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The searches of impulsive gravitational waves (GW) in the data of the ground-based interferometers
focus essentially on two types of waveforms: short unmodeled bursts from supernova core collapses and
frequency modulated signals (or chirps) from inspiralling compact binaries. There is room for other types
of searches based on different models. Our objective is to fill this gap. More specifically, we are interested
in GW chirps ‘‘in general,’’ i.e., with an arbitrary phase/frequency vs time evolution. These unmodeled
GW chirps may be considered as the generic signature of orbiting or spinning sources. We expect the
quasiperiodic nature of the waveform to be preserved independently of the physics which governs the
source motion. Several methods have been introduced to address the detection of unmodeled chirps using
the data of a single detector. Those include the best chirplet chain (BCC) algorithm introduced by the
authors. In the next years, several detectors will be in operation. Improvements can be expected from the
joint observation of a GW by multiple detectors and the coherent analysis of their data, namely, a larger
sight horizon and the more accurate estimation of the source location and the wave polarization angles.
Here, we present an extension of the BCC search to the multiple detector case. This work is based on the
coherent analysis scheme proposed in the detection of inspiralling binary chirps. We revisit the derivation
of the optimal statistic with a new formalism which allows the adaptation to the detection of unmodeled
chirps. The method amounts to searching for salient paths in the combined time-frequency representation
of two synthetic streams. The latter are time series which combine the data from each detector linearly in
such a way that all the GW signatures received are added constructively. We give a proof of principle for
the full-sky blind search in a simplified situation which shows that the joint estimation of the source sky
location and chirp frequency is possible.
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I. SUMMARY

A large effort is underway to analyze the scientific data
acquired jointly by the long-baseline interferometric gravi-
tational wave (GW) detectors GEO 600, LIGO, TAMA,
and Virgo [1]. In this paper, we contribute to the method-
ologies employed for this analysis, and, in particular, for
the detection of impulsive GW signals.

The current GW data analysis effort is targeted on two
types of impulsive GWs. A first target is poorly known
short bursts of GWs with a duration in the hundredth of a
millisecond range. The astrophysically known sources of
such GW bursts are supernovae core collapses (or other
similar cataclysmic phenomenon). The second target is
frequency modulated signals or chirps radiated by inspir-
alling binaries of compact objects (either neutron stars
(NS) or black holes (BH)). These chirp waveforms are

well modeled and expected to last for a few seconds to a
few minutes in the detector bandwidth. Our objective is to
enlarge the signal range of impulsive GWs under consid-
eration and to ‘‘fill the gap’’ between these two types. More
specifically, we are interested in the detection of unmod-
eled GW chirps which last from a few tens of milliseconds
to a few seconds in the detector bandwidth. We shall detail
in the next section the astrophysical motivation for consid-
ering this kind of GWs.

Joint analysis of the data observed by different GW
detectors has obvious benefits. First and foremost, a GW
detection can get confirmed or vetoed out with such a joint
observation. Further, the detector response depends on the
position and orientation of the source and polarization of
the wave. For this reason, the joint observation by multiple
detectors gives access to physical parameters such as
source location and polarization. The use of multiple de-
tectors also allows to enlarge the observational horizon and
sky coverage.

Built on the top of pioneering works [2–5], several
methods have been proposed and implemented to detect
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unmodeled GW chirps which include the signal track
search (STS) [6], the chirplet track search [7], and the
best chirplet chain (BCC) search proposed by the authors
[8]. However, none of the above addresses the multiple
detector case. This requires the designing of specific algo-
rithms which are able to combine the information received
by the different detectors.

In practice, there are two approaches adopted to carry
out network analysis from many detectors: the coincidence
and coherent approaches. In the coincidence approach, the
data from each detector is processed independently and
only coincident trigger events (in the arrival time and the
parameter values) are retained. On the other hand, in the
coherent approach, the network as a whole is treated as a
single ‘‘sensor’’: the data from various detectors is ana-
lyzed jointly and combined into a single network statistic
which is tested for detection. In the literature, it has been
shown that the coherent approach performs better than the
coincidence approach for GW short bursts [9] as well as
GW chirps from coalescing binaries [10]. Indeed, the
signal phase information is preserved with the coherent
approach, whereas it is not with the coincidence approach.

Another reason for this choice is that the coincidence
method is not adequate for unmodeled chirps. A large
number of parameters (of the same order as the number
of signal samples) is needed to characterize their frequency
evolution. A coincident detection occurs when the parame-
ter estimates obtained from the analysis of the individual
detector data match. Because of the noise perturbation, the
occurrence of such a coincidence is very unlikely when the
number of parameters is large, unless the incoming GW
has very large amplitude. In this article, we adopt the
coherent method and propose the coherent extension of
the BCC algorithm.

Coherent schemes have been already developed for the
detection of inspiralling binary chirps [11,12]. Here, we
revisit the work presented in [11] with a new formalism.
Comments in footnotes link the results presented here with
the ones of [11]. We show that the new formalism pre-
sented here helps to understand the geometry of the prob-
lem and it is simple to establish connections with earlier
works.

The outline of the paper goes as follows. In Sec. II, we
present and motivate our model of an arbitrary GW chirp.
In Sec. III, we describe the response of the detector net-
work to an incoming GW chirp. Further, we show that the
linear component of the signal model (parameters acting as
scaling factors and phase shifts, so-called extrinsic parame-
ters) can be factorized. This factorization evidences that
the signal space can be represented as the direct product of
two 2-dimensional spaces i.e., the GW polarization plane
and the chirp plane. This representation forms the back-
bone of the coherent detection scheme that follows in the
subsequent section.

In Sec. IV, based on a geometrical argument, we show
that the above signal representation manifests the possible

degeneracy of the response. This degeneracy has been
already noticed and studied at length in the context of burst
detection [13–15]. We investigate this question in the
specific context of chirps and obtain similar results as
were presented earlier in the literature.

In Sec. V, we obtain the expression of the network
statistic. Following the principles of the generalized like-
lihood ratio test (GLRT), the statistic is obtained by max-
imizing the network likelihood ratio over the set of
unknown parameters. We perform this maximization in
two steps. We first treat the linear part of the parametriza-
tion and show that such a maximization is nothing but a
least-square problem over the extrinsic parameters. The
solution is obtained by projecting the data onto the signal
space. We further study the effect of the response degen-
eracy on the resulting parameter estimates.

The projection onto the signal space is a combined
projection onto the GW polarization and chirp planes.
The projection onto the first plane generates two synthetic
streams which can be viewed as the output of ‘‘virtual
detectors.’’ The network statistic maximized over the ex-
trinsic parameters can be conveniently expressed in terms
of the processing of those streams. In practice, the syn-
thetic streams linearly combine the data from each detector
in such a way that the GW signature received by each
detector is added constructively. With this rephrasing, the
source location angles can be searched over efficiently.

Along with the projection onto the GW polarization
plane, we also examine the projection onto its complement
which generates null streams. While synthetic streams
concentrate the GW contents, the so-called null streams
produced this way combine the data such that the GW
signal is canceled out. The null streams are useful to veto
false triggers due to instrumental artifacts (which do not
obey this cancellation property). The null streams we
obtained here are identical to the ones presented earlier
in GW burst literature [16–18].

In Sec. VI, we perform the second and final step of the
maximization of the network statistic over the chirp phase
function. This step is the difficult part of the problem. For
the one-detector case, we have proposed an efficient
method, the BCC algorithm which addresses this question.
We show that this scheme can be adapted to the multiple
detector case in a straightforward manner, hence we refer
to this as best network CC (BNCC).

Finally, Sec. VII presents a proof of principle of the
proposed method with a full-sky blind search in a simpli-
fied situation.

II. GENERIC GW CHIRPS

A. Motivation

Known observable GW sources e.g., stellar binary sys-
tems, accreting stellar systems or rotating stars, commonly
involve either orbiting or spinning objects. It is not unrea-
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sonable to assume that the similar holds true even for the
unknown sources.

The GW emission is essentially powered by the source
dynamics which thus determines the shape of the emitted
waveform. Under linearized gravity and slow motion (i.e.,
the characteristic velocity is smaller than the speed of
light) approximation, the quadrupole formula [19] predicts
that the amplitude of the emitted GW is proportional to the
second derivative of the quadrupole moment of the physi-
cal system. When the dominant part of the bulk motion
follows an orbital/rotational motion, the quadrupole mo-
ment varies quasiperiodically, and so is the GW.

The more information we have about the GW signal, the
better the detection of its signature in the observations.
Ideally, this requires precise knowledge of the waveform,
and consequently requires precise knowledge of the dy-
namics. This is not always possible. In general, predicting
the dynamics of GW sources in the nearly relativistic
regime requires a large amount of effort. This task may
get further complicated if mechanisms such as magnetic
couplings, mass accretion, density-pressure-entropy gra-
dients, or anisotropic angular momentum distribution are
involved.

Here, we are interested in GW sources where the motion
is orbital/rotational but the astrophysical dynamics is (to-
tally or partially) unknown. While our primary target is the
unforeseen sources (this is why we remain intentionally
vague on the exact nature of the sources), several identified
candidates enter this category because their dynamics is
still not fully characterized. These include (see [8] for more
details and references) binary mergers, quasinormal modes
from young hot rotating NS, spinning BH accreting from
an orbiting disk. As motivated before, following the argu-
ment of quadrupole approximation, the GW signature for
such sources is not completely undetermined: it is expected
to be a quasiperiodic, possibly frequency modulated GW;
in brief, it is a GW chirp. This is the basic motivation for
introducing a generic GW chirp model, as described in the
next section.

B. Generic GW chirp model

In this section, we describe the salient features of the
generic GW chirp model used in this paper. We motivate
the nature of GW polarization, the regularity of its phase,
and frequency evolution.

1. Relation between the polarizations

The GW tensor (in the transverse traceless (TT) gauge),
associated to the GW emitted from slow-motion, weak
gravity sources are mostly due to variations of the mass
moments (in contrast to current moments) and can be
expanded in terms of mass multipole moments as [20]

 hTT�t� /
X1
l�2

Xl
m��l

�rrYlm�STF d
l

dtl
Ilm�t� r=c�: (1)

Here, STF means ‘‘symmetric transverse-tracefree,’’ Ylm

are the spherical harmonics, and Ilm are the mass multipole
moments.

