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In this essay I first discuss the physical relevance of the inequality m ≥
p
|J | for axially

symmetric (nonstationary) black holes, where m is the mass and J the angular momen-
tum of the space–time. Then, I present a proof of this inequality for the case of one
spinning black hole. The proof involves a remarkable characterization of the extreme
Kerr black hole as an absolute minimum of the total mass. Finally, I conjecture about
the physical implications of this characterization for the nonlinear stability problem for
black holes.
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1. Introduction

The Kerr metric is a solution to the vacuum Einstein equations which depends on
two parameters, m and J , the mass and the angular momentum of the space–time.
It is well defined for any choice of the parameters; however, it describes a black hole
only if the following — remarkable — inequality holds:

m ≥
√
|J |. (1)

Roughly speaking, this inequality says that if an object is spinning too fast it cannot
collapse to form a black hole.
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Research Foundation.
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The inequality (1) has important consequences for a gravitational collapse,
because the Kerr black hole is expected to play a unique role in such a process.
To describe these consequences, let us first review what is known as the stan-
dard picture of the gravitational collapse. It consists mainly of the following two
conjectures:

(i) Gravitational collapse results in a black hole (weak cosmic censorship). This
conjecture points out the physical relevance of black hole solutions. Accordingly,
it is assumed that solutions containing naked singularity [for example, the Kerr
solution whose parameters do not satisfy (1)] would not generically occur.

(ii) The space–time settles down to a stationary final state, because only a finite
amount of gravitational radiation can be emitted by an isolated system. It
is also reasonable to assume that at some finite time all the matter fields
have fallen into the black hole and hence the exterior region is a pure vac-
uum (for simplicity we discard electromagnetic fields in the exterior). Then,
the black hole uniqueness theorem implies that the final state should be the
Kerr black hole.

If the initial conditions for a collapse violate (1), then the extra angular momen-
tum should be radiated away in gravitational waves. There exists, however, an
important class of space–times in which angular momentum cannot be radiated
by gravitational waves: axially symmetric space–times. For an axially symmet-
ric space–time the angular momentum is a conserved quantity. Then, the angular
momentum J of the initial conditions must be equal to the final one, J0. On the
other hand, the mass of the initial conditions m should be bigger than the final
mass of the resulting Kerr black hole, m0, because gravitational radiation carries
positive energy. If we assume that the conjectures and (i) and (ii) hold, then the
system will settle down to a final Kerr black hole, for which we have m0 ≥

√
|J0|.

Then, we deduce that in this case the inequality (1) should be satisfied by the initial
conditions. Also, if the initial conditions satisfy the equality m =

√
|J |, no mass

can be radiated and hence we expect the system to be stationary. Since the only
stationary black hole which satisfies this equality is extreme Kerr, in this case the
system should be exactly extreme Kerr.

The argument presented above was essentially given in Ref. 1 and it is similar
to the one used by Penrose2 to obtain the inequality between mass and the area
of the horizon on the initial data. As in the case of the Penrose inequality, a coun-
terexample of (1) will imply that the standard picture of the gravitational collapse
is not true. Conversely, a proof of (1) gives indirect evidence of its validity, since it
is very hard to understand why this highly nontrivial inequality should hold unless
(i) and (ii) can be thought of as providing the underlying physical reason behind it
(see the discussion in Refs. 3 and 4).

The physical interpretation of (1) in the nonstationary case is the following.
If we have a stationary vacuum black hole (i.e. Kerr) with mass m0 and angular
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momentum J0 and add to it axisymmetric gravitational waves, then the space–time
will still contain a (nonstationary) black hole; these waves will only increase the
mass and not the angular momentum of the space–time because they are axially
symmetric. Since Kerr satisfies m0 ≥

√
|J0|, we get (1) for the resulting space–time.

The difference m−
√
|J |, which can be calculated a priori on the initial conditions

and by (1) is positive, provides an upper bound for the total amount of radiation
E emitted by the system:

E = m−m0 ≤ m−
√
|J0| = m−

√
|J |. (2)

This argument is the same as the one used by Hawking in Ref. 5.

2. The Variational Approach

The inequality (1) suggests a variational principle; namely, extreme Kerr realizes
the minimum of the mass among all axially symmetric black holes with fixed angular
momentum. However, it is important to note that for two related inequalities, i.e.
the positive mass theorem and the Penrose inequality, a variational formulation was
not successful. In the case of the positive mass theorem, only a local version was
proved using a variational principle.6

The key difference in the present case it is axial symmetry. In that case it is
possible to write the mass (in an appropriate gauge) as a positive definite integral
on a spacelike hypersurface. The reason for this particular behavior of the mass is
the following. In the presence of a symmetry, vacuum Einstein equations can be
reduced a la Kaluza–Klein to a system on a three dimensional manifold, where it
takes the form of three-dimensional Einstein equations coupled to a matter source.
Since in three dimensions there is no radiation (the Weyl tensor is zero), this source
represents the true gravitational degrees of freedom that have descended from four
dimensions to appear as “matter” in three dimensions. Since all the energy is pro-
duced by these effective matter sources, one would expect that, as in other field
theories, the total energy of the system can be expressed as a positive definite inte-
gral over them. This was in fact proved by Brill7 in some restricted cases and then
generalized in Refs. 8 and 9.

The mass integral essentially depends on two free functions: the norm and the
twist potential of the axial Killing vector. This allows us as to make unconstrained
variations of them and hence formulate a well-defined variational problem for the
mass functional.

In a series of recent articles,8,10–12 the inequality (1) has been proved for the
case of one spinning black hole using this variational formulation. These results can
be summarized as follows (we have suppressed some technical assumptions; for a
precise formulation see Ref. 8):

Theorem 1. Extreme Kerr realizes the unique absolute minimum of the mass func-
tional among all axially symmetric spinning black holes with only one connected
component and fixed angular momentum.
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While restricted to axially symmetric solutions, this theorem represents the first
nonlinear and nonstationary result concerning the Kerr black hole.

Black holes are critical points of the mass at fixed angular momentum and
horizon area.13 This is, in essence, the first law of black hole mechanics. However,
only extreme Kerr is in addition a minimum of the mass.

This characterization of extreme Kerr as a minimum of the mass implies a kind
of stability of this solution. It is a priori not directly related to the nonlinear stability
of extreme Kerr under the evolution of Einstein equations. But it suggests that the
extreme Kerr black hole is stable in a more fundamental way than Schwarzschild
or nonextreme Kerr among axially symmetric deformations.

This suggestion is supported by quantum effects. There are two quantum effects
which can make the black hole unstable: Hawking radiation and particle production
by superradiance. For the extreme Kerr black hole the temperature is zero and hence
there is no Hawking radiation. The superradiance effect is related to the transfer
of angular momentum from the black hole to the exterior (similar to the Penrose
process). If we restrict ourselves to axially symmetric configurations, this transfer
is not possible. In this sense, the extreme Kerr black hole is quantum-stable among
axially symmetric configurations.

The nonlinear stability of black holes is a major open problem in general relativ-
ity. The first nontrivial vacuum model to be studied is represented by axisymmetric
space–times. The results presented here reveal the following two relevant features
of axial symmetry, which are likely to play an important role in this problem. First,
the mass is a positive definite integral on the spacelike hypersurfaces. Since the
mass is a conserved quantity, the norm defined by this integral controls the fields
during the evolution. Second, the above considerations indicate that in the class
of axisymmetric solutions the extreme Kerr black hole possesses hidden proper-
ties which are not present in the nonextreme case. Their analysis may significantly
simplify the study of its nonlinear stability.
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