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Abstract
We show that time-reflection symmetric, asymptotically flat, static vacuum
data which admit a non-trivial conformal rescaling which leads again to such
data must be axi-symmetric and admit a conformal Killing field. Moreover, it
is shown that there exists a 3-parameter family of such data.

PACS numbers: 04.20.Ex, 04.20.Ha, 04.20.Jb

1. Introduction

The metric of a static spacetime assumes in suitable local coordinates t, x̃a, a = 1, 2, 3, the
form

g̃ = v2 dt2 + h̃, v = v(x̃c) > 0, h̃ = h̃ab(x̃
c) dx̃a dx̃b, (1.1)

where h̃ denotes a negative definite metric on the time slices S̃c = {t = c = const.}. The
hypersurface orthogonal, time-like Killing vector field is then given by ∂t . We refer to h̃ as
the static metric and to v as the potential. Einstein’s vacuum field equations reduce here to the
static vacuum field equations

Rab[h̃] = 1

v
D̃aD̃bv, �h̃v = 0, (1.2)

where D̃ denotes the covariant derivative defined by h̃. It suffices to consider these equations
on S̃ ≡ S̃0.

In the following, we study solutions which are asymptotically flat so that the coordinates
x̃a can be required, for suitable S̃, to map the set S̃ diffeomorphically onto the complement
of a closed ball BR(0) in R

3 so that the fields h̃, v satisfy, with some ε > 0 and k � 2, the
asymptotic flatness condition1

h̃ac = −
(

1 +
2m

|x̃|
)

δac + Ok(|x̃|−(1+ε)), v = 1 − m

|x̃| + Ok(|x̃|−(1+ε)) as |x̃| → ∞,

(1.3)

1 The terms Ok(|x̃|−(1+ε)) behave like O(|x̃|−(1+ε+j)) under differentiations of order j � k.
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where |.| denotes the standard Euclidean norm. We refer to (S̃, h̃, v) as static vacuum data.
The coefficient m represents its ADM mass. In this paper we shall only be interested in data
with mass m �= 0.

The pair (S̃, h̃) defines a particular type of time-reflection symmetric initial data for
Einstein’s vacuum field equations. Our interest in such initial data is motivated by observations
which suggest that evolutions in time of time-reflection symmetric, asymptotically flat vacuum
data admit at null infinity conformal extensions of prescribed smoothness if and only if the
data behave in terms of a certain type of expansion at spacelike infinity up to a certain order
like static data (cf [4] for a detailed discussion).

The full analysis of this relation requires detailed information on the asymptotic behaviour
of static data and their conformal structures at spacelike infinity. In previous work [5] we
have given a complete characterization of static vacuum data in terms of a minimal set of
symmetric trace free tensors at spacelike infinity, referred to as null data. That paper clarifies,
in particular, the convergence problem. In the present paper, we take a first step towards
characterizing conformal structures of static data. Obviously, such a characterization should
be more easy if static data are related in a one-to-one fashion to their conformal structures. It
will be shown that the relation is, in fact, more complicated.

A precise description of our result requires technical details. To keep the discussion
short we refer the reader to [5] for further details. Beig and Simon [2] showed under certain
assumptions, weakened later by Kennefick and O’Murchadha [7], that static data with m �= 0
admit conformal rescalings

h̃ab → hab = �2h̃ab, (1.4)

with positive conformal factors � so that the set S = S̃ ∪ {i}, obtained by adjoining to S̃ a
point i representing spacelike infinity, acquires a real analytic differentiable structure in which
the conformal metric h extends to a real analytic metric on S and � extends to a function in
C2(S) ∩ Cω(S̃) so that

� > 0 on S̃, � = 0, d� = 0, Hessh� = −2h at i. (1.5)

A particular example of such a conformal factor, determined by the static data themselves, is
given by

� =
(

1 − v

m

)2

. (1.6)

Let (S̃, h̃, v) be a static vacuum data set with m �= 0 and the fields h, � on S related
to it by (1.4), (1.6). We say that this set admits a non-trivial conformal rescaling if there
exists another static vacuum data set (S̃ ′, h̃′, v′) with associated fields h′,�′ on S ′ so that the
following holds. Some neighbourhood U ′ of i ′ in S ′ can be identified diffeomorphically with
some neighbourhood U of i in S, identifying i ′ with i, so that after identification there exists a
non-constant smooth function ϑ > 0 on U with

h′ = ϑ4h. (1.7)

In other words, we require the existence of a conformal diffeomorphism which maps a
neighbourhood of spacelike infinity with respect to h̃ onto such a neighbourhood with respect
to h̃′ so that it extends in our gauge smoothly to a conformal map which maps i onto i ′. The
metrics h̃, h̃′ are then related by

h̃′ = θ4h̃ with θ =
(

1 − v′

m′

)−1

ϑ
1 − v

m
. (1.8)

In this paper we investigate the question of whether there exist static vacuum data sets which
admit non-trivial conformal rescalings.
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The following general transformations map static vacuum data sets onto such sets:

Trival rescalings.

h̃ → h̃′ = θ4h̃, v → v′ = v with θ = const. > 0. (1.9)

Asymptotic flatness of h̃′ follows with the coordinate transformation x̃a → x̃a′ = θ2x̃a in
(1.3), which shows that the mass transforms as m → m′ = θ2m. The corresponding conformal
factor ϑ in (1.7) is given by ϑ = 1−v

m′ θ
(

1−v
m

)−1 = θ−1.

The transitions.

(S̃, h̃, v) → (S̃, h̃′ = v4h̃, v−1), (1.10)

under which the sign of the mass changes, m → m′ = −m, and (1.7) holds with ϑ = 1. These
transitions are suggested by the conformal static field equations studied below (cf the remark
following (2.8)). Without loss of generality it is therefore sufficient to consider the case

m,m′ > 0. (1.11)

If the metric h̃ is conformally flat with non-vanishing mass it is necessarily induced by a
Schwarzschild solution [4]. In isotropic coordinates x̃a the data are

h̃ = −
(

1 +
m

2|x̃|
)4

δab dx̃a dx̃b, v =
1 − m

2|x̃|
1 + m

2|x̃|
,

and (1.6) gives in the coordinates xa = |x̃|−2x̃a , which are h-normal coordinates centered at i,

h = −δab dxa dxb, � =
( |x|

1 + m
2 |x|

)2

.

