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Recent work has revealed intriguing connections between a Belinsky–Khalatnikov–
Lifshitz-type analysis of spacelike singularities in general relativity and certain infinite-
dimensional Lie algebras, particularly the “maximally extended” hyperbolic Kac–Moody
algebra E10. In this essay we argue that these results may lead to an entirely new under-
standing of the (quantum) nature of space(–time) at the Planck scale, and hence — via
an effective “de-emergence” of space near the singularity — to a novel mechanism for
achieving background independence in quantum gravity.
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1. Introduction

A key challenge for a future theory of quantum gravity is the need to explain the
fate of space–time singularities, where classical general relativity breaks down, and
space and time “come to an end.” This challenge concerns in particular spacelike
(cosmological) singularities, the most prominent example of which is the big bang
singularity that gave birth to our universe. At issue here is not so much the question
of whether and how quantum effects might “resolve” the singularity, but the very
meaning of the term “singularity resolution” itself. The latter hinges essentially on
what the correct theory is, and will almost certainly require new concepts that go
beyond established notions of space and time.

A naive extension of quantum mechanics would suggest that singularity reso-
lution works essentially in the same way for quantum general relativity as it does

∗This essay received an “honorable mention” in the 2007 Essay Competition of the Gravity
Research Foundation.
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for the hydrogen atom. There, as is well known, the expected classical “collapse”
of an electron toward the 1/r singularity of the Coulomb potential is resolved
by the Heisenberg uncertainty principle and the quantum-mechanical smearing of
the electron wave function, which allows the electron to stay in a stable bound
state around r = 0. This possibility is usually invoked in canonical approaches to
quantum gravity, where one would thus hope to be able to replace the classical
time evolution of the spatial geometry, described as a “trajectory” in the space of
3-geometries (i.e. Wheeler–DeWitt superspace), by a quantum-mechanical descrip-
tion in terms of a wave functional which “smears” the 3-geometries over the singular
classical trajectories. This line of thought has been extensively pursued in the sim-
plified context of the mini-superspace approximation, with varying results: while
models derived from (or motivated by) loop quantum gravity generally tend to
predict a “bounce” providing a quantum-mechanical bridge between two classical
universes,1 the more conventional quantum-geometrodynamical treatment of the
mini-superspace Wheeler–DeWitt equation shows no such evidence.2

In this essay we would like to outline a very different proposal, motivated by
recent work,3,4 where the singularity is “resolved” by the effective “disappearance”
of space, and the replacement of the dynamical fields, most notably the spatial met-
ric gij(t,x), by a single dynamical variable V(t) belonging to an infinite-dimensional
coset space and depending only on time. Our proposal is based on the discovery of a
profound relation between an analysis à la Belinsky–Khalatnikov–Lifshitz (BKL) of
spacelike singularities5,6 on the one hand, and the theory of indefinite Kac–Moody
algebras on the other7,8 (see Ref. 9 for an introduction to the theory of Kac–Moody
algebras). More specifically, the main conjecture of Ref. 3, formulated in the context
of the maximally extended D = 11 supergravity,10 relates a BKL-type expansion in
spatial gradients at a given spatial point to a Lie-algebraic expansion in the height
of certain roots of the “maximally extended” hyperbolic Kac–Moody algebra E10.
Thereby the time evolution of 10-dimensional geometric data is mapped onto an
effectively one-dimensional dynamics, namely a (constrained) null geodesic motion
in the infinite-dimensional coset space E10/K(E10), which is formally defined as
the quotient of the group E10 by its maximal compact subgroup K(E10).a The
appearance of E10 in this context is both unexpected and remarkable, because E10

enjoys a similarly distinguished status among the infinite-dimensional Lie groupsb

as the exceptional algebra E8 does in the Cartan–Killing classification of the simple
finite-dimensional Lie groups.13

