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Abstract
A possible evolution of a compact hypersurface in R

n+1 by mean curvature past
singularities is defined via the level set flow. In the case where the initial hypersurface
has positive mean curvature, we show that the Brakke flow associated to the level set
flow is actually a Brakke flow with equality. As a consequence, we obtain the fact that
no mass drop can occur along such a flow. A further application of the techniques
used above is to give a new variational formulation for mean curvature flow of mean
convex hypersurfaces.

1. Introduction
Let M ⊂ R

n+1 be a smooth, compact n-dimensional submanifold without boundary,
and let (Mt )t∈[0,T ) be the maximal smooth evolution of M by mean curvature flow.
Since M is compact, the maximal time of existence T is finite, and in general, the flow
develops singularities before the surfaces vanish. One way to define a weak solution
past singularities is the level set flow of Chen, Giga, and Goto [2] and Evans and
Spruck [5]. Let us briefly recall one way of defining the level set flow. It uses the
so-called avoidance principle: if two smooth mean curvature flows (where at least one
of them is compact) are disjoint at time t0, then they remain so for all times t > t0.
A weak mean curvature flow, generated by M , is a closed subset M of space time
R

n+1 × R
+ such that for

Mt := {
x

∣∣ (x, t) ∈ M
}
,

we have M0 = M , and the family of sets (Mt )t�0 satisfy the above avoidance principle
with respect to any smooth mean curvature flow. The level set flow of M is then
characterized as the unique maximal weak mean curvature flow generated by M .
Assume now that M has nonnegative mean curvature. Following [15] and [13], the
level set flow M, generated by M , has further properties. Let K ⊂ R

n+1 × R
+ be the

compact set enclosed by the level set flow M, so that ∂K = M. Then Mt = ∂Kt ,
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where Kt = {x ∈ R
n+1 | (x, t) ∈ K}, and the family of Radon measures

µt := Hn L ∂∗Kt (1)

constitutes a Brakke flow. It has further regularity properties for almost every t :
Mt = ∂∗Kt up to Hn-measure zero, and Mt is a unit density, n-rectifiable varifold
that carries a weak mean curvature �H . The fact that (µt )t�0 is a Brakke flow can
be characterized as follows. Given any φ ∈ C2

c (Rn+1; R+), the following inequality
holds for every t > 0:

D̄tµt (φ) �
∫

−φ| �H |2 + 〈∇φ, �H 〉 dµt , (2)

where D̄t denotes the upper derivative at time t , and we take the left-hand side to be
−∞ if µt is not n-rectifiable or does not carry a weak mean curvature. Note that in
the case where Mt moves smoothly by mean curvature, D̄t is just the usual derivative,
and we have equality in (2). We can now state our main result.

THEOREM 1.1
Let � be an open and bounded subset of R

n+1. Assume further that M = ∂� is a
closed submanifold of R

n+1 of class C1, carrying a nonnegative weak mean curvature
in L2. Then the family of Radon measures (µt )t�0 associated to the level set flow of
M is a Brakke flow with equality in the sense that

µt2 (φ) − µt1 (φ) =
∫ t2

t1

∫
−φ| �H |2 + 〈∇φ, �H 〉 dµt dt (3)

for 0 � t1 � t2 and any φ ∈ C2
c (Rn+1).

This implies the following property, which is known as no mass drop.

COROLLARY 1.2
The family of Radon measures (µt )0�t�T , where T is the maximal time of existence
of the level set flow, is continuous in time. Furthermore, limt↗T µt (φ) = 0 for any
φ ∈ C2

c (Rn+1; R+).

In our proof, we use the method of elliptic regularization to obtain an approximation of
the level set flow of � by a sequence of smooth mean curvature flows in one dimension
higher. The key ingredients to analyze the finer properties of this approximation are
the estimates of White [15] on the size of the singular set in mean curvature flow of
mean-convex sets and Brakke’s regularity theorem in [1]. As a further application of
the techniques used in the proof, we give a variational formulation for mean curvature
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flow of mean convex surfaces which is similar to the variational principle applied by
Huisken and Ilmanen in [10] to define weak solutions to the inverse mean curvature
flow.

Since ∂� has nonnegative mean curvature and � is compact, by the strong
maximum principle, the mean curvature of the evolving surfaces becomes immediately
strictly positive and remains so. The surfaces can then be given as level sets of a
continuous function u : �̄ → R

+, u = 0, on ∂� via

∂
{
x ∈ �

∣∣ u(x) > t
}
,

and u satisfies the degenerate elliptic equation

div
( Du

|Du|
)

= − 1

|Du| . (�)

Note that if u is smooth at a point x ∈ � with Du(x) �= 0, this equation just states
that the level sets of u near x are flowing smoothly by mean curvature. To give this
equation a variational structure, we proceed as follows. Given a function w ∈ C0,1(�̄)
such that |Dw|−1 ∈ L1(�), we define the functional

Jw(v) :=
∫

�

|Dv| − v

|Dw| dx

for any Lipschitz continuous function v on � such that {w �= v} � �. We then say
that such a function w is a weak solution to (�) on � if

Jw(w) � Jw(v)

for any such v as above, and w fulfills the boundary conditions

w > 0 on � and {w = 0} = ∂�. (4)

For an � satisfying the conditions of Theorem 1.1, we show that the level set flow of ∂�

can be described as the level sets of a function u satisfying (4) with |Du|−1 ∈ L1(�).

THEOREM 1.3
Let � be as in Theorem 1.1. Then the level set flow u : �̄ → R is the unique weak
solution to (�) on �.

Mean curvature flow in the varifold setting was pioneered by Brakke [1]. Aside from
the classical PDE setting (see, e.g., [7], [9]), the level set approach using viscosity
techniques proved to be fruitful (see [2], [5]). The level set flow approach has the
advantage of being able to define the evolution by mean curvature for any closed
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subset of R
n+1. An alternative approach using geometric measure theory together

with an approximative variational functional to yield Brakke flow solutions is given
in [13]. In [6] or, equivalently, [13], a connection between the level set flow and the
varifold setting is drawn: for a given initial function u0 on R

n+1, it is shown that the
level set flow of almost every level set of u0 constitutes a Brakke flow. For a compact
initial hypersurface that has nonnegative mean curvature, this implies that its level set
flow constitutes a Brakke flow. In our work here, we partly use these techniques to
show that in this case, one actually has equality in the Brakke flow definition.

Outline
In §2, we recall a way of defining the level set flow by Evans and Spruck in [5]
for initial hypersurfaces with positive mean curvature. We work out some geometric
consequences of approximation by elliptic regularization. The approximating solutions
uε have the important geometric property that, scaled appropriately, they constitute
a smooth, graphical, translating solution to mean curvature flow in � × R. Writing
these translating graphs again as level sets of a function Uε on � × R, this yields
an approximation of the level set flow U , where U is the constant extension of u in
the en+2-direction, by smooth level set flows. In §3, we show that the obstacle to U

being a Brakke flow with equality can be characterized by the possible existence of a
nonnegative Radon measure γ such that for a subsequence εi → 0,

|DUεi |−1 ⇀ |DU |−1 + γ (5)

on � × R. Using the regularity results of White in [15], we can, furthermore, deduce
that the 1-capacity of the support of γ has to vanish. Since the limit flow is still a kind
of Brakke flow with equality, where this incorporates the defect measure γ , we can
apply this limit equation to show that γ actually has to vanish entirely.

To be able to state Theorem 1.1 not only for boundaries ∂� that are smooth
with positive mean curvature, we show that the level set flow of any boundary ∂�

as in Theorem 1.1 is actually smooth for positive times close enough to zero and has
positive mean curvature.