The transition h̃ → θ4h̃, v → v′ with θ = 1+ m′
2|x̃|

1+ m
2|x̃|

, v′ = 1− m′
2|x̃|

1+ m′
2|x̃|

, which maps a Schwarzschild

metric h̃ with mass m onto such a metric with mass m′, corresponds to a trivial rescaling
combined with a coordinate transformation. In terms of h this rescaling is given by (1.8) with
ϑ = 1 and the information on the difference between the solutions is encoded in the conformal
factors � and �′. The conformally flat case is special in admitting the 3-parameter group of
special conformal transformations

xa → xa + daxcx
c

1 + 2dcxc + dcdcxexe
, da = const. ∈ R

3,

as local, non-trival, conformal maps of h which leave i fixed. In terms of the coordinates
x̃a the map above is given by the simple translation x̃a → x̃a + da . Conversely, the
translations xa → xa + da is represented in terms of the coordinates x̃a by a special conformal
transformation which maps a neighbourhood of infinity onto a punctured neighbourhood of the
point |d|−2da . In the following we shall be interested in static data which are not conformally
flat.

The question posed above has been considered by Beig [1]. He defines a certain quantity
Q, quadratic in the Cotton tensor and its covariant derivatives up to second order, and shows
that h cannot admit non-trivial rescalings if Q �= 0 at i. As also pointed out in [1], this condition
excludes axi-symmetric static data. Unfortunately it is not clear what else is excluded. We
wish to control the situation without imposing conditions and want to decide whether there
do exist static, conformally non-flat vacuum data that admit non-trivial conformal rescalings.
The lemmas proven in this paper imply the following.
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Theorem 1.1. Suppose (S̃, h̃, v) are static vacuum data with ADM mass m �= 0. If they
admit a non-trival conformal rescaling, then h̃ admits a conformal Killing field Y which is
neither homothetic nor a Killing field for h̃ and, in addition, a Killing field X which defines
an infinitesimal axi-symmetry. The fields Y and X commute, are orthogonal to each other, and
Y is tangent to the axis defined by X which passes through the point representing spacelike
infinity. Furthermore, if h̃ is not conformally flat it has a non-vanishing quadrupole moment.

There exists a 3-parameter family of static vacuum data with m �= 0 which are not
conformally flat and which do admit non-trival conformal rescalings. The associated
spacetime metrics are of Petrov type D along the axis and of Petrov type I on an open
neighbourhood surrounding the axis.

This result would provide complete information about the non-conformally flat static data
with non-vanishing mass which admit non-trivial rescalings, were it not for an unanswered
question. As discussed below, it is left open whether there exist data with non-vanishing
quadrupole moment which admit non-trivial rescalings with dϑ = 0 at i.

Apart from this omission the result above represents a three-dimensional analogue of
Brinkmann’s theorem. Brinkmann studied the solutions of Einstein’s vacuum field equations
in four spacetime dimensions which admit non-trivial conformal rescalings that yield new
vacuum fields (asymptotic behaviour, however, played no role in these studies). He found
them to be given by the solutions which have later been named vacuum pp-waves [3, 8]. These
solutions are of Petrov type N. We note that the rescalings of the static data considered in this
paper do not extend to conformal rescalings of the correponding static vacuum spacetimes.

Details of the static data whose existence has been shown here will be discussed elsewhere.

2. Conformal static vacuum field equations

The derivation of the following equations has been discussed (in terms of h and ζ = ρ/µ) in
detail in [5]. Using the conformal metric h defined by (1.4), (1.6) and the function

ρ =
(

1 − v

1 + v

)2

, (2.1)

one obtains the static vacuum equations (1.2) in the form

0 = �ab[h,µ] ≡ DaDbρ − shab + ρ(1 − ρ)sab with s = 1

3
�hρ, (2.2)(

�h − 1

8
R[h]

)[
1√
ρ

]
= 4π√

µ
δi. (2.3)

Here D denotes the covariant derivative defined by h, and the tensor

sab = Rab[h]

is the Ricci tensor of h. It is trace free because the Ricci scalar of h satisfies in the conformal
gauge defined by (1.6)

R[h] = 0. (2.4)

We note that the tensor m
2 sab(i) at spacelike infinity represents the quadrupole moment of the

static metric h̃. We set

µ = m2

4
(2.5)
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and denote by δi the Dirac measure with weight one and support {i}, given by the standard
Dirac measure δ0 in h-normal coordinates xa centered at i. In such coordinates the fields h
and ρ are real analytic and satisfy

ρ = 0, Daρ = 0, DaDbρ = −2µhab at i. (2.6)

The function ρ can be characterized as the unique real analytic solution of (2.3), (2.6) or
as the unique real analytic function satisfying (2.6) and

2ρs = DaρDaρ, (2.7)

which is a rewrite of (2.3). This equation can be shown [4] to be, in fact, a consequence of
(2.2) and (2.6) so that the essential information on the static field equations is encoded in (2.2)
and (2.6).

In going from h, ρ back to h̃ and v, one has to choose the sign of the square root. In the
case of positive mass the correct formulae are

� = ρ

µ(1 +
√

ρ)2
, v = 1 − √

ρ

1 +
√

ρ
. (2.8)

Replacing here the square root by its negative amounts to the transition (1.10).
The system (2.2) implies the integrability conditions

0 = 1

2
De�ea = Das + (1 − ρ)sabD

bρ, (2.9)

and

0 = 1

ρ

(
D[c�a]b +

1

2
De�e[cha]b

)
= (1 − ρ)D[csa]b − 2D[cρsa]b − Ddρsd[cha]b, (2.10)

which extends by analyticity also to i.
While the static vacuum data are subject to a rescaling (1.7), the transformation of the

potential was left unspecified. As pointed out above, the potential, represented by the function
ρ, is determined in the asymptotically flat case uniquely by µ and h. The new potential should
thus be given in terms of ρ, the conformal factor ϑ and the new mass term µ′.

Lemma 2.1. Assume that (S, h, ρ) is derived from a static vacuum data set with mass m > 0
as discussed above and ϑ > 0 is a C2 function so that h′ = ϑ4h is the conformal metric
associated with static vacuum data h̃′, v′ on S \ {i} with mass m′ > 0. Set

ν = m2

m′2ϑ(i)4
. (2.11)

Then the function

ρ ′ = 1

ν

(
ϑ

ϑ(i)

)2

ρ (2.12)

satisfies (
�h′ − 1

8
R[h′]

)[
1√
ρ ′

]
= 4π√

µ′ δi, (2.13)

and relations (2.6) with ρ, µ, D replaced by ρ ′, µ′ and the covariant derivative operator D′

defined by h′. The function ρ ′ agrees with the one given by (2.1) with v replaced by v′.