We consider here isolated astrophysical systems with
anisotropic mass distributions (e.g., binaries, accreting
systems, bar/fragmentation instabilities) orbiting/rotating
about a well-defined axis.1 It can be shown that these
systems emit GW predominantly in the l � jmj � 2
mode. Contributions from any other mass moments are
negligibly small.2 The pure-spin tensor harmonic
�rrYlm�STF term provides the GW polarization. For l �
jmj � 2, we have

 �rrY22�STF / �1� cos2��e� � 2i cos�e�: (2)

The tensors e� and e� form a pair of independent and
linear-polarization GW tensors (e� is rotated by �=4 with
respect to e�). The orbital inclination angle � is the angle
between the line of sight to the source (in Earth’s frame)
and the angular momentum vector (or the rotation axis) of
the physical system, see Fig. 1(a). This shows that the
emitted GW in the considered case carries both GW
polarizations.

The GW tensor is fully described as hTT�t� �
h��t�e� � h��t�e�. The phase shift between the two po-
larizations h� and h� arises from the Ilm term which is
proportional to the moment of inertia tensor for l � jmj �
2. The quadratic nature of the moment of the inertia tensor
introduces a phase shift of �=2 between the two polar-
izations h� and h�. This leads to the chirp model below
 

h��t� � A
1� cos2�

2
cos�’�t� t0� ��0�; (3a)

h��t� � A cos� sin�’�t� t0� ��0�; (3b)

with t0 � t < t0 � T and h�;��t� � 0 outside this interval.
The phase �0 is the signal phase at t � t0.

Here, we assume the GW amplitude A to be constant.
This is clearly an oversimplified case since we indeed
expect an amplitude modulation for real GW sources.
However, we wish here to keep the model simple in order
to focus the discussion on the aspects related to the coher-
ent analysis of data from multiple detectors. We postpone
the study of amplitude modulated GWs to future work.

The chirp model described in Eq. (3) clearly depends
upon several unknown parameters (which need to be esti-

1This condition can be relaxed to precessing systems provided
that the precession is over time scales much longer than the
observational time, typically of order of seconds.

2Recently, numerical relativity simulations [21] demonstrated
that this is a fairly robust statement in the specific context of
inspiralling BH binaries. The simulations show that BH binaries
emit GW dominantly with l � jmj � 2. However, as the mass-
ratio decreases, higher multipoles get excited. A similar claim
was also made in the context of quasinormal modes produced in
the ring-down after the merger of two BH, on the basis of a
theoretical argument, see [22], page 4538.
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mated from the data) which include the amplitude A, the
initial phase �0, the arrival time t0 of the chirp, and the
inclination angle �. As no precise assumption on the exact
nature and dynamics of the GW source is made, we con-
sider the phase evolution function ’��� to be an unknown
parameter of the model (3) as well. Clearly, it is a more
complicated parameter than the others which are simply
scalars. Just like any scalar parameter can be constrained to
a range of values (e.g., A> 0), the phase function ’��� has
to satisfy conditions to be physically realistic which we
describe in the next section.

2. Smoothness of the phase evolution

As explained above, the chirp phase is directly related to
the orbital phase of the source. The regularity of the orbital
phase can be constrained by the physical arguments: the
orbital phase and its derivatives are continuous. The same
applies to the chirp phase and derivatives.

The detectors operate in a frequency window limited in
the range from a few tenths of Hz to a kHz and they are
essentially blind outside. This restricts our interest to
sources emitting in this frequency range, which results in
lower and upper limits on the chirp frequency ��t� 	
�2���1d’=dt and thus on the variations of the phase.

In addition, the variation of the frequency (the chirping
rate) can be connected to the rate at which the source loses
its energy. For isolated systems, this rate is clearly
bounded. This argument motivates the following bounds
on the higher-order derivatives of the phase:

 

��������d�dt
��������� F0;

��������d
2�

dt2

��������� F00: (4)

Equation (4) determines and strengthens the smoothness
of the phase/frequency evolution. This is the reason why
we coined the term ‘‘smooth GW chirp’’ in [8]. The choice

of the allowed upper bounds F0 and F00 may be based on
general considerations about the GW source of interest.

We give an example of how those bounds can be set in
[8]. We fix F0 and F00 according to the variation rate of the
frequency of a typical inspiralling binary chirp at the last
stable orbit. The resulting chirping rates (estimates ob-
tained from the Newtonian model) can be viewed as a
maximum for this kind of system and delimit a sensible
range of values.

III. RESPONSE OF A NETWORK OF DETECTORS
TO AN INCOMING GW

In this section we derive the response of a network of
interferometric ground-based detectors with arbitrary lo-
cations and orientations to an incoming GW chirp. The first
step is to identify the coordinate frames.

A. Coordinate frames

We follow the conventions of [11] and introduce three
coordinate frames, namely, the wave frame, the Earth
frame, and the detector frame as given below, see Fig. 1.

(i) the wave frame xw 	 �xw; yw; zw� is the frame asso-
ciated to the incoming GW with positive
zw-direction along the incoming direction and the
xw � yw plane corresponds to the plane of the polar-
ization of the wave.

(ii) the Earth frame xE 	 �xE; yE; zE� is the frame at-
tached to the center of the Earth. The xE axis is
radially pointing outwards from the Earth’s center
and the equatorial point that lies on the meridian
passing through Greenwich, England. The zE axis
points radially outwards from the center of Earth to
the North Pole. The yE axis is chosen to form a
right-handed coordinate system with the xE and zE
axes.
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FIG. 1 (color online). Coordinate transformations.—(a) O��e; �e;  e�: Earth frame xE: �xE; yE; zE� ! wave frame xw: �xw; yw; zw�,
(b) O��;�; ��: Earth frame xE: �xE; yE; zE� ! detector frame xd: �xd; yd; zd�. The latitude l and longitude L of the detector are related
to the Euler angles by Eqs. (8) and (9).
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(iii) the detector frame xd 	 �xd; yd; zd� is the frame
attached to the individual detector. The �xd � yd�
plane contains the detector arms and is assumed to
be tangent to the surface of the Earth. The xd axis
bisects the angle between the detector’s arms. The
zd axis points towards the local zenith. The direc-
tion of the yd axis is chosen so that we get a right-
handed coordinate system.

A rotation transformation between the coordinate sys-
tems about the origin is specified by the rotation operator O
which is characterized by three Euler angles. We define
these angles using the ‘‘x-convention’’ (also known as z�
x� z convention) [23].

Let ��e; �e;  e� and ��;�; �� be Euler angles of the
rotation operator relating pairs of the above coordinate
systems as follows:

 x w � O��e; �e;  e�xE; (5)

 x d � O��;�; ��xE: (6)

All the angles in Eqs. (5) and (6) are related to physical/
geometrical quantities described in Fig. 1. More specifi-
cally, we have

 �e � �� �=2; �e � �� �;  e �  ; (7)

where � and � are the spherical polar coordinates of the
source in the Earth’s frame and the angle  is the so-called
polarization-ellipse angle which gives the orientation of
the source plane. Throughout the paper, we shall use � and
� to indicate the source location.

The detector Euler angles ��;�; �� are directly related
to the location and orientation of the detector as follows:

 � � L� �=2; (8)

 � � �=2� l; (9)

 � �
a1 � a2

2
�

3�
2

if ja1 � a2j>�; (10)

 �
a1 � a2

2
�
�
2

if ja1 � a2j � �; (11)

where l and L are the latitude and longitude of the corner
station. The angles a1 and a2 describe the orientation of the
first and second arm, respectively. It is the angle through
which one must rotate the arm clockwise (while viewing
from top) to point the local north. In Table I, we tabulate
the currently running interferometric detectors along with
their Euler angles.

Combining Eqs. (5) and (6), we obtain the coordinate
transformation from the wave frame to the detector frame
as follows:

 x s � O��0e; �0e;  0e�xd; (12)

where O��0e; �
0
e;  

0
e� 	 O��e; �e;  e�O

�1��;�; ��.

B. Network response

The detector response to an incident GW is obtained by
contracting the GW tensor with the detector tensor [see
Appendix B], which can be reexpressed as a linear combi-
nation of the two polarizations h� and h� i.e.

 s � f�h� � f�h� 	 <
f
�h�: (13)

The linear coefficients f���
0
e; �

0
e;  

0
e� and

f���
0
e; �

0
e;  

0
e�, commonly termed as the detector antenna

pattern functions, represent the detector’s directional re-
sponse to the � and � polarizations, respectively. For the
compact expression provided by Eq. (13), we have defined
the complex GW signal to be h � h� � ih� and the com-
plex antenna pattern function to be f � f� � if�.

The detector response s and the incident GW signal h
are both times series. In a network where the various
detectors are located at different locations on the Earth,
for example, the LIGO-Virgo network, the GW arrives at
the detector sites at different time instances. However, all
the measurements at the various detectors need to be
carried out with a reference time. Here, for our conve-
nience, the time measured by an observer attached to the
Earth’s center as a reference is treated as a reference. Any
other reference would be equally acceptable. We have

TABLE I. Location and orientation of the GW detectors.—We identify the detectors with two character label. Concerning the LIGO
detectors, H1 and L1 refer to the Hanford (WA) and Livingstone (LA) detectors, respectively. The location of the corner station
(vertex) of each detector is given in terms of the latitude and longitude. The longitudes with an East (respectively West) suffix receive a
‘‘�’’ sign (respectively ‘‘�’’ sign) when converted into radians in Eq. (8). The orientation of the arm is given by the angle through
which one must rotate it clockwise (while viewing from top) to point the local north. The corresponding detector Euler angles ��;�; ��
are listed.

Detector Vertex position Arm orientation Euler angles
name & label latitude (N) longitude a1 a2 � � �

TAMA (T1) 35
 400 35.6000 139
 320 09.800 0 E 90
 000 00.000 0 179
 590 60.0000 229
 320 09.8000 54
 190 24.4000 225
 000 00.0000

GEO (G1) 52
 140 42.5300 9
 480 25.8900 E 291
 360 42.1200 25
 560 35.1600 99
 480 25.8900 37
 450 17.4700 68
 460 38.6400

Virgo (V1) 43
 370 53.0900 10
 300 16.1900 E 340
 340 02.0300 70
 340 02.0300 100
 300 16.1900 46
 220 06.91 0 0 115
 340 02.0300

LIGO (H1) 46
 270 18.5300 119
 240 27.570 0 W 35
 590 57.840 0 125
 590 57.8400 �29
24027:5700 43
 320 41.4700 170
 590 57.8400

LIGO (L1) 30
 330 46.4200 90
 460 27.2700 W 107
 420 59.4000 197
 420 59.4000 �0
46027:2700 59
 260 13.5800 242
 420 59.4000

BEST NETWORK CHIRPLET CHAIN: NEAR-OPTIMAL . . . PHYSICAL REVIEW D 77, 062005 (2008)

062005-5



 s�t� � <
f�h�t� 	��; ����; (14)

where 	��; �� � �rd � rE� � w��; ��=c denotes the differ-
ence in the arrival times of the GW (propagating with the
unit wave vector w) at the detector and at the center of the
Earth located at rd and rE, respectively. Note that this value
can be positive or negative depending on the source
location.