In §4, we employ the fact that (5) holds with γ ≡ 0 and use the approximation by
smooth level set flows one dimension higher to show that u also is a weak solution to
(�). Since the variational principle implies that a weak solution constitutes a Brakke
flow with equality, we can apply the avoidance principle for Brakke flows to show
uniqueness of such a weak solution.

2. Preliminaries
In the case where our initial hypersurface M is the smooth boundary of an open and
bounded set � ⊂ R

n+1, and M has mean curvature H > 0, the level set flow M
generated by M can be written as the graph of a continuous function u : � → R

+. In
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[5], it is shown that u is the unique continuous viscosity solution of

(
δij − DiuDju

|Du|2
)
DiDju = − 1 in �,

u = 0 on ∂�.

(6)

Note that if u is smooth at a point x ∈ � with Du(x) �= 0, equation (6) is identical to
(�). To prove the existence of a solution to (6), Evans and Spruck [5] use the method of
elliptic regularization. Since (�) is degenerate everywhere on � and singular at points
where Du = 0, one replaces it by the following nondegenerate PDE:

div
( Duε√

ε2 + |Duε|2
)

= − 1√
ε2 + |Duε|2 in �,

uε = 0 on ∂�,

(�ε)

for some small ε > 0. Since the mean curvature of the boundary ∂� is strictly
positive, one can construct barriers at the boundary, which yield, together with a
maximum principle for the gradient, uniform a priori gradient bounds for solutions uε,
provided that 0 < ε < 1. Applying De Giorgi–Nash-Moser and Schauder estimates,
together with a continuity argument, then gives existence of solutions to (�ε) for small
ε > 0. Furthermore, by the Arzelà-Ascoli theorem, there is a sequence εi → 0
such that uεi → ũ, and ũ ∈ C0,1(�) is a solution to (6). By uniqueness, ũ = u,
and limε→0 uε = u. Aside from the ε-independent gradient estimate, there is also a
uniform integral estimate for the right-hand side of (�ε).

LEMMA 2.1
For any solution uε of (�ε), we have the bound

∫
�

1√
ε2 + |Duε|2 dx � |∂�|. (7)

Proof
Choose a smooth function ϕ, 0 � ϕ � 1, such that ϕ = 1 on �δ := {x ∈
� | dist(x, ∂�) > δ}, ϕ = 0 on ∂�, and |Dϕ| � γ /δ for some γ > 1, δ > 0.
Multiplying (�ε) with ϕ and integrating by parts, we obtain

∫
�δ

1√
ε2 + |Duε|2 dx �

∫
�\�δ

|Dϕ| |Duε|√
ε2 + |Duε|2 dx � γ

δ
|� \ �δ|.

Then taking the limit, γ → 1, and δ → 0 gives the estimate. �
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The sequence uεi is bounded in C1(�) and converges uniformly to u, which thus is in
C0,1(�). Thus, also,

Duεi ⇀ Du weakly-∗ in L∞(�; Rn+1).

Together with estimate (7), we can then apply [6, Theorems 3.1, 3.3] (by a slight
modification of the proof there since here the functions uε are not defined on all of
R

n+1) to obtain the following.

PROPOSITION 2.2 (see Evans and Spruck [6])
We have the following convergence:

|Duεi | ⇀ |Du| weakly-∗ in L∞(�), (8)

and

Duεi√
ε2

i + |Duεi |2 → Du

|Du| in Lp
({|Du| �= 0

} ∩ �; Rn+1
)

(9)

for any p � 1.

Lemma 2.3 and Proposition 2.4 are a direct consequence of this strengthened conver-
gence. In fact, they are a variation of [6, Lemma 4.2] and step 4 in the proof of [6,
Theorem 5.2].

LEMMA 2.3
We have

Hn+1
({

x ∈ �
∣∣ Du(x) = 0

}) = 0.

Proof
Let A := {Du = 0} ⊂ �. By Lemma 2.1, we have

∫
A

1 dx = lim
εi→0

∫
A

√
ε2

i + |Duεi |2
−1/2√

ε2
i + |Duεi |2

1/2

dx

� lim sup
εi→0

( ∫
A

√
ε2

i + |Duεi |2
−1

dx
)1/2

·
( ∫

A

√
ε2

i + |Duεi |2 dx
)1/2

� C lim sup
εi→0

( ∫
A

√
ε2

i + |Duεi |2 dx
)1/2

.
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Since
∣∣√ε2

i + |Duεi |2 − |Duεi |∣∣ � εi , we have, by (8),

Hn+1(A) � C lim sup
εi→0

( ∫
A

|Duεi | dx
)1/2

= 0. �

Thus, by (9),

Duεi√
ε2

i + |Duεi |2 → Du

|Du| (10)

in Lp(�) for any p � 1.

PROPOSITION 2.4
For φ ∈ L∞(�), φ � 0, we have

∫
�

φ

|Du| dx � lim inf
εi→0

∫
�

φ√
ε2

i + |Duεi |2 dx.

Proof
Let φ, ψ ∈ L∞(�), φ, ψ � 0. One obtains

∫
�

φψ dx = lim
εi→0

∫
�

(
φ1/2ψ

√
ε2

i + |Duεi |2
1/2)(

φ1/2
√

ε2
i + |Duεi |2

−1/2)
dx

� lim inf
εi→0

( ∫
�

φψ2
√

ε2
i + |Duεi |2 dx

)1/2( ∫
�

φ

√
ε2

i + |Duεi |2
−1

dx
)1/2

=
( ∫

�

φψ2|Du| dx
)1/2

lim inf
εi→0

( ∫
�

φ

√
ε2

i + |Duεi |2
−1

dx
)1/2

.

Now, choose ψ := ϕm(|Du|−1) with ϕm : R → R:

ϕm(z) =
⎧⎨
⎩

m, z � m,

z, z ∈ [−m, m],
−m, z � −m.

Since ψ � |Du|−1, we obtain, by the above calculation,

( ∫
�

φψ dx
)1/2

� lim inf
εi→0

( ∫
�

φ

√
ε2

i + |Duεi |2
−1

dx
)1/2

,

which, by the monotone convergence theorem for m → ∞, proves the claim. �
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The equation (�ε) also has a geometric interpretation. It implies that the downward
translating graphs

Nε
t := graph

(uε(x)

ε
− t

ε

)
, −∞ < t < ∞,

are hypersurfaces in � × R flowing smoothly by mean curvature flow. To verify this,
define the function

Uε(x, z) := uε(x) − εz for (x, z) ∈ � × R, (11)

so that {Uε = t} = Nε
t . It is easily checked that Uε satisfies (�) on � × R if

and only if uε satisfies (�ε) on �. Lemma 2.3 implies nonfattening (see also [13]);
that is,

Hn+1({u = t}) = 0

for all t � 0. Since, by definition of the level set flow,

Kt = {
x ∈ �

∣∣ u(x) � t
}
,

this implies that

∂∗Kt = ∂∗{u > t} for all t � 0.

Note that u is Lipschitz continuous and thus also a BV -function. By comparing the
coarea formula for Lipschitz functions and for BV -functions, we see that

∂∗{u > t} = {u = t}

up to Hn-measure zero for almost every t . Then, define the family µ̃t of (n + 1)-
rectifiable Radon measures on � × R by

µ̃t := Hn+1 L (∂∗Kt × R);

that is, µ̃t = µt ⊗ L1, where µt is the Brakke flow associated to the level set flow
u. We can now make precise in what sense the translating graphs Nε

t approximate the
Brakke flow µt . For a proof of the following proposition, see [14, §5].

