
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Consider now a radial geodesic γ : τ → τ xa
∗ with some xa

∗ satisfying δab x
a
∗ x

b
∗ = 1.

The equation
iY Θa = 0,

implies then for the unknown σ̂a
b = σa

b − δa
b, which is required to be smooth, the initial

condition
σ̂a

b → 0 as τ → 0, (5.4)

and along γ the ODE

d

dτ
σ̂a

b +
1

τ
σ̂a

b = Γc
a

d σ̂
c

b x
d
∗ + Γb

a
d x

d
∗, (5.5)

where we expressed the connection form in terms of the connection coefficients, which are
considered now as unknowns. The equation

iY ∆a
b = 0,

similarly implies the initial condition and the ODE

Γc
a

b → 0 as τ → 0, (5.6)

d

dτ
Γc

a
b +

1

τ
(δd

c − σ̂d
f e

f
c) Γd

a
b = −Γd

a
b Γc

d
e x

e
∗ +Ra

bdc x
d
∗, (5.7)

where the frame coefficients ea
b (by Cramer’s rule rational functions of the σa

b) satisfy

σa
c e

c
b = δa

b so that ea
b = δa

b − σ̂a
c e

c
b = δa

b +O(|τ |).

The equations

iY Λ = 0, iY Γ = 0, iY Σa = 0, iY Πa = 0, iY S = 0, iY T = 0, iY B = 0, (5.8)

imply regular ODE’s along γ. The unknowns in these equations must satisfy the initial
conditions

ρ = 0, ρa = 0, s = −2µ, u = ν > 0, ua = ca 6= 0, t =
cac

a

2 ν
, β = β∗ 6= 0 at τ = 0.

(5.9)
There exists along γ a unique solution U to the system consisting of (5.5), (5.7), and

the ODEs implied by (5.8) which satisfies the conditions (5.3), (5.4), (5.6), (5.9). This
solution is real analytic in the initial data (5.9) and τ xa

∗. The fields given by U are in
fact analytic in the coordinates xa and satify the equation Ψ = 0 near xa = 0.

This result follows from general properties of systems of ODE’s. The only subtlety
arises here from the singularity of equations (5.5), (5.7) at τ = 0. It is such that the
left hand sides of these equations are of the form ẋ + τ−1 Ax with a matrix A which
approaches a diagonal matrix with positive entries as τ → 0. The existence of an unique
analytic solution to the complete system then follows immediately with the methods used
in [5] where ODE’s of the same type have been discussed.

Once the solution U has been obtained, equations (5.5), (5.7) imply a system of ODE’s
for xa

∗ σ̂
a

b and xa
∗ Γa

b
c along γ which allows one to concluce that these quantities vanish
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everywhere so that the relations (5.3) are indeed satisfied. Because iY Ψ → 0 as xa → 0
along any geodesic passing through xa = 0 it follows that Ψ = 0 at xa = 0. From (5.2),
(5.3), and iY Ψ = 0 one obtains

LY Ψ
A = (d ◦ iY + iY ◦ d)ΨA = iY dΨ

A = fA
B c

xc

|x| Ψ
B .

This equation implies for |x| 6= 0 along each geodesic γ passing through xa = 0 a linear
homogeneous system of ODE’s for the coefficient functions defining the forms given by
Ψ. It behaves regularly on γ as |x| → 0. Since Ψ vanishes at xa = 0, the asserted result
follows.

In counting the free parameters in lemma 5.2, the vector ca should be taken into
account only in terms of the number c =

√
caca > 0 because of the freedom to rotate the

normal coordinates around their origin. Ignoring the parameter µ, which can be changed
by trivial rescalings, it follows the that solutions depend on three parameters.

6 Concluding remarks

The statements of theorem 1.1 represent an extract from the results proven in the lemmas
and the subsequent remarks. The latter provide much more information on the various
structures. This will become important in a sequel to this article in which the properties
of the solutions whose existence has been obtained in theorem 1.1 will be discussed in
some detail.
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