C. Vector formalism

In the following, we distinguish scalars by using roman
letters, vectors are denoted by small bold letters, and
matrices by bold capitals. We denote the k-th element of
vector a by a
k� and correspondingly, the element of
matrix A at row k and column l by A
k; l�. The matrices
AT and AH 	 �AT�� designate the real and Hermitian
transposes of A, respectively.

We consider now a GW detector network with d inter-
ferometers. Each detector and its associated quantities are
labeled with an index j � 1; . . . ; d which we also use as a
subscript if required. We assume that the output response
of each detector is sampled at the Nyquist rate �s 	 1=ts
where ts is the sampling interval. We then divide the data in
blocks of N consecutive samples. In this setup, the detector
as well as the network response is then defined by forming
vectors with these blocks of data.

Let us consider a given GW chirp source at sky location
��; ��. Let the response of the j-th detector be sj with entry
sj
k� � sj�tk � 	j��; ���, where tk � t0 � kts, k � 0; . . . ;
N � 1, and t0 is the reference time i.e. the time of arrival of
GW at the center of the Earth. Note that, with the above
definition, we compensate for the time delay 	j��; ��
between the detector j and the Earth’s center. Thus, in
this setup, the GW signal starts and ends in the same
rows in the data vectors sj of all the detectors.

For compactness, we stack the data from all the detec-
tors in the network into a single vector s of size Nd� 1,
such that sT � 
sT1 sT2 . . . sTd � forms the network response. In
this convention, the network response can be expressed
compactly as the Kronecker product (see Appendix A for
the definition) of the network complex beam pattern vector
f � ffj; j � 1 . . . dg 2 Cd�1 and the complex GW vector
h� fh�tk�; tk� t0� tsk with k� 0. . .N� 1g 2CN�1 viz.,

 s � <
f� � h�: (15)

The above expression is general enough to hold true for
any type of incoming GW signal. The Kronecker product
in this expression is the direct manifestation of the fact that
the detector response is nothing but the tensor product
between the detector and the wave tensors.

D. GW chirp as a linear model of the extrinsic
parameters

In the previous section, we have obtained the network
response to any type of incoming GW with two polar-

izations. In what follows, we wish to investigate how this
response manifests in the case of a specific type of GW,
namely, GW chirp described in Eq. (3). We also want to
understand how various parameters explicitly appear in the
network response.

It is insightful to distinguish the signal parameters based
on their effect on the signal model. The parameters are
separated into two distinct types traditionally referred to as
the ‘‘intrinsic’’ and ‘‘extrinsic’’ parameters. The extrinsic
parameters are those that introduce scaling factors or phase
shifts but do not affect the shape of the signal model.
Instead, intrinsic parameters significantly alter the shape
of the signal and hence the underlying geometry.

The network response s mingles these two types of
parameters. Our work is considerably simplified if we
can ‘‘factorize’’ the extrinsic parameters from the rest.
For the chirp model described in Eq. (3), we count four
extrinsic parameters, namely fA;�0; �;  eg and perform
this factorization in two steps.

1. Extended antenna pattern includes the inclination
angle

We absorb the inclination angle � into the antenna
pattern functions and rewrite the network signal as

 s � <
~f� � ~h�; (16)

where ~h 	 ae is the GW vector. It only depends on the
complex amplitude a � A expi�0 and on the phase vector
e � fexp�i’
k��; with ’
k� 	 ’�kts�; k � 0 . . .N � 1g.

The extended antenna pattern ~f incorporates the inclina-
tion angle � as follows3

 

~f �
1� cos2�

2
f� � i cos�f�: (17)

2. Gel’fand functions factorize the polarization angles
from source location angles

The second step is to separate the dependency of ~f on the
polarization angles f ; �g from the source location angle
and the detector orientation angles. The earlier work [11]
shows that the Gel’fand functions (which are a representa-
tion of the rotation group SO�3�) provide an efficient tool
to do the same. For the sake of completeness, Appendix B
reproduces some of the calculations of [11]. The final
result (see also Eqs. (3.14–3.16) of [11]) yields the follow-
ing decomposition:

 

~f � t�d� t�d�; (18)

where the vector d 2 Cd�1 carries the information of the
source location angles ��; �� via ��e; �e� and the detector
Euler angles f�j; �j; �jg. Its components are expressed as

3We remind the reader that a similar quantity was previously
introduced in Eq. (3.19) of [11].
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d
j� � �
Xn�2

n��2

iT2n��e; �e; 0�

� 
T2n��j; �j�j� � T�2n��j;�j; �j��
�: (19)

The tensor Tmn designates rank-2 Gel’fand functions. The
coefficients t� and t� depend only on the polarization
angles f ; �g, viz.

 t� � T2�2� ; �; 0� �
�1� cos��2

4
exp��2i �: (20)

Finally, we combine Eqs. (16) and (18) and obtain an
expression of the network response where the extrinsic
parameters are ‘‘factorized’’ as follows:

 s �
�

d d� �|����{z����}

D

�
1

2

 e e� �|������{z������}

E

� at��
a�t�
at��
a�t�

0BBB@
1CCCA

|�����{z�����}
p

	 �p: (21)

Equation (21) evidences the underlying linearity of the
GW model with respect to the extrinsic parameters. The 4-
dimensional complex vector p defines a one-to-one (non-
linear) mapping between its components and the four
physical extrinsic parameters fA;�0; �;  g (we will detail
this point later in Sec. VA 3). Note that the first and fourth
components as well as the second and third components of
p are complex conjugates. This symmetry comes from the
fact that the data is real.

The signal space as defined by the network response is
the range of � and results from the Kronecker product of
two linear spaces: the plane of Cd generated by the col-
umns of D which we shall refer to as GW polarization
plane4 and the plane of CN generated by the columns of E
which we shall refer to as chirp plane. These two spaces
embody two fundamental characteristics of the signal: the
former characterizes gravitational waves while the latter
characterizes chirping signals. The Kronecker product in
the expression of � shows explicitly that the network
response is the result of the projection of incoming GW
onto the detector network.

The norm of the network signal gives the ‘‘signal’’ (and
not physical) energy delivered to the network, which is

 k s k2�
NA2

2
k ~f k2 : (22)

Clearly, the dependence on the number of samples N
implies that the longer the signal duration, the larger the
signal energy and is proportional to the length of the signal
duration. The factor k ~f k is the modulus of the extended
antenna pattern vector. It can be interpreted as the gain or

attenuation depending on the direction of the source and on
the polarization of the wave.

IV. INTERPRETATION OF THE NETWORK
RESPONSE

In this section, we focus on understanding the under-
lying geometry of the signal model described in Eq. (21). A
useful tool to do so is the singular value decomposition
(SVD) [24]. It provides an insight on the geometry by
identifying the principal directions of linear transforms.

A. Principal directions of the signal space: Singular
value decomposition

The SVD is a generalization of the eigen-decomposition
for nonsquare matrices. The SVD factorizes a matrix A 2
Cm�n into a product A � UA�AVH

A of three matrices UA 2
Cm�r, �A 2 Rr�r, and VA 2 Cn�r where r � m; n is the
rank of A. The columns of UA and VA are orthonormal i.e.,
UH
AUA � VH

AVA � Ir. The diagonal of �A are the singular
values (SV) of A. We use here the so-called ‘‘compact’’
SVD (we retain the nonzero SVonly in the decomposition),
such that the matrix �A is a positive definite diagonal
matrix.

The SVD is compatible with the Kronecker product
[25]: the SVD of a Kronecker product is the Kronecker
product of the SVDs. Applying this property to �, we get

 � � �UD � UE���D ��E��VD � VE�
H: (23)

Therefore, the SVD of � can be easily deduced from the
one of D and E. We note that D and E have similar
structure (two complex conjugated columns), see
Eq. (21). In Appendix C, we analytically obtain the SVD
of a matrix with such a structure. Thus, applying this result,
we can straightaway write down the SVDs for D and E as
shown in the following sections.

1. GW polarization plane: SVD of D

Let us first introduce some variables

 D 	 dHd �
Xd
j�1

jd
j�j2; (24)

 � 	 dTd �
Xd
j�1

d
j�2; (25)

 
 	 arg�: (26)

In the nominal case, the matrix D has rank 2, viz.

 � D �
�1 0
0 �2

� �
; (27)

with two nonzero SV �1 �
�������������������
D� j�j

p
and �2 ��������������������

D� j�j
p

(�1 � �2) associated to a pair of left-singular

4In [11], this plane was referred to as ‘‘helicity plane’’ because
it is formed by the network beam patterns for all possible
polarizations.
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vectors VD � 
v1; v2� with

 v 1 �
1���
2
p

exp��i
�
1

� �
; v2 �

1���
2
p

exp��i
�
�1

� �
;

(28)

and of right-singular vectors UD � 
u1;u2� with

 u 1 �
exp��i
�d� d�������������������������

2�D� j�j�
p ; (29)

 u 2 �
exp��i
�d� d�������������������������

2�D� j�j�
p : (30)

Note that the vector pair fu1;u2g results from the Gram-
Schmidt orthonormalization of fd;d�g.

Barring the nominal case, for a typical network built
with the existing detectors and for certain sky locations of
the source, it is, however, possible for the smallest SV �2

to vanish. In such a situation, the rank of D reduces to 1.
We then have �D � �1, VD � v1 and UD � u1. We give
an interpretation of this degeneracy later in Sec. IV B.

2. Chirp plane: SVD of E

The results of the previous section essentially apply to
SVD calculation of E. However, there is an additional
simplification due to the nature of the columns of E.
Indeed, the cross-product

 e Te �
XN�1

k�0

exp�2i’
k��; (31)

is an oscillating sum. This sum can be shown [8] to be of
small amplitude under mild conditions compatible with the
case of interest. We can thus consider5 that eTe � 0 and
eHe � N. Therefore, following Appendix C 2, the SVD of
E is given by �E �

����
N
p

I2=2, VE � I2, and UE �

2E=
����
N
p

.

3. Signal space: SVD of �

We obtain the SVD for � using the compatibility of the
SVD with the Kronecker product stated in Eq. (23). In the
nominal case where D has rank 2, we have

 � � �

����
N
p

2

�1I2 02

02 �2I2

� �
; (32)

with four left-singular vectors

 V � � v1 � I2 v2 � I2

� 	
; (33)

and four right-singular vectors

 U � �
2����
N
p u1 � e u1 � e� u2 � e u2 � e�

� 	
: (34)

B. The signal model can be ill-posed

In the previous section, we obtained the SVD of � in the
nominal case where the matrix D has 2 nonzero SVs. As we
have already mentioned, for a typical detector network,
there might exist certain sky locations where the second
SV �2 of D vanishes which implies that the rank of D
degenerates to 1. In such cases, this degeneracy propagates
to � and subsequently its rank reduces from 4 to 2.