PROPOSITION 2.5
Let εi → 0. Then for almost all t � 0, we have

Hn+1 L Nεi

t → µ̃t (12)
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in the sense of Radon measures. Even more, for almost every t � 0, there is a
subsequence {εj }, depending on t , such that

N
εj

t → ∂∗Kt × R (13)

in the sense of varifolds. Furthermore, the rectifiable sets ∂∗Kt , seen as unit density
n-rectifiable varifolds, carry for almost every t ∈ [0, T ) a weak mean curvature
�Ht ∈ L2(∂∗Kt, Hn).

3. The argument
Throughout this section, we work with the level set flows of Uεi in �̃ := � × [0, 1].
We denote U (x, z) = u(x). Furthermore, let νt and ν

εi

t be the normal vectors to the
level set flows U and Uεi , respectively, and denote t := ∂∗Kt and ̃t := t × R.
From Lemmas 2.1 and 2.3 and Proposition 2.2, we derive the following facts.

LEMMA 3.1
We have ∫

�̃

|DUεi |−1 dx � |∂�|, (14)

|DUεi | ⇀ |DU | weakly-∗ in L∞(�̃), (15)

and

νεi

t → νt in L1(�̃, R
n+2). (16)

We now introduce several Radon measures on �̃ which are central in the proof of
Theorem 1.1. First, denote

αεi := |DUεi |−1 dxn+2 and α := |DU |−1 dxn+2.

Since, for all K � �̃,

αεi (K) =
∫

K

|DUεi |−1 dx � C(K),

by equation (14) we know that the αεi have a convergent subsequence; that is, we can
assume that

αεi ⇀ β

in the sense of Radon measures. We clarify the relation of α and β subsequently. Note
that in view of Proposition 2.4, we find that β � α. We denote the defect measure,
the difference of α and β, by

γ = β − α,

which is a nonnegative Radon measure.
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Before attempting the proof of Theorem 1.1, we collect some observations about
the level set flow U .

LEMMA 3.2
Let �Ht denote the mean curvature vector of the level set flow U . Then for all smooth
vector fields X with compact support in �̃,

∫
�̃

〈 �Ht, X〉|DU | dx =
∫

�̃

〈 DU

|DU | , X
〉
dx;

that is, �Ht agrees with DU/|DU |2 almost everywhere with respect to the measure
|DU | dx.

Proof
Let X be a smooth vector field with compact support in �̃. Then for all εi > 0, there
exists T > 0 such that

supp(X) ∩ Nεi

t = ∅ for all t �∈ [−T , T ].

Denote by ν
εi

t and �Hεi

t the downward normal and mean curvature vector of N
εi

t . Using
the fact that the N

εi

t are smooth and the coarea formula for the level set function Uεi ,
we compute

∫ ∞

−∞

∫
N

εi
t

〈 �Hεi

t , X〉 dµεi,t dt = −
∫ T

−T

∫
N

εi
t

divN
εi
t

(X) dµεi,t dt

= −
∫

�̃

(divRn+2X − 〈Dν
εi
t
X, νεi

t 〉)|DUεi | dx. (17)

We claim that ∫
�̃

〈Dν
εi
t
X, νεi

t 〉|DUεi | dx →
∫

�̃

〈Dνt
X, νt〉|DU | dx (18)

as i → ∞. Indeed, we can write∫
�̃

〈Dν
εi
t
X, νεi

t 〉|DUεi | dx

=
∫

�̃

〈Dν
εi
t −νt

X, νεi

t 〉|DUεi | + 〈Dνt
X, νεi

t − νt〉|DUεi | dx

+
∫

�̃

〈Dνt
X, νt〉|DUεi | dx.
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From the fact that 〈Dνt
X, νt〉 ∈ L1(�̃) and |DUεi | ⇀ |DU | weakly-∗ in L∞(�̃),

we infer that the last term in the above equation converges to
∫

�̃
〈Dνt

X, νt〉|DU | dx.
The first two terms go to zero since ν

εi

t → νt in L1(�̃) and the respective factors are
bounded. Thus we have established (18). Subsequently, we use the coarea formula in
the form ∫

Rn+2

f dx =
∫

R

∫
{U=t}

f |DU |−1 dHn+1 dt

for f ∈ L∞. This is justified by [4, Theorem 2, p. 117] since, in view of Lemma 2.1
and Proposition 2.4, we have

∫
�̃

|DU |−1 dx < ∞. Thus we can compute

−
∫

�̃

(divRn+2X − 〈Dνt
X, νt〉)|DU | dx = −

∫
�̃

diṽt
X|DU | dx

= −
∫

{t>0}

∫
̃t

diṽt
X dµ̃t dt

=
∫

{t>0}

∫
̃t

〈 �Ht, X〉 dµ̃t dt. (19)

On the other hand, since the N
εi

t constitute a smooth level set flow, we have

∫ T

−T

∫
N

εi
t

〈 �Hεi

t , X〉 dµεi,t dt =
∫ T

−T

∫
N

εi
t

〈νεi

t , X〉|DUεi |−1 dµεi,t dt

=
∫

�̃

〈νεi

t , X〉 dx.

As ν
εi

t → νt in L1, we thus find

∫ T

−T

∫
N

εi
t

〈 �Hεi

t , X〉 dµεi,t dt →
∫

�̃

〈νt , X〉 dx

=
∫

{t>0}

∫
̃t

〈ν, X〉|DU |−1 dµ̃t dt.

Combining this equation with (17) – (19), we find that for all X,
∫

{t>0}

∫
̃t

〈 �Ht, X〉 dµ̃t dt =
∫

{t>0}

∫
̃t

〈νt , X〉|DU |−1 dµ̃t dt.

An application of the coarea formula yields the claimed identity. �

We are now set up to perform the central computation. Fix φ ∈ C∞
c (�̃), and let

0 < t1 < t2. We adopt the convention that if t > sup� u, then ̃t = ∅. Note also that
N

εi

t ∩ �̃ = ∅ if t �∈ [−T , T ], provided that T is large enough.
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Since N
εi

t is a smooth level set flow, we know that
∫

N
εi
t2

φ dµεi,t2 −
∫

N
εi
t1

φ dµεi,t1

=
∫ t2

t1

∫
N

εi
t

〈∇φ, �Hεi

t 〉 − φ| �Hεi

t |2 dµεi,t dt

=
∫ t2

t1

∫
N

εi
t

−divN
εi
t

(∇φ) − φ| �Hεi

t |2 dµεi,t dt

= −
∫

�̃∩{t1�Uεi �t2}

(
divRn+2 (∇φ) − 〈Dν

εi
t
∇φ, νεi

t 〉)|DUεi | dx

−
∫

�̃∩{t1�Uεi �t2}
φ|DUεi |−1 dx. (20)

To take this computation to the limit as i → ∞, observe that nonfattening implies
that

χ{t1�Uεi �t2} → χ{t1�U�t2} in L1(�̃),

and thus the first term on the right-hand side converges. Furthermore, for every δ > 0,
consider the open set

Sδ = {
U ∈ (t1 − δ, t1 + δ)

} ∪ {
U ∈ (t2 − δ, t2 + δ)

}
.

As β({U = t}) = 0 for almost every t , also for almost every t1, t2,

β({U = t1} ∪ {U = t2}) = 0.

Since β is a Radon measure, limδ→0 β(Sδ) = 0. Hence, for every η > 0, there exists
δ > 0 such that

β(Sδ) <
η

2
.

Therefore, there exists N such that∫
Sδ

|DUεi |−1 dx � η for all i � N.