Proof. Let xa resp. xa′
denote h- resp. h′-normal coordinates centered at i. A calculation then

shows that the system xa′
satisfies, possibly after a rotation around the origin, the relation

xa′ = δa′
a

{
ϑ(i)2 xa − ϑ(i)(δbcδ

ad − 2δa
b δd

c)ϑ,d(i)x
axc

}
+ O(|xa|3). (2.14)

5
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Writing the transformation xa = xa(xc′
) shortly x = f (x ′), the transformation behaviour

of Dirac distributions under coordinate transformations implies with the relation above
f ∗δ0 = | det ∂f

∂x ′ (i)|−1δ0′ = ϑ(i)6δ0′ [6]. With the conformal covariance of the conformal
Laplacian and (2.3) it thus follows

f ∗
((

�h′ − 1

8
Rh′

) [
1√
ρ ′

])
=

√
µ

µ′ ϑ(i)−1f ∗
(

(�h′ − 1

8
Rh′)

[
1

ϑ
√

ρ

])

=
√

µ

µ′ ϑ(i)−1f ∗
(

ϑ−5

(
�h − 1

8
Rh

)[
1√
ρ

])
= 4π√

µ′ δ0′ .

The relations (2.6) are verified by a direct calculation and the last statement follows by the
uniqueness property pointed out above. �

The quantity ν is left unchanged under trivial conformal rescalings. It has the following
meaning. The conformal factor θ has in the coordinates of (1.3) in general an expansion

θ = 1

ϑ(i)

(
1 +

a

|x̃| + O

(
1

|x̃|2
))

,

with some coefficients ϑ(i) > 0 and a. Rescaling the metric (1.3) with θ one finds that
the rescaled metric θ4h̃ acquires the mass m′ = ϑ(i)−2(2a + m). Using (2.8) and (2.12) in
expression (1.8) for θ , expanding ρ using (1.5) and comparing with the expression for θ above,
we find 2a = m(ν−1/2 − 1) and thus again (2.11). A change of mass is thus generated purely
by a trivial rescaling if ν = 1, but is partly due to an independent contribution if ν �= 1. We
finally note the expressions

θ =
√

νϑ(i) +
√

ρϑ

(1 +
√

ρ)
√

νϑ(i)2
, v′ =

√
νϑ(i) − ϑ + (

√
νϑ(i) + ϑ)v√

νϑ(i) + ϑ + (
√

νϑ(i) − ϑ)v
, (2.15)

for the conformal factor and the transformed potential. It follows that θ = 1 if and only if
ν = 1 and ϑ = 1, while v′ = v is equivalent to (

√
νϑ(i) − ϑ)v2 = (

√
νϑ(i) − ϑ). This

can hold only if v = 1, which implies that h̃ab is flat, or if ϑ = √
νϑ(i), which implies that

ν = 1, ϑ = ϑ(i) and θ = ϑ(i)−1.

3. The equations for the rescaling factor

It will be convenient to replace ϑ by γϑ and assume

ϑ(i) = 1, γ = const. > 0, ν = µ

µ′γ 4
, (3.1)

h′ = γ 4ϑ4h, ρ ′ = 1

ν
ϑ2ρ. (3.2)

To derive conditions on the scaling factors, we express

�ab[h′, µ′] ≡ D′
aD

′
bρ

′ − s ′h′
ab + ρ ′(1 − ρ ′)s ′

ab,

in terms of h and ρ. With the general rescaling laws in three-dimensions

Rab[ϑ4h] = Rab[h] − 2ϑ−1DaDbϑ + 6ϑ−2DaϑDbϑ − 2hab

{
ϑ−1DcD

cϑ + ϑ−2DcϑDcϑ
}
,

(3.3)

1
8R[ϑ4h]ϑ5 = −�hϑ + 1

8R[h]ϑ, (3.4)

6
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where the right-hand sides are expressed in terms of quantities derived from h, a direct
calculation gives

�ab[h′, µ′] = γ 4ϑ2 µ′

µ
�ab[h,µ] +

8

3
γ 4 µ′

µ

(
1

ν
ϑ3ρ2 − ϑρ

)
�hϑhab

− γ 4 µ′

µν2
ϑ6ρ2

(
DaDbu − 1

3
�huhab + u(1 − u)sab

)
,

where we set

u = νϑ−2, (3.5)

and used the resulting relation

2u�hu − 3DcuDcu = −4ν2ϑ−5�hϑ. (3.6)

Equation (3.4) implies with R[h] = 0 and R[h′] = 0

�hϑ = 0. (3.7)

From these relations we read off the following basic condition.

Lemma 3.1. Suppose h and ρ satisfy (2.2) and (2.6) with some constant µ > 0. If µ′, γ > 0
are constants and ϑ a positive function with ϑ(i) = 1, then h′ = γ 4ϑ4h and ρ ′ = 1

ν
ϑ2ρ with

ν = µ

µ′γ 4 satisfy �ab[h′, µ′] = 0 if and only if u = νϑ−2 satisfies the overdetermined system

0 = �[h, u] ≡ 2ut − DcuDcu with t = 1
3�hu, (3.8)

0 = �ab[h, u] ≡ DaDbu − thab + u(1 − u)sab. (3.9)

Moreover, u must satisfy the initial condition

u(i) = ν. (3.10)

Using the Bianchi identity and the decomposition Rdbca = 2(hd[csa]b − hb[csa]d), which
holds because R[h] = 0 and dim(S) = 3, one obtains from (3.9) the integrability conditions

0 = 1

2
Dc�ca = Dat + (1 − u)Dcusca, (3.11)

0 = 1

u

(
D[c�a]b +

1

2
Dd�d[cha]b

)
= (1 − u)D[csa]b − 2D[cusa]b − Ddusd[cha]b. (3.12)

The identity

Da� = uDc�ca − 2Dcu�ca (3.13)

implies that (3.8) will be satisfied by a solution u of (3.9) if �(i) = 0, i.e., if

u(i) = ν > 0, 2νt (i) = cac
a with ca = Dau(i). (3.14)

Let x(τ) denote a geodesic through i with unit tangent vector ẋ(τ ). Transvecting equations
(3.9) and (3.11) suitably with ẋ, one obtains a system of ordinary differential equations (ODEs)
for u,Dau and t along this curve, which shows that if a solution u of (3.9) and (3.11) exists,
it must be analytic and uniquely determined by the data

u(i) = ν > 0, u̇(i) = ẋaca, t (i) = 1

2ν
cac

a.