In order to realize the consequences of this degeneracy,
we first consider a network of ideal GW detectors (with no
instrumental noise). Let a GW chirp pass through such a
network from a source in a sky location where�2 � 0. The
detector output is exactly equal to s. An estimate of the
source parameters would then be obtained from the net-
work data by inverting Eq. (21). However, in this case, this
is impossible since it requires the inversion of an under-
determined linear system (there are 4 unknowns and only 2
equations).

This problem is identical to the one identified and dis-
cussed at length in a series of articles devoted to unmod-
eled GW bursts [13–15], where this problem is formulated
as follows: at those sky locations where D is degenerated,
the GW response is essentially made of only one linear
combination of the two GW polarizations. It is thus im-
possible to separate the two individual polarizations (un-
less additional prior information is provided). We want to
stress here that this problem is not restricted to unmodeled
GW bursts but also affects the case of chirping signals (and
extends to the chirps from inspiralling binaries of NS or
BH6). This is mainly because the degeneracy arises from
the geometry of the GW polarization plane which is the
same for any type of source.

The degeneracy disappears at locations where �2 > 0
even if it is infinitesimally small. However, when �2 is
small, the inversion of the linear equations in Eq. (21) is
very sensitive to perturbations. With real-world GW de-
tectors, instrumental noise affects the detector response
i.e., perturbs the left-hand side of Eq. (21).

A useful tool to investigate this is the condition number
[15]. It is a well-known measure of the sensitivity of linear
systems. The condition number of a matrix A is defined as
the ratio of its largest SV to the smallest. For unitary
matrices, cond�A� � 1. On the contrary, if A is rank defi-
cient, cond�A� ! 1. For the matrix �, we have

5This amounts to saying that the two GW polarizations (i.e.,
the real and imaginary parts of expi’
k�) are orthogonal and of
equal norm. Note that this approximation is not required and can
be relaxed. This would lead to use a version of the polarization
pair orthonormalized with a Gram-Schmidt procedure.

6Contrary to the generic chirp model considered here, the
phase and amplitude functions of inspiralling binary chirps
follow a prescribed power-law time evolution. These differences
affect only the geometry of the ‘‘chirp plane,’’ but not that of the
‘‘GW polarization plane,’’ hence the conclusion on the degen-
eracy remains the same.
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 cond ��� �
�1

�2
�

�������������������
D� j�j

D� j�j

s
: (35)

In Fig. 2, we show full-sky plots of 1=cond��� for
various configurations (these figures essentially reproduce
the ones of [15]). We see that, even for networks of mis-
aligned detectors, there are significantly large patches
where cond��� takes large values. In those regions, the
inversion of Eq. (21) is sensitive to the presence of noise
and the estimate of the extrinsic parameters thus have a
large variance.

a. Connection to the antenna pattern function—
Interestingly, the SVs of D and F 	 
ff�� coincide. This
can be seen from the following relationships we directly
obtained from the definitions in Eqs. (17), (18), and (20)

 

~f ~f�
h i

� D
t� t��
t� t��

� �
� F

jt�j jt�j
jt�j jt�j

� �
: (36)

The matrix F can be obtained from D by a unitary
transformation. Both matrices share the same singular
spectrum. We can therefore write

 �2
2 �

Xd
j�1

jf
j�j2 �
��������X

d

j�1

f
j�
��������2
: (37)

When�2 � 0, we thus have jf� � f�j2 � 0 where f� 	
<
f� and f� 	 =
f� are the network antenna pattern vec-
tors. This means that at such sky locations, the antenna
pattern vectors get aligned even if the detectors in the

network are misaligned. In other words, despite that the
considered network is composed of misaligned detectors, it
acts as a network of aligned detectors at those sky loca-
tions. (Of course, for perfectly coaligned detectors, f� /
f� at all sky locations.) Networks with many detectors
having different orientations are less likely to be degener-
ate. This is confirmed in Fig. 2 where we see that the size of
the degenerate sky patches reduces rapidly when the num-
ber of detector with varied orientations increases. The
network formed by the four detectors L1-H1-V1-G1 (as-
suming they have the same noise spectrum) does not show
any patches with significant degeneracy.

V. NETWORK LIKELIHOOD ANALYSIS: GW
POLARIZATION PLANE AND SYNTHETIC

STREAMS

Generally speaking, a signal detection problem amounts
to testing the null hypothesis (H0) (absence of signal in the
data) vs the alternate hypothesis (H1) (presence of signal in
the data). Because of the presence of noise, two types of
errors occur: false dismissals (decide H0 when H1 is
present) and false alarms (decide H1 when H0 is present).
There exist several objective criteria to determine the
detection procedure (or statistic) which optimizes the oc-
currence of these errors. We choose the Neyman-Pearson
(NP) approach which minimizes the number of false dis-
missals for a fixed false alarm rate. It is easily shown that
for simple problems, the likelihood ratio (LR) is NP opti-
mal. However, when the signal depends upon unknown

FIG. 2. Degeneracy of the network response.—We show here the inverse of cond��� for various detector networks (the abbreviated
detector names are listed in Table I). The brighter regions of the sky correspond to the large conditioning number cond���. The
fraction of the sky where 1=cond���> 0:1 is (a) 27%, (b) 4.8%, (c) and (d) 0%. Since the LIGO detectors are almost aligned, this pair
of detectors has the largest percentage of degeneracy.
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parameters, the NP optimal (uniformly overall allowed
parameter values) statistic is not easy to obtain. Indeed
for most real-world problems, it does not even exist.
However, the generalized likelihood ratio test (GLRT)
[26] has shown to give sensible results and hence is widely
used. In the GLRT approach, the parameters are replaced
by their maximum likelihood estimates. In other words, the
GLRT approach uses the maximum likelihood ratio as the
statistic. Here, we opt for such a solution.

As a first step, we consider the simplified situation where
all detectors have independent and identical instrumental
noises and this noise is white and Gaussian with unit
variance. We will address the colored noise case later in
Sec. V D.

In this case, the logarithm of the network likelihood ratio
(LLR) is given by

 ��x� � � k x� s k2 � k x k2; (38)

where k � k2 is the Euclidean norm (here in RNd) and we
omitted an unimportant factor 1=2. The network data
vector x is constructed on similar lines as that of the
network response s, i.e. first, it stacks the data from all
the detectors into xT � 
xT1 ;x

T
2 ; . . . ;xTd � and then at

each detector, the data is time-shifted to account for the
delay in the arrival time xj � fxj
k� � xj�tk � 	j�; tk �
tsk and k � 0 . . .N � 1g.

A. Maximization over extrinsic parameters: scaling
factors and phase shifts

Following the GLRT approach, we maximize the net-
work LLR � with respect to the parameters of s. We
replace s by its model as given in Eq. (21) and consider
at first the maximization with respect to the extrinsic
parameters p.

1. Least-square fit

The maximization of the network LLR over p amounts
to fitting a linear signal model to the data in least-square
(LS) sense, viz.

 minimize ���x�� k x k2�k x��p k2 over p: (39)

This LS problem is easily solved using the pseudoin-
verse �# of � [24]. The estimate of p is then given by

 p̂ � �#x: (40)

The pseudoinverse can be expressed using the SVD of �
as �# � V���1

� UH
� (note that �# is always defined since

we use the compact SVD restricted to nonzero SVs).
Substituting Eq. (40) in Eq. (39), we get the LS mini-

mum to be

 � �̂�x�� k x k2�k x� U�UH
�x k2; (41)

where we used VH
�V� � Ir. Equation (41) can be further

simplified into7

 �̂�x� �k UH
�x k2 : (42)

It is interesting to note that the operator U�UH
� is a

(orthogonal) projection operator onto the signal space
(over the range of �) i.e. U�UH

�� � ���#�� � �.

2. Signal-to-noise ratio

The signal-to-noise ratio (SNR) measures the difficulty
level for detecting a signal in the noise. In the present case,
along with the amplitude and duration of the incoming
GW, the network SNR also depends on the relative posi-
tion, orientation of the source with respect to the network.
Therefore, the SNR should incorporate all these aspects. A
systematic way to define the SNR is to start from the
statistic.

Let the SNR � of an injected GW chirp s0 � �p0 be8

 �2 	 �̂�s0�: (43)

Note that in this expression, the matrix � in the statistic
and in s0 are the same. Using the SVD of � and the
property of the projection operator UH

�U� � Ir, we get
�2 �k s0 k

2 . The SNR is equal to the ‘‘signal energy’’ in
the network data as defined in Eq. (22). Thus, the SNR �
scales as

����
N
p

as expected and it depends on the source
direction, polarization, and network configuration through
the gain factor k ~f k .9 Figure 3 illustrates how this factor
varies for the network formed by the two LIGO detectors
and Virgo. Figure 3 displays the ratio �=�best between the
global SNR (obtained with a coherent analysis) and the
largest individual SNR (obtained with the best detector of
the network). The panels (a) and (b) are associated to the
‘‘worst’’ (minimum over all polarization angles � and  )
and ‘‘best’’ (maximum) cases, respectively. Ideally, when
the detectors are aligned, the enhancement factor is ex-
pected to be

���
d
p

( � 1:73 in the present case). In the best
case, the enhancement is * 1:7 for more than half of the
sky (94% of the sky when * 1:4). In the worst case, the
SNR enhancement is 1.28 at most and 8.5% of the sky gets
a value * 1:1.

3. From geometrical to physical parameter estimates

The components of p do not have a direct physical
interpretation but as mentioned earlier, they are rather
functions of the physical parameters. Following the above

7For the inspiral case, this expression is equivalent to Eq. (4.8)
of [11].

8If the noise power is not unity, it would divide the signal
energy in this expression. When we have only one detector, the
SNR �2 is consistent with the definition usually adopted in this
case.

9The SNR �2 is similar to b2 defined in Eq. (3.17) of [11] in
the case of inspiralling binary signal and colored noise.
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discussion, if we assume that we obtained parameter
estimates p̂ from the data through Eq. (40), then one
can retrieve the physical parameters A, �0, �, and  
by inverting the nonlinear map which links p �
�at��a�t�at��a

�t��T to these parameters as given below

 Â � �
������������
jp̂
1�j

q
�

������������
jp̂
2�j

q
�2; (44)

 �̂ 0 �
1
2
arg�p̂
1�� � arg�p̂
2���; (45)

  ̂ � �1
4
arg�p̂
1�� � arg�p̂
2���; (46)

 �̂ � cos�1

������������
jp̂
2�j

p
�

������������
jp̂
1�j

p
������������
jp̂
2�j

p
�

������������
jp̂
1�j

p
" #

: (47)

4. Degeneracy and sensitivity of the estimate to noise

Upper bounds for the estimation error can be obtained
using a perturbative analysis of the LS problem in Eq. (39).
A direct use of the result of [24], Sec. 5.3.8 yields

 

k p̂� p k
k p k

�

����
N
p

�
cond ���: (48)

This bound is a worst-case estimate obtained when the
noise term which affects the data x is essentially concen-
trated along the directions associated to the smallest SV of

�. The noise is random and it spans isotropically all Nd
dimensions of the signal space. As described above, the
space associated to the smallest SV has only 2 dimensions.
Therefore, the worst case is very unlikely to occur and the
above bound is largely overestimated on the average.
However, it gives a general trend and shows that the
estimation goes worst with the conditioning of �.