In other words, as i → ∞, eventually, αεi (Sδ) � η. Thus

∣∣∣
∫

�̃

φχ{t1�Uεi �t2} dαεi −
∫

�̃

φχ{t1�U�t2} dβ

∣∣∣
�

∣∣∣
∫

�̃

φχ{t1�Uεi �t2}(1 − χSδ
) dαεi −

∫
�̃

φχ{t1�U�t2}(1 − χSδ
) dβ

∣∣∣
+

∣∣∣
∫

�̃

φχ{t1�Uεi �t2}χSδ
dαεi −

∫
�̃

φχ{t1�U�t2}χSδ
dβ

∣∣∣.
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As Uεi → U uniformly, if i is big enough,

χ{t1�Uεi �t2}(1 − χSδ
) = χ{t1�U�t2}(1 − χSδ

),

which implies that the first term in the above computation goes to zero in view of the
definition of β. The second term can be estimated as

∣∣∣
∫

�̃

φχ{t1�Uεi �t2}χSδ
dαεi −

∫
�̃

φχ{t1�U�t2}χSδ
dβ

∣∣∣
� max|φ|(αεi (Sδ) + β(Sδ)

)
� 2η max|φ|.

In combination, we find

∣∣∣
∫

�̃

φχ{t1�Uεi �t2} dαεi −
∫

�̃

φχ{t1�U�t2} dβ

∣∣∣ → 0

as i → ∞. By virtue of Proposition 2.5, we can assume that N
εi

tj → ̃tj for j = 1, 2
in the sense of Radon measures. Then the above reasoning shows that equation (20)
implies that

∫
̃t2

φ dµ̃t2 −
∫

̃t1

φ dµ̃t1

= −
∫

�̃∩{t1�U�t2}

(
divRn+2 (∇φ) − 〈Dνt

∇φ, νt〉
)|DU | dx −

∫
�̃∩{t1�U�t2}

φ dβ

=
∫

�̃∩{t1�U�t2}
〈∇φ, �Ht〉|DU | dx −

∫
�̃∩{t1�U�t2}

φ dβ.

In view of Lemma 3.2 and the definition of the defect measure γ , this yields
∫

̃t2

φ dµ̃t2 −
∫

̃t1

φ dµ̃t1

=
∫

�̃∩{t1�U�t2}

〈
∇φ,

DU

|DU |
〉
dx −

∫
�̃∩{t1�U�t2}

φ dα −
∫

�̃∩{t1�U�t2}
φ dγ. (21)

We now argue that the support of the defect measure γ is very small. To do this, we
introduce the notion of capacity (see [4]). For a closed set A ⊂ R

n, the 1-capacity,
Cap1(A), is defined as

Cap1(A) = inf
{ ∫

Rn

|Df | dx : f � 0, f ∈ C∞
c , A ⊂ {f � 1}◦

}
.

Replacing f by min(f, 1) and mollification, we can assume that 0 � f � 1. It turns
out that the 1-capacity of supp(γ ) vanishes.
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LEMMA 3.3
We have

Cap1

(
supp(γ ) ∩ �̃

) = 0.

Proof
From [15], we know that there is a closed singular set S̃ ⊂ graph u of parabolic
Hausdorff dimension at most n−1 such that outside of S̃, the sets {u = t} constitute a
smooth level set flow. From dimensionality, we know that Hn

par(S̃) = 0, where Hn
par

denotes the n-dimensional parabolic Hausdorff measure. If we let S := �(S̃) be the
projection of S̃ ⊂ graph u to �, then we find that Hn(S) = 0. In particular, S is
closed.

Let x0 ∈ � \ S. Then there exists a neighborhood B = Bδ(x0) of x0 such that
graph u

∣∣
B

is a smooth mean curvature flow. Thus, by Brakke’s regularity theorem (see
[13]), the N

εi

t

∣∣
B×R

converge smoothly on compact subsets to ̃t ∩ B × R.
For φ ∈ C∞

c (B × [0, 1]), we therefore conclude that
∫

�̃

φ|DUεi |−1 dx =
∫

R

∫
N

εi
t ∩B×[0,1]

H 2φ dµεi,t dt

→
∫

R

∫
̃t∩B×[0,1]

H 2φ dµ̃t dt =
∫

�×[0,1]
φ|DU |−1 dx

as i → ∞. Thus x0 �∈ supp(γ ), which yields supp(γ ) ⊂ S×[0, 1]. Since Hn(S) = 0,
we find that Hn+1(S × R) = 0. Hence [4, §4.7, Theorem 2], implies that Cap1(S ×
[0, 1]) = 0. �

LEMMA 3.4
For almost every 0 < t1 < t2 and any φ ∈ C∞

c (� × R), we have

∫
̃t2

φ dµ̃t2 −
∫

̃t1

φ dµ̃t1 =
∫ t2

t1

∫
̃t

〈∇φ, �Ht〉 dµ̃t dt −
∫ t2

t1

∫
̃t

φ| �Ht |2 dµ̃t dt.

Proof
Without loss of generality, we can assume that supp(φ) ⊂ �×[0, 1]. Let S = supp(γ ).
Since Cap1(S) = 0 by Lemma 3.3, we can find functions ηk ∈ C∞(� × R),
0 � ηk � 1, so that S ⊂ {ηk = 1}◦ and ‖ηk‖W 1,1(Rn+2) → 0 as k →
∞. We can assume that the functions ηk converge Ln+2 almost everywhere to
η ≡ 0.
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Replace φ by (1 − ηk)φ in equation (21). Since (1 − ηk) = 0 on S, the term
containing the defect measure γ drops out, and we conclude that
∫

̃t2

(1 − ηk)φ dµ̃t2 −
∫

̃t1

(1 − ηk)φ dµ̃t1

=
∫

�̃∩{t1�U�t2}

〈
∇(

(1 − ηk)φ
)
,

DU

|DU |
〉
dx −

∫
�̃∩{t1�U�t2}

(1 − ηk)φ dα

=
∫

�̃∩{t1�U�t2}
(1 − ηk)

〈
∇φ,

DU

|DU |
〉
dx

−
∫

�̃∩{t1�U�t2}
(1 − ηk)|DU |−1φ dx −

∫
�̃∩{t1�U�t2}

φ
〈
∇ηk,

DU

|DU |
〉
dx. (22)

As |DU | is bounded and ηk → 0 in L1(�̃), we find
∫

{t>0}

∫
̃t

|ηkφ| dµ̃t dt =
∫

�̃

|ηkφ| |DU | dx → 0

as k → ∞. Hence ∫
̃t

ηkφ dµ̃t → 0 for a.e. t.

Thus for almost every 0 < t1 < t2 as t → ∞, the left-hand side of (22) converges to
∫

̃t2

(1 − ηk)φ dµ̃t2 −
∫

̃t1

(1 − ηk)φ dµ̃t1 →
∫

̃t2

φ dµ̃t2 −
∫

̃t1

φ dµ̃t1 .

To deal with the right-hand side of (22), note that as ηk → 0 almost everywhere and
φ|DU |−1 is integrable, the second integrand converges,

∫
�̃∩{t1�U�t2}

(1 − ηk)|DU |−1φ dx →
∫

�̃∩{t1�U�t2}
|DU |−1φ dx,

in view of the dominated convergence theorem. The other integrands converge in view
of ηk → 0 in W 1,1(Rn+2).

Therefore, in the limit as k → ∞, equation (22) turns into the claimed
identity. �

As a corollary of the proof of Lemma 3.4, we find that the defect measure γ is, in fact,
zero, and we have convergence αεi → α.

COROLLARY 3.5
|DUεi |−1 dx → |DU |−1 dx in the sense of Radon measures.

The next lemma removes the extra dimension from Corollary 3.5.
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LEMMA 3.6
For almost every 0 < t1 < t2 and any φ ∈ C∞

c (�), we have

∫
t2

φ dµt2 −
∫

t1

φ dµt1 =
∫ t2

t1

∫
t

〈∇φ, �Ht〉 dµt dt −
∫ t2

t1

∫
t

φ| �Ht |2 dµt dt.