The function u so obtained will in general not satisfy the complete system (3.9). It will be
shown that the existence of non-trivial solutions to equation (3.9) imposes strong restrictions

7
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on the metric h. Because of the factor 1−u in equations (3.9) and (3.11) it follows immediately
that

u ≡ 1 if ν = 1, ca = 0. (3.15)

The following result will be useful later.

Lemma 3.2. Let u be a solution to (3.9) and (3.14) on a neighbourhood of i on which ρ < a

for some a > 0. If u = F(ρ) with some function F ∈ C2([0, a[), then u is the trivial solution
u = ν. Moreover, h is flat unless ν = 1.

Proof. Observing (2.7) one gets

2ut − DcuDcu = 1

3
DaρDaρ

(
3

ρ
FF ′ + 2FF ′′ − 3(F ′)2

)
,

so that (3.8) is equivalent to the ODE

3

ρ
FF ′ + 2FF ′′ − 3(F ′)2 = 0.

If F ′ = 0 at a point where F > 0 it follows that u = F = const. = ν which implies with (3.9)
that sab = 0 unless ν = 1. Near a point where F > 0 and F ′ �= 0, the above equation implies
0 = 3

ρ
+ 2F ′′

F ′ − 3F ′
F

= (
log ρ3(F ′)2

F 3

)′
whence F = ρ

(b+d
√

ρ)2 with b, d = const. > 0, b �= 0. But
then u(p) = F(ρ(p)) → 0 �= ν as p → i, which contradicts our assumptions. �

4. Implications for h

Let h̃, v be static data and h, ρ the associated conformal fields. We shall now discuss the
properties of h̃ and h which are implied by the existence of a non-trivial solution u to (3.8),
(3.9) and (3.10). Assume that

U is an i-centered, convex h-normal nbhd so that 0 < ρ < 1, Daρ �= 0 on U \ {i}, (4.1)

and set with a given function u

ρa = Daρ, ua = Dau, w = 1 − u

1 − ρ
, wa = Daw, U ∗ = {p ∈ U |wa(p) �= 0}, (4.2)

so that i ∈ U ∗ if and only if ua(i) �= 0. We recall that h is conformally non-flat if and only if
the set {p ∈ U |sab(p) �= 0} is dense in U [4].

Lemma 4.1. Let h and ρ denote a solution to (2.2) and (2.6) which is not conformally flat.
Suppose u is a non-constant, positive solution to (3.8), (3.9) and (3.10) on a set U satisfying
(3.5) and define w as in (4.2). Then the set U ∗ is dense in U and there exists a smooth function
β on U ∗ so that

sab = β
(
wawb − 1

3habwcw
c
)
. (4.3)

If V ⊂ U ∗ is a connected, simply connected neighbourhood of a point p ∈ U ∗, there exist a
constant β∗ �= 0 and a function H = H(w) defined on V with H(w(p)) = 0 so that the Ricci
tensor on V has the representation

sab = β∗
1 − ρ

eH

(
wawb − 1

3
habwcw

c

)
. (4.4)

If ua(i) �= 0 we can choose p = i.

8
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Proof. If wa vanished on an open subset of U,w would be constant on U because u and ρ are
analytic. It would follow that u = ν + ρ(1 − ν), whence u = const. by lemma 3.2, in conflict
with our assumptions. It follows that U ∗ is dense in U. Because

1

u(1 − ρ)

(
D[c�a]b +

1

2
Dd�d[cha]b

)

= 1

u(1 − ρ)

(
D[c�a]b +

1

2
Dd�d[cha]b

)
− 1 − u

ρ(1 − ρ)2

(
D[c�

∗
a]b +

1

2
De�∗

e[cha]b

)
= 2w[csa]b + wdsd[cha]b,

equation (3.12) holds on U ∗ if and only if

2w[csa]b + wdsd[cha]b = 0. (4.5)

Contraction with 2wc gives

2wcw
csab − 2wascbw

c + wdsdcw
chab − wdsdawb = 0.

The antisymmetric part of this equation reads wdsd[awb] = 0, which implies on U ∗

wdsda = αwa, (4.6)

with some function α. Using this in the equation above, we obtain (4.3), which satisfies (4.5)
without restriction on β.

With (2.2) and (3.9) one obtains

Dawb = Jhab + (1 − u)(1 − w)sab +
1

1 − ρ
(waρb + wbρa) with J = ws − t

1 − ρ
. (4.7)

It follows with (4.3)

Daw
a = 3J +

2

1 − ρ
ρaw

a,

waDbwa = Jwb +
2

3
(1 − u)(1 − w)βwcw

cwb +
1

1 − ρ
(waw

aρb + wbρaw
a),

wbwaDbwa =
{
J +

2

3
(1 − u)(1 − w)βwcw

c +
2

1 − ρ
ρaw

a

}
wcw

c.

On U ∗ the Bianchi identity and the gauge condition R[h] = 0 imply with (4.3)

0 = Dasab = waDaβwb − 1
3Dbβwcw

c + β
(
Daw

awb + 1
3wcDbwc

)
.

After contraction with wb this can be solved for waDaβ. Inserting the resulting expression
again into the equation gives

wcw
cDaβ = β

{
−3

2

(
Dcw

c +
wbwcDbwc

wcwc

)
wa + wcDawc

}

=β

{
−5Jwa − 5

1 − ρ
ρcw

cwa − 1

3
(1 − u)(1 − w)βwcw

cwa +
1

1 − ρ
wcw

cρa

}
,

(4.8)

and thus finally

Daβ = β

{
1

1 − ρ
ρa + Kwa

}
, (4.9)

with

wcw
cK = −5J − 5

1 − ρ
ρcw

c − 1

3
(1 − u)(1 − w)wcw

cβ.

9
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The relation β(p) = 0 would imply with (4.9) that β = 0, whence sab = 0 on a
neighbourhood of p in U ∗ and thus sab = 0 on U by analyticity, contradicting conformal
non-flatness. Thus β(p) �= 0, whence β �= 0 on V and equation (4.9) can be written there in
the form Da log |(1 − ρ)β| = KDaw. This implies that D[aKDb]w = 0,K can be written
as a function of w on V , and there exists a function H = H(w) with H(w(p)) = 0 so that
Da(log |(1 − ρ)β| − H) = 0, whence with β∗ = (1 − ρ)β|p �= 0,

β = β∗
1 − ρ

eH on V. (4.10)
�

To state the following result, we note that lemma 3.2 implies under the assumptions of
lemma 4.1 that εabcubρc �= 0 on a dense open subset of U.