Regularization techniques seem to give promising re-
sults in the context of GW burst detection [13–15].
Following this idea, we may consider to ‘‘regularize’’ the
LS problem in Eq. (39). To do so, additional information
on the expected parameters is required to counterbalance
the rank deficiency. Unfortunately, we do not expect p to
follow a specific structure. The only sensible prior that can
be assumed without reducing the generality of the search is
that k p k is likely to be bound (since the GW have a
limited amplitude A). It is known [27] that this type of
prior is associated to the use of the so-called Tykhonov
regulator and that we do not expect significant improve-
ments upon the nonregularized solution.

One difference explains why regularization techniques
do not work in the present case while it does work for burst
detection. We recall that in the burst case, the parameter
vector comparable to p are the samples of the waveform.
This vector being a time series, it is expected to have some
structure, in particular, it is expected to have some degree
of smoothness. The use of this a priori information im-
proves significantly the final estimation.

While regularization will not help for the estimation of
the extrinsic parameters, they may be of use to improve the
detection statistic. We consider this separate question later
in Sec. VII B.

FIG. 3. Benefits of a coherent network analysis (SNR enhancement).—We display the polar maps of the following quantities for the
L1-H1-V1 network (a) min ;��=�best and (b) max ;��=�best. Here, �best designates the best SNR of the detectors in the network. The
maximum, minimum are taken over all the polarization angles f ; �g.
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B. Implementation with synthetic streams

In the previous section, we maximize the network LLR
with respect to the extrinsic parameters resulting in the
statistic �̂ in Eq. (42). Here, we obtain a more simple and
practical expression for �̂ which will be useful for max-
imization over the remaining intrinsic parameters.

From Eqs. (23) and (42), we have

 �̂�x� �k �UD � UE�
Hx k2 : (49)

It is useful to reshape the network data x into a N � d
matrix X 	 
x1x2 . . . xd�. This operation is inverse to the
stack operator vec�� defined in Appendix A.

Using a property of the Kronecker product in Eq. (A2),
we obtain the reformulation

 �̂�x� �k vec�UH
EXU�D� k

2 : (50)

There are two possibilities to make this matrix product,
each being associated to a different numerical implemen-
tation for the evaluation of �̂.

We can first multiply X by UH
E and then by U�D. In

practice, this means that we first compute the correlation
of the data with a chirp template, then we combine the
result using weights (related to the antenna pattern func-
tions). This is the implementation proposed in [11]. It is
probably the best for cases (like, searches of inspiralling
binary chirps) where the number of chirp templates is large
(i.e., larger than the number of source locations) and where
the correlations with templates are computed once and
stored.

The second choice is to first multiply X by U�D and then
by UH

E which we adopt here. This means that we first
compute Y 	 XU�D which transforms the network data
into two N-dimensional complex data vectors 
y1; y2� 	
Y through an ‘‘instantaneous’’ linear combination. Then,
we correlate these vectors with the chirp template. We can
consider y1 and y2 as the output of two ‘‘virtual’’ detectors.
For this reason, we refer to those as synthetic streams in
connection to [28] who first coined the term for such
combinations. Note that, irrespective of the number of
detectors, one always gets at most two synthetic streams.
We note that though the synthetic streams defined in [28]
are ad hoc (i.e., they have no relation with the LR), the ones
obtained here directly arise from the maximization of the
network LLR.

We express the network LLR statistic in terms of the two
synthetic streams as

 �̂�x� �
1

N
�jeHy1j

2 � jeTy1j
2 � jeHy2j

2 � jeTy2j
2�;

(51)

where yl � Xu�l for l � 1, 2. This expression can be
further simplified by using the symmetry (easily seen
from Eqs. (29) and (30)),

 u �1 � exp�i
�u1; u�2 � � exp�i
�u2: (52)

We finally obtain

 �̂�x� �
2

N
�jeHy1j

2 � jeHy2j
2�: (53)

The linear combination in each stream is such that the
signal contributions from each detector add up construc-
tively. In this sense, synthetic streams are similar to beam-
formers used in array signal processing [29]. The GW chirp
thus appears in the synthetic streams with an enhanced
amplitude. The enhancement factor can be evaluated as
follows. When the data is a noise free GW chirp, i.e., x �
s, we then have

 yl
k� � pT�D �E
k��Tu�l � pT��lv�l �E
k�T�; (54)

where E
k� represents the kth row of E. Writing explicitly,
we have

 y 1 �
�1���

2
p <fq1

~hgei
=2; y2 �
i�2���

2
p =fq2

~hgei
=2; (55)

where we have q1 � t��ei
=2 � t��e
�i
=2 and q2 �

t��e
i
=2 � t��e

�i
=2. This shows that the synthetic streams
yl are rescaled and phase shifted copies of the initial GW
chirp ~h as defined in Eq. (16).

SNR per synthetic streams

The network SNR can be split into the contributions
from each synthetic stream i.e. using Eq. (43) we write
�2 �k ��VH

�p0 k
2 , as

 �2 � �2
1 � �

2
2; (56)

where we define �l 	
����
N
p

�l k �vl � I2�
Hp0 k =2 for l �

1, 2. More explicitly, we have

 �l �

����
N
p

2
�ljqljA: (57)

The synthetic streams contribute differently depending
on the polarization of the incoming wave. Figure 4 illus-
trates this with the network formed by the two LIGO
detectors and Virgo.

Let us assume that p0 is randomly oriented. Since v1 and
v2 have unit norms, we get the average value 0<
h�2=�1i�; / 1=cond��� � 1 for most of the sky as indi-
cated in Fig. 4(a). Note that this panel matches well with
Fig. 2(b). Thus, on average, y1 contributes more to the SNR
than y2. However, the situation may be different depending
on the specific polarization state of the wave. Figure 4(b)
shows the maximum of the ratio �=maxl�1;2�l for all
polarization angles � and  . For most sky locations, this
quantity is �

���
2
p

which means that the two synthetic
streams contribute equally. This holds true for all the sky
locations, except at the degenerate ones where y2 does not
contribute, hence the SNR ratio is 1. Inversely, one can
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always find a GW polarization such that one of the syn-
thetic streams does not contribute to the SNR.

Another insight into this question is given by the follow-
ing expression of the difference of the SNR in each syn-
thetic stream

 �2
1 � �

2
2 �

NA2

4

�
j�j

2

��
1� cos2�

2

�
2
� cos2�

�

�
k f� k4 � k f� k4

2j�j

sin4�
4

�
; (58)

where we have10 j�j2 � �k f� k2 � k f� k2�2 � 4 k f� �
f� k2 .

For a face-on source, i.e. � � 0, and assuming f� is
orthogonal to f� with k f� k�k f� k , then both synthetic
streams carry the same SNR �1 � �2 �

���������
N=2

p
A k f� k .

C. Null streams

1. Review and relation to synthetic streams

The access to noise only data is crucial in the signal
detection problem. Such data is not directly available in
GW experiments, but the use of multiple detectors allows
to access it indirectly using the null streams. The general

idea behind the null stream is to construct a data stream
from the individual detector streams which nullifies the
signature of any incoming GW from a particular direction.
Since this signal cancellation is specific to GWs, null
streams naturally provide an extra tool to verify that a
detected signal is indeed a GW or instead GW-like features
mimicked by the detector noise whose detection thus has to
be vetoed. This is a powerful check since it does not require
detailed information about the potential GW signal under
test, except an estimate of its source location. (Note that in
practice, the implementation of the veto test may be com-
plicated by the imprecision of the direction of arrival and of
the errors of calibration [18]). The existence of null
streams has been first identified in [31] in the case of three
detector networks. At present, a handful of literature
[17,18] exists on the use of null streams in GW data
analysis.

Null streams are usually introduced as a general post-
processing of the data independent of the detection of
specific GWs. Below, we make this connection in the
domain of our formalism. We recall that the network data
at a given time (e.g., the first row of the matrix X intro-
duced in Sec. V B) is a d-dimensional vector in Rd. This
space is a direct sum of the GW polarization plane and its
orthogonal complementary space. We have shown that the
GW polarization plane is a 2-dimensional space, spanned
by a pair of orthonormal basis vectors which are associated
to the two synthetic streams. The complementary space to
the GW polarization plane is a d� 2-dimensional space
and it is spanned by d� 2 ‘‘null vectors.’’ Similar to the
synthetic streams, the null streams can be constructed from
these null vectors. Thus, the numbers of synthetic and null

FIG. 4. SNR per synthetic streams and benefits of a coherent network analysis (SNR enhancement).—We display the polar maps of
the following quantities for the L1-H1-V1 network: (a) h�2=�1i ;� and (b) max ;���=maxl�1;2�l� where �l denotes the SNR of
synthetic stream l � 1 or 2, as defined in Eq. (57). The maximum and average are taken over all the polarization angles f ; �g.

10The synthetic streams (on the average sense) are also con-
nected to the directional streams introduced in the context of
LISA [30]. If we integrate �2

l over the inclination and polariza-
tion angles �;  , we obtain h��2

1 � �
2
2�=2i�; � 2j�j=5 and

hk ~f k2i�; � 2D=5. Thus, the SNRs of the synthetic streams
�2
l when averaged over the polarization angles are proportional

to the SNRs obtained by v� and v�—the directional streams in
the LISA data analysis, see Eqs. (25–28) of [30].
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streams sum up to d. Nominally, we have d� 2 null
streams. However, when the GW polarization plane degen-
erates to a 1-dimensional space (�2 � 0) as explained in
Sec. IV B, the number of null vectors becomes d� 1. For a
two detector network, in the nominal case, there is no null
stream as d� 2 � 0. However, for degenerate directions,
one can construct a null stream. For an aligned pair of
detectors (as is almost the case for the two LIGO L1 and
H1), the fraction of the degenerate sky location is large, see
Fig. 2. This null stream would turn out to be useful for
vetoing in this case.

In the next section, we explain how the null streams can
be obtained numerically in the nominal case. The extension
to the degenerate case is straightforward.