Proof
Let φ ∈ C∞

c (�), and pick a function ζ : R → R with compact support and
∫ 1

0 ζ dz =
1. Define

φ̃ : � × R : (x, z) → φ(x)ζ (z).

Since �Ht is tangent to �, we conclude that

〈∇φ̃, �Ht〉 = ζ 〈∇φ, �Ht〉.

Plug φ̃ into the statement of Lemma 3.4. As µ̃ = µ⊗L1 is a product and φ̃ is adapted
to the product structure, using Fubini’s theorem, we can take out the integration of ζ ,
as in the following example:

∫
̃t

φ̃ dµ̃t =
∫

R

∫
t

ζ (z)φ(x) dµt dz =
( ∫

R

ζ dz
) ( ∫

t

φ dµt

)
=

∫
t

φ dµt .

This yields the claim. �

We are almost done with the proof of the main theorem, Theorem 1.1; the only things
that remain to be shown are that the statement of Lemma 3.6 holds for all 0 < t1 < t2

and that we can well approximate our initial conditions.

Proof of Theorem 1.1
The general idea is to approximate arbitrary t1, t2 by sequences t

j

1 � t1 and t
j

2 � t2

for which, by Lemma 3.6, we have for φ ∈ C∞
c (�),

∫


t
j
2

φ dµt
j

2
−

∫


t
j
1

φ dµt
j

1
=

∫ t
j

2

t
j

1

∫
t

〈∇φ, �Ht〉 dµt dt −
∫ t

j

2

t
j

1

∫
t

φ| �Ht |2 dµt dt. (23)

Then we argue that this statement can be taken to the limit. As the function

t �→
∫

t

〈∇φ, �Ht〉 − | �Ht |2 dµt

is integrable in t , it is clear that the right-hand side of (23) converges to

∫ t2

t1

∫
t

〈∇φ, �Ht〉 dµt dt −
∫ t2

t1

∫
t

φ| �Ht |2 dµt dt
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for any sequence t
j

1 → t1 and t
j

2 → t2. The left-hand side requires a little more
argument. To this end, note that as by the Brakke flow inequality (2), we have, as
t1 � t

j

1 ,

|t
j

1
| � |t1 |.

As the characteristic functions χKt
are BV -functions, and since χK

t
j
1

→ χKt1
in L1,

the lower semicontinuity of the total variation of BV -functions implies that

|t1 | � lim inf
j→∞

|t
j

1
|.

Hence

|t1 | � lim inf
j→∞

|t
j

1
| � lim sup

j→∞
|t

j

1
| � |t1 |,

and we conclude that |t
j

1
| → |t1 |, as well as |t

j

2
| → |t2 |. Now, we appeal to

Lemma 3.7 and infer that the left-hand side of (23) also converges.
Now, given an � ⊂ R

n+1 such that ∂� =: M0 is only C1 and carries a nonnegative
weak mean curvature in L2, we use the fact that by Lemma 3.8, there is a smooth
evolution by mean curvature Mt, 0 < t < γ , such that Ht > 0. We also show in this
lemma that the level set flow of ∂� coincides with the smooth evolution as long as
the latter exists. Thus we can do the whole argument by replacing � with �t , where
�t is the respective open set bounded by Mt for some t ∈ (0, γ ). Using the fact that,
initially, the level set flow is smooth and a suitable cutoff function, we see that (3)
holds for all 0 � t1 � t2 and all φ ∈ C2

c (Rn+1). �

LEMMA 3.7
Suppose that Ej ⊂ �, j � 1 and E ⊂ � are Caccioppoli sets such that |DχE|(�) <

∞ and χEj
→ χE in L1(�), and suppose that

lim
j→∞

|DχEj
|(�) = |DχE|(�).

Then, for all φ ∈ Cc(�),

lim
j→∞

∫
�

φ |DχEj
| =

∫
�

φ |DχE|.

Proof
We denote µj = |DχEj

| and µ = |DχE|. From [8, Proposition 1.13], we conclude
that for every open set A ⊂ � with µ(∂A ∩ �) = 0, we have

lim
j→∞

µj (A) = µ(A).
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Let At := {φ > t}; then ∂At ⊂ {φ = t}, whence µ(∂At ∩ �) = 0 for almost every
t . Fix ε > 0, and choose −T = t0 < t1 < · · · < tNε

= T so that |ti−1 − ti | < ε

for i = 1, . . . , Nε and |DχE|(∂Ati ∩ �) = 0 for i = 0, . . . , Nε. Define the step
function

φε = t0 +
Nε∑
i=1

(ti − ti−1)χAti
.

It satisfies

sup
�

|φε − φ| < ε,

and thus
∣∣∣
∫

�

φ dµ −
∫

�

φε dµ

∣∣∣ � εµ(�),

and
∣∣∣
∫

�

φ dµj −
∫

�

φε dµj

∣∣∣ � εµj (�).

Furthermore,

lim
j→∞

∫
�

φε dµj = lim
j→∞

(
t0µj (�) +

Nε∑
i=1

(ti − ti−1)µj (Ati )
)

= t0µ(�) +
Nε∑
i=1

(ti − ti−1)µ(Ati ) =
∫

�

φε dµ.

Thus, by letting ε → 0, we infer the claim. �

In the last lemma, we present a slightly stronger version of [11, Lemma 2.6].

LEMMA 3.8
Let F0 : Mn → R

n+1 be a closed, oriented hypersurface embedding of class
C1 with measurable nonnegative weak mean curvature in L2(M0, Hn). Then M0

is of class C1 ∩ W 2,2, and there exists a smooth evolution by mean curvature
F : Mn × (0, ε) → R

n+1, ε > 0, such that Mt → M0 in C1 ∩ W 2,2 and HMt
> 0

for all t ∈ (0, ε). Furthermore, this smooth evolution coincides with the level set flow
of F0(M) as long as the former exists.
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Proof
Since M0 = F0(M) is in C1 and H ∈ L2, a calculation similar to that in [8, Appen-
dix C] shows that M0 is in W 2,2. Thus, by the work of Hutchinson [12], M0 carries a
weak second fundamental form in L2. Note that since M0 is compact and in C1 for
every ε > 0, there exists a δ > 0 such that for all p ∈ M0,

M0 ∩ Bδ(p) = graph u,

where u : �p ⊂ R
n → R, �p open, such that

sup
�p

|Du| � ε and Du(x) = 0,

where p = (x, u(x)). By mollification, we can pick a sequence of smooth hyper-
surfaces Mi converging locally uniformly to M0 in C1 ∩ W 2,2. The convergence
in C1 implies that we can choose, for given ε > 0, the above δ uniform in i.
Now, consider standard mean curvature flow starting from the approximating sur-
faces F i : Mn → R

n+1, F i
0(M) = Mi . In view of the local gradient estimates for

mean curvature flow in [3], the surfaces Mi
t = F i(·, t)(M) exist on some fixed time

interval [0, γ ), independent of i, and remain controlled graphs in the above family of
coordinate systems relative to M0. Even more, by the local interior estimates in [3,
Theorems 2.1, 2.3], we have

sup
Mi

t

|A| � C

t1/2
, t ∈ (0, γ ), (24)

independent of i, and also uniform estimates, interior in time, on all higher derivatives.
Sending i → ∞, we extract a limiting mean curvature flow Mt , t ∈ (0, γ ), satisfying
the same estimates. Note that the uniform local gradient estimate and (24) imply that
Mt → M0 in C0,α as t → 0. By the local interior gradient estimates in [3, Theo-
rem 2.1], one checks that since M0 is in C1, the surfaces Mt are equibounded in C1,
and thus by the Arzelà-Ascoli theorem, Mt → M0 in C1 as t → 0.