Lemma 4.2. Assume the notation and the assumptions of lemma 4.1. If V is chosen so that
εabcubρc �= 0 on V , there exists a function l = l(w) on V so that

Xa = lεabcubρc, (4.11)

defines a non-trivial Killing field for h on V . It extends to an analytic, hypersurface orthogonal
Killing field X on U which satisfies the relations

Xaρa = 0, Xaua = 0, (4.12)

and is a Killing field for h̃ on U \ {i}. Independent of the choice of V it is determined uniquely
up to a constant real factor. It vanishes at i and defines an infinitesimal axi-symmetry with
closed integral curves near i. If ua(i) �= 0 its axis is given by the h-geodesic γ (τ) with tangent
vector ua(i) at i.

Proof. With expression (4.11) a direct calculation using (2.2), (3.9), (4.3) and (4.10) gives on V

DaXb = εab
cηc + l−1{Dbl + lβ∗eH (w − w2)wb}Xa,

where

ηc = 1
3 l{(�hρ + ρ(1 − ρ)βwdw

d)uc − (�hu + u(1 − u)βwdw
d)ρc}. (4.13)

With the choice

l = l∗eL(w) where L satisfies L′(w) = −β∗eH (w − w2) and l∗ = const. > 0, (4.14)

this implies

DaXb = εab
cηc. (4.15)

It follows

D(aXb) = 0, εabcXaDbXc = 0. (4.16)

Equations (4.12) are an immediate consequence of the definition of X. Since then XaDa� = 0
by (2.8), X is also a Killing field for the metric h̃.

To construct the extension of X to U we use the integrability condition for the Killing
equation,

DaDbXc = XdR
d
abc, (4.17)

which is satisfied by X on V and to be satisfied on U. Fix p ∈ V . The geodesics γ (τ) with
γ (0) = p cover the convex normal neighbourhood U. The ODEs

D2
γ̇ Xc = XdR

d
abcγ̇

aγ̇ b, (4.18)

10
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along these geodesics determine a unique analytic extension of X to U. The Killing and
the hypersurface orthogonality conditions (4.16) as well as relations (4.12) extend to U by
analyticity. As above it follows that the extended field is also a Killing field for h̃.

The relation X[aεb]cducρd = 0, which holds on V , extends to U by analyticity so that

Xa ∼ εacducρd on U. (4.19)

The factor l which relates these fields on V needs a priori not to be bounded on U but up to a
constant factor the Killing field Xa is determined uniquely.

The relation LXρ = 0 on U implies

0 = DaLXρ = LXDaρ = XbDbDaρ + DaX
bDbρ, (4.20)

which reduces at i to

0 = −2µXa(i).

It follows that DaXb �= 0 at i, otherwise X would vanish identically. Any geodesic through
i is mapped by the flow of X onto such a geodesic because i is a fixed point of the flow.
Because dim(S) = 3 and DaXb is anti-symmetric there exists a tangent vector ta �= 0 at i
with taDaXb = 0. This vector is invariant under the flow of X. The geodesic γ (τ) satisfying
γ (0) = i and γ̇ (0) = t is thus pointwise invariant under the flow so that X|γ (τ) = 0 and the
points of γ (τ) represent the axis of X. Because the flow of X preserves orthogonality and maps
the geodesics onto such, it maps any geodesic orthogonal to γ onto another such geodesic.
Since it preserves affine parameters, it follows that the flow lines of X are closed near i.

If ua(i) �= 0 the function β given by (4.10) and thus the function l can be given on a
neighbourhood of i so that l = l∗ and eH = 1 at i and the expressions (4.11) and (4.15) with
(4.13) can be assumed to hold on this neighbourhood. While then Xa = 0 at i, we have
ηc(i) = −2l∗uc, so that DaXb|i = −2l∗εab

cuc(i) �= 0 and uaDaXb|i = 0. It follows that the
axis is given by the geodesic with tangent vector ua at i. �

If ua(i) �= 0 we normalize X by setting

l∗ = 1

2c
with c = √−ucuc|i > 0 so that ηaη

a|i = −1. (4.21)

It follows with (4.17) that ηaη
a = DaXbD

aXb/2 = const. = −1 along the the axis, where X
vanishes. The flow of X then induces rotations of the tangent space TiS with period 2π and
not smaller. If φ denotes the natural parameter on the integral curves of X which vanishes on a
hypersurface orthogonal to X which approaches the axis from one side, it defines a coordinate
with hypersurfaces {φ = const.} ⊥ X and the integral curves of X close exactly if φ ∈ [0, 2π ].

Lemma 4.3. Assume the notation and the assumptions of lemmas 4.1 and 4.2. The field

Y a = f wa, with f = l

l∗
(1 − ρ)2, (4.22)

satisfies on V

DaYb = ωhab +
1

l∗
εab

cXc with ω = f

(
J − 1

3
(w − w2)wcw

cβ∗eH

)
. (4.23)

It extends to an analytic, hypersurface orthogonal field Y on U satisfying the conformal Killing
equation

DaYb + DbYa = 2ωhab, (4.24)

and the relations

XaY
a = 0, [X, Y ] = 0. (4.25)

11
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It is tangential to the axis through i defined by X, where it does not vanish. It is a conformal
Killing field but neither homothetic nor a Killing field for h̃. Independent of the choice of V

the extended field is unique up to a non-vanishing constant real factor.

Proof. With (4.7) we obtain on V

DaYb = eL((1 − ρ)2L′wa − 2(1 − ρ)ρa)wb

+ f

(
Jhab + (1 − u)(1 − w)β

(
wawb − 1

3
habwcw

c

)
+

1

1 − ρ
(waρb + wbρa)

)

= f

(
J − 1

3
(w − w2)wcw

cβ∗eH

)
hab + (1 − ρ)eL(waρb − wbρa),

= ωhab − eL(uaρb − ubρa) = ωhab +
1

l∗
εab

cXc,

which implies (4.23) and (4.24) on V . Hypersurface orthogonality and orthogonality to X
follow immediately from the definitions of X and Y. The second of relations (4.25) follows by
a direct calculation from

[X, Y ]a = XcDcYa − Y cDcXa = ωXa − f wcεcadη
d

= ωXa − f
1

3

[(
�hρ + ρwdw

dβ∗eH
) 1 − u

(1 − ρ)2
− (

�hu + uwwdw
dβ∗eH

) 1

1 − ρ

]
Xa

= ωXa − f

[
J − 1

3

u − ρ

1 − ρ
wwdw

dβ∗eH

]
Xa = 0.