2. Obtaining the null streams numerically

The numerical construction of the null streams can be
achieved in various ways. One such approach could be to
obtain the full SVD of D and construct the null streams
from the eigenvectors corresponding to the zero SVs. This
approach was taken in [18]. Here, we take an alternative
approach. We construct the null streams by successive
construction of orthonormal vectors via a multidimen-
sional cross-product as described below.

Assuming some direction of arrival, we express any
instantaneous linear combination of the time-shifted data
(to compensate for different time of arrivals at the detec-
tors’ site with respect to the reference) as

 y �x� 	 Xu; (59)

where the vector u 2 Cd�1 contains the tap coefficients.
Equation (58) can be rewritten as

 y �x� � vec�INXu� � �uT � IN�x: (60)

The vector u defines a null stream if y�x� � 0N when-
ever x is a GW. Let us assume that we indeed observe a
GW chirp i.e., x � s0 	 �p0. We thus have

 y �s0� � 
�uTUD� � UE���VH
�p0: (61)

If u is in the null space of UD, the null-stream condition
is satisfied for all p0. Since the null space of UD is or-
thogonal to its range, an obvious choice for u is

 u � u1 � u2 �
d� � d��������������������
D2 � �2
p : (62)

Nominally, UD is a 2-dimensional plane in Cd. Its null
space is therefore d� 2 dimensional. An orthonormal
basis of this space can be obtained recursively starting
from u3 � u as defined above and applying the following
generalized vector cross-product formula for n > 3:

 u n
i� � �ijkl...mu1
j�u2
k�u3
l� . . . un�1
m�: (63)

Here, �ijkl...m is the Levi-Cività symbol.11 The un de-
notes an orthonormal set of d� 2 vectors, fun; for 3 �
n � dg. The components of these vectors are the tap co-
efficients to compute the null streams. By construction, the
resulting null streams are uncorrelated and have the same
variance.

To summarize the main features of our formalism. The
representation of a GW network response of unmodeled
chirp as a Kronecker product between the GW polarization
plane and the chirp plane forms the main ingredient of this
formalism. Such a representation allows the signal to re-
veal the degeneracy in a natural manner in the network
response. It also evidences the two facets of the coherent
network detection problem, namely, the network signal
detection via synthetic streams and vetoing via null
streams. The coherent formalism developed in [11] for
inspiralling binaries lacked this vetoing feature due to the
difference in the signal representation.

In the rest of this paper, we do not discuss/demonstrate
the null streams applied as a vetoing tool to the simulated
data. This will be demonstrated in the subsequent work
with the real data from the ongoing GW experiments.

D. Colored noise

The formalism developed till now was exclusively tar-
geted for the white noise case. We assumed that the noise at
each detector is white Gaussian. In this subsection, we
extend our formalism to the colored noise case. We remind
the reader that the main focus of this paper is to develop the
coherent network strategy to detect unmodeled GW chirps
with an interferometric detector network. Hence, we give
more emphasis on the basic formalism and keep the col-
ored noise case with basic minimal assumption: the noise
from the different detectors is colored but with the same
covariance. Based on this ground work, the work is in
progress to extend this to the colored noise case with
different noise covariances.

Let us therefore assume now that the noise components
in each detector are independent and colored, with the
same covariance matrix R0. Recall that the covariance
matrix of a random vector a is defined as E
�a� E
a���
�a� E
a��H� where E
:� denotes the expectation. From the
independence of the noise components, the overall covari-
ance matrix of the network noise vector is then a block-
diagonal matrix, where all the blocks are identical and
equal to R0: R � diag�R0� 	 Id �R0.

11The Levi-Cività symbol is defined as

 �ij... 	 �1 when i; j; . . . is an even permutation of1; 2; . . . ;

	 �1 when i; j; . . . is an odd permutation of1; 2; . . . ;

	 0 when any two labels are equal:
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In this case, the network LLR becomes

 ��x� � � k x��p k2
R�1 � k x k2

R�1 ; (64)

where the notation k � k2
R�1 denotes the norm induced by

the inner product associated to the covariance matrix R�1,
i.e., k a k2

R�1� aHR�1a.
Introducing the whitened version ~� � R�1=2� and

~x � R�1=2x of � and x, respectively, Eq. (65) can be
rewritten as

 ��x� � � k ~x� ~�p k2 � k ~x k2; (65)

which is similar to Eq. (38) where all the quantities are
replaced by their whitened version. Thus, the maximiza-
tion of ��x� with respect to the extrinsic parameters p will
follow the same algebra as that derived in V. However, for
the sake of completeness, we detail it below.

Following Sec. V, maximizing ��x� with respect to the
extrinsic parameters p leads to

 p̂ � ~�#~x; (66)

where ~�# is the pseudoinverse of ~�. Expressing this
pseudoinverse by means of the SVD of ~� as ~�# �

V ~���1
~�

UH
~�

and introducing Eq. (67) into Eq. (66) provides
the new statistic

 �̂�x� �k UH
~�

~x k2 : (67)

Now, from the definition of � and the specific structure
of R, it is straightforward to see that

 

~� � R�1=2�D �E� � D � �R�1=2
0 E� � D � ~E; (68)

where we have introduced the whitened version ~e �
R�1=2

0 e of the chirp signal and the corresponding matrix
~E � 
~e~e��=2.

For the white noise case, the statistic (68) can then be
rewritten in terms of the SVD of the matrices D and ~E:

 �̂�x� �k �UD � U ~E�
H~x k2 : (69)

The computation of U ~E is similar to the computation
of U ~E. Furthermore, if we note that ~eT~e ’ 0, and if we
assume that ~eH~e � N, it turns out that U ~E � 2~E=

����
N
p
�

2R�1=2
0 E=

����
N
p

. Using the property of the Kronecker prod-
uct in Eq. (A2), we then obtain

 �̂�x� �k vec�EH ~~XU�D� k
2; (70)

where the matrix ~~X � 
~~x1
~~x2 . . . ~~xd� contains the data vec-

tor from each detector whitened twice: ~~xj � R�1=2~xj �
R�1xj.

As this expression is similar to the white noise case, we

can form two synthetic streams 
~~y1; ~~y2� �
~~XU�D and use

them to express the LLR statistic as

 �̂�x� �
2

N
�jeH~~y1j

2 � jeH~~y2j
2�: (71)

In this expression, the only difference with the white
noise LLR of (53) comes from the computation of the
synthetic streams ~~y1 and ~~y2 which are obtained after
double-whitening the data.

VI. MAXIMIZATION OVER THE INTRINSIC
PARAMETERS

In the previous section, we maximized the network LLR
over the extrinsic parameters of the signal model, assuming
that the remaining parameters (the source location angles
� and � and the phase function ’���) were known.

By definition, the intrinsic parameters modify the net-
work LLR nonlinearly. For this reason, the maximization
of �̂ over these parameters is more difficult. It cannot
be done analytically and must be performed numerically,
for instance with an exhaustive search of the maximum
by repeatedly computing �̂ over the entire range of
possibilities.

While the exhaustive search can be employed for the
source location angles, it is not applicable to the chirp
phase function, which requires a specific method. For the
single detector case, we had addressed this issue in [8] with
an original maximization scheme which is the cornerstone
of the BCC algorithm. Here, we use and adapt the prin-
ciples of BCC to the multiple detector case.

A. Chirp phase function

Let us examine first the case of the detection of inspiral-
ling binary chirps. In this case, the chirp phase is a pre-
scribed function of a small number of parameters i.e., the
masses and spins of the binary stars. The maximization
over those is performed by constructing a grid of reference
or template waveforms which are used to search the data.
This grid samples the range of the physical parameters.
This sampling must be accurate (the template grid must be
tight) to avoid missing any chirp.

A tight grid of templates can be obtained in the non-
parametric case (large number of parameters) i.e., when the
chirp is not completely known. We have shown in [8] how
to construct a template grid which covers entirely the set of
smooth chirps i.e., chirps whose frequency evolution has
some regularity as described in Sec. II B 2. In the next
section, we briefly describe this construction.

1. Chirplet chains: tight template bank for smooth chirps

We refer to the template forming this grid as chirplet
chain (CC). These CCs are constructed on a simple geo-
metrical idea: a broken line is a good approximation of a
smooth curve. Since the frequency of a smooth chirp
follows a smooth frequency vs time curve, we construct
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templates that are broken lines in the time-frequency (TF)
plane.

More precisely, CC are defined as follows. We start by
sampling the TF plane with a regular grid consisting of Nt
time bins and Nf frequency bins. We build the template
waveforms like a puzzle by assembling small chirp pieces
which we refer to as chirplets. A chirplet is a signal with a
frequency joining linearly two neighboring vertices of the
grid. The result of this assembly is a chirplet chain i.e., a
piecewise linear chirp. Since we are concerned with con-
tinuous frequency evolution with bounded variations, we
only form continuous chains.

We control the variations of the CC frequency. The
frequency of a single chirplet does not increase or decrease
more than N0r frequency bins over a time bin. Similarly, the
difference of the frequency variations of two successive
chirplets in a chain does not increase or decrease more than
N00r frequency bins.

The CC grid is defined by four parameters namely Nt,
Nf,N0r, andN00r . Those are the available degrees of freedom
we can tune to make the CC grid tight. A template grid is
tight if the network ambiguity �̂�s;’0� / je0Hy1�s�j2 �
je0Hy2�s�j2 which measures the similarity between an ar-
bitrary chirp (of phase ’) and its closest template (of phase
’0), is large enough and relatively closed to the maximum
(when ’0 � ’).

As stated in Eq. (55), in the presence of a noise free GW
chirp, the synthetic streams yl�s� are rescaled and phase
shifted copies of the initial GW chirp s. Therefore, we treat
the network ambiguity as a sum of ambiguities from two
virtual detectors where each term in �̂�s;’0� is the ambi-
guity computed in the single detector case. An estimate of
the ambiguity has been obtained in [8] for this case. It can
thus be directly reused to compute �̂�s;’0�.

The bottom line is that the ratio of the ambiguity to its
maximum for the network case remains unaltered as com-
pared to the single detector case and thus the same for the
tight grid conditions. In conclusion, the rules (which we
will not repeat here) established in [8] to set the search
parameters can also be applied here.

2. Search through CCs in the time-frequency plane:
best network CC algorithm

We have now to search through the CC grid to find the
best matching template, i.e., which maximizes �̂�x; ’̂0�
over all CCs of phase ’0. Counting the number of possible
CCs to be searched over is a combinatorial problem. This
count grows exponentially with the number of time bins
Nt. In the situation of interest, it reaches prohibitively large
values. The family of CCs cannot be scanned exhaustively
and the template based search is intractable.