2. BKL and Cosmobilliards

We start by summarizing the BKL-type analysis of the near-spacelike singularity
limit, i.e. the asymptotic behavior of various fields, and in particular the (spatial)

aThe emergence of E10 in the dimensional reduction of maximal supergravity to one dimension
had already been conjectured long ago.11 See also Ref. 12 for a conceptually very different proposal
based on E11.
bFor simplicity of notation, we denote the group and its Lie algebra by the same symbol.
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metric, near a singular hypersurface, here taken to be “located” at T = 0 in proper
time T . To this end, it is convenient8 to decompose the D = 11 metric gµν into
nondynamical and dynamical components, namely the lapse N and the shift vector
Nm (set here to zero), and into “diagonal” and “off-diagonal” components e−2βa

and θa
i, respectively, such that the line element becomes

ds2 = −N2dt2 +
10∑

a=1

e−2βa

θa
iθ

a
jdxidxj . (1)

Here, the “off-diagonal” components θa
i are upper triangular matrices with 1’s on

the diagonal and enter the Iwasawa decomposition of the spatial metric gij . We
choose a gauge for N in terms of gij in such a way that N ∼ O(T ) → 0 when
T → 0. Thus t ∼ − log T becomes a “Zeno-like” time coordinate with t → +∞ as
T → 0.

The Hamiltonian constraint, at a given spatial point, can be written as

H(βa, πa, Q, P ) = Ñ

[
1
2
Gabπaπb +

∑

A

cA(Q,P, ∂β, ∂Q) exp
(−2wA(β)

)
]

, (2)

with the rescaled lapse Ñ ≡ N/
√

g, where g is the determinant of the spatial metric.
Here πa (a = 1, . . . , 10) are the canonical momenta conjugate to the logarithmic
scale factors βa, and Gab is the (Lorentzian) DeWitt “superspace” metric induced
by the Einstein–Hilbert action. (Q,P ) denote the remaining canonical degrees of
freedom associated with the off-diagonal metric components θa

i and various matter
degrees of freedom [such as the 3-form Aµνλ(t,x) of D = 11 supergravity], as well
as their respective conjugate momenta, and (∂β, ∂Q) are the spatial gradients of
β and Q. The exponential terms in (2) involve the linear forms wA(β) ≡ wAaβa,
where the specific coefficients wAa and the range of labels A depend on the model
under consideration (see Ref. 8 for details).

The BKL limit T → 0 amounts to considering the large β limit in Eq. (2),
and is determined by the exponential “walls” ∝ exp(−2wA(β)).8 The latter can
be ordered in “layers.” The first layer, corresponding to the subset of “dominant
walls” wA′(β) — whose coefficients cA′ can be shown to be nonnegative — confines
the motion in β space to a fundamental billiard chamber defined by the inequalities
wA′(β) ≥ 0. The remaining (subdominant) exponential walls introduce fractional
corrections into the chaotic motion of (βa, πa) within the fundamental billiard cham-
ber. All the other dynamical variables (Q,P ), together with their spatial gradients,
“freeze” as T → 0, and thus exhibit a very different behavior in this limit.

3. Coset Space Dynamics

Let us next consider an a priori very different dynamical system, namely null
geodesic motion on the infinite-dimensional coset space E10/K(E10). A curve
on this coset space can be parametrized by a time-dependent (but space-
independent) element of the E10 group in upper triangular (Iwasawa) form: V(t) =
exp h(t) exp ν(t). Here, h(t) = βa(t)Ha belongs to the ten-dimensional Cartan
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subalgebra (= CSA) of E10. Our use of the same notation as above is justified
by the fact that we will eventually identify the ten CSA coordinates βa of E10 with
the logarithms of the ten “diagonal” components of the spatial metric gij introduced
above. On the other hand, ν(t) =

∑
α>0 να(t)Eα belongs to a (Borel) subalgebra of

E10 and has an infinite number of components labeled by positive roots α of E10.
The geodesic action is formally very simple; it reads

∫
dtL(t) =

∫
dt

n(t)
〈P(t)|P(t)〉, (3)

where P := (1/2)
[V̇V−1+(V̇V−1)T

]
is the “velocity”c 〈.|.〉 is the standard invariant

bilinear form generalizing the finite-dimensional matrix trace,9 and n(t) is a one-
dimensional “lapse” needed to ensure (time) reparametrization invariance of the
action (3). The Zeno-like coordinate time t of the previous section is recovered
upon identifying n with the rescaled lapse Ñ introduced after (2) and choosing the
gauge n(t) = 1.