Since Mi → M0 in C1 and by the local interior gradient estimates, we can now
choose for a given ε̃ > 0 a smooth vector field X of unit length on an η-neighborhood
U of M0 so that, taking γ smaller, if necessary,

Mi
t ⊂ U,

〈
νi

(
(p, t), XF i(p, t)

)〉
� 1 − ε̃,

∣∣〈vi
p,t , X

(
F i(p, t)

)〉∣∣ � ε̃,

(25)
for all vi

p,t ∈ TpMi
t and for all (p, t) ∈ M × [0, γ ), i � i0. In a local adapted

coordinate system, we can compute

d

dt
〈X, ν〉 = �〈X, ν〉 + |A|2〈X, ν〉 − 2hij 〈DX(ei), ej 〉 − 〈�X, ν〉 − H 〈DX(ν), ν〉.

(26)
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If we assume that ε̃ < 1/4, we have 1/2 � 〈X, ν〉 − 1/4 � 3/2, and we can define

v := 〈X, ν〉 − 1

4
, w := |A|2

v2
.

Writing the evolution equation of w again in a local adapted coordinate system, we
can estimate

d

dt
w = �w + 4

v3
〈∇|A|2, ∇v〉 − 6

|A|2
v4

|∇v|2 − 2

v2
|∇A|2

+ 2
|A|2
v3

(
−1

4
|A|2 + 2hij 〈DX(ei), ej 〉 + 〈�X, ν〉 + H 〈DX(ν), ν〉

)

� �w + 8|A|
v3

∣∣∇|A|∣∣|∇v| − 6|A|2
v4

|∇v|2 − 2

v2

∣∣∇|A|∣∣2

+ |A|2
v3

(
−1

4
|A|2 + C(1 + |A|)

)

� �w + 2|A|2
v4

|∇v|2 + |A|2
v3

(
−1

8
|A|2 + C

)
.

(27)

By (25), we can estimate

|∇iv| = |〈∇iX, ν〉 + h
j

i 〈X, ej 〉| � C + ε̃|A|,

which yields, for ε̃ small enough,

d

dt
w � �w + Cw and

d

dt

∫
Mi

t

w dµ � C

∫
Mi

t

w dµ .

Integrating this on [0, t] for t � γ , we see

∫
Mi

t

|A|2
v2

dµ � exp(Ct)
∫

Mi
0

|A|2
v2

dµ.

Since Mi
0 → M0 in W 2,2, this estimate also holds in the limit. By this estimate,

At ⇀ A0 in W 2,2, and since Mt → M0 in C1, we have

lim
t→0

∫
Mt

|A|2 dµ =
∫

M0

|A|2 dµ,

which implies full convergence: Mt → M0 in W 2,2. Thus (Ht )− = min{Ht, 0} →
(H0)− strongly in L2. We can then check that, similarly to the computation before, the
quantity f := H/v satisfies the evolution equation

d

dt
f = �f + 2

v
〈∇v, ∇f 〉

+ f

v

(
− 1

4
|A|2 + 2hij 〈DX(ei), ej 〉 + 〈�X, ν〉 + H 〈DX(ν), ν〉

)
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and deduce, as above, that

d

dt

∫
Mt

|H−|2
v2

dµ � C

∫
Mt

|H−|2
v2

dµ,

which implies, by Gronwall’s lemma for t ∈ (0, γ ), that

∫
Mt

|H−|2
v2

dµ � exp(Ct)
∫

M0

|H−|2
v2

dµ = 0,

proving that Ht � 0 for 0 < t < γ . By the strong maximum principle and the
compactness of Mt ⊂ R

n+1, it follows that Ht > 0 for all 0 < t < γ , as required.
To see that this smooth evolution coincides with the level set flow of M0, we define

a good coordinate system in a neighborhood of M0. Again, take M̃ to be a smooth
approximating hypersurface of M0 which is still transverse to the vector field X. Let �s

be the flow generated by X. Now, define coordinates � : U → M̃ × (−η, η), where
U = ⋃

−η<s<η �s(M̃) for η > 0 small enough, so that U is a neighborhood of M̃ as
follows. We employ the flow �s to “project” any point p ∈ U onto M̃ to define the first
n coordinates, and the parameter s to define the (n + 1)-coordinate. We can assume
that M0 ⊂ U and thus write M0 in these coordinates as a “graph” over M̃ . Now, let
Ms := �s(M0) be the translates in “xn+1-direction” in these coordinates, and let Ms

t be
mean curvature flow with initial condition Ms . Since we have locally uniform gradient
bounds in s, we can assume that these flows all exist on a common time interval, say,
[0, ε/2), and remain in U for |s| small enough. Let us : M̃ × [0, ε/2) → (−η, η)
be such that �−1(Ms

t ) = graph(us(·, t)). Note that by the interior estimates for mean
curvature flow in [3], we have u ∈ C1(M̃ × [0, ε/2)) ∩ C∞(M̃ × (0, ε/2)). Take
g̃ := �∗g to be the induced metric on M̃ × (−η, η). It can then be checked that the
functions us satisfy a parabolic PDE on M̃ × (0, ε/2) of the form

Dtu
s = ḡijDiju

s + f (x, us, Dus),

where ḡij is the inverse of the metric induced on graph(us) by g̃ and f depends
smoothly on x, us, Dus . Note that ḡij depends smoothly on x, us, Dus but not on
D2us . By (24) and the interior gradient estimates, we have

|Dus | � C, |D2us | � C√
t
,

independent of s for some C > 0 and all t ∈ (0, ε/2). Thus interpolating between
two solutions us1, us2 and applying the maximum principle, we obtain

sup
p∈M̃

|us1 (p, t) − us2 (p, t)| � exp(C
√

t) sup
p∈M̃

|us1 (p, 0) − us2 (p, 0)|
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for some constant C > 0 and all t ∈ [0, ε/2). But note that since the level set flow has
to avoid all smooth flows that are initially disjoint, this implies that for t ∈ [0, ε/2),
the level set flow of M0 coincides with the smooth evolution Mt . Since, for t > 0,
the surfaces Mt are smooth, it is well known that the level set flow coincides with the
smooth evolution as long as the latter exists. �

4. The variational principle
As stated in the introduction, we give in this final section a variational formulation for
mean curvature flow of mean convex surfaces. Let us define, for K ⊂ �, K compact,

Ju(v) = J K
u (v) :=

∫
K

|Dv| − v

|Du| dx. (28)

Definition 4.1
Let u ∈ C

0,1
loc (�) ∩ L∞(�), and let |Du|−1 ∈ L1

loc(�). Then u is a weak subsolution
(resp., supersolution) of (�) in � if

J K
u (u) � J K

u (v) (29)

for every function v � u (resp., v � u) which is locally Lipschitz continuous and
satisfies {v �= u} ⊂ K ⊂ �, where K is compact.

Let u : �̄ → [0, ∞), u ∈ C0,1(�̄), so that {x ∈ �̄ | u(x) = 0} = ∂� and
|Du|−1 ∈ L1(�). Then we call u a weak solution to (�) if

J K
u (u) � J K

u (v)

for every locally Lipschitz continuous function v with {v �= u} ⊂ K ⊂ �, where K

is compact.

Since

Ju

(
min(v, w)

) + Ju

(
max(v, w)

) = Ju(v) + Ju(w)

for {v �= w} � �, it follows that u is a weak solution if and only if u is a weak
subsolution and supersolution, provided that the boundary conditions are fulfilled.
Note also that the requirement |Du|−1 ∈ L1

loc implies that u is nonfattening; that is,
Hn+1({u = t}) = 0 for all t .