In [8], we propose an alternative scheme yielding a close
approximation of the maximum for the single detector
statistic. When applied to the network, the scheme de-

mands to reformulate the network statistic in the TF plane.
The TF plane offers a natural and geometrically simple
representation of chirp signals which simplifies the statis-
tic. It turns out that the resulting statistic falls in a class of
objective functions where efficient combinatorial optimi-
zation algorithms can be used. We now explain this result
in more detail.

We use the TF representation given by the discrete
Wigner-Ville (WV) distribution [32] defined for the time
series x
n� with n � 0; . . . ; N � 1 as

 wx�n;m� 	
X�kn

k��kn

x
bn� k=2c�x�
bn� k=2c�e�2�imk=�2N�;

(72)

with kn 	 minf2n; 2N � 1� 2ng, where b�c gives the in-
teger part. The arguments of wx are the time index n and
the frequency indexmwhich correspond, in physical units,
to the time tn � tsn and the frequency �m � �sm=�2N� for
0 � m � N and �m � �s�N �m�=�2N� forN � 1 � m �
2N � 1.

The above WV distribution is a unitary representation.
This means that the scalar products of two signals can be
reexpressed as scalar products of their WV. Let x1
n� and
x2
n� be two time series. The unitarity property of wx is
expressed by the Moyal’s formula as stated below

 

��������XN�1

n�0

x1
n�x�2
n�
��������2
�

1

2N

XN�1

n�0

X2N�1

m�0

wx1
�n;m�wx2

�n;m�:

(73)

Applying this property to the network statistic in
Eq. (53), we get

 �̂�x� �
1

N2

XN�1

n�0

X2N�1

m�0

wy�n;m�we�n;m�; (74)

where wy � wy1
� wy2

combines the individual WVs of
the two synthetic streams.

In order to compute �̂�x�, we need to have a model for
we. We know that the WV distribution of a linear chirp
(whose frequency is a linear function of time) is essentially
concentrated in the neighborhood of its instantaneous fre-
quency [32]. We assume that it also holds true for an
arbitrary (nonlinear) chirp. Applying this approximation
to the WV we of the template CC in Eq. (75), we get

 we�n;m� � 2N
�m�mn�; (75)

where mn denotes the nearest integer of 2T��tn� and � is
the instantaneous frequency of the CC.

Thus, substituting in Eq. (75), we obtain the following
reformulation of the network statistic

 �̂�x� �
2

N

XN�1

n�0

wy�n;mn�: (76)

PAI, CHASSANDE-MOTTIN, AND RABASTE PHYSICAL REVIEW D 77, 062005 (2008)

062005-16



The maximization of �̂�x� over the set of CC amounts to
finding the TF path that maximizes the integral Eq. (77),
which is equivalent to a longest path problem in the TF
plane. This problem is structurally identical to the single
detector case (the only change is the way we obtain the TF
map). We can therefore essentially reuse the scheme pro-
posed earlier for this latter case. The latter belongs to a
class of combinatorial optimization problems where effi-
cient (polynomial time) algorithms exist. We use one such
algorithm, namely, the dynamic programming.

In conclusion, the combination of the two ingredients,
namely, the synthetic streams and the phase maximization
scheme used in BCC allows us to coherently search the
unmodeled GW chirps in the data of the GW detector
network. We refer to this procedure as the BNCC
algorithm.

B. Source sky position

As we are performing maximization successively, till
now we assume that we know the sky position of the
source. Knowing the sky position, we construct the syn-
thetic streams with appropriate direction dependent weight
factors, time-delay shifts, and carry out the BNCC algo-
rithm for chirp phase detection. In reality, the sky position
is unknown. One needs to search through the entire sky by
sampling the celestial sphere with a grid and repeating the
above procedure for each point on this grid.

C. Time of arrival

Since we process the data streams sequentially and
blockwise, the maximization over t0 amounts to selecting
that block where the statistic arrives at a local maximum
(i.e., the maximum of the ‘‘detection peak’’). The epoch of
this block yields an estimate of t0. The resolution of the
estimate may be improved by increasing the overlap be-
tween two consecutive blocks.

D. Estimation of computational cost

We estimate the computational cost of the BNCC search
by counting the floating-point operations (flops) required
by its various subparts. The algorithm consists essentially
in repeating the one-detector search for all sky location
angles. Let N� be the number of bins of the sky grid. The
total cost is therefore N� times the cost of the one-detector
search, which we give in [8] and summarize now. The
computation of the WV of the two synthetic streams re-
quires 10NNflog2Nf flops and the BCC search applied to
the combined WV requires 
N � �2N00r � 1�Nt�Nc flops,
where Nc � �2N0r � 1�Nf is the total number of chirplets.
Since this last part of the algorithm dominates, the overall
cost thus scales with

 C / N�
N � �2N00r � 1�Nt��2N0r � 1�Nf: (77)

This is the numerical cost for computing one data block
of duration T. The computational power needed to process
the data in real time is thus given byC=�
T�where
 is the
overlap between two successive blocks.

VII. RESULTS WITH SIMULATED DATA AND
DISCUSSION

A. Proof of principle of a full blind search

We present here a proof of principle for the proposed
detection method. For this case study, we consider a net-
work of three detectors placed and oriented like the exist-
ing Virgo and the two four-kilometer LIGO detectors. The
coordinates and orientation of these detectors can be found
in Table I. We assume a simplified model for detector noise
which we generate independently for each detector, using a
white Gaussian noise. Figure 5 illustrates the possibility of
a ‘‘full blind’’ search in this situation. This means that we
perform the detection jointly with the estimation of the
GW chirp frequency and the source sky location.

1. Description of the test signal

Because of computational limitation, we restrict this
study to rather short chirps of N � 256 samples, i.e., a
chirp duration T � 250 ms assuming a sampling rate of
�s � 1024 Hz. The chirp frequency follows a random time
evolution which, however, satisfies chirping rate con-
straints. We make sure that the first and second derivatives
of the chirp frequency are not larger than F0 � 9:2 kHz=s
and F00 � 1:57 MHz=s2, respectively. The chosen test sig-
nal has about 50 cycles. This is a larger number than what
is considered typically for burst GWs (� 10).

As a comparison with a well-known physical case, an
inspiralling (equal mass) binary with total mass M �
11M� reaches the same maximum frequency variations
at the last stable circular orbit. (Binary chirps with larger
total mass also satisfy these chirping rate limits).

We set the SNR to � � 20. The chirp is injected at the
sky position � � 2:8 rad and � � 0:4 rad where the con-
tributions of the individual detectors are comparable,
namely, the individual SNR are 10.4, 10.15, and 13.77
for Virgo, LIGO Hanford, and LIGO Livingstone,
respectively.

2. Search parameters

We search through the set of CCs defined over a TF grid
with Nt � 128 time intervals and N � Nf � 256 fre-
quency bins (using fs � 2048 Hz). We set the regularity
parameters to N0r � 9 and N00r � 3, consistent to the above
chirping rate limits.

We select an ad hoc sky grid by dividing regularly the
full range of the source localization angles � and � into
128 bins. The resulting grid has therefore a total of N� �
16 384 bins. This is probably much finer than is required to
perform the detection without missing candidate. However,
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this oversampling leads to precise likelihood sky maps
which helps to diagnose the method. With this parameter
choice, the estimated computational power required to
analyze the data in real time is of 2.8 TFlops, assuming
an overlap of 
 � 50% between successive data blocks.
Because of the crude choice for the sky grid, this require-
ment is probably overestimated.

The result of the search is displayed in Fig. 5 where we
see that the injection is recovered both in sky position and
frequency evolution. The source position is estimated at
�̂ � 2:8 rad and �̂ � 0:39 rad.

B. Regularized variants

As shown in Sec. , the SNR carried by the synthetic
stream is proportional to the corresponding SV. When the
GW polarization plane is degenerate (i.e., when �2 is
small), the second synthetic stream contains almost only
noise. We thus do not lose information if we suppress its
contribution from the statistic. This is the basic idea of
Klimenko et al. in [13].

We have seen that the estimation of the extrinsic pa-
rameters is an ill-posed least-square problem in those
cases. Suppressing the contribution of the second synthetic

stream amounts to regularizing this problem [13]. In prac-
tice, this regularization can be done in various ways, cor-
responding to well-identified schemes.

A first possibility is to suppress the contribution of the
second synthetic stream when the conditioning number of
� is too large (i.e., exceeds a given threshold). This
scheme is referred to as truncated SVD [27]. A second
possibility is to balance (divide) the contribution of the
second synthetic stream by the conditioning number. This
is referred to as the Tykhonov approach [27] and it was
proposed for regularizing burst searches in [15].

In Fig. 6, we compare the likelihood landscape and
frequency estimate obtained with the standard statistic
and its regularized version using the Tykhonov approach.
Visually, the regularization improves the contrast and con-
centration of the likelihood landscape around the injection
point. This can be assessed more quantitatively with the
contrast defined as the ratio of the likelihood landscape
extremes. This contrast is improved by about 10% for the
regularized statistic as compared to the standard version. It
is also interesting to compare the ‘‘width’’ of the detection
peak obtained with the two statistic. To do this, we measure
the solid angle of the sky region where the statistic is larger
than 90% of the maximum. This angle is reduced by a
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FIG. 5 (color online). Coherent detection/estimation of a ‘‘random’’ chirp with network of three GW antennas.—In the data of three
GW antennas (the two LIGO and Virgo), we inject (a) a random GW chirp emitted from a source at the position marked with a ‘‘�’’ at
� � 2:8 rad and � � 0:4 rad. We perform a full-sky search using the best network chirplet chain algorithm. It produces a likelihood
landscape (b) where we select the maximum. This is the detection point and it is indicated with ‘‘�’’. In (c) we show the combined WV
distribution of the synthetic streams at the detection point. In (d), we compare the exact frequency of the chirp (solid/blue line) with the
estimation (dashed/red line) obtained at the detection point.
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factor of�6 when computed with the regularized statistic.
There is, however, no major improvement of the frequency
estimate. More generally, it is unclear whether the regular-
ized statistic performs better than the standard one.

VIII. CONCLUDING REMARKS

The coherent detection of unmodeled chirps with a net-
work of GW have features and issues in common with the
burst one. In particular, the same geometrical objects play a
key role. While the noise spans the whole d-dimensional
data space, GW signals (chirps or burst) only belong to a
two-dimensional (one dimension per GW polarizations)
subspace, the GW polarization plane. Detecting GWs
amounts to checking whether the data has significant com-
ponents in this plane or not. To do so, we compute the
projections of the data onto a basis of the GW polarization
plane. In practice, this defines two instantaneous linear
mixtures of the individual detector data which we refer to
as synthetic streams. Those may be considered as the out-
put data of virtual detectors. This combination is such that
the GW contributions from each real detector add con-
structively. The GW signature thus has a larger amplitude

in the synthetic streams while the noise variance is kept at
the same level.