Varying (3) w.r.t. to the lapse n, we obtain the Hamiltonian constraint:

H(βa, πa, ν, p) = n


1

2
Gabπaπb +

∑
α>0

mult(α)∑
s=1

(Πα,s(να, pα))2 exp
(− 2α(β)

)

, (4)

where πa denotes the conjugate momenta of the ten diagonal CSA coordinates
βa, and pα denotes the conjugate momenta of the “off-diagonal” coordinates να

parametrizing the Borel part of V. The sum on the r.h.s. of (4) ranges over all
positive roots α of E10 with their multiplicities [= mult(α)]. We recall that the
roots α are linear forms on the CSA, i.e. we have α(β) ≡ αaβa for the exponents
in (4). Although the dynamics encapsulated in (4) is very complicated, a general
feature is that in order to satisfy H = 0, we must always have Gabπaπb ≤ 0; this
means that the coset null geodesics must always maintain a future-directed CSA
velocity πa, and hence cannot bounce.

4. Correspondence between BKL and Coset Space Dynamics

The formal similarity between the gravitational Hamiltonian (2) (considered at a
given spatial point) and the coset Hamiltonian (4) is evident, but the correspon-
dence between the two extends considerably farther. In particular, while the metric
Gab entering (4) is the restriction of the invariant bilinear form on E10 to its CSA, it
happens to be identical with the DeWitt metric appearing in (2). This fact enables
us to identify the space of logarithmic scale factors with the Cartan subalgebra of E10

(as anticipated by our notation). Moreover, one can analyze the asymptotic dynam-
ics of the coset variables (βa, πa, να, pα) in the limit of large β’s. At first order in an
expansion in “height” of the simple roots of E10, one finds that the CSA variables β

cHere the transpose operation T denotes the negative of the Chevalley (or “compact”) involution
ω.9 The elements of the Lie subalgebra K(E10) are thus “antisymmetric.”
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are confined to a chaotic billiard motion within the Weyl chamber of E10. The lat-
ter is defined by the inequalities αi(β) ≤ 0, where αi (i = 1, . . . , 10) are the simple
roots of E10, and turns out to coincide with the fundamental BKL billiard chamber
defined by the dominant potential walls wA′(β) for D = 11 supergravity. Consider-
ation of the subleading exponential walls in both models now shows that one can
actually identify the two dynamics up to height 30, i.e. much beyond the leading bil-
liard dynamics (corresponding to height 1 only).3 This result suggests the existence
of a hidden equivalence between the two models, i.e. the existence of a map preserv-
ing the dynamics between the infinite tower of coset variables (βa, πa, να, pα), and
the infinite sequence of spatial Taylor coefficients (β, π, Q, P, ∂β, ∂Q, ∂2β, ∂2Q, . . .)
formally describing the dynamics of the (super)gravity variables (β, π, Q, P ) in the
neighborhood of some given spatial point. In this way, a BKL-type expansion in
spatial gradients (also termed a “small tension expansion” with space as a kind of
elastic medium) gets related to a purely Lie-algebraic expansion in terms of heights
of roots. While the full details of this correspondence (which is expected to be very
nonlocal in the space–time fields) remain to be worked out, it has been possible
recently to extend these results to the fermionic sector on both sides.14–16

Most importantly for our present proposal, certain (partially) known quantum
corrections to the classical supergravity action can be shown to be compatible with
specific terms, of very large height, present in the coset action.4 For instance, the
leading term quartic in the Weyl curvature,

L(4) = 192E(−CABCDCAB
EFCCE

GHCDFGH

+4 CABCDCA
E

C
F CE

G
B

HCFGDH ), (5)

is dominated, near the singularity, by an exponential term ∝ exp[−2α(β)] in the
coset Hamiltonian (4) for a specific imaginary E10 root α of height (−115). Detailed
study of the sign of the combination of curvature terms in (5) has established an
inequality4 confirming the no-bounce property exhibited by the coset dynamics,
explained after (4).