Equivalent formulation
Let K ⊂ � be compact, and let F ⊂ � be a Caccioppoli set in a neighborhood of
K . For a Lipschitz continuous function u on � with |Du|−1 ∈ L1

loc(�), we can define
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the functional

J K
u (F ) := |∂∗F ∩ K| −

∫
F∩K

|Du|−1 dx. (30)

We say that E minimizes Ju in a set A (from the outside, resp., from the inside) if

J K
u (E) � J K

u (F )

for all F with F � E � A (with, resp., F ⊃ E, F ⊂ E), with a compact set K with
F � E ⊂ K ⊂ A.

By the general inequality

Ju(E ∪ F ) + Ju(E ∩ F ) � Ju(E) + Ju(F ) (31)

for E � F � A, it is clear that E minimizes Ju in A if it minimizes it from the inside
and from the outside. As in [10], we can show the following.

LEMMA 4.2
Let u ∈ C

0,1
loc (�) ∩ L∞(�), and let |Du|−1 ∈ L1

loc(�). Then u is a weak subsolution
(resp., supersolution) of (�) in � if and only if, for every t , the sets Et := {u > t}
minimize Ju in � from the inside (resp., from the outside).

Proof
(1) Let v be locally Lipschitz continuous with {v �= u} ⊂ K ⊂ �. For Ft := {v > t},
we have Ft � Et ⊂ K for all t . Then, choose a < b with a < u,v < b on K . Using
the coarea formula, one sees that

J K
u (v) =

∫
K

|Dv| − v

|Du| dx

=
∫ b

a

|∂∗Ft ∩ K| dt −
∫

K

∫ b

a

χFt
|Du|−1 dt dx − a

∫
K

|Du|−1 dx

=
∫ b

a

J K
u (Ft ) dt − a

∫
K

|Du|−1 dx. (32)

Thus, if every Et minimizes Ju in �, then u also minimizes Ju. The same works for
subsolutions and supersolutions.

(2) Now, let u be a subsolution of (28). Choose t0 and F so that

F ⊂ Et0 and Et0 \ F � �.
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We aim to show that Ju(Et0 ) � Ju(F ). Since Ju is lower semicontinuous with respect
to L1

loc-convergence, we can assume that

Ju(F ) � Ju(G) (33)

for all G with G � Et0 ⊂ Et0 \ F , by minimizing among competing sets. Define

Ft :=
{
F ∩ Et, t � t0,

Et , 0 � t < t0.

By (33), Ju(F ) � Ju(Et ∪ F ) for all t � t0, and thus, by (31),

Ju(Et ∩ F ) � Ju(Et )

for t � t0. Thus

Ju(Ft ) � Ju(Et ) for all t.

Now, define v by v > t on Ft , which implies that v � u and {v �= u} � �. By
construction, v ∈ BVloc ∩L∞

loc, and Ju(v) is well defined. Approximating v by smooth
functions vi → v with |Dvi | → |Dv|, we see that Ju(u) � Ju(v) as u is a subsolution.
Since, then, (32) also is true for v, we have

∫ b

a

Ju(Et ) dt �
∫ b

a

Ju(Ft ) dt,

which implies that Ju(Ft ) = Ju(Et ) for almost all t . With (31), it follows that

Ju(Et ∪ F ) � Ju(F )

for almost all t � t0. Taking the limit t ↘ t0, we have, by lower semicontinuity,

Ju(Et0 ) � Ju(F ).

(3) In the case where u is a supersolution, we choose, as in (2), t0 and F with

Et0 ⊂ F and F \ Et0 � �.

As before, we can assume that

Ju(F ) � Ju(G)

for all G with G � Et0 ⊂ F \ Et0 . One defines again

Ft :=
{
F ∪ Et, 0 � t � t0,

Et , t > t0,
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which leads, as above, to

Ju(Et ∩ F ) � Ju(F )

for almost all t � t0. Since |Du|−1 ∈ L1
loc(�), we have Hn+1({u = t0}) = 0, and

Et → Et0 for t ↗ t0. Especially, Et ∩ F → Et0 , which implies, by lower semiconti-
nuity, that

Ju(Et0 ) � Ju(F ). �

Applying this equivalent formulation, we immediately see that all super level sets of
a weak supersolution u minimize area from the outside in �.

COROLLARY 4.3
Let u be a weak supersolution on �. Then the sets Et minimize area from the outside
in �.

To prove uniqueness, we aim to show that a weak solution constitutes a Brakke flow.
The idea, then, is to use the avoidance principle for Brakke flows to show that the
level sets of two weak solutions have to avoid each other if they are initially disjoint.
In a first step, we show that the mean curvature of almost every level set is given by
Du/|Du|2, as expected.

LEMMA 4.4
Let u be a weak solution on �. Then for almost every t ∈ [0, T ], T = sup� u, the
sets t := ∂∗{u > t}, seen as unit density n-rectifiable varifolds, carry a weak mean
curvature �Ht ∈ L2(t ; Hn). Furthermore, for almost every t , it holds that

�Ht = Du

|Du|2 .

Proof
Take X ∈ C∞

c (�; Rn+1), and let �s be the flow generated by X. We compute

0 = d

ds

∣∣∣
s=0

Ju(u ◦ �s) = d

ds

∣∣∣
s=0

∫ +∞

−∞
Hn(∂∗{u ◦ �s > t}) dt −

∫
�

u ◦ �s

|Du| dx

= −
∫ +∞

−∞

∫
t

divt
X dHn dt −

∫
�

〈Du, X〉
|Du| dx. (34)

By approximation, the last expression still vanishes for any X ∈ C0,1
c (�). Let � :

R → R be any smooth function, and replace X above by �(u)X. Note that at any



308 METZGER and SCHULZE

point p ∈ �, where u is differentiable and u(p) has a weak tangent space, we have
divu(p) (�(u)X) = �(u) divu(p) (X). This yields

∫ +∞

−∞
�(t)

∫
t

divt
X dHn dt = −

∫ +∞

−∞
�(t)

∫
t

〈 Du

|Du|2 , X
〉
dHn dt.

Now, let A be a countable dense subset of C1
c (�; R

n+1). By the reasoning above, there
is a set B ⊂ [0, T ) of full measure such that

∫
t

divt
X dHn = −

∫
t

〈 Du

|Du|2 , X
〉
dHn (35)

for all X ∈ A. Since |Du|−1 ∈ L1(�), we can furthermore assume that |Du|−1 ∈
L2(t, Hn) and is well defined for all t ∈ B. Thus, by approximation, (35) holds for
all X ∈ C1

c (�; R
n+1) and t ∈ B. This proves the claim. �

PROPOSITION 4.5
Let � ⊂ R

n+1 be open and bounded with ∂� ∈ C1, and let u be a weak solution of (�)
on �. Then u is a Brakke flow with equality in the sense of (3), where µt := Hn L t

for t � 0 and the mean curvature �Ht of t is given as in Lemma 4.4.

Proof
Note that |Du|−1 ∈ L1(�) implies that Hn+1({x ∈ � |Du(x) = 0}) = 0, whence
Hn+1({u = t}) = 0 for all t and u is nonfattening. This yields

lim inf
t↗T

Ju({u > t}) � 0.

Since, for every fixed t ∈ (0, T ), we have Ju({u > τ }) � Ju({u > t}) for all
τ ∈ (0, T ), we obtain Ju({u > t}) � 0 for all t ∈ (0, T ). Also, using again the
equivalent formulation of the variational principle, we see that

Ju({u > t}) � Ju

(
Bρ(x)

)

for all t ∈ (0, T ) and all Bρ(x) � �. Since Ju(Bρ(x)) → 0 as ρ ↘ 0, we see that
Ju({u > t}) � 0 for all t ∈ (0, T ), and thus Ju({u > t}) = 0 for all t ∈ (0, T ).
Furthermore, this implies that Hn(t ) → 0 as t ↗ T . Using Lemma 3.7 and the fact
that the sets {u > t} minimize area from the outside in �, we see that the family of
Radon measures µt := Hn L t is continuous for t � 0.