To extend Y to U we consider the integrability conditions for the conformal Killing
equations [9],

DaDbYc = YdR
d
abc + ωahbc + ωbhac − ωchab, (4.26)

with

Daω = ωa, (4.27)

and

Daωb = −LY sab = −(Y cDcsab + DaY
cscb + DbY

csac), (4.28)

satisfied in our conformal gauge by Y on V and to be satisfied on U. Fix p ∈ V and consider the
geodesics through p. The equations above imply a linear system of ODEs for Ya,DaYb, ω, ωa

along the geodesics which determine a unique analytic extension of Y to U. Equations (4.24)
and (4.25) extend to U by analyticity.

Because

Xa = − l∗
1 − ρ

εabcYbρc,

the relation DaXb(i) �= 0 implies that Y a �= 0 at i and thus also on the axis near i. The
restriction of

0 = [X, Y ]a = XcDcYa − Y cDcXa

to the axis implies that Y is the tangent to the axis, the conformal Killing equation implies that
Y �= 0 there.

It holds LY h̃ = LY (�−2h) = 2ω̃h̃ with ω̃ = ω − �−1Y aDa�. Because Da(Y
cρc)|i =

−2µYa(i) �= 0, it follows with (2.8) that �−1Y aDa� diverges at i. Thus ω̃ can neither be
constant nor vanish. �

12
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On V , which can be chosen to contain i if ua(i) �= 0, the dualized version of the Cotton
tensor Bbca = D[cRa]b acquires by (2.10), (4.4), (4.11) and (4.22) the concise form

Bab = 1

2
Bacdεb

cd = 1

1 − ρ
sd(aεb)

cdρc = β∗eH−2L

l∗(1 − ρ)5
X(aYb). (4.29)

The conformal factor (2.8) and the transformation laws under conformal rescalings give

Rab[h̃] = √
ρβ

(
wawb − 1

3
habwcw

c

)
− 3

2
√

ρ
3
(1 +

√
ρ)2

(
ρaρb − 1

3
ρcρ

chab

)
.

At i holds waρ
a = 0 and Dc(waρ

a) = 2µuc(i) �= 0 if uc(i) �= 0. Thus, if uc(i) �= 0, there
exists a smooth hypersurface H through i on which waρ

a = 0. With Xaρ
a = 0, Xaw

a = 0 it
follows that the vector fields wa, ρa,Xa define on H \ {i} an orthogonal set of eigenvectors of
Rab[h̃]. The direct calculation shows that the three eigenvalues are different from each other.
It follows that g̃ is of Petrov type I near H \ {i}. The fields ρa and wa are proportional to ua

on the axis because X = 0 there. It follows that Rab[h̃] ∼ ρaρb − 1
3ρcρ

chab so that g̃ is of
Petrov type D along the axis (cf [8]).

5. Existence and non-existence results

In spite of the simple conclusion (3.15) the case where ua(i) = 0 is not easily discussed in
general. The function β = 3

2
sabw

awa

(wcwc)2 in (4.3) may become, along with the quantities H and L,
singular at i if wa(i) = 0. In fact, if sab does not vanish at i, it is there due to axi-symmetry of
the form

sab(i) = ξ

(
nanb +

1

3
hab

)
, ξ �= 0, (5.1)

with a unit vector na pointing in the direction of the axis. With this one finds that
β = −sign(ξ)

√
3/2sedsed(wcw

c)−1 is unbounded near i. If Dd is applied to equations
(2.10) and (3.12), the resulting equations are subtracted from each other and the difference is
restricted to i, one obtains with ua(i) = 0 and (2.2), (2.6), (3.8), (3.9) at i the relation

ν
{
2sd[csa]b + sd

f sf [cha]b
} = 2µ{2hd[csa]b + sd[cha]b}.

It restricts the parameter in (5.1) by ξ = 6µ

ν
but it does not exclude (5.1). We shall leave the

case Dau(i) = 0, sab(i) �= 0 open in this paper. If the second of these conditions is dropped
we obtain with (3.15) a complete, though negative answer.

Lemma 5.1. Suppose h, ρ are a solution to the conformal static vacuum equations (2.2), (2.6)
such that sab(i) = 0. Then a positive solution u to equations (3.8), (3.9), (3.10) near i which
satisfies u(i) = ν �= 1 and Dau(i) = 0 is the constant solution u = ν and h is flat.

Proof. We assume that u is not a constant and show that this leads to a contradiction. In
the following results of [5] will be used. For the notions set below in quotation marks and
statements relating to them we refer the reader to that paper.

Let xa denote h-normal coordinates centered at i, so that h∗
ab ≡ hab(i) = −δab. Equation

(2.10) implies with (2.6) that Dasbc(i) is totally symmetric. More generally, if

sab = O(|x|k) for some k � 1,

the ‘exact set of equations argument’ implies with (2.10) that the tensor

ψa1...akab ≡ Da1 . . . Dak
sab(i),

13



Class. Quantum Grav. 25 (2008) 065012 H Friedrich

is given in space spinor notation by a completely symmetric spinor ψA1B1...Ak+2Bk+2 because it
either vanishes or defines the non-vanishing ‘null datum’ of lowest order for the solution h.
We shall show that it vanishes so that in fact sab = O(|x|k+1).

Equations (3.8), (3.9) and (3.11) imply, with the assumption above,

u = ν + O(|x|k+2), Da1 . . . Dak+2u(i) = −ν(1 − ν)ψa1...ak+2 ,

so that one obtains at i ‘normal expansions’

sab = 1

k!
ψa1...akabx

a1 . . . xak + O(|x|k+1),

u = ν − ν(1 − ν)
1

(k + 2)!
ψa1...ak+2x

a1 . . . xak+2 + O(|x|k+3),

Dau = −ν(1 − ν)
1

(k + 1)!
ψa1...ak+1ax

a1 . . . xak+1 + O(|x|k+2),

ρ = −µh∗
abx

axb + O(|x|k+4), Daρ = −2µh∗
abx

b + O(|x|k+3),

whence

wa = −2µ(1 − ν)h∗
abx

b

(1 + µh∗
abx

axb)2
+ O(|x|k+1), waw

a = (2µ(1 − ν))2h∗
abx

axb

(1 + µh∗
abx

axb)4
+ O(|x|k+2).