5. The Cosmological Singularity: A New Paradigm?

The evidence summarized above suggests an entirely new picture of the (quantum)
fate of space and time at the cosmological singularity. Namely, we here propose
to take seriously the idea that near the singularity (i.e. when the curvature gets
larger than the Planck scale) the description in terms of a spatial continuum and
space–time based (quantum) field theory breaks down, and should be replaced by a
much more abstract Lie-algebraic description. Thereby the information previously
encoded in the spatial variation of the geometry and of the matter fields gets trans-
ferred to an infinite tower of Lie-algebraic variables depending only on “time.” In
other words, we are led to the conclusion that space — and thus, upon quantiza-
tion, also space–time — actually disappears (or “de-emerges”) as the singularity is
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approached.d There is no “quantum bounce” bridging the gap between an incoming
collapsing and an outgoing expanding quasi-classical universe. Instead, “life con-
tinues” at the singularity for an infinite affine time, but with the understanding
that (i) dynamics no longer “takes place” in space, and (ii) the infinite affine time
interval [measured, say, by the Zeno-like time coordinate t of (3)] corresponds to a
sub-Planckian interval 0 < T < TPlanck of geometrical proper time.

Upon quantization, the geodesic equations of motion following from (3) are
replaced by a quantum version of the Hamiltonian constraint (4), analogous to the
Wheeler–DeWitt equation, and acting on some “wave function of the universe”
Ψ = Ψ(βa, να) depending on the coset variables. This, then, is the step where time
also “disappears”: as in all canonical approaches to quantum gravity, the wave
function (or functional) Ψ no longer depends on any extrinsic “time” (although
one can, of course, choose a “clock field” from the coset variables so as to define
an “operational” time, in terms of which the quantum dynamics of the remaining
variables can be parametrized). The quantum constraint would take the form of a
Klein–Gordon-like equatione

¤Ψ(βa, να) = 0, (6)

where ¤ is the (formal) Laplace–Beltrami operator on the infinite-dimensional
(Lorentzian) coset manifold E10/K(E10). In analogy with the discretization of
finite-dimensional duality symmetries upon quantization, this would then suggest
that Ψ ultimately might turn out to be a “modular form” over the arithmetic group
E10(Z).17,18

6. Outlook

If correct, the picture outlined here will not only affect our understanding of what
“happens” at the cosmological singularity, but may also shed completely new light
on the issue of background independence in quantum gravity. More succinctly, tak-
ing the quantum coset dynamics (6) as a guiding principle, the correct theory of
quantum gravity may well turn out to be background-independent in the sense that
near the singularity, the theory — rather than “quantizing” the spatial geometry,
or some other spatially extended background structure — simply does away with
the background altogether, whence the whole issue will become moot!

Let us also note some potentially important implications of this picture for the
so-called “information loss paradox” in black hole physics. Indeed, the present ideas
might also be applied to the case of a “localized” big crunch (as the one inside a
black hole formed within an asymptotically flat space–time). It would then suggest
that some of the information contained within the horizon might transmigrate to

dWe have in mind here a “big crunch,” i.e. where we move “back in time” toward the singularity.
Conversely, and mutatis mutandis, we would say that space “appears” or “emerges” at the big
bang.
eOr a “Dirac-like” (first order) constraint if fermions are included.14–16
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the state of motion of a coset “baby particle” (whose dynamics describes physics at
sub-Planckian scales near the big crunch). The Hawking evaporation of the black
hole containing this localized big crunch poses interesting conceptual challenges
with regard to an infinite affine “coset lifetime” near the singularity.

As is well known, symmetry concepts have been of central importance in the
advancement of theoretical physics over the last century. They have been a key
ingredient in the development of the two most successful theories of physics, namely
general relativity (via the principle of general covariance) and the standard model
of elementary particle physics (via gauge invariance and Yang–Mills quantum field
theories). In view of its distinguished place among all Lie algebras, E10 is a most
worthy candidate for symmetry of nature, deeply intertwining space–time with
matter degrees of freedom, and thus necessarily implying a unification of gravity
and matter. For this reason, one may also anticipate for it a key role in elucidating
the quantum nature of space–time, and hence space–time singularities.
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