The coherent detection amounts to looking for an excess
in the signal energy in one or both synthetic streams
(depending on the GW polarization model). This provides
a generic and simple procedure to produce a coherent
detection pipeline from a one-detector pipeline. In the
one-detector case, the BCC search performs a path search
in a time-frequency distribution of the data. In the multiple
detector case, the BNCC search now uses the joint time-
frequency map obtained by summing the time-frequency
energy distributions of the two synthetic streams. The
approach does not restrict to chirp detection and it can be
applied to burst searches [18].

We demonstrated in a simplified situation that the full-
sky blind detection of an unmodeled chirp is feasible. This
means that the detection is performed jointly to estimate
the source location and the frequency evolution. The ap-
plication of this method to the real data, however, requires
several improvements. First, the method has to be adapted
to the case where the detectors have different sensitivities.
In this respect, we already obtained first results [33].

We also have to refine the choice of the grid which
samples the celestial sphere. In the present work, we select
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FIG. 6 (color online). Coherent detection/estimation of a random chirp with network of three GW antennas. Standard and
regularized statistic.—We compare the likelihood landscape (left) and frequency estimation (right) obtained using the standard
(top) and Tykhonov-regularized (bottom) versions of the network statistic. The test signal is a random GW chirp injected at the sky
location marked with a ‘‘�’’. This location has been chosen because of the associated large value of the conditioning number, namely
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an ad hoc grid. Clearly, the sky resolution and the bin shape
depends on the geometry of the sphere and the location and
orientation of the detectors in the considered network. A
better grid choice (not too coarse to avoid SNR losses, and
not too fine to avoid using useless computing resources)
should incorporate this information keeping the search
performance (detection probability and sky resolution)
constant. In this respect, we may consider to other parame-
trizations of the sky location which makes the definition of
the sky grid easier, for instance by choosing the time delays
as investigated in [11]. We may also explore hierarchical
schemes for the reduction of the computational cost.

The GW polarization plane depends on the detector
antenna patterns functions. With the presently available
networks, there are significantly large sky regions where
the antenna patterns are almost collinear. In this case, the
network observes essentially one polarization and is almost
insensitive to the other: the GW polarization plane reduces
to a one-dimensional space. The information carried by the
missing polarization lacks and this makes the estimation of
certain parameters ill-posed and hence very sensitive to
noise. We can evaluate that the variance of the estimate
scales with the condition number of the antenna pattern
matrix. When this number (which quantifies in some sense
the mutual alignment of the detectors) is large, the estima-
tion is ill-posed and we expect poor results.

This is an important issue for burst detection since it
affects significantly the shape of the estimated waveform
(and, particularly the regularity of its time evolution). This
has motivated the development of regularization schemes
which penalize the estimation of nonphysical (i.e., irregu-
lar) waveforms. We have shown that this is, however, less
of a problem for chirps because of their more constrained
model. Ill-conditioning only affects global scaling factors
in the chirp model. Unlike bursts, no additional prior is
available for regularizing the estimation of these scaling
factors.

The data space can be decomposed as the direct sum of
the GW polarization plane and its complementary. While
GWs have zero components in the latter null space, it is
unlikely that instrumental noise (including its non-
Gaussian and nonstationary part) will. This motivates the
use of null streams (i.e., the projection of the data along a
basis of the complementary space) to verify that a trigger is
indeed a GW candidate and not an instrumental artifact.
Since null streams are inexpensive to compute, we consider
to use them to make preemptive cuts in order to avoid the
analysis of bad data.
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APPENDIX A: KRONECKER PRODUCT:
DEFINITION AND PROPERTIES

The Kronecker product � transforms two matrices A 2
Cm�n and B 2 Cp�q into the following matrix of Cmp�nq

[25]

 A �B 	

a11B . . . a1nB
..
. . .

. ..
.

am1B . . . amnB

2664
3775: (A1)

The Kronecker product is a linear transform and can be
considered as a special case of the tensor product. We
define the operator vec�� to be the stack operator which
transforms the matrix into a vector by stacking its columns,
i.e. x 	 vec�X�. In the text, we use the following property:

 �A �B�vec�X� � vec�BXAT�: (A2)

The proof of this property is straightforward.

APPENDIX B: INTERFEROMETRIC DETECTOR
RESPONSE IN TERMS OF GEL’FAND FUNCTIONS

The GW response of a detector to an incoming GW can
be obtained by computing the interaction of the wave
tensor W with the detector tensor D as follows12:

 s �
X3

i;j�1

WijDij: (B1)

The wave tensor is related to the incoming GW tensor in
the TT gauge by hij � 2Wij. Both detector and wave
tensors are rank 2 STF tensors. Any STF tensor can be
expanded in the basis of spin-weighted spherical harmon-
ics of rank 2 and the rank-2 Gel’fand functions provide the
corresponding coefficients. Further, they are representation
of rotation group SO(3) and provide compact representa-
tion for the detector response of any arbitrarily oriented
and located detector on Earth which we present in this
appendix [34].

a. Wave tensor—The incoming GW tensor in TT gauge
is given by

 hTTij � �exiexj � eyieyj�h� � 2�exieyj�h�; (B2)

where ex and ey are unit vectors along the xw and yw axes
in the wave frame; h� and h� are the two GW polar-
izations. Let m̂ � �ex � iey�=

���
2
p

be a complex vector in
the wave frame. Then, the wave tensor can be written down
in terms of m as

 Wij � <
�mimj��h�; (B3)

where we used the complex quantity h � h� � ih� which
combines both GW polarizations.

12Unless otherwise mentioned, the notations and symbols used
in all appendices are confined to those appendices only.
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The term mimj is a STF tensor of rank 2. We choose to
work in the detector frame for convenience. Expanding
mimj in terms of spin-weighted spherical harmonics of
rank 2, namely Yij

2n and the rank-2 Gel’fand functions
Tmn��0e; �0e;  0e�, we get

 mimj �

�������
8�
15

s X2

n��2

Yij
2nT2n��

0
e; �

0
e;  

0
e�: (B4)

The angles ��0e; �0e;  0e� are the Euler angles of the rotation
operator which transforms the detector coordinates into the
wave coordinates.

Substituting Eq. (B4) into Eq. (B3), we express the wave
tensor in terms of the Gel’fand functions as

 Wij �

�������
8�
15

s X2

n��2

<
hYij
2nT�2n�: (B5)

b. Detector tensor—The detector tensor is

 Dij � n1in1j � n2in2j; (B6)

where n1 and n2 are the unit vectors along the first and
second arms of the interferometer. Recall that we choose
the xd-axis of the detector frame along the bisector of the
two arms. The yd-axis is chosen such that �xd; yd; zd� is a
right-handed coordinate system with zd pointing towards
the local zenith. With this choice, we have

 D11 � D22 � 0; D12 � D21 � �1: (B7)

From Eqs. (B6) and (B7), the detector response is

 s � <
f�h�; (B8)

where the complex antenna pattern function is given by

 f � i
T2�2��0e; �0e;  0e� � T22��0e; �0e;  0e��: (B9)

From the expansion of the above Eq. (B8) in terms of
GW polarizations, it is consistent to define f � f� � if�,
which yields Eq. (13).

c. Extended complex antenna pattern for sources orbit-
ing in a fixed plane—As discussed in Sec. III D 1, the
extended antenna pattern functions incorporate the incli-
nation angle � and is given in Eq. (17) as

 

~f �
1� cos2�

2
f� � i cos�f�; (B10)

where f�;� depend on the relative orientation of wave
frame with respect to the detector frame. The detector to
wave frame coordinate transformation can be split into
two: detector to Earth’s frame and Earth’s frame to wave
frame by the following rotation transformations as given in
Eqs. (5) and (6)

 O ��0e; �0e;  0e� � O��e; �e;  e�O�1��;�; ��: (B11)

The above successive rotation transformation can be trans-
lated into the addition theorem of Gel’fand functions [35]

as given below

 Tmn��
0
e; �

0
e;  

0
e� �

X2

l��2

Tml��e; �e;  e�T
�
nl��;�; ��:

(B12)

We used the fact that the inverse rotation operator is
associated to a complex conjugation.

Substituting in Eq. (B9), we rewrite the antenna pattern
functions in terms of the Gel’fand functions as
 

f � �
X2

s��2

iT2s��e; �e;  e�

� 
T2s��;�; �� � T�2s��;�; ����: (B13)

Substituting in the extended beam pattern function given
in Eq. (B10) and combining the dependencies upon  �
 e and �, we get

 

~f � T22� ; �; 0�d� T2�2� ; �; 0�d�; (B14)

where
 

d � �
X2

n��2

iT2n��e; �e; 0�
T2n��;�; �� � T�2n��;�; ����:

(B15)

There are various ways of expressing the antenna pattern
functions. The main advantages of this one is that it is
particularly compact and that the angles  and � get
factorized from the rest of the parameters. This helps in
the maximization of the network LLR over the extrinsic
parameters.

APPENDIX C: SVD OF A TWO-COLUMN
COMPLEX MATRIX

In this appendix, we obtain the SVD of a complex matrix
of the type A 	 
a; a�� where a 2 CN�1. The SVD de-
composes A into the product A � UA�AVH

A where UA and
VA are two orthogonal matrices and �A is a positive
definite diagonal matrix. To obtain it analytically, we first
get the eigen-decomposition of

 A HA � aHa aHa�

aTa aTa�

� �
	

a b�

b a

� �
: (C1)

We distinguish two cases depending on the value of b.

1. For jbj > 0

The eigenvalues �� and the eigenvectors v� of AHA
are given below:

 �2
� � a� jbj; (C2)

 v� �
1���
2
p

exp��i$�
�1

� �
; (C3)
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where $ � argb � arg
aTa�. The number of nonzero ei-
genvalues of AHA gives the rank of A. The eigenvalues
arranged in the descending order form the diagonal values
of �2

A as shown below. The eigenvectors v� are the right-
handed singular vectors of A and form VA as given below:

 � A �
�� 0
0 ��

� �
; (C4)

 V A � v� v�
� 	

: (C5)

We then form the matrix UA � AVA��1
A 	 
u�;u��

containing the right-handed singular vectors, with

 u� �
exp��i$�a� a����

2
p
��

: (C6)

The above expressions are valid only when the two SV
are nonzero. It is possible that the smallest SV �� van-
ishes. In this case, the SVD collapses to UA � u�, �A �
��, and VA � v�.

2. For jbj � 0

In this case, the matrix AHA � aI2 is diagonal. We thus
have � �

���
a
p

I2, VA � I2, and UA � A=
���
a
p

.
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