It follows that wa �= 0 on a punctured neighbourhood of i. Consider near i the real analytic
field

fab = 2(wcw
c)2sab − 3wcwdscd

(
wawb − 1

3habwew
e
)
.

Lemma 4.1 implies with the assumption that u is not constant that the field fab vanishes on
the open set where wa �= 0 and thus, by analyticity, everywhere. In the normal coordinates
xa we extend near i now all real analytic fields holomorphically into the complex domain and
consider a complex null geodesic xa(τ ) = τ la with la = const. �= 0, lal

a = 0.
Expanding fab(x(τ )) at τ = 0 and observing the expansions above gives

0 = fab = −3
(2µ(1 − ν))4

k!
ψa1...ak+2 l

a1 . . . lak+2 lalbτ
k+4 + O(|τ |k+5).

This shows that

0 = ψa1...ak+2 l
a1 . . . lak+2 = ψA1B1...Ak+2Bk+2 ι

A1 . . . ιBk+2 ,

where la is represented on the right-hand side by the spinor ιAιB . Because la and thus the
spinor ιA is arbitrary here, the symmetric spinor ψA1B1...Ak+2Bk+2 must vanish, which implies
sab = O(|x|k+1) and u = ν + O(|x|k+3). In contradiction to our assumption it follows
inductively that u − ν and sab vanish at i at all orders. �

The existence result announced in the introduction will now be proven. In stating it we
ignore trivial rescalings.

Lemma 5.2. For given data µ, ν, β∗ ∈ R and ca ∈ R
3 satisfying

µ > 0, ν > 0, β∗ �= 0, ca �= 0,

there exists a solution h to the conformal static field equations which admits a non-trivial
conformal rescaling with conformal factor ϑ = √

ν/u. The fields h and u are uniqely
determined by the requirements that m = 2

√
µ is the ADM mass of the asymptotically flat

14
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static metric associated with h, the Ricci tensor of h assumes in i-centered h-normal coordinates
the value

sab = β∗
(
cacb − 1

3habcdc
d
) �= 0 at i,

and the positive function u satisfies

u = ν, Dau = ca at i.

Proof. The result will be obtained by solving simultaneously the conformal field equations for
h and the equations satisfied by u. Let ea, a = 1, 2, 3, denote an h-orthonomal frame and denote
the 1-forms dual to it by σa . The metric is then given by h = habσ

aσ b with metric coefficients
hab = h(ea, eb) = −δab. The connection coefficients, defined by Dea

eb = � c
a bec, satisfy

�acb = �a[cb] with �acb = hcd�
d

a b. The connection form is then given by ωa
b = � a

c bσ
c so

that ωab = ω[ab]. This expansion in terms of the σa will be used only later, when we describe
the solution procedure in detail.

The equations will be written as a differential system for the unknown

U = (
ρ, ρa, s, u, ua, t, β, σ a, ωa

b

)
,

where the first seven components denote (vector-valued) 0-forms and the last two components
are 1-forms. Until we introduce coordinates below all indices should be understood as frame
indices. Consider the differential forms

� = dρ − ρaσ
a, � = du − uaσ

a,

�a = dρa − ρcω
c

a − shabσ
b + ρ(1 − ρ)sabσ

b,

�a = dua − ucω
c

a − thabσ
b + u(1 − u)sabσ

b,

S = ds + (1 − ρ)ρasabσ
b, T = dt + (1 − u)uasabσ

b,

B = dβ + βMaσ
a,

�a = dσa + ωa
b ∧ σb, �a

b = dωa
b + ωa

c ∧ ωc
b − �a

b,

denoted collectively by

Ψ = (
�,�,�a,�a, S, T , B,�a,�a

b

)
,

or by ΨA if we need to bring out relations involving different components. In the differential
forms above and in the forms derived below we consider functions of the components of U
which are given by

w = 1 − u

1 − ρ
, wa = 1 − u

(1 − ρ)2
ρa − 1

1 − ρ
ua, sab = β

(
wawb − 1

3
habwcw

c

)
,

Ma = Qwa +
1

3
(1 − u)(1 − w)βwa − 1

1 − ρ
ρa, Q = 5(ws − t + ρcw

c)

wewe(1 − ρ)
,

�a
b = 1

2
Ra

bcdσ
c ∧ σd = (

ha
csbd − hbcsd

a
)
σ c ∧ σd.

The equations we need to solve read now

Ψ = 0.

The first two of these equations ensure that ρa and ua represent the differentials of ρ and u, the
following five equations represent (2.2), (3.9), (2.9), (3.11), (4.9) and the remaining equations
are the first and the second structural equation.
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A lengthy but straightforward calculation shows that the differential forms comprised by
Ψ satisfy the differential system

d� = −�a ∧ σa − ρa�
a,

d� = −�a ∧ σa − ua�
a,

d�a = −�b ∧ ωb
a − ρb�

b
a − S ∧ σa − s�a + (1 − 2ρ)� ∧ sabσ

b

+ ρ(1 − ρ)sab�
b + ρ(1 − ρ)Aa,

d�a = −�b ∧ ωb
a − ub�

b
a − T ∧ σa − t�a + (1 − 2u)� ∧ sabσ

b

+ u(1 − u)sab�
b + u(1 − u)Aa,

dT = −� ∧ ρasabσ
b + (1 − ρ)�a ∧ sa

bσ
b + (1 − ρ)ρasab�

b + (1 − ρ)ρaAa,

dS = −� ∧ uasabσ
b + (1 − u)�a ∧ sa

bσ
b + (1 − u)uasab�

b + (1 − u)uaAa,

dB = B ∧ (Maσ
a + βFwaσ

a) + β

{
Q

1 − ρ
� +

(
5ρc

(1 − ρ)3wbwb
− 2Qwc

(1 − ρ)2wbwb

)
× (−ρc� + wρc� + (1 − ρ)(wc� + w�c − �c))

+
5

(1 − ρ)2wbwb
(sw� − s� + (1 − ρ)(wS − T + wc�c))