Now, let φ ∈ C∞
c ((0, ∞)), let ϕ ∈ C1

c (Rn+1), and define a variation vs : � → R

of u by

vs := u + s φ(u) ϕ.
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Note that φ(u)ϕ has compact support in �, and thus vs is an admissible variation of
u. We obtain

0 = d

ds

∣∣∣
s=0

Ju(vs) = d

ds

∣∣∣
s=0

∫
�

|Dvs | − vs

|Du| dx

=
∫

�

(
φ′(u)ϕ + φ(u)

(〈 Du

|Du|2 , Dϕ
〉
− ϕ

|Du|2
))

|Du| dx

=
∫ ∞

0
φ′(t)

∫
t

ϕ dHn + φ(t)
∫

t

〈Dϕ, �Ht〉 − ϕ| �Ht |2 dHn dt. (36)

Now, take t1, t2 ∈ [0, ∞), t1 < t2. Letting φ appropriately increase to the charac-
teristic function of the interval [t1, t2], we see from (36) that u is a Brakke flow with
equality, as in (3). �

THEOREM 4.6
Let � ⊂ R

n+1 be open and bounded with ∂� ∈ C1, and let u be a weak solution of
(�) on �. Then u is unique.

Proof
Let u1, u2 be two weak solutions to (�) on �. Since u1, u2 > 0 on � and {u1 = 0} =
{u2 = 0}, we have {u2 > τ } � {u1 > 0} for all τ > 0. The avoidance principle for
codimension-one Brakke flows, [13, Theorem 10.6], then implies that

dist(u1
t , u2

t+τ )

is increasing in t for all τ > 0. Note that Ilmanen’s proof of the avoidance principle,
[13, proof of Theorem 10.6], also works for the time-integrated version of a Brakke
flow. Since u1 and u2 are continuous, this implies that u2 � u1. Repeating this
argument with u1 and u2 interchanged, we arrive at the reverse inequality, which
implies that u1 = u2. �

In the next lemma, we show that any smooth mean curvature flow is a weak subsolution
and supersolution on the set that it sweeps out. To show that the level set flow is a weak
solution on �, we later apply this lemma to the approximating flows Nε

t on � × R

and use Corollary 3.5 to pass to limits.

LEMMA 4.7
Let (Nt )c�t�d be a family of smooth hypersurfaces � × R with strictly positive,
uniformly bounded mean curvature which flow by mean curvature flow. Let W be the
set that is swept out by the flow (Nt )c�t�d , and on W , let the function u be defined by
u = t on Nt with Et := {u > t}. Then the sets Et minimize Ju on W for all t ∈ [c, d].
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Proof
The outer unit normal, defined by νu := −Du/|Du|, is a smooth vector field on W

with div(νu) = HNt
= |Du|−1 > 0 . For a set F with F � Et ⊂ K � W , we obtain,

by the divergence theorem, using νu as a calibration,

|∂∗Et ∩ K| −
∫

Et∩K

|Du|−1 dx

=
∫

∂Et∩K

ν∂Et
· νu dHn+1 −

∫
Et∩K

|Du|−1 dx

=
∫

∂Et∩F

ν∂Et
· νu dHn+1 +

∫
∂Et\F

ν∂Et
· νu dHn+1 −

∫
Et∩K

|Du|−1 dx

=
∫

∂∗F\Et

ν∂∗F · νu dHn+1 −
∫

F\Et

|Du|−1 dx +
∫

∂∗F∩Et

ν∂∗F · νu dHn+1

+
∫

Et\F
|Du|−1 dx −

∫
Et∩K

|Du|−1 dx

=
∫

∂∗F∩K

ν∂∗F · νu dHn+1 −
∫

F∩K

|Du|−1 dx � |∂∗F ∩ K| −
∫

F∩K

|Du|−1 dx.

�

THEOREM 4.8
Let � ⊂ R

n+1 be open and bounded. Assume further that ∂� ∈ C1, carrying a
nonnegative weak mean curvature in L2. Then the level set flow u : �̄ → R of ∂� is
a weak solution of (�) on �.

Proof
We show that U ((x, z)) := u(x), defined on � × R, is a weak subsolution and
supersolution of (�) on �×R. That u then is also a weak subsolution and supersolution
on � follows by a simple cutoff argument. Note that by Lemma 3.8, u > 0 on �, and
so {u = 0} = ∂�.

We first show that U is a weak supersolution on � × R. So, take V � U ,
{U �= V } � � × R, V ∈ C

0,1
loc (� × R). Let K ⊂ � × R, so that K is compact with

{U �= V } ⊂ K , and

δi := max
K

|U − Uεi |;

thus δi → 0 for i → ∞. Let

Vi :=
{

max{Uεi , V − 2δi} for x ∈ K,

Uεi for x �∈ K.
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We have Vi ∈ C
0,1
loc (� × R), Vi � Uεi , {Vi �= Uεi } ⊂ K . Furthermore, Vi → V

locally uniformly, Vi = Ui on � \ {V > U}, and

Hn+2({DVi �= DV } ∩ {V > U}) → 0. (37)

By Lemma 4.7, we have

J K
Uεi (U

εi ) � J K
Uεi (Vi),

which can be written as∫
K

|DUεi | + (Vi − Uεi )|DUεi |−1 dx �
∫

K

|DVi | dx.

Now, we have

|DUεi |−1 → |DU |−1

in the sense of Radon measures. Since Vi → V and Uεi → U locally uniformly, we
see that ∫

K

(V − U )|DU |−1 dx = lim
i→∞

∫
K

(Vi − Uεi )|DUεi |−1 dx.

The convergence of |DUεi | ⇀ |DU | weakly-∗ in L∞(� × R) as well as (37) yields,
together with the uniform Lipschitz bound of the Vi’s,

∣∣∣
∫

K

|DVi | − |DV | dx

∣∣∣
�

∣∣∣
∫

K\{V >U}
|DUεi | − |DU | dx

∣∣∣ + CHn+2({DVi �= DV } ∩ {V > U}) → 0.

Putting this together, we have
∫

K

|DU | + (V − U )|DU |−1 dx �
∫

K

|DV | dx.

The fact that U is also a weak subsolution follows analogously. �

References

[1] K. A. BRAKKE, The Motion of a Surface by Its Mean Curvature, Math. Notes 20,
Princeton Univ. Press, Princeton, 1978. MR 0485012



312 METZGER and SCHULZE

[2] Y. G. CHEN, Y. GIGA, and S. GOTO, Uniqueness and existence of viscosity solutions of
generalized mean curvature flow equations, J. Differential Geom. 33 (1991),
749 – 786. MR 1100211

[3] K. ECKER and G. HUISKEN, Interior estimates for hypersurfaces moving by mean
curvature, Invent. Math. 105 (1991), 547 – 569. MR 1117150

[4] L. C. EVANS and R. F. GARIEPY, Measure Theory and Fine Properties of Functions,
Stud. Adv. Math., CRC Press, Boca Raton, Fla., 1992. MR 1158660

[5] L. C. EVANS and J. SPRUCK, Motion of level sets by mean curvature, I, J. Differential
Geom. 33 (1991), 635 – 681. MR 1100206

[6] ———, Motion of level sets by mean curvature, IV, J. Geom. Anal. 5 (1995), 77 – 114.
MR 1315658

[7] M. E. GAGE and R. S. HAMILTON, The heat equation shrinking convex plane curves, J.
Differential Geom. 23 (1986), 69 – 96. MR 0840401

[8] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Monogr. Math. 80,
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