}
∧ waσ

a

+ β

{
Q + βF

(1 − ρ)2
(wρa� − ρa� + (1 − ρ)(wa� + w�a − �a))

− 1

3
β((1 − 2w)� + w2�)wa − ρa

(1 − ρ)2
� − 1

1 − ρ
�a

}
∧ σa + βMa�

a,

d�a = �a
b ∧ σb − ωa

b ∧ �b,

d�a
b = �a

c ∧ ωc
b − ωa

c ∧ �c
b − (ha

csbd − hbcsd
a)(�c ∧ σd − σ c ∧ �d)

+ σa ∧ Ab − Aa ∧ σb,

where

Aa = waB ∧ wbσ
b − 1

3
wbw

bB ∧ σa + β

(
Ba ∧ wbσ

b + waBb ∧ σb − 2

3
wbBb ∧ σa

)
,

with

Ba = − ρa

(1 − ρ)2
� +

(
wa

1 − ρ
+

wρa

(1 − ρ)2

)
� +

w

1 − ρ
�a − 1

1 − ρ
�a.

In deriving the last equation there arises the expression

N ab = −wdw
dσ a ∧ ρcσ

c ∧ σb + ρcw
cσ a ∧ wdσ

d ∧ σb + σa ∧ ρcσ
c ∧ wdσ

dwb

−waρcσ
c ∧ wdσ

d ∧ σb.

By writing σa ∧ σb ∧ σ c = εabcµh with the volume form defined by h on the right-hand side
and calculating N abεabc, the field N ab can be shown to vanish identically.

In short notation (the summation convention applying to all indices) the relations above
take the form

dΨA = f A
Bcσ

c ∧ ΨB + f Aa
Bb ωb

a ∧ ΨB + f A
B ΨB, (5.2)

with functions f A
Bc, f

Aa
Bb , f A

B of the 0-forms given by U.
Because we assume that Dau(i) = ca �= 0, all fields given by U, in particular β (with the

meaning given to it earlier), can be assumed to be smooth near i. The solutions to the equations
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Ψ = 0 are obtained near i as follows. Assume that xa denote i-centered, h-normal coordinates
and ea an h-orthonormal normal frame centered at i so that ea

b = 〈dxa, eb〉 = δa
b at i. Then

Ŷ = xa∂a is smooth near i and so that Y = 1
|x| Ŷ is for xa �= 0 the geodesic unit vector field

tangent to the geodesics through i, which has direction dependent limits as |x| → 0. Writing
σa = σa

b dxb, we find the inner products

iŶ σ a = σa
b(x)xb = xa, iŶ ωa

b = xc� a
c b(x) = 0 near xa = 0. (5.3)

Consider now a radial geodesic γ : τ → τxa
∗ with some xa

∗ satisfying δabx
a
∗xb

∗ = 1. The
equation

iY �a = 0,

implies then for the unknown σ̂ a
b = σa

b − δa
b, which is required to be smooth, the initial

condition

σ̂ a
b → 0 as τ → 0, (5.4)

and along γ the ODE

d

dτ
σ̂ a

b +
1

τ
σ̂ a

b = � a
c d σ̂ c

bx
d
∗ + � a

b dx
d
∗ , (5.5)

where we expressed the connection form in terms of the connection coefficients, which are
considered now as unknowns. The equation

iY �a
b = 0,

similarly implies the initial condition and the ODE

�c
a

b → 0 as τ → 0, (5.6)

d

dτ
�c

a
b +

1

τ
(δd

c − σ̂ d
f ef

c)�d
a

b = −�d
a

b�c
d

e xe
∗ + Ra

bdc xd
∗ , (5.7)

where the frame coefficients ea
b (by Cramer’s rule rational functions of the σa

b) satisfy

σa
ce

c
b = δa

b so that ea
b = δa

b − σ̂ a
ce

c
b = δa

b + O(|τ |).
The equations

iY � = 0, iY � = 0, iY �a = 0, iY �a = 0, iY S = 0, iY T = 0, iY B = 0, (5.8)

imply regular ODE’s along γ . The unknowns in these equations must satisfy the initial
conditions

ρ = 0, ρa = 0, s = −2µ, u = ν > 0, ua = ca �= 0,
(5.9)

t = cac
a

2ν
, β = β∗ �= 0 at τ = 0.

There exists along γ a unique solution U to the system consisting of (5.5), (5.7), and the
ODEs implied by (5.8) which satisfies the conditions (5.3), (5.4), (5.6), (5.9). This solution is
real analytic in the initial data (5.9) and τxa

∗ . The fields given by U are in fact analytic in the
coordinates xa and satify the equation Ψ = 0 near xa = 0.

This result follows from the general properties of systems of ODEs. The only subtlety
arises here from the singularity of equations (5.5), (5.7) at τ = 0. It is such that the left-hand
sides of these equations are of the form ẋ + τ−1Ax with a matrix A which approaches a
diagonal matrix with positive entries as τ → 0. The existence of a unique analytic solution to
the complete system then follows immediately with the methods used in [5], where ODEs of
the same type have been discussed.
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Once the solution U has been obtained, equations (5.5), (5.7) imply a system of ODEs
for xa

∗ σ̂ a
b and xa

∗�a
b

c along γ which allows one to conclude that these quantities vanish
everywhere so that the relations (5.3) are indeed satisfied. Because iYΨ → 0 as xa → 0 along
any geodesic passing through xa = 0 it follows that Ψ = 0 at xa = 0. From (5.2), (5.3), and
iYΨ = 0 one obtains

LYΨA = (d ◦ iY + iY ◦ d)ΨA = iY dΨA = f A
Bc

xc

|x|Ψ
B.

This equation implies for |x| �= 0 along each geodesic γ passing through xa = 0 a linear
homogeneous system of ODEs for the coefficient functions defining the forms given by Ψ. It
behaves regularly on γ as |x| → 0. Since Ψ vanishes at xa = 0, the asserted result follows.

�

In counting the free parameters in lemma 5.2, the vector ca should be taken into account
only in terms of the number c = √

caca > 0 because of the freedom to rotate the normal
coordinates around their origin. Ignoring the parameter µ, which can be changed by trivial
rescalings, it follows that the solutions depend on three parameters.

6. Concluding remarks

The statements of theorem 1.1 represent an extract from the results proven in the lemmas and
the subsequent remarks. The latter provide much more information on the various structures.
This will become important in a sequel to this paper in which the properties of the solutions
whose existence has been obtained in theorem 1.1 will be discussed in some detail.
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